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Abstract

We consider the multidimensional Burgers equation with a viscosity term and

a random force modelled by a functional of time—space white noise, {wy(t, z)}:
(B) %%’S— + A7 uj%—;—j’% = vAuy +w(t,z); 1<k<n, (t,z)eR"™

We discuss the equation in the framework of a class of distribution valued
stochastic processes called functional processes, and interpret the products
uj%? as Wick products. Then we show that the nonlinear equation (B) can
be transformed into a linear, stochastic heat equation with a noisy potential.

This heat equation is solved explicitly in the following two cases

a) For a white noise potential

b) For a positive noise potential.



1 Introduction

Starting in 1940 Burgers [Bu] initiated an extensive analysis of the nonlinear

initial value problem
Up + Uy = Vigy (where u; = % etc.) (1.1)

as a model for turbulence. The equation is a simplified version of the Navier-
Stokes equations with R = 1/v corresponding to the Reynolds number.
Despite its apparent simple form, the Burgers equation (1.1) encompasses
many of the important features of fluid flow, and has furthermore found many
applications in other areas.
A crucial property of (1.1) is that it admits a linearization by a nonlinear

transformation, the Forsyth-Florin-Hopf-Cole transformation [Fo, p. 101], [F]]

¢x(t>x)
p(t,z)

This transformation reduces (1.1) to the linear diffusion equation

u(t,z) = —2v

Yy = Vg

p(z,0) = exp ( - % /0 u(0, y)dy> :

Using well-known formulas for the solution of (1.2) one can actually derive

(1.2)

explicit solutions of (1.1) [Bul.

Frequently lack of information about all properties of the system makes
it natural to introduce a stochastic model, for example by representing some
of the coefficients of the equation by some type of noise. See e.g. [LOU 1],
[LOU 3] where positive noise is introduced as a model for the permeability of
a porous medium in connection with fluid flow. For an extensive discussion
from a physical point of view of stochastic properties of the Burgers equation
we refer to [GMS].

We will in this paper study a multidimensional Burgers equation with a
stochastic force term. It is outside the scope of this paper to give a compre-
hensive discussion of the various physical applications of Burgers equations
with a noisy force term. We will, however, mention the Kardar-Parisi-Zhang
(KPZ) model [KPZ], [MHVZ] as it will be relevant for our presentation. This
model has been introduced to study growth of interfaces, e.g. the way solids

form through growth processes on the surface.
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Let h(z,t) denote the profile of an interface as measured from a point z € R?
on a given reference plane. Assume that the local growth velocity —‘Z—i‘ is a sum
of a relaxation of the interface by a surface tension v and a nonlinear function
v of Vh. This can be justified from the Eden model. Taking the simplest

A

function v(z) = 3|z[* and adding a stochastic noise term N = N(xz,t) we

obtain the KPZ model
A 2
hy = z/Ah+—2—’Vhl +N (1.3)

See [KPZ] and [KS] for further discussion.
By slightly extending the Forsyth-Florin-Hopf-Cole transformation ([KR],
[HHF]) using

A
= —h .
© = exp [21] } (1.4)
we obtain
=vAp+ —iN (1.5)
Yy = 2 5, ©. .

Observe that the additive noise in the KPZ model has been turned into a
multiplicative noise as a potential in the heat equation. The relation to Burgers

equation can be seen by writing

u=—Vh, w=—-VN (1.6)
thus obtaining

u + Mu, Viu = vAu+w (1.7)

(where u(t,z) : R x R* = R" and (u, V) = il ujgi—j) which is a multidimen-
sional system of nonlinear partial differentiél_equations with a random force
w, generalizing Burgers’ equation (1.1).

To give a rigorous analysis of (1.7) with a noise term of white noise type
one has to provide a careful interpretation of (1.7) and in particular in what
sense one can find solutions to (1.7). As explained below, we interpret the
product (u, V)u as a Wick product, writing (u ¢ V)u, which corresponds to a
renormalization.

