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Exposure to different risk factors plays an important role in the 
likelihood of an individual developing or experiencing more 
severe outcomes from certain diseases, such as high blood 

pressure increasing the risk of heart disease or not having access 
to a safe water source increasing the risk of diarrheal diseases1. 
Understanding and quantifying the relationship between risk factor 
exposure and the risk of a subsequent outcome is therefore essential 
to set priorities for public policy, to guide public health practices, to 
help clinicians advise their patients and to inform personal health 
choices. Consequently, information on risk–outcome relationships 
can be used in the formulation of many types of public policies, 
including national recommendations on diet, occupational health 
rules, regulations on behavior such as smoking in public places, 
and guidance on appropriate levels of taxes and subsidies. As new  

evidence is continuously being produced and published, the sys-
tematic and comparable assessment of risk functions is a dynamic 
challenge. Up-to-date assessments of risk–outcome relationships 
are essential to, and a core component of, the Global Burden of 
Diseases, Injuries, and Risk Factors Study (GBD) comparative risk 
assessment (CRA)1–3, which aims to help decision-makers under-
stand the magnitude of different health problems.

Evidence on risk–outcome relationships comes from many types 
of studies, including randomized controlled trials (RCTs), cohort 
studies, case-control studies, cross-sectional analyses, ecologi-
cal studies and animal studies. Each study type has characteristic 
strengths and weaknesses. For example, RCTs are the most robust 
method for dealing with confounding but are often conducted with 
strict inclusion and exclusion criteria, meaning that trial participants 
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Exposure to risks throughout life results in a wide variety of outcomes. Objectively judging the relative impact of these risks on 
personal and population health is fundamental to individual survival and societal prosperity. Existing mechanisms to quantify 
and rank the magnitude of these myriad effects and the uncertainty in their estimation are largely subjective, leaving room 
for interpretation that can fuel academic controversy and add to confusion when communicating risk. We present a new suite 
of meta-analyses—termed the Burden of Proof studies—designed specifically to help evaluate these methodological issues 
objectively and quantitatively. Through this data-driven approach that complements existing systems, including GRADE and 
Cochrane Reviews, we aim to aggregate evidence across multiple studies and enable a quantitative comparison of risk–outcome 
pairs. We introduce the burden of proof risk function (BPRF), which estimates the level of risk closest to the null hypothesis that 
is consistent with available data. Here we illustrate the BPRF methodology for the evaluation of four exemplar risk–outcome 
pairs: smoking and lung cancer, systolic blood pressure and ischemic heart disease, vegetable consumption and ischemic heart 
disease, and unprocessed red meat consumption and ischemic heart disease. The strength of evidence for each relationship is 
assessed by computing and summarizing the BPRF, and then translating the summary to a simple star rating. The Burden of 
Proof methodology provides a consistent way to understand, evaluate and summarize evidence of risk across different risk–
outcome pairs, and informs risk analysis conducted as part of the Global Burden of Diseases, Injuries, and Risk Factors Study.
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are unlikely to be fully representative of the general population, as 
well as being done over relatively short durations3–5. Case-control 
studies are well suited for understanding the risks linked to rare out-
comes but may be subject to recall bias for past exposure6,7. Animal 
studies are widely used in evaluating the risks of consumer products 
and environmental risks but may not be generalizable to humans8. 
Study design and analysis impacts causal interpretation and under-
standing of the results9. When synthesizing evidence from different 
studies, strong assumptions—usually that of a log-linear relationship 
between risk and exposure—are often made to increase the math-
ematical tractability of the analysis10–12. Between-study heterogene-
ity—that is, disagreement in study-specific inferred relationships 
between risk exposure and outcome—is quantified in meta-analytic 
summaries, and has some effect on fixed-effects variance estimates, 
but is not otherwise used in the overall assessments of the uncer-
tainty in risk–outcome relationships12,13. Risk factors associated with 
comparatively modest increases in the hazard are often questioned 
because of the potential for residual confounding14. Given the very 
mixed evidence landscape, it is perhaps not surprising that there are 
so many controversies in the literature15–18.

While evidence is often heterogeneous, the need for clear guid-
ance has led national advisory groups and international organi-
zations to use expert committees to evaluate the evidence and 
formulate recommendations. The biggest advantage of expert 
groups is their ability to carefully consider nuances in the avail-
able evidence, but they are inherently subjective. For instance, 
expert groups across subfields of health science weight types of 
evidence differently, and even groups of experts within the same 
subfield may arrive at divergent conclusions. These expert groups 
often use meta-analyses of the available evidence, such as those 
produced by the Cochrane Collaborations19, as an input to their 
deliberations. Even Cochrane Reviews, however, allow authors to 
use a range of methodologies and approaches to studies on risk of 
bias, limiting comparability across risk–outcome pairs19. Tools have 
been produced to help standardize consideration of evidence, such 
as Grading of Recommendations, Assessment, Development and 
Evaluations (GRADE20,21), but while very helpful, they cannot be 
implemented algorithmically. No quantitative assessment of the evi-
dence can or should substitute completely for expert deliberation, 
but a quantitative meta-analytic approach that addresses some of 
the issues identified by GRADE and others could be a useful input 
to international and national expert committee considerations.

Here, we propose a complementary approach, in which we quan-
tify the mean relationship (the risk function) between risk exposure 
and a disease or injury outcome, after adjusting for known biases in 
the existing studies. Unlike existing approaches, our approach does 
not force log-linearity in risk functions or make additional approxi-
mations, such as midpoint approximations for ranges or shared 
reference groups22–24. To quantify the effect of bias, we considered 
risk of bias criteria that inform GRADE20,21, Cochrane Reviews19 
and evidence-based practice, and consulted widely outside of the 
Institute for Health Metrics and Evaluation, including with clini-
cians, physicians, medical and public health researchers and national 
health policy-makers (for example, former Ministers of Health). We 
encoded these variables that are used to assess risk of bias as poten-
tial study-level bias covariates within the proposed meta-analytic 
framework. This approach complements GRADE and Cochrane 
Reviews, which require analysts to assess and flag risks of bias. We 
then developed the burden of proof risk function (BPRF), which 
complements the mean risk and is defined as the smallest level of 
excess risk (closest to no relationship) that is consistent with the 
data. To aid interpretation of the results, we classify risk–outcome 
pairs into five categories (star ratings of one to five) based on the 
average magnitude of the BPRF. To illustrate this approach to assess-
ing risk–outcome relationships, we provide four selected examples, 
showing both weak and strong risk–outcome relationships.

Results
Overview. To support estimation of the BPRF, we developed a 
meta-analytic approach that addresses a number of issues that have 
previously limited interpretations of the available evidence. This 
approach relaxes the assumption that the relative risk of an outcome 
increases exponentially as a function of exposure, standardizes the 
assessment of outliers, explicitly handles the range of exposure in 
a study in both the ‘alternative’ groups (numerator) and ‘reference’ 
groups (denominator) of a relative risk, tests for systematic bias 
as a function of study design using automatic covariate selection, 
and quantifies between-study heterogeneity while adjusting for the 
number of studies. Using unexplained between-study heterogene-
ity and accounting for small numbers of studies, we estimate the 
BPRF as the 5th (if harmful) or 95th (if protective) quantile risk 
curve closest to the null (relative risk equal to 1). We flag evidence 
of the small-study effect (significant association between mean 
effect and standard error) as an indicator of potential publication or  
reporting bias.

