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transport: shock formation, local and global

existence of smooth solutions

Diego Alonso-Orán, Aythami Bethencourt de León and So Takao

Abstract. In this work, we examine the solution properties of the Burgers’
equation with stochastic transport. First, we prove results on the forma-
tion of shocks in the stochastic equation and then obtain a stochastic
Rankine–Hugoniot condition that the shocks satisfy. Next, we establish
the local existence and uniqueness of smooth solutions in the inviscid case
and construct a blow-up criterion. Finally, in the viscous case, we prove
global existence and uniqueness of smooth solutions.

1. Introduction

We prove the well-posedness of a stochastic Burgers’ equation of the form

du(t, x) + u(t, x)∂xu(t, x) dt +

∞∑

k=1

ξk(x)∂xu(t, x) ◦ dW k
t = ν∂xxu(t, x) dt,

(1.1)

where x ∈ T or R, ν ≥ 0 is constant, {W k
t }k∈N is a countable set of indepen-

dent Brownian motions, {ξk(·)}k∈N is a countable set of prescribed functions
depending only on the spatial variable, and ◦ means that the stochastic in-
tegral is interpreted in the Stratonovich sense. If the set {ξk(·)}k∈N forms a
basis of some separable Hilbert space H (for example L2(T)), then the process
dW :=

∑∞
k=1 ξk(x) ◦ dW k

t is a cylindrical Wiener process on H, generalising
the notion of a standard Wiener process to infinite dimensions.

The multiplicative noise in (1.1) makes the transport velocity stochastic,
which allows the Burgers’ equation to retain the form of a transport equation
∂tu + ũ ∂xu = 0, where ũ(t, x) := u(t, x) + Ẇ is a stochastic vector field with

noise Ẇ that is smooth in space and rough in time. Compared with the well-
studied Burgers’ equation with additive noise, where the noise appears as an
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external random forcing, this type of noise arises by taking the diffusive limit of
the Lagrangian flow map regarded as a composition of a slow mean flow and a
rapidly fluctuating one [9]. In several recent works, this type of noise, which we
call stochastic transport, has been used to stochastically parametrise unresolved
scales in fluid models while retaining the essential physics of the system [6,7,
32]. On the other hand, it has also been shown to have a regularising effect
on certain PDEs that are ill-posed [17,20,21,25]. Therefore, it is of interest to
investigate how the stochastic transport in (1.1) affects the Burgers’ equation,
which in the inviscid case ν = 0 is a prototypical model for shock formation. In
particular, we ask whether this noise can prevent the system from developing
shocks or, on the contrary, produce new shocks. We also ask whether this
system is well-posed or not. In this paper, we will show that:

(1) For ν = 0, Eq. (1.1) has a unique solution of class Hs for s > 3/2 until
some stopping time τ > 0.

(2) However, shock formation cannot be avoided a.s. in the case ξ(x) = αx+β
and for a broader class of {ξk(·)}k∈N, we can prove that it occurs in
expectation.

(3) For ν > 0, we have global existence and uniqueness in H2.

On top of this, we prove a continuation criterion for the inviscid equation
(ν = 0), which generalises the result for the deterministic case. The above
results are not immediately evident for reasons we will discuss below. Although
we cannot prove this here, we believe that shocks in Burgers’ equation are too
robust and ubiquitous to be prevented by noise, regardless of what {ξk(·)}k∈N

is chosen. Our results provide rigorous evidence to support this claim.
The question of whether noise can regularise PDEs is not new. In finite

dimensions, it is well-known that additive noise can restore the well-posedness
of ODEs whose vector fields are merely bounded and measurable (see [41]). For
PDEs, a general result is not known; however, there has been a significant effort
in recent years to generalise this celebrated result to PDEs. In a remarkable
paper, Flandoli et al. [20] demonstrated that the linear transport equation
∂tu + b(t, x)∇u = 0, which is ill-posed if b is sufficiently irregular, can recover
existence and uniqueness of L∞ solutions that is strong in the probabilistic
sense, by the addition of a “simple” transport noise,

du + b(t, x)∇u dt + ∇u ◦ dWt = 0, (1.2)

where the drift b is bounded, measurable, Hölder continuous, and satisfies an
integrability condition on the divergence ∇·b ∈ Lp([0, T ]×R

d). In a subsequent
paper [17], the same noise was shown to retain some regularity of the initial
condition, thus restoring well-posedness of strong solutions, and a selection
principle based on taking the zero-noise limit as opposed to the inviscid limit
was considered in [1].

However, for nonlinear transport equations such as Burgers’, the same
type of noise du + u ∂xu dt + ∂xu ◦ dWt = 0 does not help, since a simple
change of variables v(t, x) := u(t, x − Wt) will lead us back to the original
equation ∂tv + v ∂xv = 0. Hence, if noise were to prevent shock formation, a
more general class would be required, such as the cylindrical transport noise
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∑∞
k=1 ξk(x)∂xu ◦ dW k

t that we consider in this paper. In [21] and [12], it was
shown that collapse in Lagrangian point particle solutions of certain nonlinear
PDEs (point vortices in 2D Euler and point charges in the Vlasov–Poisson sys-
tem), can be prevented by this cylindrical transport noise with ξk(x) satisfying
a certain hypoellipticity condition, thus providing hope for regularisation of
nonlinear transport equation by noise. More recently, Gess and Maurelli [25]
showed that adding a simple stochastic transport term into a nonlinear trans-
port equation

du + b(x, u(t, x))∇u dt + ∇u ◦ dWt = 0, (1.3)

which in the deterministic case admits non-unique entropy solutions for suf-
ficiently irregular b, can restore uniqueness of entropy solutions, providing a
first example of a nonlinear transport equation that becomes well-posed when
adding a suitable noise.

We should now stress the difference between the present work and pre-
vious works. First, we acknowledge that in Flandoli [23], Chapter 5.1.4, it is
argued that shock formation does not occur even with the most general cylin-
drical transport noise, by writing the characteristic equation as an Itô SDE

Xt = X0 + u(0, X0)t +

∞∑

k=1

∫ t

0

ξk(Xs) dW k
s , (1.4)

which is a martingale perturbation of straight lines that will cross without
noise. Thus, using the property that a martingale Mt grows slower than t
almost surely as t → ∞, it is shown that the characteristics cross almost
surely. However, the characteristic equation for the system (1.1) is in fact a
Stratonovich SDE,

Xt = X0 + u(0, X0)t +

∞∑

k=1

∫ t

0

ξk(Xs) ◦ dW k
s , (1.5)

and therefore Flandoli’s argument can be applied to the martingale term, but
not to the additional drift term, which may disrupt shock formation. The tech-
niques we use here apply to Stratonovich equations; however, due to the diffi-
culty caused by the additional drift term, we were only able to prove that the
characteristics cross almost surely in the very particular case ξ(x) = αx + β,
leaving the general case open for future investigation. By using a different
strategy, where instead we look at how the slope ∂xu evolves along a charac-
teristic (1.5), we manage to show that for a wider class of {ξk(·)}∞

k=1 such that
the infinite sum

∑

k∈N
((∂xξk)2 − ξk∂xxξk) is pointwise bounded, we have that

• if ∂xu(0, X0) > 0, then ∂xu(t, Xt) < ∞ almost surely for all t > 0 and
• if ∂xu(0, X0) is sufficiently negative, then there exists 0 < t∗ < ∞ such

that limt→t∗
E[∂xu(t, Xt)] = −∞.

In summary, shock formation occurs in expectation if the initial profile has a
sufficiently negative slope and no new shocks can form from a positive slope.

