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   Immune.mediated autoinflammatory diseases are occupying an increasingly 

prominent position among the pantheon of debilitating conditions that afflict mankind. 

This review focuses on some of the key developments which have occurred since 

the original description of autoinflammatory disease, in 1999, and focuses on 

underlying mechanisms that trigger autoinflammation. The monogenic 
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autoinflammatory disease range has expanded considerably during that time, and 

now includes a broad spectrum of disorders, including relatively common conditions 

such as cystic fibrosis and subsets of systemic lupus erythematosus. The innate 

immune system also plays a key role in the pathogenesis of complex inflammatory 

disorders. We have proposed a new nomenclature to accommodate the rapidly 

increasing number of monogenic disorders, which predispose to either 

autoinflammation or autoimmunity or, indeed, combinations of both. This new 

terminology also encompasses a wide spectrum of genetically determined 

autoinflammatory diseases, with variable clinical manifestations of immunodeficiency 

and immune dysregulation/autoimmunity. We also explore some of the ramifications 

of the breakthrough discovery of the physiologic role of pyrin and the search 

for identifiable factors that may serve to trigger attacks of autoinflammation. The 

evidence that pyrin, as part of the pyrin inflammasome, acts as a sensor of different 

inactivating bacterial modification Rho GTPases, rather than directly interacting with 

these microbial products, sets the stage for a better understanding of the role of 

micro.organisms and infections in the autoinflammatory disorders. Finally, we 

discuss some of the triggers of autoinflammation as well as potential therapeutic 

interventions aimed at enhancing autophagy and proteasome degradation pathways. 

  

Page 2 of 44

http://mc.manuscriptcentral.com/jpath

The Journal of Pathology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 3

�

�
��	�����	
���

   “La fixité du milieu intérieur est la condition de la vie libre et indépendante”  

Claude Bernard in “Leçons sur les phénomènes de la vie communs aux animaux et 

aux végétaux”. Paris, Paris, Baillière, 1878.1879, 2 vols; 404 p. and 564 

“The constancy of the internal environment is the condition for a free and 

independent life” in (Lessons on the physiological properties and pathological 

changes of body fluids) 

 

     Since the discovery of mutations in the pyrin protein as the cause of familial 

Mediterranean fever (FMF), in 1997 [1,2], a veritable treasure trove of susceptibility 

genes, with associated signalling pathways and potential disease mechanisms have 

been unearthed, which, in turn, has provided some essential guidelines on the most 

effective therapies for these debilitating conditions [3,4]. The term “autoinflammation” 

was first proposed by Dan Kastner, in 1999, [5] to differentiate between the 

pathogenesis of various hereditary periodic fever syndromes (HPFs), which are 

uncommon causes of recurrent fevers in clinical practice, and that of autoimmune 

diseases, characterized by the presence of autoantibodies and autoantigen.specific 

T and B cells. In particular, autoinflammation describes the type of inflammation 

mediated by the innate immune system [6], and the expression of pyrin in key cells 

of this system, including neutrophils, monocytes, dendritic cells, and serosal 

fibroblasts reflects this. Mutations in other central regulators of the innate immune 

system, as described below, have subsequently been found to underlie a range of 

other monogenic conditions as well as polygenic autoinflammatory diseases [7], 

such as Behcet’s and Crohn’s disease [8,9] (Figs. 1). 
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   With relatively recent advances in massively parallel sequencing and wider use of 

this technology, we have witnessed the discovery of a succession of monogenic 

disorders, predisposing to either autoinflammation or autoimmunity or, indeed, 

combinations of both, further revealing the complex functioning of the human 

immune system [3,9,10]. These novel monogenic diseases may be of limited clinical 

impact, in the overall scheme of things, but they do represent true experiments of 

nature that continue to provide unique pathogenic insights into the hierarchy and 

levels of regulation of organ.specific immune defence responses. To quote directly 

from DJ Weatherall “if the severity of their phenotypes can be reduced by genetic or 

even environmental factors, it may be possible to reproduce these effects 

pharmacologically” [11]. 

    Furthermore, functional studies of these disorders have generated many new and 

surprising biological concepts; for example, the discovery that autosomal recessive 

mutations of the mevalonate kinase gene (MVK), a key step in the cholesterol 

pathway, caused hyperimmunoglobulinemia D with periodic fever syndrome (HIDS) 

[12,13], has prompted closer examination of the broader interactions between 

inflammation and overall lipid signalling. The expanding list of novel 

autoinflammatory diseases and associated susceptibility genes has already been 

extensively covered [3,14]; in this review we propose to describe a selection of these 

diseases in order to illustrate some of the many unanticipated developments in this 

field, which have arisen as a result of the study of genetic causes of 

autoinflammation, often in quite rare conditions.�

 
 
�
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       In 2002, the late Jurg Tschopp’s laboratory reported reported on the 

identification of an intracellular complex called the NOD.like receptor family, pyrin 

domain containing 3 (NLRP3) inflammasome that triggered activation of 

inflammatory caspases, with pro.interleukin 1β (pro.IL.1β) processing and 

subsequent secretion of pro.inflammatory IL.1β [15] (Fig. 2). The genetic basis of 

familial cold autoinflammatory syndrome (FCAS) [16], Muckle.Wells syndrome 

(MWS) [17,18] and chronic infantile neurologic, cutaneous, articular syndrome/ 

neonatal.onset multisystem inflammatory disease (CINCA/NOMID) [19,20], were all 

found to be associated with mutations in the NLRP3/CIAS1 gene, and evidence that 

release of IL.1β was central to the pathogenesis of MWS came with the 

demonstrated efficacy of interleukin.1 receptor antagonist (IL.1Ra), anakinra, in 2 

patients with MWS [21]. Collectively, the spectrum of these conditions soon became 

known as cryopyrin associated periodic syndrome (CAPS), reflecting a shared 

aetiopathogenesis (Table 1).  Furthermore, as it quickly became apparent that this 

collection of conditions responded exquisitely to IL.1 blockade [21.23], so too it 

gradually emerged that IL.1 inhibition was also effective in other HPFs, like TNF 

receptor.associated periodic syndrome  (TRAPS) [24], HIDS and FMF [25], although 

the response was less predictable in some cases. So it was proposed that caspase.