We evaluated the BPRF for 180 risk–outcome pairs in the GBD 
CRA framework. To simplify communication, we then computed 
the associated risk–outcome score (ROS) for each pair by averag-
ing the BPRF across a relevant exposure interval and converted 
each ROS into a star rating from one to five. One star refers to 
risk–outcome pairs where a conservative interpretation of the evi-
dence—accounting for all uncertainty including between-study 
heterogeneity—may suggest there is no association and two–five 
stars refers to risk–outcome pairs where a conservative interpreta-
tion of the evidence may suggest that, for harmful effects, average 
exposure increases excess risk relative to the level of exposure that 
minimizes risk from 0 to 15% (two stars; weak evidence of associa-
tion), from >15 to 50% (three stars; moderate evidence of associa-
tion), from >50 to 85% (four stars; strong evidence of association) 
and >85% (five stars; very strong evidence of association), and for 
protective effects, decreases excess risk relative to no exposure from 
0 to 13% (two stars), from >13 to 34% (three stars), from >34 to 
46% (four stars) and >46% (five stars). The corresponding ROS 
thresholds for both harmful and protective risks are <0 for one star, 
>0–0.14 for two stars, >0.14–0.41 for three stars, >0.41–0.62 for 
four stars and >0.62 for five stars. Of the 180 risk–outcome pairs 
investigated, 40 risk–outcome pairs were given a one-star rating, 72 
pairs were given a two-star rating, 46 were given a three-star rating, 
14 were given a four-star rating and 8 were given a five-star rat-
ing (Table 1). Here, we present results from each step of the evalu-
ation process for four risk–outcome pairs to demonstrate how our  

Table 1 | BPRF and ROS ranges associated with each star rating, 
and number of risk–outcome pairs assigned to each star rating

Star rating Magnitude of 
BPRF range 
for harmful 
effects

Magnitude of 
BPRF range 
for protective 
effects

ROS range Number of 
R–O pairs 
(n = 180)

One star No association 
(0%)

No association 
(0%)

<0.000 40

Two stars 0–15% 0–13% 0.000–
0.1398

72

Three stars >15–50% >13–34% >0.1398–
0.4055

46

Four stars >50–85% >34–46% >0.4055–
0.6152

14

Five stars >85% >46% >0.6152 8

BPRF refers to the most conservative estimate of the magnitude of the increase in risk (for harmful 
risks) or decrease in risk (for protective risks) of the specified outcome with exposure to the 
specified risk factor. R–O, risk–outcome.
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methodology can be applied to pairs across the ROS spectrum and 
across a range of available study types and risk curve shapes, varying 
levels of between-study heterogeneity, and varying numbers of data 
points and studies. These four pairs also allow us to demonstrate 
how policy-makers should interpret our findings for both strong 
and weak risk–outcome relationships.

Smoking and lung cancer (five stars). We used a standardized 
approach to search for and extract data from published studies 
on the relationship between pack-years smoked and the log rela-
tive risk of lung cancer, resulting in 371 observations from 25 pro-
spective cohort studies and 53 case-control studies (three of them 
nested) reported from 1980 onwards (Fig. 1; step 1 in Methods)25. 
The studies spanned a wide range of pack-years of smoking, from 
nearly one to over 112 pack-years. We found the 15th percentile of 
exposure in the reference group to be zero pack-years (and the 85th 
percentile of exposure among exposed groups in the cohort stud-
ies to be 50.88 pack-years (Fig. 1a,b). On average, we found a very 
strong relationship between pack-years of smoking and log relative 
risk of lung cancer (step 2 in Methods). At 20 pack-years, the mean 
relative risk (an effect size measure) was 5.11 (95% uncertainty 
interval (UI) 1.84–14.99), and at 50.88 pack-years (85th percentile 
of exposure) it was 13.42 (2.63–74.59) (Fig. 1b and Supplementary 
Table 1). The relationship is not log-linear, with declining effects 
of further pack-years of smoking, particularly after 40 pack-years. 
In the analysis of bias covariates (step 3 in Methods), we adjusted 
data from studies that did not adjust for more than five confound-
ers, including age and sex. There is enormous heterogeneity in the 
reported relative risk for lung cancer across studies (Fig. 1b; step 4 in 
Methods). In trimming 10% of observations, we identified observa-
tions both above and below the cloud of points, which we excluded 
(step 5 in Methods). The mixed-effects models fit the data, that is, 
the reported uncertainty together with estimated between-study 
heterogeneity covers the estimated residuals, as Fig. 1c demon-
strates. Even taking the most conservative interpretation of the 
evidence—the 5th quantile risk function including between-study 
heterogeneity, or the BPRF—smoking dramatically increases the 
risk of lung cancer (Fig. 1a,b). There is evidence of potential report-
ing or publication bias (Fig. 1c). The BPRF suggests that smoking in 
the range of the 15th–85th percentiles of exposure raises the risk of 
lung cancer by an average of 106.7%, for an ROS of 0.73 (step 6 in 
Methods). These findings led us to classify smoking and lung cancer 
as a five-star risk–outcome pair.

Systolic blood pressure and ischemic heart disease (five stars). We 
extracted 189 observations from 41 studies (39 RCTs, 1 cohort and 1 
pooled cohort) quantifying the relationship between systolic blood 
pressure (SBP) and ischemic heart disease (Fig. 2)26. We included 

RCTs designed to compare the health effects of different levels of 
blood pressure. Head-to-head trials of drug classes or combinations 
not designed to achieve different levels of SBP were excluded. We 
calculated the 15th percentile of exposure in the cohorts and trials 
to be an SBP of 107.5 mm Hg and the 85th percentile to be 165 mm 
Hg (Fig. 2a,b). The relationship is close to log-linear, although it 
appears to flatten out and deviate from the log-linear assumption 
over an SBP of 165 mm Hg (though the data are sparse over this 
level). An SBP of 140 mm Hg had a mean relative risk of ischemic 
heart disease of 2.38 (2.17–2.62) compared to 100 mm Hg, while 
an SBP of 165 mm Hg had a mean relative risk of 4.48 (3.81–5.26) 
compared to 100 mm Hg. (Fig. 2b and Supplementary Table 2). 
Trimming removed 10% of outlying observations with high relative 
risk at SBP levels between 125 and 180 mm Hg and low relative risk 
at SBP levels between 130 and 175 mm Hg (Fig. 2b). In the analy-
sis of bias covariates, we found that none had a significant effect. 
Because the RCTs and cohorts are very consistent and because there 
are many consistent studies within each type, between-study het-
erogeneity is small (Fig. 2a,b). While there is little asymmetry in 
the funnel plot (Fig. 2c), we found statistically significant evidence 
of small-study bias using an Egger’s regression (Egger’s regression 
P value <0.05). Given the small between-study heterogeneity, the 
BPRF suggests that SBP in the range from the 15th to 85th percen-
tile of exposure raises the risk of ischemic heart disease by an aver-
age of 101.36%, for an ROS of 0.70. These findings led us to classify 
SBP and ischemic heart disease as a five-star risk–outcome pair.

Vegetable consumption and ischemic heart disease (two stars). 
Figure 3 summarizes the cohort data on vegetable consumption and 
ischemic heart disease using 78 observations from 17 cohort stud-
ies27. The relationship is not log-linear. We found that on average, 
vegetable consumption was protective, with the relative risk of isch-
emic heart disease being 0.81 (0.74–0.89) at 100 grams per day veg-
etable consumption compared to 0 grams per day (Supplementary 
Table 3). Incrementally higher levels of exposure are associated 
with less steep declines in relative risk compared to those at lower 
levels of exposure (Fig. 3b). For this pair, trimming removed one 
observation that suggested a weaker protective effect size than the 
mean estimate, and seven observations that suggested a stronger 
protective effect than the mean estimate. Including between-study 
heterogeneity expanded the UI only slightly (Fig. 3a,b), suggesting 
strong agreement between studies. In the analysis of bias covariates, 
three were found to have a significant effect: incomplete confounder 
adjustment, incidence outcomes only and mortality outcomes only. 
The funnel plot (Fig. 3c) shows that after trimming, residual stan-
dard error (reflecting both study data variance and between-study 
heterogeneity) is within the expected range of the model. While 
there is little asymmetry in the funnel plot (Fig. 3c), we found  
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Fig. 1 | Smoking and lung cancer. a, Log relative risk function for smoking and lung cancer. b, Relative risk function for smoking and lung cancer. c, A 
modified funnel plot for smoking and lung cancer showing the residuals (relative to 0) on the x axis and the estimated standard deviation (s.d.) that 
includes reported s.d. and between-study heterogeneity on the y axis.
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statistically significant evidence of small-study bias using an Egger’s 
regression (Egger’s regression P value = 0.044). The BPRF suggests 
that vegetable consumption in the range of the 15th to the 85th per-
centile lowers risk of ischemic heart disease by 12.10% on average 
(ROS of 0.13). This leads to vegetable consumption and ischemic 
heart disease being classified as a two-star pair.