Recently Sinai [Si] has studied asymptotic properties as t — oo of the scalar

one-dimensional Burgers equation with noise. In a future paper we would like



to apply our results to study the behaviour of the solutions u of (1.7) when
the viscosity v approaches 0.
In this paper we will study the following stochastic variant of the (multi-

dimensional) Burgers equation:

5
e +)\Z u; = vAuy + w(t, z); 1<k<n (1.8)
ot s 8
where A and v are constants, v > 0, t € R, z = (z1,...,2,) € R" and
Aup = 35, 8;?;. We assume that ws,...,w, are given (n + 1)—parameter

functional processes (to be defined below) and we seek a solution u(t,z) =
(ur(t,x), ..., u(t,z)). We may regard u as the velocity field of a (vortic-
ity free) fluid with viscosity v, being exposed to the random force w(t,z) =
(wy(t, ), ..., wu(t,x)).
Here we would like to point out that it is not clear what one should mean
with a solution of (1.8). Already for the stochastic wave equation
9%
— — Au=w(t,z); (t,z) e R xR" (1.9)
ot?
where w is (n + 1)-parameter white noise and n > 2, it was shown by Walsh
[W] that a solution u only exists as a distribution valued stochastic process.
One would expect that a similar statement holds for (1.8). But if {uz}p_, is a
distribution valued process, how does one define the products u]%z—j 7
Our answer is that the distributions are represented in the Colombeau
sense and the products are interpreted as Wick products u;¢ g“’“ (see definition
below). There are several reasons for this: The Wick product corresponds to
a form of renormalization commonly used in quantum physics. Moreover, the
use of Wick product is already (indirectly) present in ordinary Ito calculus.
More precisely, if Y; is a bounded, adapted (real) stochastic process, and B; is

1-dimensional Brownian motion, then it was proved in [LOU 2] that
T T
/ YidB, = / YioW,dt  for all T<oo (1.10)
0 0

where W, denotes (1-parameter) white noise. The left hand side of (1.10) de-
notes the Ito integral. In fact, (1.10) remains true for nonadapted processes
Y, if the left hand side is interpreted as the Skorohod integral. We refer to
[GHL@UZ] for a survey of some properties and applications of the Wick prod-

uct.



In §2 we give some background material and we formulate a class of distri-
bution valued stochastic processes (the LP functional processes), from which
we seek a solution of (1.8).

In §3 we show that the (nonlinear) equation (1.8) can be transformed into
a linear stochastic heat equation with a noisy potential. This is achieved by
introducing a Wick exponential substitution.

In §4 we solve the linear stochastic heat equation in two cases:

a) When the potential is white noise
b) When the potential is positive noise

The basic ingredient in our method is the use of the Hermite transform and
its inverse. The Hermite transform changes the stochastic equation into a

deterministic equation with complex—valued parameters.

2 White noise, Hermite transform and func-

tional processes

Here we recall some basic concepts, definitions and results which are used later

in the paper.

The white noise probability space.

A general reference here is [HKPS]. Let S = S(R?) denote the Schwartz
space of rapidly decrasing smooth functions on R? and let S’ = S'(R%) denote
the dual of S. Then &’ is the space of tempered distributions on R?. By the
Bochner-Minlos theorem [GV] there exists a probability measure x on S’ such
that

/ e <w9> 1 (w) = o slell? foral g €8 (2.1)
S/

where (w,®) = w(¢) denotes the action of w € & on ¢ € S and ||¢]| =
lpllr2mey = Jrelp(a)?de (dz = Lebesgue measure). p is called the white
noise probability measure and the triple (S', B, 1) where B denotes the family
of Borel sets in &', is called the white noise probability space.

The white noise process is the map

W.:S8xS —R



given by
W(p,w)=Wy(w) =(w,¢) for pes, wes (2.2)
It is a consequence of (2.1) that the Ito isometry holds, i.e.