We finally address the question of well-posedness. We will prove that by
choosing a sufficiently regular initial condition, equation (1.1) admits a unique
local solution that is smooth enough, such that the arguments employed in
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the previous section on shock formation are valid (in fact, we show this for a
noise of the type Qu ◦ dWt, where Qu = a(x)∂xu + b(x)u, which generalises
the one considered in (1.1)). For Burgers’ equation with additive space-time
white noise, however, there have been many previous works showing well-
posedness [3,11,15,16]. The techniques used in these works are primarily based
on reformulating the equations by a change of variable or by studying its
linear part. The main difference in our work is that the multiplicative noise
we consider depends on the solution and its gradient. Therefore, the effect of
the noise hinges on its spatial gradient and the solution, giving rise to several
complications. For instance, when deriving a priori estimates, certain high
order terms appear, which need to be treated carefully. Recently, the same
type of multiplicative noise has been treated for the Euler equation [8,22] and
the Boussinesq system [2], whose techniques we follow closely in our proof. We
note that the well-posedness analysis of a more general stochastic conservation
law, which includes the inviscid stochastic Burgers’ equation as a special case,
has also been considered, for instance in [18,19,27]. However, these works
deal with the well-posedness analysis of weak kinetic and entropy solutions, in
contrast to classical solutions, which we consider here. There is also the recent
work [31] showing the local well-posedness of weak solutions in the viscous
Burgers’ equation (ν > 0) driven by rough paths in the transport velocity. An
important contribution of this paper is showing the global well-posedness of
strong solutions in the viscous case by proving that the maximum principle is
retained under perturbation by stochastic transport of type Qu ◦ dWt.

1.1. Main results

Let us state here the main results of the article:

Theorem 1.1. (Shock formation in the stochastic Burgers’ equation) In the
following, we use the notation ψ(x) := 1

2

∑∞
k=1

(
(∂xξk(x))2 − ξk(x)∂xxξk(x)

)
.

The main results regarding shock formation in (1.1) are as follows:

(1) Let ξ1(x) = αx + β, x ∈ R and ξk ≡ 0 for k = 2, 3, . . . and assume
that u(0, x) has a negative slope. Then, there exists two characteristics
satisfying (1.5) with different initial conditions that cross in finite time
almost surely.

(2) Let Xt be a characteristic solving (1.5) with {ξk(·)}k∈N satisfying the
conditions in Assumption A1 below and let ∂xu(0, X0) ≥ 0. Then, if
ψ(x) < ∞ for all x ∈ T or R, we have that ∂tu(t, Xt) < ∞ almost surely
for all t > 0.

(3) Again, let Xt be a characteristic solving (1.5) with {ξk(·)}k∈N satisfying
the conditions in Assumption A1 and let ∂xu(0, X0) < 0. Also assume
that ∂xu(0, X0) < ψ(x) for all x ∈ T or R. Then there exists 0 < t∗ < ∞
such that limt→t∗

E[∂xu(t, Xt)] = −∞.

Theorem 1.2. (Stochastic Rankine–Hugoniot condition) The curve of discon-
tinuity (t, s(t)) ∈ [0,∞) × T (or R) of the stochastic Burgers’ equation (1.1)
satisfies the following:
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dst =
1

2
[(u−(t, s(t)) + u+(t, s(t))] dt +

∞∑

k=1

ξk(s(t)) ◦ dW k
t , (1.6)

where u±(t, s(t)) := limx→s(t)± u(t, x) are the left and right limits of u.

Theorem 1.3. (Well-posedness in the inviscid case) Let u0 ∈ Hs(T, R), for
s > 3/2 fixed. Then there exists a unique maximal solution (τmax, u) of the 1D
stochastic Burgers’ equation (1.1) with ν = 0. Therefore, if (τ ′, u′) is another
maximal solution, then necessarily τmax = τ ′, u = u′ on [0, τmax). Moreover,
either τmax = ∞ or lim sup

sրτmax

||u(s)||Hs = ∞.

Theorem 1.4. (Global well-posedness in the viscous case) Let u0 ∈ H2(T, R).
Then there exists a unique maximal strong global solution u : [0,∞)×T×Ξ → R

of the viscous stochastic Burgers’ equation (1.1) with ν > 0 in H2(T, R).

Remark 1.5. Theorems 1.3 and 1.4 can be extended in a straightforward man-
ner to the full line R and to higher dimensions.

Remark 1.6. We prove Theorems 1.3 and 1.4 for a more general noise Qu◦dWt,
where Q is a first order linear differential operator, which includes the transport
noise as a special case. For the sake of clarity, our proof deals only with one
noise term Qu ◦ dWt, however, we can readily extend this to cylindrical noise
with countable set of first order linear differential operators

∞∑

k=1

Qk(u) ◦ dW k
t ,

by imposing certain smoothness and boundedness conditions for the sum of
the coefficients.

1.2. Structure of the paper

This manuscript is organised as follows. In Sect. 2 we review some classical
mathematical deterministic and stochastic background. We also fix the nota-
tions we will employ and state some definitions. Section 3 contains the main
results regarding shock formation in the stochastic Burgers’ equation. Using
a characteristic argument, we show that noise cannot prevent shocks from oc-
curring for certain classes of {ξk(·)}k∈N. Moreover, we prove that these shocks
satisfy a Rankine–Hugoniot type condition in the weak formulation of the
problem. In Sect. 4, we show local well-posedness of the stochastic Burgers’
equation in Sobolev spaces and a blow-up criterion. We also establish global
existence of smooth solutions of a viscous version of the stochastic Burgers’
equation, which is achieved by proving a stochastic analogue of the maximum
principle. In Sect. 5, we provide conclusions, propose possible future research
lines, and comment on several open problems that are left to study.

2. Preliminaries and notation

Let us begin by reviewing some standard functional spaces and mathematical
background that will be used throughout this article. Sobolev spaces are given
by
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W s,p := {f ∈ Lp(T, R) : (I − ∂xx)s/2f ∈ Lp(T, R)},

for any s ≥ 0 and p ∈ [1,∞), equipped with the norm ||f ||W s,p = ||(I −
∂xx)s/2f ||Lp . We will also use the notation Λs = (−∂xx)s/2. Recall that L2

based spaces are Hilbert spaces and may alternatively be denoted by Hs =
W s,2. For s > 0, we also define H−s := (Hs)⋆, i.e. the dual space of Hs. Let
us gather here some well-known Sobolev embedding inequalities:

‖f‖L4 � ‖f‖1/2
L2 ‖∂xf‖1/2

L2 , (2.1)

‖∂xf‖L4 � ‖f‖1/2
∞ ‖∂xxf‖1/2

L2 , (2.2)

‖f‖∞ � ‖f‖H1/2+ǫ , for every ǫ > 0. (2.3)

Let us also recall the well-known commutator estimate of Kato and Ponce:

Lemma 2.1. [34] If s ≥ 0 and 1 < p < ∞, then

||Λs(fg) − fΛs(g)||Lp ≤ Cp

(
‖∂xf‖∞ ||Λs−1g||Lp + ||Λsf ||Lp ‖g‖∞

)
. (2.4)

We will also use the following result as main tool for proving the existence
results and blow-up criterion:

Theorem 2.2. [2] Let Q be a linear differential operator of first order

Q = a(x)∂x + b(x)

where the coefficients are smooth and bounded. Then for f ∈ H2(T, R) we
have

〈Q2f, f〉L2 + 〈Qf,Qf〉L2 � ||f ||2L2 . (2.5)

Moreover, if f ∈ H2+s(T, R), and P is a pseudodifferential operator of order
s, then

〈PQ2f,Pf〉L2 + 〈PQf,PQf〉L2 � ||f ||2Hs , (2.6)

for every s ∈ [1,∞).