Unprocessed red meat and ischemic heart disease (two stars). 
We identified 43 observations from 11 prospective cohort stud-
ies on unprocessed red meat and ischemic heart disease (Fig. 4)28. 
At an exposure of 50 grams per day, the mean relative risk is 1.09 
(0.99–1.18) compared to 0 grams per day, and at 100 grams per 
day, it is 1.12 (0.99–1.25) (Fig. 4b and Supplementary Table 4). 
In the analysis of bias covariates, we found that none had a sig-
nificant effect. Trimming removed five observations that reported 
extreme values across the range of red meat consumption. There is 
no visual evidence or finding of potential publication or reporting  
bias (Fig. 4c).

For unprocessed red meat and ischemic heart disease, the 
exposure-averaged BPRF is 0.01, essentially on the null threshold 
(Fig. 4a), equating to an ROS of 0.01, with a corresponding increase 
in risk of 1.04%. These findings led this risk–outcome pair to be 
classified as a (nominal) two stars, on the threshold between weak 
evidence and no evidence of association for the risk–outcome pair.

Model validation. To validate key aspects of the meta-regression 
tool, we ran detailed simulation experiments (step 7 in Methods). 
We found that the approach proposed in this study outperformed 

existing approaches, particularly for non-log-linear relationships 
(Fig. 5 and Extended Data Figs. 1–6).

Discussion
Using a meta-analytic approach built using open-source tools, we 
estimated both the mean risk function and the BPRF for 180 risk–
outcome pairs and assigned them a star rating based on the strength 
of the evidence (indicated by ROS that aggregate BPRF across stan-
dard exposure ranges) and severity of the risk. We achieved this by 
capturing the shape of the relationship between exposure and the 
risk of an outcome, detecting outliers using robust statistical meth-
odology (trimming), testing and correcting for bias related to study 
design, and estimating between-study heterogeneity, adjusted for 
the number of studies. The BPRF is the level of elevated risk for 
a harmful factor (or the level of reduced risk for a protective fac-
tor) based on the most conservative (closest to null) interpretation 
compatible with the available evidence. It is a reflection of both the 
magnitude of the risk and the extent of the uncertainty surround-
ing the mean risk function. The four examples in the results section 
demonstrate the range of evidence, between-study heterogeneity 
and mean relative risks across risk–outcome pairs, and how these 
factors impact the BPRF and star rating. Importantly, only 22 of 
180 pairs received a four- or five-star rating (12.22%), whereas 112 
received a one- or two-star rating (62.22%).

The BPRF and associated star ratings, as well as the background 
rates of burden for the outcomes of concern, are intended to be use-
ful for informing individual choices on risk exposure. For example, 
harmful risk–outcome pairs with four- and five-star ratings are 
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associated with an increase in risk of more than 50% for the exposed 
(and more than a 34% decrease in risk for protective risks), even 
based on the most conservative interpretation of the evidence. For 
these risks, the mean effect size is often much higher. Harmful risk–
outcome pairs with three stars have average increases in risk rang-
ing from more than 15% to 50% (and a decrease of at least 13–34% 
for protective risks), even in the BPRF, and may be much higher 
depending on the individual level of risk exposure. Further, some 
risks have high star ratings for multiple outcomes, such as high sys-
tolic blood pressure increasing risk of ischemic heart disease and 
stroke, and smoking increasing risk of lung cancer, aortic aneurysm, 
peripheral artery disease, laryngeal cancer and other pharynx can-
cer (all five-star pairs), which should be considered when making 
individual decisions around risk exposure. Conversely, individu-
als can reasonably pay less attention to risks with a one-star rating. 
These may be real risks with small but meaningful benefits for indi-
viduals if their exposure is reduced, but the existing evidence is too 
limited to make stronger conclusions. Of course, individual choice 
should also be informed by the background risk of an outcome for 
an individual and the totality of risk–outcome pairs associated with 
a risk; a five-star relationship for a rare outcome may not be some-
thing that an individual would choose to act on, whereas three-star 
ratings for one risk and a set of common outcomes may warrant 
more action.

While the general public and committees formulating guide-
lines on individual behaviors—such as recommended diets—
should pay attention to the star ratings, policy-makers should 
consider the impact of all risk–outcome pairs, not only those with 
high star ratings. These higher-star relationships should reassure 
decision-makers that the evidence supporting a risk factor is strong, 
but it would be unwise for decision-makers to ignore all one- and 
two-star risk–outcome pairs. The precautionary principle implies 
that public policy should pay attention to all potential risks. Lower 
star rating risk–outcome pairs may turn out to be null as evidence 
accumulates, but it is unlikely that a set of one-star risks will all turn 
out to be null. Public policy to address risks, even those where the 
BPRF indicates that risk is small or even nonexistent, will, on aver-
age, improve health. At the same time, investing in more widespread 
data collection for pairs with lower star ratings will reduce uncer-
tainty and allow policy-makers to be more strategic in address-
ing potential risks (as star ratings may go up or down with more 
evidence). For example, due to very high heterogeneity between 
studies, a conservative interpretation of the available evidence sug-
gests that there is weak to no evidence of an association between 
red meat consumption and ischemic heart disease. There is, there-
fore, a critical need for more large-scale, high-quality studies on 
red meat consumption so policy-makers can make better-informed 
decisions about how to prioritize policies that address this  
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potential risk. Moreover, public policy should pay attention not 
only to the risk functions that are supported by evidence but the 
prevalence of exposure to those risks. For example, a two-star risk 
with high prevalence of exposure could pose a greater risk at the 
population level than a five-star risk with low prevalence of expo-
sure. The GBD CRA1–3 provides a framework for incorporating the 
BPRF, the prevalence of exposure and the background rates of spe-
cific outcomes to help policy-makers evaluate the importance of 
risk–outcome pairs across the full range of star ratings. In the future, 
risk–outcome pairs with one- and two-star ratings should be inves-
tigated further through more robust, well-powered research, espe-
cially for those risks where exposure and outcome are common, so 
policy-makers and individuals alike can better understand whether 
there is a real association between risk and outcome.

The BPRF and associated star ratings have immediate applica-
tions for GBD and its users. For GBD 2020, 180 risk–outcome pairs 
have so far been analyzed using this approach. The remaining risk–
outcome pairs will be evaluated using this meta-analytic approach 
in subsequent GBD rounds. Since different users will be interested 
in the GBD results focusing on certain star rating categories, we 
have developed online visualization tools (https://vizhub.health-
data.org/burden-of-proof/) that allow users to filter results by star 
rating. Providing dynamic tools with this capability will empower 
users with different thresholds for considering risk–outcome pairs 
and will allow broader audiences to access this information. These 
tools are intended to fill in a gap in the landscape of risk assessment 
accessibility and transparency.

The standard approach to estimate the relationship between a 
risk and outcome has been to compute the mean across the uni-
verse of studies. We believe, however, that it is useful to report both 
the mean risk function and the BPRF, and that the more conserva-
tive interpretation may be more appropriate, particularly for expo-
sures associated with small increases in risk, because of the risk of 
residual confounding. By including between-study heterogeneity in 
the uncertainty estimation and using this estimated uncertainty to 
compute a 5th or 95th quantile risk function (our BPRF), our risk 
assessment accounts for results that vary drastically across studies 
even after correcting for biases due to study design. This highlights 
the importance of accounting for unexplained between-study het-
erogeneity when estimating uncertainty and significance testing. In 
particular, when the BPRF spans zero (that is, the risk is one star), 
a conservative interpretation of the evidence is consistent with no 
association between the risk and the outcome. We argue that the 
field should eventually move to incorporating between-study het-
erogeneity into significance testing of the mean function. Our 
meta-analytic approach uses splines to estimate the shape of the risk 
function without imposing a functional form such as log-linearity, 
and can be widely applied to other risk–outcome pairs not included 
in this analysis. This flexibility is an important strength of our 
approach because many risk–outcome pairs do not have a log-linear 
relationship. When there are strong threshold effects, log-linear 
risk functions can exaggerate risk at higher exposure levels and 
obfuscate important detail at lower exposure levels. This more 
flexible approach helps identify the true shape of the risk func-
tion. Previously, the main challenge had been that if the assump-
tion of log-linearity is relaxed, the level of risk exposure matters, 
so comparisons between an exposed group and a reference group 
needed to take into account the range of exposure in each group. 
We dealt with this problem directly by integrating the risk func-
tion over a range of exposures and including this mechanism in the 
likelihood. Our approach may be of use for meta-analyses in many 
areas, even if the analyst is only interested in the mean function. 
The model validation analysis (step 7 in Methods; Extended Data 
Figs. 1–7) demonstrates that our approach captures non-log-linear 
functions with significantly greater accuracy compared to existing 
dose–response meta-regression tools while still capturing log-linear 

relationships when present. The advantage in accuracy over exist-
ing tools increases in data-sparse cases that have fewer studies and 
observations. Our approach is also robust to bias covariates, such as 
study type, since we explicitly test for the impact of these covariates 
using a Lasso framework, and then adjust the estimated risk curves 
using covariates that are found to be statistically significant.