Wellzz =118ll;  ¢€S (2.3)

From this we see that if ¢ € L?(R%) = L?(R% dz) and we choose ¢, € S such
that ¢, — ¢ in L*(R?) then

Wy = lim W, exists in L*(u), (2.4)

00

and the limit is independent of the choice of {¢,}. In particular, if we define

,,,,, Zd (w) = <w> X[O,zl]x~~><[0,xd]> (25)

(where x denotes the indicator function), then B, has a continuous version B,
which then becomes a d—parameter Brownian motion.
The d-parameter Wiener-Ito integral of ¢ € L*(RY) is defined by

L 6B, () = Wolw). (26)

From the integration by parts formula for Wiener-Ito integrals we see that
white noise may be regarded as the distributional derivative of Brownian mo-

tion

W = — Fbmo Ld (2.7)

B 81313272 . 8£Cd

For more details see [LOU 1] or [HLOUZ].

The Wiener-Ito chaos expansion.
Let h, be the n'th order Hermite polynomial defined by

hn(z) = (=1)"ez dxn(e_T); n=0,1,2,3... (2.8)

and for n =1,2,... let &, be the Hermite function of order n defined by

(@) = 1 ((n— 1)) Fe T hy 1 (V2Z2);  z€R (2.9)

Then {£,}22, forms an orthonormal basis for L*(R)). Therefore the family of

tensor products

..... [e %] ::§a1®”'®§ad (210)



(where « denotes the multi-index (ay, . .., aq)) forms an orthonormal basis for
L*(R%). This is the basis we will use throughout this paper. With a slight
abuse of notation let ey, e, ... denote a fixed ordering of the family {eg}, from

now on. Put

0, = 0;(w) = /Rd e;(2)dB,(w) (2.11)
and define, for each multi-index a = (ay, ..., o),
Ho(w) =[] ha, (05) (2.12)
j=1

A version of the Wiener-Ito chaos theorem states that the family {H,}, forms
an orthogonal basis for L?(u). Therefore any X € L?(u) has the (unique)

representation
X(w)=> caHy(w) (2.13)

(the sum being taken over all multi-indices of non-negative integers). Moreover,

we have the isometry
HXH%%N) = Za!ci, (2.14)
87

where a! = olan! - - ap! if a = (ay,...,an). See [HKPS] for more details.

The Wick product
IfX =3 ,a.Hyand Y = 3 5bsHg are two functions in L*(u) we define the
Wick product X oY as follows:

XoY = agbsHarp=Y (Y, agbg)H, (when convergent)  (2.15)
a,B T atf=y
For general X,Y € L*(u) this sum may or may not converge in L? for some
p=>1

EXAMPLE 2.1.

If X(w) = Wy(w) = [ge¢(2)dB, and Y (w) = Wy(w) = [ra¥(z)dB, with
¢, € L*(RY), then

XoY(w) = /

. ¢ &p(z,y)dBE: (2.16)



where ® denotes the symmetric tensor product (i.e. p&y(z, y)=3[p(z)v(y) +
¥ (y)y(z)]) and the term on the right hand side is the double Ito integral (see
e.g. [GHLOUZ] for more details)
The Wick product can be extended to L'(x) in the following sense:
Suppose X,Y € L*(u) and suppose there exists X, Y, € L*(u) such that

X, =X, Y, =Y inLYp)

and

X, oY, converges in L'(u)to Z, say.
Then we define
XoV =2 (2.17)

This definition does not depend on the sequences {X,}, {Y,}. Moreover, we

have
E[X oY] = E[X]|E]Y] (2.18)

(See [HLOUZ].)
If X € LY(p) and for all k = 2,3, ... the Wick powers

X*=XoXo---0X (k factors)

exist and belong to L'(y). We can define the Wick ezponential of X, Exp X,
by

= 1 ok
ExpX = > 7~C—!X (2.19)
k=0
provided the sum converges in L*(u).