Remark 2.3. Theorem 2.2 is fundamental for closing the energy estimates
when showing well-posedness of the stochastic Burgers’ equation. It permits
reducing the order of a sum of terms which in principle seems hopelessly sin-
gular.

Next, we briefly recall some aspects of the theory of stochastic analy-
sis. Fix a stochastic basis S = (Ξ,F , {Ft}t≥0, P, {W k}k∈N), that is, a filtered
probability space together with a sequence {W k}k∈N of scalar independent
Brownian motions relative to the filtration {Ft}t≥0 satisfying the usual con-
ditions.

Given a stochastic process X ∈ L2(Ξ;L2([0,∞);L2(T, R))), the
Burkholder–Davis–Gundy inequality is given by

E

[

sup
s∈[0,T ]

∣
∣
∣
∣

∫ t

0

Xs dWs

∣
∣
∣
∣

p
]

≤ CpE

[
∫ T

0

|Xs|2 dt

]p/2

, (2.7)

for any p ≥ 1 and Cp an absolute constant depending on p.
We also state the celebrated Itô–Wentzell formula, which we use through-

out this work.



NoDEA The Burgers’ equation with stochastic transport Page 7 of 33 57

Theorem 2.4. [36, Theorem 1.2] For 0 ≤ t < τ , let u(t, ·) be C3 almost surely,
and u(·, x) be a continuous semimartingale satisfying the SPDE

u(t, x) = u(0, x) +

∞∑

j=0

∫ t

0

σj(s, x) ◦ dN j
s , (2.8)

where {N j
t }∞

j=0 is a family of continuous semimartingales and {σj(t, x)}∞
j=0 is

also a family of continuous semimartingales that are C2 in space for 0 ≤ t < τ .
Also, let Xt be a continuous semimartingale. Then, we have the following

u(t, Xt) = u(0, X0) +

∞∑

j=0

∫ t

0

σj(s, Xs) ◦ dN j
s +

∫ t

0

∂xu(s, Xs) ◦ dXs. (2.9)

Let us also introduce three different notions of solutions:

Definition 2.5. (Local solution) A local solution u ∈ Hs(T, R) for s > 3/2
of the Burgers’ equation (1.1) is a random variable u : [0, τ ] × T × Ξ → R,
with trajectories of class C([0, τ ];Hs(T2, R)), together with a stopping time
τ : Ξ → [0,∞], such that u(t ∧ τ), is adapted to {Ft}t≥0, and (1.1) holds in
the L2 sense. This is

uτ ′ − u0 +

∫ τ ′

0

u∂xu ds +

∞∑

k=1

∫ τ ′

0

ξk(x)∂xu dW k
s

=
1

2

∞∑

k=1

∫ τ ′

0

(ξk(x)∂x)
2
u ds,

for finite stopping times τ ′ ≤ τ .

Definition 2.6. (Maximal solution) A maximal solution of (1.1) is a stopping
time τmax : Ξ → [0,∞] and random variable u : [0, τmax) × T × Ξ → R, such
that:

• P(τmax > 0) = 1, τmax = limn→∞τn, where τn is an increasing sequence
of stopping times, i.e. τn+1 ≥ τn, P almost surely.

• (τn, u) is a local solution for every n ∈ N.
• If (τ ′, u′) is another pair satisfying the above conditions and u′ = u on

[0, τ ′ ∧ τmax), then τ ′ ≤ τmax, P almost surely.
• A maximal solution is said to be global if τmax = ∞, P almost surely.

Definition 2.7. (Weak solution) We say that a random variable u ∈ L2(Ξ;L∞

([0,∞) × T)) that satisfies the following integral equation

0 =

∫∫

[0,∞)×T

((

u ∂tϕ +
1

2
u2∂xϕ

)

dt

+

∞∑

k=1

u ∂x (ϕ(t, x)ξk(x)) ◦ dW k
t

)

dx, (2.10)

P almost surely for any test function ϕ ∈ C∞
0 ([0,∞) × T) is a weak solution

to the problem (3.1). It is easy to show that a local solution in the sense of
Definition 2.5 is indeed a weak solution.
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Notations: Let us stress some notations that we will use throughout this work.
We will denote the Sobolev L2 based spaces by Hs(domain, target space). How-
ever, we will sometimes omit the domain and target space and just write Hs,
when these are clear from the context. a � b means there exists C such that
a ≤ Cb, where C is a positive universal constant that may depend on fixed
parameters and constant quantities. Note also that this constant might differ
from line to line. It is also important to remind that the condition “almost
surely” is not always indicated, since in some cases it is obvious from the
context.

3. Shocks in Burgers’ equation with stochastic transport

Recall that we are dealing with a stochastic Burgers’ equation of the form

du +

(

u(t, x) dt +
∞∑

k=1

ξk(x) ◦ dW k
t

)

· ∂xu = ν∂xxu dt,

for x ∈ T or R, where ν ≥ 0 is constant, {ξk(x)}k∈N is an orthonormal basis of
some separable Hilbert space H, and ◦ means that the integration is carried
out in the Stratonovich sense. In this section, we study the problem of whether
shocks can form in the inviscid Burgers’ equation with stochastic transport.
By using a characteristic argument, we prove that for some classes {ξk(x)}k∈N,
the transport noise cannot prevent shock formation. We also consider a weak
formulation of the problem and prove that the shocks satisfy a stochastic
version of the Rankine–Hugoniot condition.

3.1. Inviscid Burgers’ equation with stochastic transport

The inviscid Burgers’ equation with stochastic transport is given by

du +

(

u(t, x) dt +

∞∑

k=1

ξk(x) ◦ dW k
t

)

· ∂xu = 0, (3.1)

which in integral form is interpreted as

u(t, x) = u(0, x) −
∫ t

0

(

u(s, x)∂xu(s, x) ds +
∞∑

k=1

ξk(x)∂xu(s, x) ◦ dW k
s

)

,

(3.2)

for all x ∈ T or R. Also, we will assume throughout this paper that the initial
condition is positive, that is, u(0, x) > 0 for all x ∈ T or R.

Consider a process Xt that satisfies the Stratonovich SDE

dXt = u(t, Xt) dt +
∞∑

k=1

ξk(Xt) ◦ dW k
t , (3.3)

which in Itô form, reads

dXt =

(

u(t, Xt) +
1

2

∞∑

k=1

ξk(Xt)∂xξk(Xt)

)

dt +

∞∑

k=1

ξk(Xt) dW k
t . (3.4)
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We call this process the characteristic of (3.1), analogous to the characteristic
lines in the deterministic Burgers’ equation. We assume the following condi-
tions on {ξk(·)}k∈N.

Assumption A1. ξk is smooth for all k ∈ N and together with the Stratonovich-
to-Itô correction term ϕ(x) := 1

2

∑∞
k=1 ξk(x)∂xξk(x), satisfy the following:

• Lipschitz continuity

|ϕ(x) − ϕ(y)| ≤ C0|x − y|, |ξk(x) − ξk(y)| ≤ Ck|x − y|, k ∈ N, (3.5)

• Linear growth condition

|ϕ(x)| ≤ D0(1 + |x|), |ξk(x)| ≤ Dk(1 + |x|), k ∈ N (3.6)

for real constants C0, C1, C2, . . . and D0, D1, D2, . . . with
∞∑

k=1

C2
k < ∞,

∞∑

k=1

D2
k < ∞. (3.7)

Provided u(t, ·) is sufficiently smooth and bounded (hence satisfying Lip-
schitz continuity and linear growth) until some stopping time τ , and {ξk(·)}k∈N

satisfies the conditions in Assumption A1, the characteristic equation (3.4) is
locally well-posed. One feature of the multiplicative noise in (3.1) is that u
is transported along the characteristics, that is, we can show that u(t, x) =
(Φt)∗u0(x) for 0 ≤ t < τmax, where Φt is the stochastic flow of the SDE
(3.4), (Φt)∗ represents the pushforward by Φt, and (τmax, Xt) is the maximal
solution of (3.4). This is an easy corollary of the Itô-Wentzell formula (2.9).