The proposed framework uses robust methodology (trim-
ming) to make the approach robust to outlying observations. 
Sensitivity analyses (step 8 in Methods; Extended Data Figs. 8, 9 
and Supplementary Table 5) show that trimming 10% of the data 
makes estimation more stable and reliable. Trimming automati-
cally focuses on unexplained large errors, and in practice does not 
remove ‘gold standard’ data points.

The intention of this approach to evaluating risk–outcome 
associations is to complement the existing GRADE and Cochrane 
Review frameworks for assessing evidence and making recommen-
dations. Our suite of meta-analyses address many of the limita-
tions of GRADE and Cochrane by focusing on study design factors 
whose impact can be assessed quantitatively from the body of stud-
ies informing the analysis rather than requiring analysts to assess 
and flag risks of bias. Thus, we believe our approach contributes 
important information for expert deliberation.

This framework has a number of limitations. First, there are 
qualitative considerations about study design and execution that 
may be hard to capture in a set of structured risk of bias covari-
ates. Our framework for adjusting for study design is necessarily 
limited to observable study design characteristics. Further, while 
our approach offers a rigorous way to combine results from differ-
ent studies and different types of studies, fundamentally discordant 
evidence or types of evidence, such as chemical experiments, do 
not lend themselves to direct inclusion in this framework. Second, 
the trimming approach requires a user-specified level of outliers, 
and although fitting 90% of the data works well in practice, auto-
mated techniques to estimate the potential level of outliers in the 
dataset would strengthen the approach. Third, while our approach 
can explicitly test for potential publication or reporting bias related 
to the association of reported effect sizes and standard errors, other 
types of publication bias are more challenging to evaluate, namely 
when studies are more consistent with each other than expected 
by chance. In these cases, the Fisher information matrix approach 
is still helpful, particularly when the number of studies is small, 
because it is guaranteed to provide a quantile of heterogeneity even 
if the heterogeneity parameter is estimated to be 0. Fourth, our 
study bias covariates cannot fully capture and correct for bias if 
all or even the vast majority of the input studies are biased. Fifth, 
including pooling studies in the meta-regression, though extremely 
useful in providing robust estimates of mean effects, may artificially 
decrease our estimates of between-study heterogeneity because 
many of these studies do not publish measures of between-study 
heterogeneity across cohorts. We partially addressed this issue 
by using the Fisher information matrix approach to estimate the 
plausible between-study heterogeneity, but more emphasis on 
between-study heterogeneity in future pooling studies would allow 
users to better interpret the generalizability of the mean effects. 
Sixth, to avoid overfitting bias covariates, we used Gaussian priors 
on the bias covariates so that these relationships were only detected 
when there were sufficient studies supporting the estimate of the 
bias. Alternative priors could increase or decrease the biases that are 
detected. Seventh, we estimated the BPRF and translated this into 
a star rating for each risk–outcome pair. There may be ranges of 
exposure within which there is a marked increase in the BPRF, but 
over most of the range, the increase in risk is small. Giving differ-
ent star ratings to different ranges of exposure would, however, add 
a further degree of complexity that we sought to avoid. Eighth, we 
had no direct way of introducing or including animal studies and 
are thus agnostic to that evidence category.
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We developed a data-driven meta-analytic approach, using 
open-source computational tools cited in this study, that identifies 
the shape of the risk–outcome relationship and robustly quantifies 
between-study heterogeneity after correcting for bias correlated 
with attributes of study design. We used this risk function to esti-
mate both the mean relationship and BPRF for 180 risk–outcome 
pairs. The BPRF provides the most conservative interpretation of 
the severity of risk based on the available evidence. Using the BPRF, 
we classified risk–outcome relationships into five categories based 
on the strength of the Burden of Proof relationship. This standard-
ized tool cannot address every nuance in the interpretation of the 
available data but can quantify a wide range of dimensions previ-
ously addressed in more subjective and qualitative ways, particu-
larly in conjunction with information on risk exposure prevalence 
and outcome burden. We intend to update these risk functions over 
time so that they reflect the latest available evidence, including add-
ing new risk–outcome relationships as new evidence is published. 
The BPRF and associated star ratings improve the field of com-
parative risk assessment and increase the transparency of expert 
deliberation of human health risks. The star ratings can be used to 
assess risk and inform individual and policy-level decisions around 
risk exposure prevention, public health guidance and personal  
health choices.
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Methods
Overview. Our meta-analytic approach followed six main steps: (1) search and 
extract data from published studies using a standardized approach; (2) estimate 
the shape of the exposure versus relative risk relationship, integrating over the 
exposure ranges in different comparison groups and avoiding the distorting 
effect of outliers; (3) test and adjust for systematic biases as a function of study 
attributes; (4) quantify remaining between-study heterogeneity while adjusting 
for within-study correlation induced by computing the relative risks for several 
alternatives with the same reference, as well as the number of studies; (5) assess 
evidence for small-study effects to evaluate a potential risk of publication or 
reporting bias; and (6) estimate the BPRF, quantifying a conservative interpretation 
of the average risk increase across the range of exposure supported by the evidence 
to compute the ROS, and map the ROS into five categories of risk. Zheng and 
colleagues29 published the technical developments required to implement this 
approach, which are also disseminated using open-source Python libraries30,31. 
We validated the model through simulation studies, and then applied our 
meta-analytic approach to 180 risk–outcome pairs. We present our findings for 
four pairs that demonstrate a range of risk relationships (smoking and lung cancer, 
systolic blood pressure and ischemic heart disease, vegetable consumption and 
ischemic heart disease, and red meat consumption and ischemic heart disease). 
This study complies with the Guidelines on Accurate and Transparent Health 
Estimate Reporting recommendations (Supplementary Table 6)32.

Searching for and extracting published data following a standardized 
protocol. For each risk–outcome pair, we used standard search strings or 
Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 
guidelines to identify data from research databases and other sources. Data were 
then extracted from studies that met inclusion criteria using uniform extraction 
procedures. We mapped all outcomes in the data to GBD cause categories to 
produce a standard set of outcomes. When necessary, this process included 
mapping a standard set of other, often narrower, outcomes to GBD causes. When 
the lower end of exposure levels was not reported, we used the 15th percentile 
of known exposure in microdata sources; when the upper end was not reported, 
we used the width of the adjacent exposure interval; and when neither end was 
reported, we used the GBD global exposure distribution. See Supplementary Tables 
7–10 for detailed information on the included data sources for each example risk–
outcome pair. For a full description of how each of the four selected risk–outcome 
pairs were defined and measured, how data inputs were identified and assessed 
for eligibility, the summary results from input studies and other information on 
conducting systematic reviews for each risk, see Dai et al.25, Razo et al.26, Stanaway 
et al.27, and Lescinsky et al.28. Detailed PRISMA checklists are also included in the 
supplementary information of each of these articles.

Estimating the shape of the risk–outcome relationship. Most classic 
epidemiological analyses of dose–response risk relationships have either 
assumed the relationship between risk and outcome to be log-linear or converted 
continuous exposure variables into dichotomous exposure categories. This 
assumption simplifies the analysis considerably. Unfortunately, although assuming 
a log-linear relationship is analytically convenient and allows for the use of simple 
open-source tools10, it is not necessarily biologically or clinically plausible (see step 
7 in Methods for more details). For some risks, such as smoking, the log relative 
risk of the outcome flattens at higher exposures. For others, the log relative risk 
curves are J-shaped. We therefore chose to estimate the shape of the relationship 
directly from the data using a regularized spline.