1 activation with release of IL.1β was a pathway common to many autoinflammatory 

conditions; the mutated NLRP3 produces a gain of function, with lack of feedback 

inhibition, that results in constitutive activation of the NLRP3 inflammasome with IL.

1β and IL.18 release [3,26]. The interleukin.1 receptor antagonist (IL.1Ra) provides 

a “biological brake” on inflammation driven by either endogenous IL.1α or IL.1β; 

deficiency of IL.1Ra (DIRA) [27] and deficiency of IL.36 receptor antagonist (IL.
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36Ra) (DITRA) lead to unopposed IL.36 signalling and pustular psoriasis [28,29] 

(Table 1). 

  A broad range of autoinflammatory diseases is currently being treated with IL.

1 cytokine blockade, with marked attenuation of symptoms and disease progression. 

Canakinumab is a high affinity fully human monoclonal anti.human interleukin 1β 

antibody and rilonacept (IL.1 Trap) is a long.acting dimeric fusion protein IL.1 

blocker. Clinical trials have been undertaken in CAPS, gouty arthritis, and systemic 

juvenile idiopathic arthritis (sJIA) [30.33]. There is a growing literature supporting the 

use of these agents in a wide spectrum of autoinflammatory conditions, including 

gout, Schnitzler syndrome, and Blau syndrome [34]. While multiple studies are 

ongoing, these agents have already been approved by for the treatment of CAPS 

and sJIA by a number of drug regulatory bodies.  

       Finally, somatic mosaicism has been reported in a number of autoinflammatory 

conditions. Since the first ever report of somatic mosaicism, in a Japanese patient 

with CINCA/NOMID in 2005 [35], it has subsequently been reported in several cases 

of CAPS, as well as FMF [36] and TRAPS [37]. 

   

�
������	
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Aicardi.Goutières syndromes (AGS) constitute a collection of rare 

inflammatory disorders, associated with aberrant sensing of DNA/RNA, and usually 

affecting the brain and skin with clinical onset, most often, in early childhood. Since 

the initial description, of mutations in genes encoding the 3′→5′ exonuclease TREX1 

in patients with AGS1 [38,39], in 2006, a total of seven AGS susceptibility genes 

have been identified to date, and this wide range of genetic mutations all lead to 

excessive interferon (IFN).producing responses, known as type I interferonopathies 
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[40]. A variety of disease mechanisms are involved: AGS 1.6 are of autosomal 

recessive inheritance and the AGS 7 patients have autosomal dominant gain.of.

function mutations in the interferon induced with helicase C domain 1 (IFIH1) gene.  

     TREX1 is induced as part of the IFN.stimulatory DNA (ISD) response, an antiviral 

pathway that detects DNA, triggering immune activation through IRF3 [41]. Both 

TREX1 and SAMHD1 (AGS5) act as a negative regulators of the ISD response [42]. 

The genotype.phenotype spectrum of TREX1 is remarkably broad and complex 

[43]. Familial chilblain lupus, systemic lupus erythematosus (SLE) and retinal 

vasculopathy with cerebral leukodystrophy have all been associated with mutations 

in TREX1 [44], in addition to the AGS1 phenotype, which, in its more severe form, is 

characterized by intracranial calcifications, cerebral atrophy, leukodystrophy, chronic 

cerebrospinal fluid (CSF) lymphocytosis, increased CSF alpha.interferon (IFNα) and 

negative serologic investigations for prenatal infections. 

Individuals with AGS7 also have severe neurologic impairment and 

immunological disease, particularly SLE [45]. However, clinical variability and non.

penetrance are notable features of some AGS7 patients, despite the presence of IFN 

up.regulation (increased expression of type I IFN regulated genes, referred at as an 

IFN signature). 

     A variety of therapies have been used to treat the chronic excessive IFN 

production in AGS patients. Anti.inflammatory therapies, including Janus kinase 

(JAK) inhibitors, such as baricitinib and tofacitinib, and IFN pathway.blocking drugs, 

such as sifalimumab, have all been been used in AGS [46,47]. If AGS progresses to 

antibody.mediated disease then anti.B cell therapy, such as rituximab may be of 

benefit. Reverse transcriptase inhibitors (RTIs) are also being used to treat severely 

affected AGS patients and results are awaited with interest.  
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     Apart from AGS there is a growing list of interferonopathies, due to gain.of.

function mutations in genes such as the PSMB8, present in most patients with 

chronic atypical neutrophilic dermatosis with lipodystrophy and elevated 

temperature/ proteasome.associated autoinflammatory syndrome 

(CANDLE/PRAAS) syndrome [48]. Liu et al. have demonstrated that mutations in the 

stimulator of interferon genes (STING) lead to constitutive STING–IFN.β pathway 

activation in patients with STING.associated vasculopathy with onset in 

infancy (SAVI) (STING is also known as transmembrane protein 173) [49]. A clinical 

trial aiming to assess the effect of JAK inhibitors, in SAVI and other related 

autoinflammatory syndromes, is currently ongoing (ClinicalTrials.gov number, 

NCT01724580). 