Corollary 3.0.1. Let u(t, ·) be C3∩L∞ in space for 0 < t < τ . Assume also that
u(·, x) is a continuous semimartingale satisfying (3.2), ∂xu(·, x) is a contin-
uous semimartingale satisfying the spatial derivative of (3.2), and {ξk(·)}k∈N

satisfies the conditions in Assumption A1. If (τmax, Xt) is a maximal solution
to (3.4), then u(t, Xt) = u(0, X0) almost surely for 0 < t < τmax.

Remark 3.1. Notice that due to our local well-posedness result (Theorem 1.3)
and the maximum principle (Proposition 4.10), one has ut ∈ C3 ∩ L∞ for t <
τmax provided u0 is smooth enough and bounded. For instance, u0 ∈ H4 ∩L∞

is sufficient.

Proof of Corollary 3.0.1. Note that under the given assumptions, σ0(t, x) :=
u(t, x)∂xu(t, x), and σk(t, x) := ξk(x)∂xu(t, x) for all k ∈ N, satisfy the con-
ditions in Theorem 2.4. We take N0

t = t and Nk
t = W k

t for k ∈ N. Using the
Itô-Wentzell formula (2.9) for the stochastic field u(t, x) satisfying (3.2), and
the semimartingale Xt, we obtain

u(t, Xt) = u(0, X0) −
∫ t

0

(u(s, Xs)∂xu(s, Xs) ds

+
∞∑

k=1

ξk(Xs)∂xu(s, Xs) ◦ dW k
s

)

+

∫ t

0

∂xu(s, Xs) ◦ dXs
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= u(0, X0) − I1 + I2.

Now, we have I1 = I2 almost surely so indeed, u(t, Xt) = u(0, X0) almost
surely for 0 < t < τmax. �

3.2. Results on shock formation

In order to investigate the crossing of characteristics in the stochastic Burgers’
equation (3.1) with transport noise, we define the first crossing time τ as

τ := inf
a,b∈R

a	=b

{
inf

{
t > 0 : Xa

t = Xb
t

}}
, (3.8)

where Xa
t , Xb

t are two characteristics that solve the SDE (3.3) with initial
conditions Xa

0 = a and Xb
0 = b. This gives us the first time when two char-

acteristics intersect. In the following, we will show that in the special case
ξ1(x) = αx + β (where we only consider one noise term and the other terms
ξk are identically zero for k = 2, 3, . . .), the first crossing time is equivalent to
the first hitting time of the integrated geometric Brownian motion. We note
that in this case, Eq. (3.4) is explicitly solvable, where the general solution is
given by

Xγ
t = eαWt

(

γ + (u0(γ) − αβ)

∫ t

0

e−αWs ds + β

∫ t

0

e−αWs dWs

)

. (3.9)

Proposition 3.2. The first crossing time of the inviscid stochastic Burgers’
equation (3.1) with ξ1(x) = αx + β for constants α, β ∈ R and ξk(·) ≡ 0 for
k = 2, 3, . . . is equivalent to the first hitting time for the integrated geometric

Brownian motion It :=
∫ t

0
e−αWsds.

Proof. Consider two arbitrary characteristics Xa
t and Xb

t with Xa
0 = a and

Xb
0 = b. From (3.9), one can check that Xa

t = Xb
t if and only if

It :=

∫ t

0

e−αWs ds = − b − a

u0(b) − u0(a)
.

Now, since the left-hand side is continuous, strictly increasing with I0 = 0,
and independent of a and b, we have

τ = inf
a,b∈R

a	=b

{

inf

{

t > 0 : It = − b − a

u0(b) − u0(a)

}}

=

{

inf
{
t > 0 : It = θ(u0)

−1
}

, if θ(u0) > 0

∞, if θ(u0) = 0
, (3.10)

where

θ(u0) := sup
a,b∈R

a	=b

{ζ(a, b)} , ζ(a, b) =

{
|u0(a)−u0(b)|

|a−b| , if u0(a)−u0(b)
a−b < 0

0, otherwise
,

is the steepest negative slope of u0. Hence, the first crossing time is equivalent
to the first hitting time of the process It. �
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Remark 3.3. Note that the constant β does not affect the first crossing time,
hence we can set β = 0 without loss of generality. Also in the following, we
simply write ξ(·) without the index when we only consider one noise term.

As an immediate consequence of Proposition 3.2, we prove that the trans-
port noise with ξ(x) = αx cannot prevent shocks from forming almost surely
in the stochastic Burgers’ equation (3.1).

Corollary 3.3.1. Let ξ(x) = αx for some α ∈ R. If the initial profile u0 has a
negative slope, then τ < ∞ almost surely.

Proof. To prove this, it is enough to show that

lim
t→∞

∫ t

0

eαWs ds = ∞ a.s.

where we have assumed α > 0, without loss of generality, and W• : R≥0 ×Ξ →
R is the standard Wiener process on the Wiener space (Ξ,F , P), adapted to
the natural filtration Ft. This implies that τ < ∞ a.s. by Proposition 3.2.

First, define the set

A =

{

ω ∈ Ξ : lim
t→∞

∫ t

0

eαWs(ω) ds < ∞
}

⊂ Ξ.

Fixing ω ∈ A, choose t1, t2, . . . ∈ R≥0 with tn < tn+1, such that limn→∞ tn
= ∞ and lim infn→∞(tn+1 − tn) > 0, and consider the sequence

In(ω) =

∫ tn

0

eαWs(ω) ds, n = 1, 2, . . .

Clearly, {In(ω)}n∈N is monotonic increasing, and it is also bounded since
ω ∈ A. Hence, it is convergent by the monotone convergence theorem, and in
particular, it is a Cauchy sequence. Therefore we have

lim
n→∞

|In+1(ω) − In(ω)| = lim
n→∞

∫ tn+1

tn

eαWs(ω) ds = 0.

Since the integrand is strictly positive, this implies limt→∞ eαWt(ω) = 0,
and hence Wt(ω) → −∞. On the other hand, for ω ∈ Ξ such that Wt(ω) →
−∞, it is easy to see that ω ∈ A. This implies that under the identification
Ξ ∼= C([0,∞); R), the set A is equivalent to the set of Wiener processes Wt

with Wt → −∞, which is open in C([0,∞); R) endowed with the norm ‖ · ‖∞

and therefore measurable. In particular, for ω ∈ A, we have

lim sup
t→∞

Wt(ω) = −∞,

but since lim supt→∞ Wt = +∞, a.s., this implies P(A) = 0. �

In the following, we show that for a broader class of {ξk(·)}k∈N, shock
formation occurs in expectation provided the initial profile has a sufficiently
negative slope. Moreover, no new shocks can develop from positive slopes. We
show this by looking at how the slope ∂xu evolves along the characteristics Xt,
which resembles the argument given in [10] for the stochastic Camassa–Holm
equation.
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Theorem 3.4. Consider a characteristic Xt, and a smooth initial profile u(0, x)
= u0(x) such that ∂xu(0, X0) = −σ < 0. If

1

2

∞∑

k=1

(
(∂xξk(x))2 − ξk(x)∂xxξk(x)

)
> −σ, ∀x ∈ R,

then there exists 0 < t∗ < ∞ such that limt→t∗
E[∂xu(t, Xt)] = −∞. On the

other hand, if ∂xu(0, X0) ≥ 0 and

1

2

∞∑

k=1

(
(∂xξk(x))2 − ξk(x)∂xxξk(x)

)
< ∞, ∀x ∈ R,

then ∂xu(t, Xt) < ∞ almost surely for all t > 0.