Nonlinear modeling of dose–response relationships brings new challenges 
that are not present in the log-linear case. Rather than simply using midpoints of 
the data, we need to account for interval exposures in reference and alternative 
exposure groups. Moreover, the observation mechanism that accounts for this 
level of detail is nonlinear. Model stability becomes an important problem to 
make the approach systematically applicable across a broad range of cases. 
Accounting for outliers in the data becomes more important. Finally, capturing 
between-study heterogeneity in a tractable and stable way is important. Our 
approach is sensitive to the level of and difference in exposure, and explicitly 
handles the lack of common reference groups and exposure ranges for reference 
and alternative groups that are present in a vast majority of risk–outcome 
analyses. The statistical approach includes four aspects that make it useful for 
estimating risk–outcome relationships.

Basis splines, measurement mechanism and shape constraints. We used a Bayesian 
regularized spline to obtain the general shape of the nonlinear relationship. Basis 
splines represent nonlinear curves as linear combination of recursively generated 
basis elements33. The basis elements were recursively generated using piecewise 
smooth polynomials, and were roughly localized to certain regions of the exposure 
variable in the data. Most of the time, quadratic or cubic polynomials were used, 
often with linear tails in the presence of sparse data. This approach allowed the 
common restricted cubic spline and constraints on the shape of the relationship 
(including nondecreasing and nonincreasing).

Given basis functions f1, …, fk and coefficient vector β = (β1,..., βk), the final 
curve is obtained as a β-linear combination

signal = β1f1 + · · · + βkfk.

Specifically, for any given exposure (x), the prediction using the spline model 
is given by

signal (x) = β1f1 (x) + · · · + · · · + βkfk (x) = ⟨X, β⟩ (1)

where X is a vector containing (f1(x), …, fk(x)). Derivatives and integrals of splines 
can likewise be expressed as linear combinations of spline coefficient β. For 
additional details about B-splines see Zheng et al.29

Many studies of dose–response relationships report relative risks between 
categories defined by intervals of consumption. In mathematical notation, these 
observations are given by

yij =
1

dij−cij ∫
dij
cij f (x) dx

1
bij−aij ∫

bij
aij f (x) dx

, (2)

where yij is the reported relative risk corresponding to measurement j in study i, 
[aij,bij] delineates the reference group exposure interval, and [cij,dij] delineates the 
alternative group exposure interval.

When f(x) is represented using a spline, each integral is a linear function of β 
similar to equation (1). The model (equation (2)) is then a ratio of linear functions,

yij = fij (β) :=

⟨

X1
ij , β

⟩

X2
ij , β

. (3)

with the log relative risk given by

ln
(

yij
)

= ln
(⟨

X1
ij , β

⟩)

− ln
(⟨

X2
ij , β

⟩)

. (4)

Equation (4) is a nonlinear function of the spline coefficients β.
When studying dose–response relationships, we allow for shape constraints of 

the inferred mean response. For example, for some harmful risks, such as smoking 
and air pollution, we assume the relative risk is monotonically increasing with 
exposure. To regularize the splines, and capture biologically plausible limits, we 
also allow a maximal derivative constraint, which is similar to penalizing total 
variation or limiting the spline degree. To introduce each of these constraints, we 
used the fact that derivatives of splines are linear functions of spline coefficients, 
similar to equation (1).

Monotonicity. We imposed monotonicity constraints using several linear inequality 
constraints based on exemplar exposures. Given an exemplar exposure xi, the 
requirement that the slope of the spline at exposure xi, be non-negative can be 
formulated as

⟨

Xij, β
⟩

≥ 0

for a computed vector Xi. Linear inequality constraints were strictly enforced by the 
optimization solver used to fit the model, see Zheng et al.29.

Robust trimming strategy. To make the estimation of the overall relationship 
insensitive to potential outlying studies or observations within studies, we applied 
a robust, likelihood-based statistical approach—least trimmed squares (LTS)34—to 
our mixed-effects models29. The goal of robust statistical methods is to ensure 
that estimates are robust to outlying observations. Trimming approaches form a 
subclass of robust statistical methods, and LTS was originally developed in the 
context of linear regression35. LTS works by classifying observations into a majority 
of inliers and minority of outliers while simultaneously fitting the model with 
respect to which the inlier/outlier classification is made. Compared with other 
robust approaches, such as M-estimators36, trimming methods are more effective 
in limiting influence than outliers, and have a high breakdown point37, that is, 
the proportion of the data that can be arbitrarily corrupted before the estimator 
becomes invalid.

Trimming estimators have been applied to a broad range of problems, from 
linear regression34 to high-dimensional sparse regression and general machine 
learning problems38. In the context of mixed-effects models, trimming methods are 
far and away the most effective robust tools currently available for meta-analysis29. 
In practice, the approach requires only a specified inlier proportion, which was set 
to 90% across all examples, that is, we fit the 90% most self-coherent data points.

Using this approach, we trimmed 10% of the observations as part of the model 
fitting process, simultaneously discovering and fitting the most self-coherent 90% 
of the observations29. Numerical studies in data-rich cases have shown that quality 
of estimation is unaffected by trimming, even when there are no outliers in the 
data38. In the meta-analytic regime, the 90% level is a heuristic that balances the 
sparsity of available data with the need to improve estimates in the presence of 
outliers. This step also substantially decreased the number of risk–outcome pairs 
with evidence of residual publication or reporting bias.
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Spline ensemble. To make the risk function estimates robust to knot placement, 
we created 50 models based on random knot placement samples. Spline estimates 
depend on the choice of spline parameters, including spline degree, number of 
knots and knot placement. To mitigate the effect of spline parameter selection 
on results, we developed an ensemble approach over knot placement, so that the 
modeler only had to specify the spline degree and number of knots.

Given the degree and number of knots, we automatically sampled a set of knot 
placements for a feasible knot distribution. For each knot placement, we fit a spline 
(including nonlinear measurements, shape constraints and trimming), evaluated 
each resulting model by computing its fit and curvature, and aggregated the final 
model as a weighted combination of the ensemble.

Sampling knots from simplex. We prefixed a minimal set of rules that describe a 
feasible set from which to sample knots, and uniformly sample from this set. Given 
a number of knots, the rules specify feasible ranges for each knot and feasible gaps 
between knots. Given an interval [t0, tk] delimited by terminal knots (which are 
always the minimum and maximum of the data), the feasible region of the interior 
knots t1, …, tk−1 is denoted by

ti ∈ [ai, bi] , for i = 1, …, k − 1, ti − ti−1 ∈ [ci, di] for i = 1, …, k.

We enforced the rules

ai ≥ t0, bi ≤ tk, ci ≥ 0,
∑

ci ≤ tk − t0.

The set of knot placements that satisfy these four rules form a closed 
polyhedron (a volume in high-dimensional space delineated by hyperplanes). We 
calculated the vertices of the polyhedron using the double description method in 
ref. 39, and uniformly sampled knot placements from within the polyhedron. Each 
knot placement yielded a model, fit using the trimmed constrained spline approach.

Ensemble performance evaluation. Once the ensemble was created, we scored 
the resulting risk curves using two criteria: model fit (measured using the 
log-likelihood) and total variation (measured using the highest order derivative). 
These scores balanced competing objectives of fit and generalizability. Once we had 
these scores, denoted as s1 and s2, we normalized them to the range [0,1]:

vi =
si − min (si)

max (si) − min (si)

and applied a logistic transformation. The transformation was used to make the 
scoring meaningful even in the presence of spurious curves in a large ensemble. 
We then multiplied the scores to down-weight models that are low under either 
criterion (fit or total variation). The final weights are normalized to sum to 1.

Using a weighted combination of these metrics, we weighted the 50 models to 
create the ensemble model.

New nonlinear covariates. For risk–outcome pairs with nonlinear relationships, 
we evaluated exposure levels, since this information matters for non-log-linear 
pairs. To do this, we took advantage of the spline model and directly captured 
the typical data-generating mechanism. Specifically, we used the final model 
that we had estimated using the robust spline ensemble to generate a nonlinear 
dose–response curve, which we encoded into new nonlinear ‘signal’ covariates 
that were later used to enable linear mixed-effects analyses. Once the nonlinear 
estimation was complete, the log relative risk for each data point was a function of 
four parameters:

F
(

aij, bij, cij, dij
)

=

1
dij−cij ∫

dij
cij f̂ (x) dx

1
bij−aij ∫

bij
aij f̂ (x) dx

where f̂  is the nonlinear function obtained by estimating spline coefficients β̂, see 
equation (4), 

[

aij, bij
]

 delineates the reference group exposure interval and 
[

cij, dij
]

 
delineates the alternate group exposure interval.