EXAMPLE 2.2.
The Wick exponential of white noise, ExpW,, turns out to have the simple

form
K =ExpWy =exp(Wy - 5l6l*);  ¢€8 (2.20)

In particular, Exp Wy > 0 a.s. . This and other properties of Exp W, make
it a suitable model for positive noise in many applications. See [LOU1], [LOU
3]. For general X, Exp X need not be positive (see [GHLOUZ]).
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Note that, when defined, the Wick exponential function shares many of the

properties of the ordinary exponential. In particular, we have

Exp(X) o Exp(Y) = Exp(X +Y),

0 0X
a7jEXp(X(:n)) = Exp(X(z)) o bs; ete. (see §3).
The Hermite transform
The Hermite transform 7 transforms functions X € L*(u) into analytic
functions HX (2, 29, .. .) of infinitely many complex variables 2y, 29, ... Using

the representation (2.12) the transform can easily be described as follows:

If X(w)=> coHolw) then HX(2) = X(z) =3 caz®, (2.21)

where 2 = (21, 29,...) € CY (the set of all finite sequences of complex num-
0

251

bers) and we have used the multi-index notation z* = 2{" - 25 2pm if

m

a=(ag,...,0n).

EXAMPLE 2.3.
To find the Hermite transform of white noise X (w) = Wy(w) we proceed as

follows:
Wow) = [ 0@)dBu(w) = (e [ es(e)dBalw) = X (dre,)6
= Z(¢> ej)hl(ej) = Z(¢7 ej)H€j (w)7

J J
with (¢, e;) = Jra #(y)e;(y)dy and €; = (0,0,...,1) with 1 on the j'th place;
j=1,2,...

Hence by (2.21)

Wo(2) =S (dye5)z5 3 2= (21, 20,...) (2.22)

J

REMARK.
The Hermite transform H is related to the S—transform ([HKPS]) by the
identity

HX (21, 22,...) = SX(z1e1 + z0e2 +...); (21,2,...) € CON (2.23)

See e.g. [GHLOUZ].



A fundamental property of the Hermite transform is that it transforms the

Wick product into an ordinary, complex product:
H(X oY )(z) =HX(2) - HY (2); zeCN (2.24)

(See [LAU 1], [HLOUZ])
Moreover, we have an explicit inverse Hermite transform:
If X(z) is the Hermite transform of X € L?(u) then we can recover X from
X by
X(w) = /RN X (01 + iy, 02 + iy, .. )dA(y) (2.25)

where dA\(y) = dA(y1, 1, . ..) is the probability measure on RN defined by

oo P M) = @r) ™ [ Fw)e Py (226)

T

if f is a bounded function depending only on the first n coordinates (y1, . . ., ¥n)
of v.

Again we refer to [LOU 1], [HLOUZ] for more information. As explained
in the latter reference, the inversion (2.25) should be interpreted as a limit of

the inversions of truncations of X.

Functional processes.
Finally we describe the type of distribution valued/generalized stochastic
processes we are about to consider:
Let p > 1. An LP functional process is a map

X: SxR*xS8 —R
such that
(i) z — X(¢,z,w) is (Borel) measurable for all p € S, w € &'
and

(i) w — X (¢, x,w) belongs to LP(u) for all ¢ € S, z € R

Intuitively X (¢, z,w) is the result we get if we measure the quantity X using
the test function (or “window”) ¢ shifted to the point  and in the “experi-

ment” w. By “¢ shifted to 2” we mean the function ¢,(-) defined by
$u(y) = oy — )

10



EXAMPLE 2.4.
White noise W may be regarded as an LP functional process (for any p < co)

by putting
W(ga,w) = W) = [ oly—2)dB,w)

Note that the distributional derivatives of W(:,z,w) at ¢ coincide with the
derivatives w.r.t. z of W (¢, z,w). In view of this and the general interpretation
of X(¢,z,w) given above, we will regard partial derivatives of a functional
process X (¢, z,w) as taken w.r.t. z for a fixed ¢.

For brevity we sometimes suppress ¢ and/or w and write X (z,w) or simply
X(z) for X(¢,z,w). Similarly, in a time-space situation we write X (¢, z) for
X(¢,t,z,w).

3 From the stochastic Burgers equation to

the stochastic heat equation

We are now ready to consider (the Wick interpretation of) the stochastic Burg-
ers equation, i.e.