Proof. Taking the spatial derivative of (3.2), and evaluating the stochastic field
∂xu(t, x) along the semimartingale Xt by the Ito–Wentzell formula (2.9) (again,
this is valid due to the local well-posedness result, Theorem 1.3), the process
Yt := ∂xu(t, Xt) together with Xt satisfy the following coupled Stratonovich
SDEs

dXt = u(t, Xt) dt +

∞∑

k=1

ξk(Xt) ◦ dW k
t , (3.11)

dYt = −Y 2
t dt −

∞∑

k=1

∂xξk(Xt)Yt ◦ dW k
t . (3.12)

In Itô form, this reads

dXt =

(

u(t, Xt) +
1

2

∞∑

k=1

ξk(Xt)∂xξk(Xt)

)

dt +

∞∑

k=1

ξk(Xt) dW k
t , (3.13)

dYt =

(

−Y 2
t +

1

2
Yt

∞∑

k=1

(
(∂xξk(x))2 − ξk(x)∂xxξk(x)

)

)

dt

−
∞∑

k=1

∂xξk(Xt)Yt dW k
t . (3.14)

Taking the expectation of (3.14) on both sides, we obtain

dE[Yt]

dt
= −E[Y 2

t ] +
1

2
E

[

Yt

∞∑

k=1

(
(∂xξk(x))2 − ξk(x)∂xxξk(x)

)

]

. (3.15)

Now, assume that there exists a constant C ∈ R such that

C ≤
∞∑

k=1

(
(∂xξk(x))2 − ξk(x)∂xxξk(x)

)
, (3.16)

for all x ∈ R. If Y0 = −σ < 0, we have Yt < 0 for all t > 0, since Y = 0 is
a fixed line in the phase space (X, Y ) and therefore cannot be crossed. Hence
from (3.16), we have
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E

[

Yt

∞∑

k=1

(
(∂xξk(Xt))

2 − ξk(Xt)∂xxξk(Xt)
)

]

≤ CE[Yt],

and (3.15) becomes,

dE[Yt]

dt
≤ −E[Y 2

t ] +
C

2
E [Yt]

= −(E[Y 2
t ] − E[Yt]

2) − E[Yt]
2 +

C

2
E [Yt]

≤ −E[Yt]
2 +

C

2
E [Yt] ,

since E[Y 2
t ] − E[Yt]

2 = E
[
(Yt − E[Yt])

2
]

≥ 0.
Solving this differential inequality, we get

E[Yt] ≤

⎧

⎨

⎩

−σeCt/2

1− 2σ
C (eCt/2−1)

, if C �= 0

1
t− 1

σ

, if C = 0
.

The right-hand side tends to −∞ in finite time provided −σ < C/2.
Hence, if

−σ < C/2 ≤ 1

2

∞∑

k=1

(
(∂xξk(x))2 − ξk(x)∂xxξk(x)

)
,

for all x ∈ R, then there exists t∗ < ∞ such that limt→t∗
E[ux(t, Xt)] = −∞.

Similarly, if 1
2

∑∞
k=1

(
(∂xξk(x))2 − ξk(x)∂xxξk(x)

)
< D for some D ∈ R,

then for Y0 > 0 we have again

dE[Yt]

dt
≤ −E[Yt]

2 + DE[Yt].

One can check that E[Yt] < ∞ for all t > 0, which implies Yt < ∞ almost
surely. �

Remark 3.5. Blow-up in expectation does not imply pathwise blow-up. It is
merely a necessary condition, which suggests that the law of ∂xu becomes
increasingly fat-tailed with time, making it more likely for it to take extreme
values. Nonetheless, it is a good indication of blow-up occurring with some
probability.

Example 3.6. Consider the set {ξk(x)}k∈N =
{

1
k2 sin(kx), 1

k2 cos(kx)
}

k∈N
,

which forms an orthogonal basis for L2(T). Then, one can easily check that

0 <

∞∑

k=1

(
(∂xξk(x))2 − ξk(x)∂xxξk(x)

)
< ∞,

for all x ∈ T, so blow-up occurs in expectation for any initial profile with
negative slope, but no new shocks can form from positive slopes.
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3.3. Weak solutions

We saw that if the initial profile u0 has a negative slope, then shocks may
form in finite time (almost surely in the linear case ξ(x) = αx), so solutions
to (3.1) cannot exist in the classical sense. This motivates us to consider weak
solutions to (3.1) in the sense of Definition 2.7.

Suppose that the profile u is differentiable everywhere except for a dis-
continuity along the curve γ = {(t, s(t)) ∈ [0,∞) × M}, where M = T or R.
Then the curve of discontinuity must satisfy the following for u to be a solution
of the integral equation (2.10).

Proposition 3.7. (Stochastic Rankine–Hugoniot condition) The curve of dis-
continuity s(t) of the stochastic Burgers’ equation in weak form (2.10) satisfies
the following SDE

dst =
1

2
[(u−(t, s(t)) + u+(t, s(t))] dt +

∞∑

k=1

ξk(s(t)) ◦ dW k
t , (3.17)

where u±(t, s(t)) := limx→s(t)± u(t, x) are the left and right limits of u.

The main obstacle here is that the curve s(t) is not piecewise smooth and
therefore we cannot apply the standard divergence theorem, which is how the
Rankine–Hugoniot condition is usually derived. Extending classical calculus
identities such as Green’s theorem on domains with non-smooth boundaries is
a tricky issue, but fortunately, there have been several works that extend this
result to non-smooth but rectifiable boundaries in [40], and to non-rectifiable
boundaries in [28–30,38].

Lemma 3.8. Green’s theorem for non-smooth boundaries Let Ω be a bounded
domain in the (x, y)-plane such that its boundary ∂Ω is a Jordan curve and
let u, v be sufficiently regular functions in Ω (see Remark 3.9 below). Then

∫

Ω

div(u, v) dx dy =

∮

∂Ω

(u dy − v dx) , (3.18)

where the contour integral on the right-hand side can be understood as a limit
of a standard contour integral along a smooth approximation of the boundary.
Here, the integral is taken in the anti-clockwise direction of the contour.

Remark 3.9. For the above to hold, there must be a pay-off between the regu-
larity of ∂Ω and the functions u, v (i.e. the less regular the boundary, the more
regular the integrand). In particular, the following condition is known:

• ∂Ω has box-counting dimension d < 2 and u, v is α-Hölder continuous for
any α > d − 1 (Harrison and Norton [30]).

Proof of Theorem 3.7. We provide a proof in the case M = T with only one
noise term. Extending it to the case M = R and countably many noise terms
is straightforward. Take the atlas {(U1, ϕ1), (U2, ϕ2)} on T = R/Z, where
U1 := (0, 1), ϕ1 : (0, 1) → U1 and U2 := (− 1

2 , 1
2 ), ϕ2 : (0, 1) → U2. Without

loss of generality, assume that the shock s(·) starts at time t = 0.
Now, consider a sequence 0 = τ0 < τ1 < τ2 < · · · , with limn→∞ τn = ∞

such that for all n ∈ N, the curve γn := {s(t) : t ∈ [τn−1, τn)} is contained in
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Figure 1. In the proof of the stochastic Rankine–Hugoniot
condition (3.17), the domain Ωn := [τn−1, τn) × (0, 1) ⊂
[0,∞) × T is split up into two parts: Ωn

−, which is on the
left of the shock curve (t, s(t)) and Ωn

+, which is on the right

either one of the charts U1 or U2. For convenience, we denote by (Un, ϕn) to
mean the chart (U1, ϕ1) or (U2, ϕ2) that contains γn. In local coordinates, we
split the domain Ωn := [τn−1, τn) × ϕ−1

n (Un) into two regions (see Fig. 1)