It has been proposed that IL.1β and type I IFN are the main drivers, 

respectively, of autoinflammation and autoimmunity, acting as counterregulators of 

each other by activating specific metabolic signalling pathways to limit either innate 

or adaptive immune responses [50]. However, the fine details of such regulatory 

networks remain to be established.    

 

���	&���$��
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Autophagy is emerging as a major pathway involved in the pathogenesis of 

autoinflammatory disease. The MVK mutation, and the subsequent depletion in 

isoprenoid synthesis, reduces functional autophagy in HIDS. However, this is not the 

only autoinflammatory disease where defective autophagy contributes to disease 

pathogenesis. Autophagy is a cellular process that maintains homeostasis by the 

clearance of redundant or damaged cellular components. There is a close 

relationship between autophagy and the inflammasomes, with evidence that 
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autophagy has a role in inhibiting the inflammasomes. This evidence not only 

suggests that autophagy clears inflammasome activators, such as ROS [51,52], 

mtDNA [53], HMGB1.DNA [54] and β.amyloid plaques in Alzheimer’s disease [55], 

but also clearance of the inflammasome itself [56]. Studies inhibiting autophagy 

observe increased NLRP3 inflammasome activation due to ROS accumulation [57].  

The autophagy mechanism is a regulated process of ‘self.eating’ where the 

contents of entire organelles are recycled for other biological functions. Mutations in 

proteins such as NLRP3 or TNFR1, can overcome normal protein homeostatic 

mechanisms, resulting in autoinflammatory diseases, such as CAPS and TRAPS 

[58]. The inflammasomes are at the centre of the pathogenesis of autoinflammatory 

diseases and so the involvement of autophagy in these conditions may uncover new 

therapeutic targets. TRAPS is known to have inflammasome activation and 

individuals with TRAPS respond well to anakinra. Defective autophagy within TRAPS 

contributes to NF.κB signalling, ROS production and defective TNF.induced 

apoptosis [59,60]. Autophagy deficiency can be considered as a causal link between 

a pathological mutation and subsequent protein accumulation, inflammasome 

activation and cytokine secretion [59,60]. This is particularly relevant in inflammatory 

diseases with known protein misfolding and ER stress. One such example is cystic 

fibrosis (CF), which has been shown to have defective autophagy [61.63] and 

common infections of Burkholderia cepacia complex (B. cenocepacia), which is able 

to inhibit autophagy as part of its infection machinery [64,65]. Autophagy and the 

inflammasomes go hand.in.hand, so in order to expose new disease mechanisms of 

innate immune driven diseases, both should be considered in tandem. On the other 

hand, genetic defects in the proteasome cause protein accumulation and 

proteasome dysfunction, which can trigger IFN.dependent autoinflammation. Loss.
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of.function proteasome subunit mutations in CANDLE/PRAAS patients also promote 

type I IFN production [48,66]. 

 

�����
�	����&�	���
����&	
����'"!��

�������Many different factors trigger activation of NLRP3; this is a 2.stage process 

requiring priming, usually via toll.like receptor (TLR) signalling, with a 2nd signal, 

typically intracellular calcium (Ca2+) ion release, potassium (K+) flux or intracellular 

reactive oxygen species (ROS). An ever.increasing number of molecules, in the form 

of whole pathogens, toxins, pathogen.associated molecular patterns (PAMPs), and 

DAMPs, are being found to trigger activation of the different inflammasomes, in 

particular the NLRP3 inflammasome (Fig. 3). It is most unlikely that these diverse 

agents bring about the activation by direct interactions with the intracellular NLRP3 

receptor; instead, it is probable that NLRP3 is responding to generic cellular stress.

signals induced by this variety of triggers. Among the cellular mechanisms that have 

evolved to maintain protein homeostasis include proteasome.mediated degradation 

of ubiquitinated proteins and the unfolded protein response (UPR). The UPR 

prevents protein overload in the secretory pathway and also prevents the spread of 

inflammation by degrading pro.inflammatory protein complexes, such as the NLRP3 

inflammasome [58]. 

 

($�����%���	�����(%������
����	�
������	�$���������

����Cystic Fibrosis (CF) is� a life.threatening autosomal recessive disorder of 

the lungs and digestive system [67,68]. The defective gene CFTR results in 

abnormalities in production and function of the CFTR protein, causing dysregulation 

of epithelial fluid transport and inflammation [69.72] and a predisposition to recurrent 
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pulmonary infections due to pathogens such as Pseudomonas aeruginosa (P. 

aeruginosa) and B. cenocepacia. Alterations in function and localisation of CFTR 

within leukocytes and epithelial tissues results in an exaggerated inflammatory 

response, with production of a wide spectrum of proinflammatory and chemotactic 

cytokines such as IL.17, IL.8, IL.6, IL.1β, IL.18, TNF, upregulation of TLRs and 

lipopolysaccharide (LPS) response [73]. The neutrophil is the predominant cell type 

infiltrating the CF lung, like a primary inflammatory response seen in acute infection, 

with inflammation in CF airways being driven by local environmental cells 

(macrophages and bronchial epithelial cells), rather than T cell derived lymphokines, 

as a systemic immune response. CF exhibits many hallmarks of an autoinflammatory 

condition [10], with infiltration by innate immune cells (neutrophils and macrophages) 

at target sites, and a paucity of autoantibodies or autoreactive T cells.  

       The physiological drive to autoinflammation in CF is due to CFTR dysfunction, 

which results in abnormal airway surface liquid (ASL) dehydration, reduced airway 

luminal pH, increased ASL glucose and hyperuricaemia [74.76]. These changes 

provide a milieu for activation of the NLRP3 inflammasome [77.79]. In human 

macrophages, IL.1β secretion and caspase.1 activation occurs following extracelluar 

acidification, which is abolished following knockout of mRNA expression of NLRP3 

receptor [79].   