%4—)\2%0% = vAuy + wi(t, z); ux(0, z) = gi(x) (3.1)
ot aiL'j

j=1

More precisely, we seek n LP functional processes uj, = ug(¢,T,w), with T =
(t,x), such that for all ¢ € S(R™)

0 " 0

'8—t’uk(¢7 ta T, ) + A;“j(QS)t?x? ) < 5{5“k(¢7 ta Z, ) =
n 82
=1 025

where wy, are given (n + 1)-parameter functional processes.
Suppose such a solution u = (uy,...,u,) exists, for some p > 1. We now

make two assumptions:

Assumption 1 There exists an L? functional process X such that

OX

- 1<k< 3.3

Uy, =

11



Assumption 2 There exists an (n+ 1)-parameter functional process N such
that

ON
= - 1<k<L .
W e <k<n (3.4)
REMARK.
Let N = W,(w) be 1-dimensional white noise in the n + 1 parameters
t,x1,..., %, as described in §2. Choose

ot 21, .., 2n) = @o(t)pr(z1) - pn(rn)  with preS(R).

Put

where g = pop1pa- @y Pn, 1<k<n
Then each vy, is a white noise. Moreover, if k& # m then v, and v, are

independent, since v and t,, are orthogonal in L?(R™"!). Therefore, if the
given noise w = (wy,...,wy) in (3.1) is white, then we can always find a rep-
resentation of w of the form (3.4) in Assumption 2. Adopting the terminology
from ordinary stochastic differential equations, we might say that this corre-
sponds to considering the stochastic partial differential equation (3.1) in the
weak sense.

If we substitute (3.3), (3.4) in (3.1) we get

0 ,0X 0X 0 ,0X 0% ,0X ON
() () =2 3(55) - (35)

A -~ Da; * Ba; Vo, 2oz Oy
or
IX A= (X o
- +vAX + N +C, (3.6)
R ; <8Ij>

where C' = C(¢,w) does not depend on z.
Next assume that the following functional processes

Y::Exp(Q—/\VX), YoX and YoX (3.7)

exist and belong to LP(p) for some p > 1 (for all ¢ € S).
Then from the basic properties of the Wick product we get

oY A oX oY A 0X
ST o bn 2 S (3:8)

12



and hence
o ,9Y

J

o /A 0X
=25, Y 0 a,)
Ny (X 5 Ay X

= > (5)ve (5 DAL 5

J J
A A 0X

= Zvo[Z EJ: (8—%)<>2 + AX] (3.9)

If we Wick-multiply (3.6) by 25V and use (3.8), (3.9) we get

Y A
o vAY + EYO [N +C] (3.10)

We summarize this as follows:

THEOREM 3.1

Suppose u = (uy,...,u,) is a functional process solution of the Burgers
equation (3.1). Suppose (3.3), (3.4) and (3.7) hold. Then with
190.4 ON
b Gazk Wk (%k , =r=n (3 )
the process
A
Y = Exp(—X
(3%

solves the equation (3.10).

4 Solution of the stochastic heat equation

In this section we give the solution of some stochastic heat equations of the
type that appeared in §3.

First we consider the equation

oY

i VAY + HoY; Y(0,z) = f(x) (4.1)
where [ = %(N +C) as in §3, N being 1-dimensional white noise in the n+1
parameters (¢, 1, T,...,T,). For simplicity we assume that both f(z) and

C(t) are bounded, deterministic functions.

13



THEOREM 4.1
Equation (4.1) has a unique L? functional process solution given by

Y (t,5) = B[ F(bue) o [ "Hs, b)) (4.2)

where o = v/2v and (b, P?) is standard Brownian motion in R (E* denotes

expectation w.r.t. P?).