We produced two new nonlinear covariates for fixed and random effects. The 
new nonlinear fixed-effects covariate, denoted signalf, is given by

signalfij = F
(

aij, bij, cij, dij
)

. (5)

The new nonlinear random effect covariate, denoted by signalr, is given by

signalrij = F
(

t, t, cij, dij
)

, (6)

where t denotes a fixed reference, for example, the theoretical minimum risk 
exposure level.

Using this innovation, we implemented further stages of analysis using linear 
mixed-effects modeling. In particular, at the end of the nonlinear stage we fit the 
linear mixed-effects model using only the new nonlinear covariates:

yij = signalfijβs + signalrijui + ϵij (7)

where ϵij ≈ N
(

0, σ2
ij

)

 are known by each observation, βs is a scalar linear covariate 
multiplier on the signalf covariate, and ui is a random study-specific slope on the 
signalr covariate with unknown variance γ. The posterior for βs in equation (7) was 
used as a reference for the prior in bias covariate selection, described in step 3 of 
the Methods.

The relative risk between two exposure groups is a ratio of integrals of the 
spline across two specified intervals, so we used this exact nonlinear mechanism to 
inform the fit29. Data from studies usually compare outcome rates in one exposure 
alternative group to those in a separate reference group. For example, in diet cohort 
studies, it is common to compare the highest quartile of exposure to the lowest 
quartile of exposure. In trials of anti-hypertensives, the comparison of outcome 
rates is between the level of blood pressure in the intervention group and the level 
in the control group. Cohort studies of BMI often report rates in one range of BMI 
to a variety of reference groups, such as 20–21, 20–25 or 23–25.

Finally, for our visualizations (Figs. 1a–4a), we plotted each data point with x 
value at the midpoint exposure of the alternative group, and y value corresponding 
to the sum of the log relative risk and estimated curve evaluated at the midpoint 
of the reference group. These visualizations allow the standard assessment of fit 
quality, with a perfect fit corresponding to the estimated nonlinear relationship 
passing through the data.

Testing for bias across different study designs and characteristics. Following 
the approach of the GRADE criteria40, we quantified common sources of bias 
across six domains: representativeness of the study population, exposure, outcome, 
reverse causation, control for confounding and selection bias. In the illustrative 
cases presented here, these variables were quantified for each study during the 
study extraction phase. For the set of studies on a risk–outcome association, we 
tested systematic variation as a function of these risk of bias variables through 
meta-regression. We converted the dose–response relationship identified in 
step 1 into a new signal covariate, effectively linearizing the non-log-linear 
relationship. For each bias covariate x (coded as an indicator variable), we defined a 
corresponding interaction covariate (that is, an effect modifier):

yij = signalfij ×
(

βs + x1ijβ1 + · · · + xkijβk

)

+ ϵij

that modified the slope of the signal covariate. We then tested risks of bias of 
the effect modifiers through linear meta-regression. To be included, every bias 
covariate must have some studies that are the gold standard (that is, at the standard 
of the best studies that have been conducted) for that covariate, otherwise it is not 
possible to incorporate it into the regression framework. Further, in considering 
potential covariates, we enforced that every categorical covariate had at least two 
studies in each category. Since bias covariates were already study specific, we only 
considered the fixed-effects model in bias covariate selection.

We used a robust approach to test for bias that limited the risk of 
overinterpreting differences with limited numbers of studies. We used the 
Lasso41,42 approach—which augments the least squares loss typically solved in a 
linear regression by penalizing the sum of absolute values of the bias covariate 
multipliers—to obtain a ranked list of bias covariates using the following equation:

min
β

∑

i,j

1
2σ2

ij

(

yij − signalfij ×
(

βs + x1ijβ1 + · · · + xkijβk

))2

+ 1
2 βT

Σ
{−1}β + λ ∥β∥1

(8)

where β contains specifically bias covariate multipliers, Σ is a diagonal matrix 
linked to the posterior on βs from the basic linear model equation (7), and the 
term λ ∥β∥1 penalizes the sum of the absolute values, pushing the bias covariate 
multipliers β to 0, with a strength determined by λ (ref. 42).

We then selected bias covariates based on their Lasso ranking, starting with a 
high value of λ.

We then added the selected covariates to the linear meta-regression model 
one at a time, following the Lasso ranking. To make the selection stable in the face 
of sparse data, we tested for significance of covariates using a Gaussian prior that 
biased all bias coefficients to 0 with a strength proportional to the posterior of the 
main dose–response relationship. If the coefficients were significant, they stayed 
in the model as the process continued. We terminated the process when the last 
added bias covariate was no longer significant after accounting for ‘signal’ and any 
higher-ranked covariates already in the model. We predicted the risk function using 
the values of the included bias covariates that reflected the preferred level of the 
covariate, such as the highest level of control for confounding. Supplementary Tables 
11–14 provide study-specific information on study quality by risk–outcome pair.

Quantifying between-study heterogeneity and accounting for heterogeneity, 
uncertainty and small numbers of studies. Estimation of between-study 
heterogeneity is an important aspect of meta-analysis. It reflects the variation 
between studies and consistency across literature.

After the selection procedure, we fit a final linear mixed-effects model that 
included the signal and selected bias covariates. Division by a common referent 
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in the typical measurement mechanism induces correlation, specifically an 
intercept shift in log relative risk space; we therefore used a random intercept in 
the mixed-effects model to account for this induced within-study correlation. To 
capture the between-study heterogeneity, we used a study-specific random slope 
with respect to the signal model so that the random effect for each study effectively 
scaled the nonlinear relative risk curve. Formally, we fit a linear mixed-effects 
model of the form

yij = signalfij × (βs + x1β1 + · · · + xkβk) + signalfijui + ϵij

where ϵij ≈ N
(

0, σ2
ij

)

 are the reported observation standard errors, and ui are 
random effects with a common unknown variance,

ui ≈ N (0, γ) .

Parameters β and γ were estimated simultaneously using maximum likelihood; 
see Zheng et al.29 for more details. We used the same prior on bias covariates in this 
analysis as we used in equation (8), that is β ≈ N (0,Σ). For log-linear relative 
risks, this modeling choice reduced to the classic analysis, where the random slope 
with respect to exposure was equivalent to the random intercept for log-linear 
relative risk.

To account for the small-studies problem—that is, in the setting of 
small numbers of studies, between-study heterogeneity (γ) can easily be 
underestimated43, and in particular the estimate may be 0 when too few studies 
are available—we quantified the uncertainty in heterogeneity estimation13. This 
estimate allowed a quantile of the heterogeneity parameter to be used, increasing 
the robustness of the estimate against the small-study problem. Among several 
alternatives in the literature44,45, we used the Fisher information matrix (FIM)44 
to estimate the uncertainty of the heterogeneity. The FIM is weakly dependent 
on observed data, but is sensitive to the nonlinear relationship, selected bias 
covariates, reported standard errors and the number of studies. The final UIs we 
report are composed of two components: (1) posterior uncertainty corresponding 
to fixed effect βs and (2) 95% quantile of γ, which depends on the estimate of γ 
and the estimate of the variance of γ using the inverse of Fisher information. The 
sensitivity analysis shows that small sample size alone did not have a significant 
effect on the BPRF.

Evaluating potential for publication or reporting bias. A significant association 
between mean effect and standard error may indicate potential for publication 
or reporting bias, or methodological differences between large and small studies, 
which likewise lead to biased results. Publication bias is an important issue in 
meta-analysis46, and a formal test is typically done in addition to visual inspection 
of the funnel plot to decrease the chances of flagging apparent bias due to chance 
alone. In the proposed approach, we checked whether the standard errors were 
significant predictors of the observations in the presence of the signal and bias 
covariates. To detect publication bias, we used a data-driven approach known 
as Egger’s Regression47. The approach detects if there is a significant correlation 
between the residuals and their standard errors. When Egger’s Regression failed to 
detect significant evidence of publication bias, we terminated the process. While 
we identified these pairs as having potential for publication or reporting bias, we 
followed the general literature and did not incorporate any correction to the risk 
function based on this finding.