        As well the physiological changes in epithelial ion transport, abnormal CFTR 

production, function and trafficking results in a state of hyperinflammation, 

associated with expansion of the endoplasmic reticulum (ER), located within the 

cytoplasm of cells, that inhibits ROS.mediated autophagy [61,80,81]. The most 

common mutation F508 results in a misfolded protein which is retained intracellularly 

and results in defective autophagy due to transglutaminase (TG2).mediated 
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depletion of Beclin 1 and overactivation of protein kinase CK2 [81]. Normal 

autophagy activity suppresses activation of AIM2 and NLRP3 inflammasomes and 

helps regulate inflammation[82]. Reduced autophagy induces aberrant activation of 

the inflammasomes with accumulation of bacterial containing phagosomes [82,83]. 

In CF murine airways and human macrophages, defective CFTR results in reduce 

levels of scaffold protein, CAV1, reduced inhibition of TLR4 signalling and 

hyperinflammation [84,85]. Similarly, studies in human CF broncho.epithelial cells 

show evidence of increased NLRP3 activation and defective NLRC4 activity, which 

can be inhibited by IL.1Ra (Fig. 3) [86]. Increased levels of ceramide appear to 

trigger the inflammasome protein complex, with upregulation of ASC protein, 

caspase.1 and increased production of IL.1β and IL.18 cytokines in the lungs of a 

CF mouse model [69]. 
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         The UPR, is activated in airways of patients by recurrent bacterial infections 

[30]. The ER stress responses involve atypical UPR induction, with lack of PERK.

eIF2α response to P. aeruginosa [87]. This atypical UPR fails to resolve ER stress in 

CF and sensitises innate immunity to respond vigorously to microbial challenge. This 

persistent autoinflammatory response is associated with CF arthropathy in 9% of 

adults, which in some cases is associated with a fever and rash [88].  The complex 

relationship between inflammation, CFTR, innate immunity and infection is poorly 

understood and may be related to macrophage dysfunction, abnormal phagocytic 

killing of P aeruginosa [89] and impaired degranulation of antimicrobial proteins 

through defective activation of GTP.binding protein, Rab27a [90]. In addition, CFTR 

dysfunction results in an increase sensitivity to LPS (a major constituent of the outer 
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membrane of Gram.negative bacteria) stimulation, altered inflammatory signaling 

due to abnormal neutrophil extracellular trap formation [89,91,92] and activation of 

micro.RNAs (miRNAs) [93] and NF.κB. These bacteriae trigger the NLRP3 

inflammasome through cytosolic receptors resulting in increased caspase 1 protease 

(CASP.1) and IL1B and IL18 production (Fig. 3). Triggers of NLRP3 inflammasome 

include the common CF lung pathogens Staphylococus aureus, Haemophilus 

influenza, P. aeruginosa, B cepacia complex, rhinovirus, influenza and Aspergillus 

fumigatus [94.99].  

         Viruses activate inflammasome.mediated innate immunity through recognition 

of viral RNA [100] by TLR7 and other triggers including altered ion flux with activation 

of NLRP3 and NLRC5.  P. aeruginosa and Burkholderia cenocepacia (B. 

cenocepacia) are two major pathogens which when isolated in sputum of patients 

with CF are associated with clinical deterioration.  B. cenocepacia is particularly 

pathogenic and can result in acute clinical deterioration  with uncontrolled 

inflammation, necrotizing pneumonia and bacteraemia.  B. cenocepacia accentuates 

inflammation via upregulation of mononuclear cell IL.1β processing  and inhibition of 

autophagy [101,102]. Stimulation of autophagy with rapamycin in the CF lungs 

mouse model reduces both inflammation and infection induced by B. cepacia [102]. 

LPS, L.Ala.γ .D.Glu.m.diaminopimelic acid (m.DAP), muramyl dipeptide (MDP) 

present in gram.negative and some gram.positive bacteria are also involved 

inactivation of the innate immune systems, though TLR and Nod.like receptor (NLR) 

proteins. Furthermore, a number of chemicals can induce structural changes in LPS, 

and subsequently modify the inflammatory response [103]. CF.associated ER stress 

responses involve atypical UPR induction, with lack of PERK.eIF2α response to the 

P. aeruginosa organism [87]. This shows that the atypical UPR fails to resolve ER 

Page 13 of 44

http://mc.manuscriptcentral.com/jpath

The Journal of Pathology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 14

stress in CF and sensitises innate immunity to respond vigorously to microbial 

challenge. 

A key component of the UPR is the IRE1 enzyme, activated by ER stress. 

IRE1 induces conversion of the transcription factor XBP1u mRNA (unspliced) to 

spliced XBP1 (XBP1s), the active form. Martinon et al. proposed a pro.inflammatory 

role for IRE1, with TLR2 and TLR4 activating IRE1 to induce sXBP1 [104]. In 

macrophages, IRE1 activation exacerbates secretion of proinflammatory cytokines 

such as IL.6, TNF and IFNβ [105]. Furthermore, the effects of defective XBP1 

functioning in autoinflammatory diseases may be augmented by concomitant defects 

that heighten cellular stress, including mitochondrial ROS or dysregulated microRNA 

regulation of XBP1 mediated inflammatory processes in TRAPS [106,107]. Thus, via 

both direct and indirect mechanisms, XBP1 dysregulation may be an important step 

in the cascade of intracellular events contributing to the pathogenesis of a number of 

autoinflammatory diseases. Indeed, there is also evidence of a UPR mediated by the 

XBP1s isoform in the airway epithelium of CF patients [108]. On the other hand, an 

in.vitro study from Italy shows that the degree of P. aeruginosa.dependent 

mitochondrial dysfunction is strictly dependent on defective expression of the CFTR 

channel and on a flagellin.activated TLR5.dependent pathway [109]. 