Proof. Taking H-transforms of (4.1) we get, with Y = HY,

oY S -

i vAY + H Y ; Y (0,z) = f(x). (4.3)
Here H = H(t, z,z) is complex and so is Y(t,x,2). But the Feynman-Kac
formula is easily seen to extend to the complex case. So the solution of (4.3)

is given by
V(t,x,2) = E® [f(ﬁt) exp (/Ot H(s, f, z)ds)} (4.4)
where (3, is the diffusion on R™ with generator vA = 2v - %A. In other words,
B, = by  with a =20

where b, is standard Brownian motion

Since %%.ﬁ](t,:v, 2) =Y;(¢, )z + C(t); z= (21, 2,...) (See (2.21), Exam-
ple 2.3), it is easily seen that Y (t,z, z) € L2(d\(£) x dA\(n)) (2 = £ +1n), where
) is defined in (2.26). Therefore Y € L?(u) (see Corollary 4.3 in [HLOUZ]).
Moreover, we can apply the inverse Hermite transform to (4.4) and (4.2) fol-
lows.

Next we consider a different case of independent interest. We represent the

potential by the positive noise K = Exp W constructed in Example 2.2:

THEOREM 4.2
Assume that f is deterministic. Then the equation

ay 1

has a unique L' functional process solution given by
. t
Yit,z) = B° [f(bt)Exp( /0 Exp(W(qﬁbs))ds)}, (4.6)

where b; is as in Theorem 4.1.

14



REMARK.

The functional process Y defined by (4.6) is not in LP(u) for any p > 1.
In fact, Y does not even belong to the space (S)* of Hida distributions. (See
[HKPS] and [GHLOUZ] for definitions and properties of (S)*; in general we
have LP(u) C (S)* for p > 1, but not for p = 1). To see this we argue as
follows: If Y € (S)* we can apply the S-transform to it. Then if we evaluate
the S-transform at ¢ = ze; for 2z € C we get

SV (zer) = SY = B[ f(b) exp ( [ exp W (n,)ds)

where SW(¢y,) = (v, €1)z. But according to the characterization theorem of
Potthoff and Streit [PS] this analytic function of z grows too fast at oo to be

the S-transform of an element of (S)*.

The proof of Theorem 4.2 will be split into several lemmas. We first consider
the process obtained by truncating the series for the (outer) Wick exponential

in (4.6), i.e. we put

Yot z) = ij %E [f(bg(/ot Exp(W(qbbS))ds)"’“} n=0,1,2... (47)
LEMMA 4.3

a) Y,(t,x) € L?(u) for all n, ¢,z

b) For any T > 0 we have
Yot ) =Y (t,2)||1my — O uniformly for t <7, zeR"™

Proof.

a) Note that

([ ExpW(gn,))ds)” ws)
- /Ot » Ot Exp(W (@n,,) + -+ W(dy,, ) )ds1 -~ ds
= /()t,../OtExp(W(qﬁb31 +"'+¢bsk)>dsl"‘d5k (4.9)

= [ [ (W, ++ )

15



—%Hml oy, |P)dsi - dsy
< t’“”[/ot---/otexp(ZW@bﬁ + -+ ¢, )
N u et b [P dsi]
Therefore, if | f(z)] < C for all z we have

Bl |E=[700 ([ Bxow(gn,))as)"[

<0t ['oo [exp (I, +--+ o, ).
< C*t* exp(k?||¢]1%).

We conclude that Y, € L?*(p).
To prove b), note that for [ > m, t < T and all x we have, using (4.8) and

C as above,

Bl )Yt 0] € X L[[E[ro0( [ Bxpvie)as)]

k=m-+1

l 1 .
OE:—EﬂE/
el k! { 0
!
1
c > 7
k=m+1
This shows that Y,,(¢,z) — Y (¢,z) in L' (p), uniformly for x € R* and ¢t < T.

t t

IA

TF -0 as I,m— o0

IA

LEMMA 4.4
a) &= e Li(y) for all m

b) As m— oo &m converges in L'(p) uniformly for t<T and z €R" to
ot p

Qﬂﬂ@+gﬂmqﬁﬁmwwm@o&mw%ﬁ@ﬂ

ot
+ % /Ot {E”” {Exp[/os Exp W (¢, )du (4.10)