Estimating the BPRF. The combined uncertainty for the mean, estimated 
between-study heterogeneity, and 95th quantile of the between-study heterogeneity 
obtained from the FIM estimate were used to generate a BPRF. The BPRF is 
defined as either the 5th (for harmful risks) or 95th (for protective risks) quantile 
curve closest to the line of relative risk equal to 1 (the null), and can be interpreted 
as the smallest harmful or protective effect at each level of exposure consistent with 
the available evidence.

In the range of exposures defined by the 15th and 85th percentiles of exposure 
levels observed for each risk across available studies, the ROS is defined as the 
signed value of the average log BPRF. For example, a log BPRF of 0.4 for a harmful 
risk (where null = 0) and of –0.4 for a protective risk would both have an ROS 
of 0.4 because the magnitude of the log relative risk is the same. In contrast, for 
risk–outcome pairs with a BPRF opposite the null from the mean risk (that is, the 
BPRF suggests that the relationship is opposite of the expected relationship—a 
BPRF below 1 for a harmful risk and above 1 for a protective risk), ROS would be 
calculated as negative.

This definition is symmetric for harmful and protective risks since the null 
corresponds to a log relative risk of 0. The ROS provides a single summary of the 
log relative risk in the range of exposure supported by the available studies, with a 
higher positive ROS always corresponding to a stronger relationship and a negative 
ROS corresponding to the situation where the available evidence fails to reject the 
null. For example, ROS can be negative when between-study heterogeneity is large 
and the relative risk function close to 1. We tested alternative ranges of exposure 
such as the 10th and 90th percentiles and the 5th and 95th percentiles, and the 
correlation of the resulting ROS with the 15th and 85th percentiles across 180 risk–
outcome pairs evaluated in GBD 2020 was 0.984 and 0.979, respectively.

All risk–outcome examples presented here reflect continuous dose–response 
relationships. However, the risk score concept was extended to the binary risk–
outcome pairs among the full 180 pairs in the analysis. The analysis for binary 
pairs was simpler than for continuous pairs because relative risks are comparisons 
between exposed and unexposed groups. The lower envelope of the log relative 
risk was defined analogously to the continuous risk as the 5% quantile for the effect 
size that included effect size uncertainty and between-study heterogeneity obtained 
using the 95% quantile of γ. To account for the fact that continuous risk–outcome 
analysis averages over an exposure domain, we modified the binary ROS. In the 
log-linear situation under basic assumptions, the averaging process reduced the 
score by a factor of two compared to a binary group definition that did not account 
for exposure. To make the continuous and binary scores comparable, we therefore 
divided the binary ROS by two.

To guide policy-makers and research funders when making broader 
comparisons across risk–outcome relationships, we converted the ROSs into 
star-rating categories. In this schema, one-star risks are those for which the ROS 
is negative and therefore the risk–outcome pair is not significant in the BPRF 
framework, indicating that a conservative interpretation of the evidence fails to 
find a significant association. We further divided the positive ROSs into ranges 
0.0–0.14, >0.14–0.41, >0.41–0.62 and greater than 0.62, and assigned each range 
a star rating from two (0.0–0.14) through five (>0.62). Under a conservative 
interpretation of the evidence, exposure to a harmful risk in the average range of 
exposure increases the risk of the disease outcome by less than 0% for one-star 
pairs, 0–15% for two-star pairs, >15–50% for three-star pairs, >50–85% for 
four-star pairs and greater than 85% for five-star pairs compared to no exposure. 
Likewise, exposure to a protective risk in the average range of exposure decreases 
the risk of the subsequent outcome by less than 0% for one-star pairs, 0–13% for 
two-star pairs, >13– 34% for three-star pairs, >34–46% for four-star pairs and 
greater than 46% for five-star pairs compared to no exposure.

Model validation. Method comparison. We validated key aspects of the 
meta-regression model using detailed simulation experiments.

To check the accuracy of estimating non-log-linear dose–response 
relationships, uncertainty and associated BPRFs, we simulated three scenarios: 
(1) many studies with many data points per study (30 studies, each with 4–9 
observations), (2) many studies with few data points per study (30 studies, each 
with 1–4 observations) and (3) few studies with few data points per study (10 
studies, each with 1–4 observations). In each scenario, we simulated log-linear and 
non-log-linear ground truth data risk functions, with three levels of between-study 
heterogeneity, characterized by γ ∈ {0.0, 0.01, 0.02}. For each of these 18 
combinations, we generated 100 dataset realizations to ensure that summary 
metrics accounted for stochastic error, for a total of 1,800 simulations.

For exposures, we used a beta distribution, supported on x ∈ [0, 1], with 
density proportional to

xα−1
(1 − x)β−1

with parameters α = 1 and β = 3. Using this exposure distribution, we were more 
likely to sample smaller exposures, giving wider range exposures in the tail of the 
distribution.

For each simulation, we compared the results of the approach developed here 
with results obtained using existing approaches with available open-source tools: 
log-linear meta-analysis implemented in the metafor package10, a meta-analysis 
package for linear models; and two-stage22 and one-stage23 approaches for dose–
response meta-analysis, both implemented in the dosresmeta package24. The 
metafor package assumes log-linear models. We used midpoint approximations 
to obtain data points and used weighted least squares to summarize data to have 
one measure per study, as needed by metafor. The dosresmeta two-stage approach 
first fits a spline model for each study, then performs a meta-analysis on the 
estimated coefficients. We used a quadratic polynomial (the simplest model that 
approximates a quadratic spline) in all examples, since the complexity is limited 
by the necessity of fitting a model for each study. We used standard midpoint 
approximations as this method does not allow range exposure integration. 
The dosresmeta one-stage approach pools the data and does a random spline 
meta-analysis. Here, we compared two types of splines, the quadratic spline and 
the natural cubic spline, both available to practitioners who use the tools. For the 
proposed approach presented in this paper, we used a quadratic spline with linear 
tails, the ratio model and heterogeneity estimation with uncertainty obtained from 
the FIM. The results were tabulated across simulations to get aggregate accuracy 
for both mean risk function and BPRF estimation (measured using root mean 
squared error).

Figure 5 previews the results corresponding to the first (data-rich) scenario, 
to highlight the advantages of the proposed methods for non-log-linear risks. 
When the relationship is log-linear, our proposed approach and the metafor 
package (tailored for log-linear models) show somewhat better performance than 
competing approaches using more complex spline models. That said, the metafor 
package’s advantages decreased (particularly for the BPRF estimation) with 
increased heterogeneity. For non-log-linear relationships, our proposed approach 
very substantially improves on available methods, getting uniformly better 
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performance across all scenarios and simulated between-study heterogeneity. 
Modeling the risk as log-linear (necessary to apply metafor) failed to capture 
salient features. Competing spline-based alternatives were unable to account for 
range exposure data, which resulted in underestimation of the mean curve.  
Due to the wide ranges and data sparsity at the tail, one-stage methods struggled 
to control the tail behavior of the splines used to estimate the risk functions. See 
Extended Data Figs. 1 and 2 for detailed results from the simulation of  
scenario one.

For the log-linear experiments in the second scenario (30 studies, 1–4 
observations each), all approaches were comparable; in this sparser setting data, 
controlling spline tail behavior made a larger difference than in scenario one. 
The metafor package was on par with the proposed approach, and both were 
competitive compared to the one-stage and two-stage methods. For non-log-linear 
pairs, the proposed approach performed substantially better than all alternatives. 
Modeling the risk as log-linear failed to capture salient features. Competing 
spline-based alternatives were unable to account for interval exposure data 
comparing different references and alternative groups across studies. See Extended 
Data Figs. 3 and 4 for detailed results from the simulation of scenario two.

The findings from the third scenario (10 studies, 1–4 observations each) were 
in line with those from the second scenario. In this data-sparse case, splines and 
polynomials in one-stage and two-stage methods became more unstable. Full 
results for scenario three are given in Extended Data Figs. 5 and 6.

Heterogeneity estimation simulation. We validated the utility of the FIM quantile 
in correcting the well-known problem of underestimating between-study 
heterogeneity. We generated ten scenarios parametrized by the number of studies 
in the dataset, ranging across 10, 20 and up to 100. For each scenario, we generated 
500 realizations, for a total of 5,000 simulations. Using the quantile obtained from 
the FIM reduced the bias in heterogeneity estimates. See Extended Data Fig. 7  
for full results.