Ωn
− := {(t, x) ∈ [τn−1, τn) × (0, 1) : x ∈ (0, s(t))} , (3.19)

Ωn
+ := {(t, x) ∈ [τn−1, τn) × (0, 1) : x ∈ (s(t), 1)} . (3.20)

For n ∈ N, consider the following integrals

In =

∫∫

Ωn
−

((

u∂tϕ +
1

2
u2∂xϕ

)

dt + u∂x (ϕ(t, x)ξ(x)) ◦ dWt

)

dx

=

∫∫

Ωn
−

divx,t

(
1

2
ϕu(t, x)2, ϕ(t, x)u(t, x)

)

dx dt

+

∫ τn

τn−1

(
∫ s(t)

0

∂x (ϕ(t, x)ξ(x)u(t, x)) dx

)

◦ dWt

−
∫∫

Ωn
−

ϕ (du + u∂xu dt + ξ(x)∂xu ◦ dWt) dx

︸ ︷︷ ︸

=0

, and

Jn =

∫∫

Ωn
+

((

u∂tϕ +
1

2
u2∂xϕ

)

dt + u∂x (ϕ(t, x)ξ(x)) ◦ dWt

)

dx

=

∫∫

Ωn
+

divx,t

(
1

2
ϕu(t, x)2, ϕ(x, t)u(t, x)

)

dx dt

+

∫ τn

τn−1

(
∫ 1

s(t)

∂x (ϕ(t, x)ξ(x)u(t, x)) dx

)

◦ dWt
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−
∫∫

Ωn
+

ϕ (du + u∂xu dt + ξ(x)∂xu ◦ dWt) dx

︸ ︷︷ ︸

=0

.

Then by Lemma 3.8, we have

In =

∮

∂Ωn
−

(
1

2
ϕu(t, x)2 dt − ϕ(t, x)u(t, x) dx

)

+

∫ τn

τn−1

ϕ(t, s(t))ξ(s(t))u−(t, s(t)) ◦ dWt

= −
∫ τn

τn−1

ϕ(t, s(t))

(

u−(t, s(t)) dst − 1

2
u−(t, s(t))2 dt

−ξ(s(t))u−(t, s(t)) ◦ dWt)

+

(∫

A

−
∫

B

−
∫

C

)(
1

2
ϕu(t, x)2 dt − ϕ(t, x)u(t, x) dx

)

,

where

A := {(τn−1, x) : x ∈ (0, s(τn−1))}, B := {(τn, x) : x ∈ (0, s(τn))},

C := {(t, 0) : t ∈ (τn−1, τn)},

and

Jn =

∮

∂Ωn
+

(
1

2
ϕu(t, x)2 dt − ϕ(x, t)u(t, x) dx

)

−
∫ τn

τn−1

ϕ(t, s(t))ξ(s(t))u+(t, s(t)) ◦ dWt

=

∫ τn

τn−1

ϕ(t, s(t))

(

u+(t, s(t)) dst − 1

2
u+(t, s(t))2 dt

−ξ(s(t))u+(t, s(t)) ◦ dWt)

+

(∫

D

+

∫

E

+

∫

F

)(
1

2
ϕu(t, x)2 dt − ϕ(t, x)u(t, x) dx

)

,

where

D := {(τn−1, x) : x ∈ (s(τn−1), 1)}, E := {(τn, x) : x ∈ (s(τn), 1)},

F := {(t, 1) : t ∈ (τn−1, τn)}.

One can check by direct calculation that

N∑

n=1

(In + Jn) = −
∫

T

ϕ(τN , x)u(τN , x) dx

+

∫ τN

0

ϕ(t, s(t)) [u+(t, s(t)) − u−(t, s(t))]

(

dst − 1

2
[u−(t, s(t)) + u+(t, s(t))] dt − ξ(s(t)) ◦ dWt

)

,

where we used the assumption that ϕ(0, ·) ≡ 0.
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Now, from (2.10), we have limN→∞

∑N
n=1(In + Jn) = 0 and since ϕ has

compact support, there exists N > 0 such that ϕ(τN ′ , ·) ≡ 0 for all N ′ ≥ N .
Hence,

0 = lim
N→∞

N∑

n=1

(In + Jn)

=

∫ ∞

0

ϕ(t, s(t)) [u+(t, s(t)) − u−(t, s(t))]

(

dst − 1

2
[u−(t, s(t)) + u+(t, s(t))] dt − ξ(s(t)) ◦ dWt

)

,

and since ϕ is arbitrary, we have

dst =
1

2
[u−(t, s(t)) + u+(t, s(t))] dt + ξ(s(t)) ◦ dWt,

for all t > 0. �

4. Well-posedness results

4.1. Local well-posedness of a stochastic Burgers’ equation

Now, we prove local well-posedness of the stochastic Burgers’ equation (1.1)
with ν = 0. In fact, since the techniques used in the proof are essentially the
same, we prove local well-posedness of a more general equation, which includes
(1.1) as a special case. The stochastic Burgers’ equation we treat is given by

du + u∂xu dt + Qu dWt =
1

2
Q2u dt. (4.1)

Here Q represents a first order differential operator

Qu = a(x)∂xu + b(x)u,

where the coefficients a(x), b(x) are smooth and bounded. We state the main
result of this section:

Theorem 4.1. Let u0 ∈ Hs(T, R), for s > 3/2 fixed, then there exists a unique
maximal solution (τmax, u) of the 1D stochastic Burgers’ equation (4.1). There-
fore, if (τ ′, u′) is another maximal solution, then necessarily τmax = τ ′, u = u′

on [0, τmax). Moreover, either τmax = ∞ or lim sup
sրτmax

||u(s)||Hs = ∞.

We will provide a sketch of the proof, which follows closely the approach
developed in [2,8]. For clarity of exposition, let us divide the argument into
several steps.

• Step 1: Uniqueness of local solutions. To show uniqueness of local solu-
tions, one argues by contradiction. More concretely, one can prove that
any two different solutions to (4.1) defined up to a stopping time must
coincide, as explained in the following Proposition.

Proposition 4.2. Let τ be a stopping time, and u1, u2 : [0, τ ] × T × Ξ →
R be two solutions with same initial data u0 and continuous paths of class
C ([0, τ ];Hs(T, R)). Then u1 = u2 on [0, τ ], almost surely.
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Proof. For this, we refer the reader to [2,8]. It suffices to define ū = u1 − u2,
and perform standard estimates for the evolution of the L2 norm of ū. �

• Step 2: Existence and uniqueness of truncated maximal solutions. Con-
sider the truncated stochastic Burgers’ equation

dur + θr(||∂xu||∞)ur∂xur dt + Qur dWt =
1

2
Q2ur dt, (4.2)

where θr : [0,∞) → [0, 1] is a smooth function such that

θr(x) =

{

1, for |x| ≤ r,

0, for |x| ≥ 2r,

for some r > 0. Let us state the result which is the cornerstone for proving
existence and uniqueness of maximal local solutions of the stochastic
Burgers’ equation (4.1).

Proposition 4.3. Given r > 0 and u0 ∈ Hs(T, R) for s > 3/2, there exists a
unique global solution u in Hs of the truncated stochastic Burgers’ equation
(4.2).

It is very easy to check that once Proposition 4.3 is proven, Theorem
4.1 follows immediately (cf. [8]). Therefore, we focus our efforts on showing
Proposition 4.3.