R e | 1 12

where
Pif () = E"[f(b)]. (4.11)
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Proof. Set
~ i ok
Vilt,z) = E° {f(bt)( /0 ExpWV (¢, )ds) } (4.12)
Then Vi (t,z) € L*(p) and its Hermite transform is

Titt, ) = B [1(0) ([ exe W (g0,)0s) ]

To compute %Vk we put g(ug, ..., ug) = exp(VT/(gbbu1 +: ¢y, ) and rewrite

Vi as in (4.8):
%(t,.’ﬁ) — E:r[f(bt) /Ot.../Otg<u1,...,Uk)dul...duk]
= RE[f(b) [

_ kl/ot/o“’”/o” B[ (b)g(un, . . )l du ... duy

/9(“1,,uk)du1duk}
<ui <Ly <t

Put

9 g [F(b)g(ua, )]

ot
0
— a /}Lk-l-l 9(3?17 PP ;xk)f(xk+1)pu1 (xl‘—x)pUZ_ul ("EQ——le) e (413)

e ‘puk—uk_l(xk - xkAl)pt—uk (56k+1 - ﬂ3k)d$1 . 'dfﬁkﬂ

e Hlbt—bukp_ n }f(bt)g(ul,,,.,uk)} (4.14)

(t—ug)?  t—u

In order to differentiate (4.12) under the integral sign, we need to know that

J: :/Okfulgmﬁukgt o / }%Ex[f(bt)gwl’ o ’u’“)]]dul odug <00 (415)

Let F, denote the o-algebra generated by {bs() }s<u. By (4.13) and the Markov
property
0

5 1), )]

= b {E { ’é:’;k)‘j S TG ,uw\fukﬂ

_ %Ez {g(ul’ ) Bt [{ b, —bo|> 7m0 }f(bt—uk):!:‘ (4.16)

(t — ’UJ]C)2 t—uk
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But for any z € R™ we have

B |{ 'b{; - ;:)02'2 - )|

et 5 ]

B [([bea, —bol? =t —1))*] B[ f (bes) — £ (b0))?]
Cy
t— U
Here, and in the following, C7, C5 denote constants.

Substituting this in (4.15) and then in (4.14) we get

1 A 1
< - e * . — o
J = 202 /Ogulg...gukgt /E [g(uh ’uk) (t—uk)l/QJdul du
1

1 1
< = — Z) . .
< 56 /O_/ exp (5116n,, + -+ 6o, 1) Gy

1 k? t du
< = LNTPAIE: k—l/ k
= 202€XP<2 4] )t o (t—ug)'/? <00

and (4.15) is proved.
This justifies differentiation under the integral sign in (4.12) and we get

8% t,x) _ k‘/ /uk 1 /“2 Em g(uy, ..., up_1) - exp W(@)t)f(bt)}dul codug_y

e k'// /“ { ’bt bug [ (it~ uk)}g(ul,...,uk)f(bt)]dul...duk

(t — ug)?
= kB [( [ exp W (6n,)du) ™ exp (6,180 (419)

+%k /ot £ /OURGXP VAV(%)dU)k_1 exp W (s, ) -

b bt_uk—bOQ—nt—uk
ol

1 1/2

< _ 4.17
e (4.17)
< }1/2< Cy

S g (4.18)

B [(by—n)?] " E* - —bol

Taking inverse Hermite transform we get
Y, (t, x)
ot
0 Tk ~1)
P/ (@) kz k—{ / Exp W (s, )du)"" o Exp W(qbbt)f(bt)]}
1 ULy
tI T

. by
oEXpW(apbuk)Ebuk[[ il

B\ ([ B W )au)

—bol* — n(t — u)
(Tf — Zbk)Q

F )] don
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L OYim (2,
From this it is clear that 2mlb®) ¢ 1),

Moreover, from (4.16) we get, for | > m.