 The NLRP3 inflammasome complex also senses mitochondrial dysfunction 

[110] and intracellular ROS is a crucial element for inflammasome activation. 

Anakinra reduced endotoxin.induced airway inflammation in healthy volunteers [111], 

so we postulate that spontaneous NLRP3 inflammasome activation occurs in in CF 

patients [112]. Recent studies have linked IRE1 to NLRP3 activation [113] and have 

also shown that� XBP1 modulates innate immune responses of alveolar 

macrophages in CF patients [114]. IL.1 and the NLRP3 inflammasome activation 
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cause arthropathy and the IRE1/XBP1 axis has been implicated in synovial 

macrophages and fibroblasts of RA patients [107,115]. 

            One of the unique features of CF as an autoinflammatory disease is that it is 

the only such condition to have a “laboratory proven” association with bacterial 

infections, including P. aeruginosa and B.cenocepacia. The NLRP3 and NLRC4 

inflammasomes serve different functions� in regulating inflammatory responses in 

mice and humans with CF (Fig. 4). While both NLRP3 and NLRC4 inflammasomes 

contribute to pathogen clearance, NLRP3 contributes to a greater extent than 

NLRC4 to deleterious inflammatory responses in CF and correlates with defective 

NLRC4.dependent IL.1Ra production. Also IL.1 blockade markedly reduces 

inflammasome.dependent inflammation in murine and human CF  [116]. 

 

)����	������	��	
����������
�����	�����	�
�������	
�  

���The relationship between inflammation and metabolism constitutes a delicate 

balance, with pathways from both systems converging to preserve the “milieu 

interieur” of the cell. This balance in maintained by short.term adaptive measures to 

keep these systems in check, but there may be a detrimental outcome when one 

arm becomes overactive and suppresses the other in the longer term. HIDS is a 

classic example of a monogenic autoinflammatory disease, with a metabolic defect 

at its core. This disease is caused by two mutations in the mevalonate kinase (MVK) 

gene [12,13,117] and presents with increased excretion of urinary mevalonic acid 

and raised immunoglobulin (Ig).D and IgA levels in the serum [118]. Symptoms are 

often neurological in nature with increased mental retardation, ataxia, seizures and 

ocular problems. Fevers usually last around 5 days and are often triggered by 

traumas, illnesses or vaccine reactions. Although not consistently successful IL.1 
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antagonists are the most effective treatment for HIDS, with steroids having limited 

efficacy [118,119]. The mutated MVK gene translates into reduced levels of the 

enzyme mevalonate kinase, which normally converts mevalonic acid into mevalonate 

.5.phosphate, an intermediate in isoprenoid and sterol synthesis. The exact 

pathogenic molecular mechanism in HIDS is not clear but recent publications, 

describing the pyrin inflammasome and its detection of bacterial modifications of Rho 

GTPases, are promising avenues of exploration, as the causal biochemical 

deficiency of isoprenoid synthesis in HIDS reduces RhoA prenylation [120]. As IL.1 

antagonists, such as anakinra and canakinumab, are able to reduce fever frequency 

and severity, the NLRP3 inflammasome is a key pathway of interest although it is not 

the only possible source of IL.1β [121]. Research advances into how the 

inflammasomes are controlled by ROS and autophagy, and their links to Rho 

GTPase prenylation, also offer significant insights into the precise metabolic and 

mitochondrial mechanisms of autoinflammatory disease. 

Recently, Celsi et al. described an increase in NLRP3 activity in a HIDS 

mouse cell model, using siRNA mvk silencing, when cells are treated with LPS and 

Iovastatin, a statin drug used to lower cholesterol [122]. However, complete 

knockdown of mvk did not induce an increase in NLRP3 activity. This lead to the 

conclusion that increased mutated mvk protein levels may trigger NLRP3 activity by 

initiating the UPR due to protein accumulation. This hypothesis is supported by a 

HIDS THP.1 macrophage cell line model [123]. This cell model produced increased 

IL.1β and IL.18 levels, as well as an altered redox state. An important role for this 

altered redox state was revealed as it was associated with increased mitochondrial 

membrane potential, increased mitochondrial damage and increased mtDNA in the 

cytosol, all linked to a defective autophagy pathway. Autophagy would ordinarily be 
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activated in the situation of an altered redox state to clear defective mitochondria and 

reduce ROS.dependent damage; however, in this cell model, autophagy was found 

to be defective. The mutations in MVK, with subsequent reduction in isoprenoid 

synthesis, causes reduced prenylation of small GTPases, which are key upstream 

proteins involved in autophagosome formation [123]. The authors suggest a model 

whereby defective autophagy, due to reduced prenylation of small GTPases, occurs 

upstream of increased mitochondrial damage and the increased ROS, in turn, 

activates the NLRP3 inflammasome [124]. Interestingly, when these small GTPases, 

specifically the Rho family, become modified they trigger the pyrin inflammasome 

[125]. The link between HIDS and reduced prenylation of Rho GTPases activating 

the pyrin inflammasome has been suggested to offer an effective therapeutic target 

[120]. RhoA activates PKN1 and PKN2 serine threonine kinases, which in turn 

phosphorylate pyrin. Phosphorylated pyrin is bound to 14.3.3 proteins that restrict 

pyrin from forming its inflammasome. Arachidonic acid is a known activator of PKN 

kinases and is a potential future therapeutic option for innate immune.mediated 

inflammation. Therefore,�changes in post.translational modifications of Rho 

GTPases, in diseases such as HIDS or FMF, produce a reduced pyrin inhibitory 

capacity as well as defects in autophagy. In addition, autophagy has been shown to 

not only degrade ROS and mitochondrial debris in the cytosol, but also targets the 

NLRP3 inflammasome and pro.IL.1β for autophagosomal degradation  [126,127].  