• Step 3: Global existence of solutions of the hyper-regularised truncated

stochastic Burgers’ equation. Let us consider the following hyper-regularisation
of our truncated equation

duν
r + θr(||∂xu||∞)uν

r∂xuν
r dt + Quν

r dWt = ν∂s′

xxuν
r dt +

1

2
Q2uν

r dt, (4.3)

where ν > 0 is a positive parameter and s′ = 2s+1. Notice that we have
added dissipation in order to be able to carry out the calculations rigor-
ously. Equation (4.3) is understood in the mild sense, i.e., as a solution
to an integro-differential equation (see (4.4)).

Proposition 4.4. For every ν, r > 0 and initial data u0 ∈ Hs(T, R) for s >
3/2, there exists a unique global strong solution uν

r of Eq. (4.3) in the class
L2(Ξ;C([0, T ];Hs(T, R))), for all T > 0. Moreover, its paths will gain extra
regularity, namely C([δ, T ];Hs+2(T, R)), for every T > δ > 0.

Proof of Proposition 4.4. The proof is based on a simple fixed point iteration
argument which uses Duhamel’s principle. We will also omit the subscripts ν
and r throughout the proof. Given u0 ∈ L2(Ξ;Hs(T, R)), consider the mild
formulation of the hyper-regularised truncated equation (4.3).

u(t) = (Υu)(t), (4.4)
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where

(Υu)(t) =etAu0 −
∫ t

0

e(t−s)ABθ(u)(s) ds +

∫ t

0

e(t−s)ALu(s) ds

−
∫ t

0

e(t−s)ARu(s) dWs,

A :=ν∂s′

xx, Bθu := θ(||∂xu||∞)(u∂xu), Lu :=
1

2
Q2u, and Ru := Qu.

Now, consider the space WT := L2(Ξ;C([0, T ];Hs(T, R))). One can show
that Υ is a contraction on WT by following the same arguments in [2,8].
Therefore, by applying Picard’s iteration argument, one can construct a local
solution. To extend it to a global one, it is sufficient to show that for a given
T > 0 and initial data u0 ∈ Hs(R, T), we have

sup
t∈[0,T ]

E
[
||u(t)||2Hs

]
≤ C(T ), (4.5)

so we could glue together each local solution to cover any time interval. Fur-
thermore, by standard properties of the semigroup etA (cf. [26]), one can prove
that for positive times T > δ > 0, each term in the mild equation (4.4) enjoys
higher regularity, namely, u ∈ L2(Ξ;C([δ, T ];Hs+2)) for every T > δ > 0. All
the computations can be carried out easily by mimicking the same ideas as in
[2,8]. �

• Step 4: Limiting and compactness argument. The main objective of this
step is to show that the family of solutions {uν

r}ν>0 of the hyper-regulari-
sed stochastic Burgers’ equation (4.3) is compact in a particular sense and
therefore we are able to extract a subsequence converging strongly to a
solution of the truncated stochastic Burgers’ equation (4.2). The main
idea behind this argument relies on proving that the probability laws of
this family are tight in some metric space. Once this is proven, one only
needs to invoke standard stochastic partial differential equations argu-
ments based on the Skorokhod’s representation and Prokhorov’s theorem.
A more thorough approach can be found in [8,24]. In the next Proposi-
tion, we present the main argument to show that the sequence of laws
are indeed tight.

Proposition 4.5. Assume that for some α > 0, N ∈ N, there exist constants
C1(T ) and C2(T ) such that

E

[

sup
t∈[0,T ]

||uν
r (t)||2Hs

]

≤ C1(T ), (4.6)

E

[
∫ T

0

∫ T

0

||uν
r (t) − uν

r (s)||2H−N

|t − s|1+2α
dt ds

]

≤ C2(T ), (4.7)

uniformly in ν. Then {uν
r}ν>0 is tight in the Polish space E given by

E = L2([0, T ];Hβ(T, R)) ∩ Cw([0, T ];Hs(T, R)),

with β > 1
2 and s > 3/2.
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Proof of Proposition 4.5. It is enough to imitate the techniques in [2,8]. �

• Step 5: Hypothesis estimates. We are left to show that hypothesis (4.6)–
(4.7) hold. First, we will show that condition (4.6) implies condition (4.7).
Applying Minkowski’s and Jensen’s inequalities, and carrying out some
standard computations, we obtain

E[||uν
r (t) − uν

r (s)||2H−N ] � (t − s)

∫ t

s

E[θr(||∂xu||∞)||uν
r∂xuν

r (γ)||2H−N ] dγ

+ (t − s)

∫ t

s

E[||ν∂s′

xxuν
r (γ)||2H−N ] dγ

+ (t − s)

∫ t

s

E[||aQ2uν
r (γ)||2H−1 ] dγ

+ E

[∣
∣
∣
∣

∣
∣
∣
∣

∫ t

s

Quν
r (γ) dWγ

∣
∣
∣
∣

∣
∣
∣
∣

2

L2

]

.

It is easy to infer that
∫ t

s

E
[
θr(||∂xu||∞)||uν

r∂xuν
r (γ)||2H−N

]
dγ �

∫ t

s

E
[
||uν

r (γ)||2Hs

]
dγ ≤ C(T ),

(4.8)

since

||uν
r∂xuν

r ||H−N � ||∂xuν
r ||∞||uν

r ||Hs ,

and hypothesis (4.6). In the same way, one can check that for N = 3s + 2,
∫ t

s

E[||ν∂s′

xxuν
r (γ)||2H−N ] dγ �

∫ t

s

E
[
||uν

r (γ)||2Hs

]
dγ ≤ C(T ). (4.9)

since

||∂s′

xxuν
r ||H−N � ||uν

r ||Hs .

Similarly,
∫ t

s

E
[
||Q2uν

r (γ)||2H−1

]
dγ �

∫ t

s

E
[
||uν

r (γ)||2Hs

]
dγ ≤ C(T ), (4.10)

since
∣
∣
∣
∣Q2uν

r

∣
∣
∣
∣
2

H−1 � ||uν
r ||2Hs . We also have that the stochastic term can be

controlled by

E

[∣
∣
∣
∣

∣
∣
∣
∣

∫ t

s

Quν
r (γ) dWγ

∣
∣
∣
∣

∣
∣
∣
∣

2

L2

]

=

∫ t

s

E
[
||Quν

r (γ)||2L2

]
dγ

�

∫ t

s

E
[
||uν

r (γ)||2Hs

]
dγ ≤ C(T ). (4.11)

Combining estimates (4.8)–(4.11), we deduce that

E
[
||uν

r (t) − uν
r (s)||2H−N

]
≤ C(t − s).
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Hence for 0 < α < 1/2,

E

[
∫ T

0

∫ T

0

||uν
r (t) − uν

r (s)||2H−N

|t − s|1+2α
dt ds

]

≤ E

[
∫ T

0

∫ T

0

C

|t − s|2α
dt ds

]

≤ C(T ).

We are left to prove that hypothesis (4.6) holds true, i.e., there exists a constant
C such that

E

[

sup
t∈[0,T ]

||uν
r (t)||2Hs

]

≤ C(T ). (4.12)

Indeed, the evolution of the L2 norm of Λsu is given by

1

2

∫

T

|Λsuν
r (t)|2 dV =

1

2

∫

T

|Λsuν
r (0)|2 dV

−
∫ t

0

〈θr(||∂xu||∞)Λs (uν
r∂xuν

r (s)) ,Λsuν
r (s)〉L2 ds

−
∫ t

0

〈ΛsQuν
r (s),Λsuν

r (s)〉L2 dWs

+

∫ t

0

〈νΛs∂s′

xxuν
r (s),Λsuν

r (s)〉L2 ds

+
1

2

∫ t

0

〈ΛsQ2uν
r (s),Λsuν

r (s)〉L2 ds

+
1

2

∫ t

0

〈ΛsQuν
r (s),ΛsQuν

r (s)〉L2 ds.