Yy, Y, ! 1,
E{ 5t o } = 2 oot Ml

1 ¢ 1 e R R (bs—uy, —bol? )
+-2‘ Z _F(k*l)!/()E [uk ‘E [ (t—uk)Q f(btAU;v)}”duk

k=m—+1

<Y o Y e [
=~ ] 3
k=m+1 (k - 1)' k=m+1 (k - 1)' 0 T — U
— 0 uniformly for ¢t <7T and z € R",

That completes the proof of Lemma 4.4.

LEMMA 4.5

Y (t, )

5 € L'(u) and is given by (4.10)

Proof. This is a direct consequence of Lemma 4.4.

LEMMA 4.6
a) AY,(t,z) € L (y) for all m
and

b) AV, (t,x) — 2WD Y (¢ z) o Exp W(d,) in L'(p)

as m — oo, uniformly for ¢ < T and z € R".

Proof. Let Vj be as in (4.11). Then V} is given by (4.12). To compute AV,

we would like to differentiate under the integral sign in (4.12). This operation

will be justified if we can show that

/O<u1<...<uk<t o / ;AE:C [£(be)g(us, - ’uk’)”dul +dug < 00 (4.20)
Since I
D: = AE[f(b)g(ur,. .., w)]
- [ﬂbt)g(ul’ a “k){ETEI‘E - 5—1}] (4.21)
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we get by the Markov property that, if ¢ (u) = SF, Bbuy oy

D=FE* [exp W(gbbw){M

Uy U1

-7

}Eb“l lexp W (1) - f(bi—u,)]
Set

F(y) = exp W () E'[exp W () - f(be—u,)]-

Then F € CZ(R") and

orF Y S PR
Yy U2—U1 2 .
8%‘ = B [ Ug — Uy = W (Y) f(bt_ul)” G
1
S 02. <(u2—u1)1/2 +03)

By a calculation similar to the one in (4.16) we find that

[AEF[f(b) - 9w, ow)]] =

Thus (4.18) holds and we get

AV (z,t) = (4.22)

by — x> —nuy

k!/oSulg...gukgt - i {g@l, » ,uk){——T—}f(bt)}dul - dug,

Finally we work out the relation between 2% (¢, z) and AVi(t, z):

Since AV} (¢, z) exists we can write, with P; as in (4.10),

P Vi(t,z) — Vi(t, x)

AVi(t,z) = lim -
—im {‘/k(t +5,2) = Vi(t, z)

§—0 S
« 1 t+s ok i+s ok
+ B [f(bt+s)g{(/s Exp (W%)du) —( A Exp(W¢bu)du) }”
Therefore
8Vk (t, SL’) . 1 o(k—1)
AVilt,) = o [f(bt)< /0 Exp (W, )du) ] o ExpW,
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Multiplying by % and summing from k£ = 0 to m we get

AY,,(t,z) =
8Ym(t, :If) m 1 Ao i o(k—1)
N ; =i {f(bt)( /0 Exp(Wy,, )du) ] P Bt
8Y(t> :13) ) t
— S = B 0B [ Bxp(W, )du)| o Bxp W,
_ 5’Y§; ) —Y(t,z) o ExpW,,,

convergence being in L*(p), uniformly for z € R™, t < T.

This proves Lemma 4.6.

Combining Lemmas 4.3-4.6 we get Theorem 4.2.

CONCLUDING REMARKS
1) The stochastic heat equation

%:Au%—Wou (4.23)

(where W denotes white noise in n -+ 1 parameters (¢,z)), has been studied by
Nualart and Zakai [NZ], who proved the existence of a solution of a type they
call generalized Wiener functionals. By Theorem 4.1 we have seen that there

exists a (unique) L? functional process solution to this equation.

2) Using the stochastic version (3.7) (based on the Wick exponential Exp(-)) of
the Forsyth-Florin-Hopf-Cole transformation, we have transformed the stochas-
tic Burgers equation into a stochastic heat equation. To go the other way, from
the solution of the stochastic heat equation to the solution of the stochastic
Burgers equation, one would need the concept of a Wick-logarithm, Log(-). We

will return to this in a future paper.
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