Further evidence for disruption in metabolic pathways triggering the inflammasomes 

exists with hexokinase. Hexokinase is a glycolytic enzyme located on mitochondrial 

membranes. When inhibited, hexokinase dissociates from the membrane and allows 

release of mitochondrial DNA, activating the NLRP3 inflamamsome [128]. Metabolic 

conditions in which hexokinase function is impaired cause NLRP3 activation. 
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Bacterial peptidoglycan.derived N.acetylglucosamine is detected by mitochondrial 

membrane.bound hexokinase, causing membrane dissociation and NLRP3 

activation [129]. 

 

����'"!*������	���&���+�$� �
�����	������������&��� 

      The interplay between various metabolic pathways and the UPR has raised the 

possibility that key points in specific metabolic pathways could be targeted in 

autoinflammatory diseases. XBP1s acts a transcriptional activator of the hexosamine 

biosynthetic (HBP) pathway [130]; the UPR.HBP axis is triggered in a variety of 

stress conditions, including ischemia.reperfusion (I/R) injury, where stimulation of 

Xbp1s induces cardio.protection by induction of HBP. Ischemic accumulation of 

succinate has been shown to control reperfusion injury through mtROS [131]. 

Therefore the prevention of succinate accumulation could be a therapeutic goal in a 

range of autoinflammatory diseases that are resistant to standard therapies. 

     The rapid advances in the pathogenesis of autoinflammatory diseases and 

recognition that altered protein homeostasis contribute an innate immune component 

to many common diseases, underlines the unmet need for novel therapies for these 

conditions. For such therapies to be effective they would need to prevent protein 

accumulation, suppress ROS generation, and enhance of clearance mechanisms 

thereby preventing the development of (auto)inflammation. Therapies that succeed 

in augmenting the UPR could prove to be highly beneficial, as protein misfolding 

within the ER leads to activation of the UPR, with associated inflammation and 

increased disease severity. Anti.oxidants could be prescribed as adjunct therapies 

for diseases with aberrant ROS production and oxidative stress, like TRAPS [131].  
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Since both autophagy and proteasome degradation have anti.inflammatory 

properties, possible therapeutic interventions will be directed towards enhancing 

these pathways to effectively reduce NLRP3 activation [132]. Small molecules that 

block the NLRP3 inflammasome and related signalling pathways have recently 

shown promise in pre.clinical studies [133.135]. Clinical trials of agents that 

modulate proteotoxic stress and deactivate the inflammasome(s), combined with 

traditional therapies, such as IL.1 antagonists, will provide new insights into the 

connections between protein homeostasis and autoinflammation.  

https://clinicaltrials.gov/ct2/show/NCT01724580?term=NCT01724580&rank=1 [135] 

�

����&�$��		�����	��	��&$��
  

    The discovery of the physiologic role of pyrin by Feng Shao’s group represents a 

major advance in the field of autoinflammation [125,136]. The raison d’etre of the 

innate immune system is to protect the population from infection (Fig. 2); however, 

mutations in these protective genes can also lead to autoinflammatory disease.  

Shao and colleagues presented evidence that pyrin, as part of the pyrin 

inflammasome, acts as a sensor of different inactivating bacterial modification RHO 

GTPases, rather than directly interacting with these microbial products. This guard 

mechanism of pathogen detection has previously reported for pathogen recognition 

receptor (PRRs) in plants. Several Rho.inactivating bacterial toxins have been 

reported, including the TcdB toxin from Clostridium difficile the C3 toxin from 

Clostridium botulinum and the pertussis toxin from Bordetella pertussis, and, in the 

context of this review B. cenocepacia deamidates RhoA at Asn41 [125,136]. 

     More recent developments in this field include the discovery that RhoA activates 

the serine.threonine kinases PKN1 and PKN2 that bind and phosphorylate pyrin 
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[120]. This activation of PKN1 and PKN2 was found to decrease IL.1β release from 

peripheral blood mononuclear cells (PBMCs) of patients with FMF or HIDS. 

Defective prenylation, as seen in HIDS, was associated with RhoA inactivation and 

pyrin inflammasome activation (Fig. 4). Thus, the authors propose a novel molecular 

connection between FMF and HIDS. 

      Masters et al. have described an autoinflammatory disease, labelled pyrin.

associated autoinflammation with neutrophilic dermatosis (PAAND), caused by a 

mutation in pyrin, which disrupts pyrin regulation and mimics the effect(s) of 

pathogen sensing by pyrin, leading to proinflammatory IL.1β production [137]; the 

disease resolved in one patient by targeting IL.1β. These data reveal a regulatory 

mechanism of pyrin activation and suggest that it is regulated through a guard.like 

mechanism, which prevents the development and progression of autoinflammation. 

     A number of fundamental questions arise from these fascinating discoveries, 

including the precise molecular mechanisms of pyrin inflammasome activation and 

whether specific environmental factors may trigger attacks in patients with 

autoinflammation. 