Sensitivity analyses. We conducted sensitivity analyses comparing the dose–
response curves obtained (1) using the fixed-effects model versus the mixed-effects 
model and (2) with and without trimming. For the first sensitivity analysis, we 
removed the random effects from the fixed-effects model in the last step of our 
estimation process. Results are shown in Extended Data Fig. 8. There were some 
differences in the estimated levels of risk, and little to no difference in the shape of 
the risk curve between fixed- and mixed-effects of the mean risk curve.

For the second sensitivity analysis, we compared results without trimming with 
those after trimming the 10% least coherent data points. The results are shown 
in Extended Data Fig. 9 and Supplementary Table 7. We found that trimming 
generally stabilized the estimation, helping to guard the results against spurious 
observations. Trimming also decreased the estimated between-study heterogeneity, 
since, by definition, trimming removes points that are least coherent with the 
majority of the data (as judged using the model that is fit). Without trimming, 
ROSs and star ratings were generally lower, and more influenced by small numbers 
of outlying observations.

Statistical analysis. Analyses were carried out using R v.3.6.1, Python v.3.8  
and Stata v.17. To validate key aspects of the meta-regression model used  
in this analysis, the following packages were used: metafor (R package  
available for download at https://www.jstatsoft.org/article/view/v036i03) and 
dosmesreta (R package available for download at https://www.jstatsoft.org/
article/view/v072c01).

Statistics and reproducibility. The study was a secondary analysis of existing data 
involving systematic reviews and meta-analyses. No statistical method was used 
to predetermine sample size. As the study did not involve primary data collection, 
randomization, blinding and data exclusions are not relevant to this study, and as 
such, no data were excluded and we performed no randomization or blinding. We 
have made our data and code available to foster reproducibility.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The findings from this study were produced using data available in the  
published literature. Study sources and citations for each risk–outcome pair  
can be downloaded using the ‘download’ button on each risk curve page at  
https://vizhub.healthdata.org/burden-of-proof. Study characteristics for all  
input data used in the analyses for the four example risk–outcome pairs are also 
provided in Supplementary Tables 7–10.

Code availability
All code used for these analyses is publicly available online (https://github.com/
ihmeuw-msca/burden-of-proof). This includes code for the meta-regression 
engine, the model specification interface, both parts of the data processing, and 
risk-specific custom code, as appropriate.
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Extended Data Fig. 1 | Scenario 1 mean risk curve. a, estimated risk curves across 100 realizations for all methods, non-log linear. b, estimated risk 
curves across 100 realizations for all methods, log linear. c, RMSE results summarizing the errors of each method against simulated ground truth across 
different levels of true between-study heterogeneity, non-log linear risks. d, RMSE results summarizing the errors of each method against simulated 
ground truth across different levels of true between-study heterogeneity, log linear risks. e, log-scale RMSE results summarizing the errors of each 
method against simulated ground truth across different levels of true between-study heterogeneity, non-log linear risks. f, log-scale RMSE results 
summarizing the errors of each method against simulated ground truth across different levels of true between-study heterogeneity, log linear risks. 
MRSE = root mean squared error.
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Extended Data Fig. 2 | Scenario 1 burden of proof risk function. a, estimated risk curves across 100 realizations for all methods, non-log linear.  
b, estimated risk curves across 100 realizations for all methods, log linear. c, RMSE results summarizing the errors of each method against simulated 
ground truth across different levels of true between-study heterogeneity, non-log linear risks. d, RMSE results summarizing the errors of each method 
against simulated ground truth across different levels of true between-study heterogeneity, log linear risks. e, log-scale RMSE results summarizing the 
errors of each method against simulated ground truth across different levels of true between-study heterogeneity, non-log linear risks. f, log-scale RMSE 
results summarizing the errors of each method against simulated ground truth across different levels of true between-study heterogeneity, log linear risks. 
MRSE = root mean squared error.
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Extended Data Fig. 3 | Scenario 2 mean risk curve. a, estimated risk curves across 100 realizations for all methods, non-log linear. b, estimated risk curves 
across 100 realizations for all methods, log linear. c, RMSE results summarizing the errors of each method against simulated ground truth across different 
levels of true between-study heterogeneity, non-log linear risks. d, RMSE results summarizing the errors of each method against simulated ground truth 
across different levels of true between-study heterogeneity, log linear risks. e, log-scale RMSE results summarizing the errors of each method against 
simulated ground truth across different levels of true between-study heterogeneity, non-log linear risks. f, log-scale RMSE results summarizing the errors 
of each method against simulated ground truth across different levels of true between-study heterogeneity, log linear risks. MRSE = root mean  
squared error.
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Extended Data Fig. 4 | Scenario 2 burden of proof risk function. a, estimated risk curves across 100 realizations for all methods, non-log linear.  
b, estimated risk curves across 100 realizations for all methods, log linear. c, RMSE results summarizing the errors of each method against simulated 
ground truth across different levels of true between-study heterogeneity, non-log linear risks. d, RMSE results summarizing the errors of each method 
against simulated ground truth across different levels of true between-study heterogeneity, log linear risks. e, log-scale RMSE results summarizing the 
errors of each method against simulated ground truth across different levels of true between-study heterogeneity, non-log linear risks. f, log-scale RMSE 
results summarizing the errors of each method against simulated ground truth across different levels of true between-study heterogeneity, log linear risks. 
MRSE = root mean squared error.

NATuRE MEDICINE | www.nature.com/naturemedicine

http://www.nature.com/naturemedicine


Articles NATuRE MEDICINE

Extended Data Fig. 5 | Scenario 3 mean risk curve. a, estimated risk curves across 100 realizations for all methods, non-log linear. b, estimated risk curves 
across 100 realizations for all methods, log linear. c, RMSE results summarizing the errors of each method against simulated ground truth across different 
levels of true between-study heterogeneity, non-log linear risks. d, RMSE results summarizing the errors of each method against simulated ground truth 
across different levels of true between-study heterogeneity, log linear risks. e, log-scale RMSE results summarizing the errors of each method against 
simulated ground truth across different levels of true between-study heterogeneity, non-log linear risks. f, log-scale RMSE results summarizing the errors 
of each method against simulated ground truth across different levels of true between-study heterogeneity, log linear risks. MRSE = root mean  
squared error.
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Extended Data Fig. 6 | Scenario 3 burden of proof risk function. a, estimated risk curves across 100 realizations for all methods, non-log linear.  
b, estimated risk curves across 100 realizations for all methods, log linear. c, RMSE results summarizing the errors of each method against simulated 
ground truth across different levels of true between-study heterogeneity, non-log linear risks. d, RMSE results summarizing the errors of each method 
against simulated ground truth across different levels of true between-study heterogeneity, log linear risks. e, log-scale RMSE results summarizing the 
errors of each method against simulated ground truth across different levels of true between-study heterogeneity, non-log linear risks. f, log-scale RMSE 
results summarizing the errors of each method against simulated ground truth across different levels of true between-study heterogeneity, log linear risks. 
MRSE = root mean squared error.

NATuRE MEDICINE | www.nature.com/naturemedicine

http://www.nature.com/naturemedicine


Articles NATuRE MEDICINE

Extended Data Fig. 7 | Simulation study for γ estimation as a function of the number of studies, using 500 realizations of each setting. a, 5th and 95th 
percentiles of the estimated γ values. b, violin plots to illustrate how the number of studies affects γ estimation. In both panels, it is clear that using FIM 
improves the quality of γ estimation. FIM = Fischer information matrix. γ = between-study heterogeneity parameter.
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Extended Data Fig. 8 | Sensitivity study results comparing mixed effects model (teal) and fixed effects model (orange). a, smoking and lung cancer.  
b, systolic blood pressure and ischemic heart disease. c, vegetables and ischemic heart disease. d, unprocessed red meat and ischemic heart disease.
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | Sensitivity study results comparing trimming (teal) and no trimming (orange). a, smoking and lung cancer, with trimming.  
b, smoking and lung cancer, no trimming. c, systolic blood pressure and ischemic heart disease, with trimming. d, systolic blood pressure and ischemic 
heart disease, no trimming. e, vegetables and ischemic heart disease, with trimming. f, vegetables and ischemic heart disease, no trimming.  
g, unprocessed red meat and ischemic heart disease, with trimming. h, unprocessed red meat and ischemic heart disease, no trimming.
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