 

 �+�����������
�������
������

   Gain.of.function mutations in the NLRC4 gene a novel inflammasome disorder 

associated with predisposition to macrophage.activation syndrome (MAS) and highly 

elevated IL.18 levels [14] (Table 1). Aksentijevich and colleagues [138] found that 

TNFAIP3 mutations cause haploinsufficiency of A20 (HA20), with reduction of NF.κB 

[139] and IL.1 signalling leading to A20 haploinsufficiency, in an early.onset 

autoinflammatory disease, where the phenotype resembles Behcet’s disease [140]. 

A paper in press by the same group describes another NF.κB mediated disease, 
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caused by loss.of.function mutations in OTULIN/FAM105B gene, encoding a 

deubiquitinase with linear linkage specificity. These patients have a very severe 

phenotype, surprisingly resembling CANDLE, but clinically responsive to TNF 

inhibitors [141]. Together with HA20 these two diseases described a new category of 

autoinflammatory diseases, due to dysregulated ubiquitination. Thus the 

ubiquitination pathway has assumed greater important in the investigation of 

systemic autoinflammatory disorders of undefined etiology (SAIDs).  

�������Mutations in the TNFRSF11A gene have been reported in patients with a 

disease that has clinical similarities to TRAPS [142]. A report of a novel digenic 

pattern of inheritance in CANDLE/PRAAS patients, has provided insights into 

proteasome dysfunction and associated IFN production [66]. 

 
 
���������	�����	�
�������	
�

     Autoinflammatory diseases are mainly driven by proinflammatory cytokines, 

usually generated as a result of cellular stress, and especially oxidative stress with 

associated mitochondrial DNA (mtDNA) damage. The resulting release of metabolic 

mediators such as mitochondrial ROS, which acts as a DAMP for the NLRP3 

inflammasome activation [143]. The search for identifiable (exogenous) factors that 

might serve to trigger attacks of autoinflammation involves careful the patient’s 

environment, diet, or lifestyle [110]. Some known triggers known to influence the 

effects of individual mutations include  

1. Generalised exposure to cold may precipitate attacks of fever in familial cold 

autoinflammatory syndrome (FCAS). 
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2.  Attacks of HIDS may be triggered by trauma, illnesses or vaccine reactions 

[117,144]. A severe inflammation reaction following vaccination against 

Streptococcus pneumoniae has been described in patients with CAPS [142]� 

3. Urate and CPP crystals cause NLRP3 inflammasome activation in gout and 

calcium pyrophosphate deposition disease (CPPD) [77] 

4. The pyrin inflammasome is activated upon bacterial toxin.induced modification of 

host Rho GTPases [125]. 

,��Dying cells have the capacity to activate the innate immune system and induce a 

sterile inflammatory response [145,146]; necrotic cells are sensed by the Nlrp3 

inflammasome with subsequent release of IL.1β [147]. In a mouse model 

mitochondria were critical to activation of the Nlrp3 inflammasome by direct binding 

of Nlrp3 to the inner mitochondrial lipid cardiolipin. 

-��The relationship between IFN.α and brain pathology in AGS is poorly understood 

[148]. Viral infection and replication introduces single.stranded RNA (ssRNA), 

double.stranded RNA (dsRNA) and DNA:RNA hybrids, with induction of type I IFN 

genes. The AGS phenotype may resemble congenital viral  and individual subsets of 

SLE [43,44].   

 

���	�
�������	
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     It is now accepted that innate immune.mediated inflammation plays a key role in 

the pathogenesis of some of the more common chronic systemic conditions, such as 

Crohn’s disease [4], type 2 diabetes (T2D) and a myeloid subset of rheumatoid 

arthritis (RA) [149], as well as in diseases not formerly considered inflammatory, 

such as neurodegenerative conditions [150]. There is increasing evidence that cell 

intrinsic or environmental alterations in protein homeostasis may contribute to the 

Page 22 of 44

http://mc.manuscriptcentral.com/jpath

The Journal of Pathology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 23

pathogenesis in these conditions; thioredoxin.interacting P (TXNIP) serves as a 

functional link between ER stress, NLRP3 inflammasome activation and 

inflammation related to T2DM [151].  

 

�����&����

 As the field of autoinflammatory disorders has developed so rapidly clinicians and 

researchers have produced guidelines to optimise and disseminate 

recommendations for universal management of children and young adults with these 

disorders. An international panel of 22 experts was established to develop evidence.

based recommendations for the management and treatment of CAPS, TRAPS and 

MKD using the European League Against Rheumatism (EULAR) standard operating 

procedures for developing best practice [152,153].           

�

"�	&	����
�+� 	��
�������– �
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��� �����������	
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��������     

The continuously expanding number of monogenic diseases, for which 

susceptibility genes have been found, and which present with a range of overlapping 

clinical features, both autoinflammatory and autoimmune in nature, has raised the 

question as to how to (sub)classify those conditions, as the terms autoinflammation 

and/or autoimmunity are insufficient to adequately describe them. In addition to the 

challenge posed by these conditions with overlapping features, a range of other 

diseases, with variable clinical manifestations of immunodeficiency and immune 

dysregulation/autoimmunity have been genetically delineated. These include 

PLCG2.associated antibody deficiency and immune dysregulation (PLAID) [154], 

haploinsufficiency of CTLA.4, caused by heterozygous germline mutations [155] and 
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XLPDR disorder, due to deficiency of POLA1, which encodes the catalytic subunit of 

DNA polymerase.α [156]. This latter condition also has an associated IFN signature.  

Despite these observations, a combination of both pathogenic innate and 

adaptive immune responses underlie the immunopathology of most inflammatory 

conditions. As reviewed in [46] some clinical features, like B.cell immunodeficiency, 

may arise in conditions which are mainly innate.immune driven, and 

autoinflammatory in phenotype, such as deficiency of adenosine deaminase 2 

(DADA2) [157,158] but B.cell immunodeficiency may also be found in monogenic 

autoimmune conditions, like haploinsufficiency of CTLA.4 and PLAID. Furthermore, 

AGS7 has the potential to progress from being primarily innate.immune driven to 

becoming an antibody.mediated disease.  

          In light of the expanding number of overlapping syndromes of both 

autoinflammation and autoimmunity we propose to broaden the classification of 

diseases by assigning the term ���	����
	��
������	�$��������. Conditions 

like PLAID, where the clinical picture combines features of immunodeficiency as well 

as autoimmunity, and, arguably, the cold urticaria element of PLAID is innate 

immune related, might also be considered; following the template proposed above 

complex conditions of that nature could be referred to as an ���	����
	�

�
������	�$�����
	�������
�$��However the primary 

immunodeficiency diseases (PI) constitute an extensively classified group 

of conditions, and it may not be possible to find a satisfactory all.purpose blanket 

term for novel complex conditions with features of immunodeficiency as well as 

autoimmunity and autoinflammation. 

�

�
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����The identification of a genetic aetiology for an increasing number of 

autoinflammatory diseases has led to a growing recognition that dysregulation of this 

normal defence mechanism may be more prevalent than previously realised in other 

diseases. Autoinflammation is likely to play a variable role in a wide spectrum of 

human disease, acting within a milieu of complex processes, involving innate and 

adaptive immunity. Understanding the role of autinflammation in various diseases 

processes is essential if new targets are to be identified for future therapies. 

 A major part of the human immune system’s basic function is to control the 

host’s relationship with his/her microbiota, referring to the the totality of 

microorganisms that inhabit the human body in health and disease. Recent major 

technological advances, including single cell sampling and shotgun sequencing 

enables detailed study of individual microbiota and inflammatory disease can related 

to components of the microbiome [159] (the combined genetic material of the 

microorganisms), and to the intracellular pathways that pathogens within the 

microbiome may dysregulate survive [160]. It is most likely that the widespread 

influence of intracellular microbes on innate immune defences and autoinflammatory 

diseases will be elaborated in significant detail in the next decade. 
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Diseases of the immune system are classified according to whether the lymphocyte 

responsible for the disease is of myeloid (autoinflammation) or lymphoid lineage 

(autoimmune). Clinical heterogeneity within immunological diseases may reflect the 

variable expression of autoinflammatory and autoimmune factors in disease 

causation.  

A disease spectrum that includes rare monogenic diseases at the polar ends of the 

spectrum, and polygenic diseases, involving both myeloid and lymphoid cells in 

pathogenesis, occupying the centre [10]. This diagram adds a third variable, 

environmental triggers, to further define the pathogenesis of these diseases. The 

figure does not include all immunologically recognised diseases because of their 

large number. 

HIDS. hyper IgD syndrome, CAPS. cryopyrin.associated autoinflammatory 

syndrome, FMF. familial Mediterranean fever, TRAPS. tumour necrosis factor 

receptor associated periodic syndrome, sJIA. systemic juvenile idiopathic arthritis, 

AOSD. adult onset Still’s disease, RA. rheumatoid arthritis, CF. cystic fibrosis, SLE. 

systemic lupus erythematosus, T1D. type 1 diabetes,  APS.1. autoimmune 

polyglandular syndrome type 1, PLAID. PLCG2 associated antibody deficiency and 

immune dysregulation, ALPS. autoimmune lymphoproliferative syndrome, IPEX. 

immune dysregulation polyendocrinopathy enteropathy X.linked syndrome.  
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An�activating signal is required for the NLRP3 inflammasome to be assembled . 

examples include ATP.dependent K efflux, particulate substances, such as urate 

crystals entering the cell through lysosomal degredation pathways, mitochondrial 

damage and release of mtDNA or mtROS and intracellular pathogen recognition. 

The ligand for the NLRP3 inflammasome in humans is pro.caspase.1. Once 

activated, caspase.1 cleaves and activates inactive cytokines pro.IL.1β and pro.IL.

18. A second priming signal is required to induce pro.IL.1β and pro.IL.18 expression. 

This is typically through NF.κB signalling, downstream of TLRs, or through XBP.1 

downstream of the UPR. Once the inflammatory stimulus has subsided the NLRP3 

inflammasome is cleared by autophagolysosomal degradation. 
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���CF shares many common features of autoinflammatory diseases. Due to the 

mutated CFTR, there is increased ROS signalling and reduced antioxidant secretion. 

CF also manifests with hyperuricaemia, low airway surface pH, ASL dehydration and 

high glucose levels, all thought to be triggers of the NLRP3 inflamamsome. CFTR 

mutations may cause extreme ionic imbalances, many of which have been linked 

with NLRP3 inflammasome activation. As the CFTR is misfolded in many genotypes 

of CF, this results in ER stress, UPR activation, and XBP1 signalling. Finally, 

increased lung infections provide frequent activation of the TLR.NF.κB inflammatory 

signalling pathway, priming the NLRP3 inflamamsome. 
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        When mutations in the NLRP3 inflammasome pathway or excessive/continuous 

stimuli interfere with its activation or priming, this inflammasome becomes the hub of 

life.limiting innate immune.driven diseases. Gout (yellow arrow), TRAPS (green 

arrow), MWS (red arrow), FMF (blue arrow) and HIDS (orange arrow) are examples 

of autoinflammatory conditions where the NLRP3 inflammasome is at the centre of 

disease pathology.    
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 An update on the mechanisms involved in the autoinflammatory diseases mentioned 

in this review. A more comprehensive list of these diseases exists in de Jesus et al.’s 

review [3].   
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