The estimate of the nonlinear term is done via the Kato–Ponce commutator
estimate (2.4),

∣
∣
∣
∣

∫

T

Λs(uν
r∂xuν

r )Λsuν
r dV

∣
∣
∣
∣
� ||∂xuν

r ||∞||uν
r ||2Hs . (4.13)

Applying integration by parts in the dissipative term, we see that it has the
correct sign so we can drop it:

〈νΛs∂s′

xxuν
r (s),Λsuν

r (s)〉L2 = −ν||Λ3s+1uν
r ||2L2 < 0.

The last two terms can be bounded using the general estimates (2.6) recently
derived in [2].

To conclude this proof, we only need to bound the local martingale terms.
This is effected by estimating their quadratic variation and using Burkholder–
Davis–Gundy inequality (2.7). Indeed, let us denote

Mt =

∫ t

0

(〈Quν
r (s), uν

r (s)〉L2 + 〈ΛsQuν
r (s),Λsuν

r (s)〉L2) dWs.

We will denote uν
r by u to make the notation in the following estimates simpler,

but implicitly taking into account that they indeed depend ν and r. Therefore
we get that
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||u(t)||2Hs � ||u0||2Hs + |Mt| +

∫ t

0

||u(s)||2Hs ds.

Applying Grönwall’s inequality and taking expectation,

E

[

sup
s∈[0,t]

||u(s)||4Hs

]

� exp (t)

(

||u0||4Hs + E

[

sup
s∈[0,t]

|Ms|2
])

. (4.14)

Invoking Burkholder–Davis–Gundy inequality (2.7), the term |Ms|2 can be
bounded as

E

[

sup
s∈[0,t]

|Ms|2
]

� E [[M ]t] , (4.15)

where [M ]t is the quadratic variation of Mt, given by

[M ]t =

∫ t

0

(〈Qu(s), u(s)〉L2 + 〈ΛsQu(s),Λsu(s)〉L2)
2
ds.

One can check that

|〈Qu(s), u(s)〉L2 + 〈ΛsQu(s),Λsu(s)〉L2 | � ||u||2Hs , (4.16)

as in the proof of Theorem 2.2 in [2]. Therefore, the above equation can be
bounded as

E [[M ]t] �

∫ t

0

E

[

sup
γ∈[0,s]

||u(γ)||4Hs

]

ds. (4.17)

Hence, combining (4.14)–(4.17), and Grönwall’s inequality yield

E

[

sup
t∈[0,T ]

||u(t)||4Hs

]

≤ C(T ).

Finally, the bound (4.12) follows from a simple application of Jensen’s inequal-
ity, concluding the proof.

4.2. Blow-up criterion

We are now interested in deriving a blow-up criterion for the stochastic Burg-
ers’ equation (1.1) with ν = 0. However, we keep working with the generalised
version (4.1), since the techniques needed are essentially the same. First of all,
we we note that for the deterministic Burgers’ equation

ut + u∂xu = 0, (4.18)

there exists a well-known blow-up criterion. For this one-dimensional PDE,
local existence and uniqueness of strong solutions is guaranteed for initial data
in Hs(T, R), for s > 3/2. This can be concluded by deriving a priori estimates
and then applying a Picard iteration type theorem. Assume that u is a local
solution to (4.18) in Hs, and let T ∗ > 0. The deterministic blow-up criterion
states that if

∫ T ⋆

0

||∂xu(t)||∞ dt < ∞, (4.19)
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then the local solution u can be extended to [0, T ⋆]; and vice versa. We show
an identical result for the stochastic case, which reads as follows.

Theorem 4.6. Blow-up criterion for stochastic Burgers’ Let us define the stop-
ping times τ2 and τ∞ by

τ2 = lim
n→∞

τ2
n, τ2

n = inf {t ≥ 0 : ||u(t, ·)||H2 ≥ n} ,

τ∞ = lim
n→∞

τ∞
n , τ∞

n = inf

{

t ≥ 0 :

∫ t

0

||∂xu(s, ·)||∞ ds ≥ n

}

.

Then τ2 = τ∞, P almost surely.

Remark 4.7. The norm in the definition of τ2
n in Theorem 4.6 could be replaced

with ||u(t, ·)||Hs , for any s > 3/2, but we choose s = 2 for the sake of simplicity.

Proof of Theorem 4.6. We show both τ2 ≤ τ∞ and τ∞ ≤ τ2 in two steps.
Step 1: τ2 ≤ τ∞. This is straight-forward to establish, since it follows from
the well-known Sobolev embedding inequality (2.3) that

||∂xu||∞ � ||u||H2 .

Step 2: τ∞ ≤ τ2. Consider the hyper-regularised Burgers’ truncated equation
introduced in (4.3), which is given by

duν
r + θr(||∂xu||∞)uν

r∂xuν
r dt + Quν

r dWt = ν∂5
xxuν

r dt +
1

2
Q2uν

r dt. (4.20)

For the sake of simplifying notation, we omit the subscripts ν and r throughout
the proof. We proceed now to compute the evolution of the H2 norm of u. First,
we obtain

1

2
d||u||2L2 + θ(||∂xu||∞)〈u∂xu, u〉L2 dt + 〈Qu, u〉L2 dWt

= ν〈∂5
xxu, u〉L2 dt +

1

2
〈Q2u, u〉L2 dt +

1

2
〈Qu, Qu〉L2 dt.

Integrating the dissipative term by parts, applying Hölder’s inequality in the
nonlinear term, and using the cancellation property (2.5), we derive the in-
equality

d||u||2L2 + 2〈Qu, u〉L2 dWt � ||u||2L2 dt. (4.21)

The L2 norm of ∂xxu evolves as follows:

1

2
d||∂xxu||2L2 + θ(||∂xu||∞)〈∂xx(u∂xu), ∂xxu〉L2 dt + 〈∂xxQu, ∂xxu〉L2 dWt

= ν〈∂6
xxu, ∂xxu〉L2 dt +

1

2
〈∂xxQ2u, ∂xxu〉L2 dt +

1

2
〈∂xxQu, ∂xxQu〉L2 dt.

Again, applying standard estimates for the nonlinear term, dropping the dis-
sipative term, and invoking inequality (2.6), one obtains

d||∂xxu||2L2 + 2〈∂xxQu, ∂xxu〉L2 dWt � (||∂xu||∞ + 1) ||∂xxu||2L2 dt. (4.22)

Hence, combining inequalities (4.21) and (4.22), we get

d||u||2H2 + 2 (〈Qu, u〉L2 + 〈∂xxQu, ∂xxu〉L2) dWt � (||∂xu||∞ + 1) ||u||2H2 dt.

(4.23)
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To finish the argument, one has to treat the stochastic term. To do so, apply
Itô’s formula for the logarithmic function, in a similar fashion as carried out
in [8]. Without loss of generality, we assume ||u||H2 �= 0 and obtain

d log
(
||u||2H2

)
=

d||u||2H2

||u||2H2

− dNt
(
||u||2H2

)2 , (4.24)

where Nt is the local martingale

Nt := 2

∫ t

0

(〈Qu(s), u(s)〉L2 + 〈∂xxQu(s), ∂xxu(s)〉L2)
2
dWs.

By making use of (4.23), we can estimate the derivative of the logarithm as

d log
(
||u||2H2

)
�

(1 + ||∂xu||∞) ||u||2H2

||u||2H2

dt + dMt,

where Mt is a local martingale defined as

Mt = 2

∫ t

0

〈Qu(s), u(s)〉L2 + 〈∂xxQu(s), ∂xxu(s)〉L2

||u(s)||2H2

dWs.

Integrating in time, we derive

log
(
||u(t)||2H2

)
� log

(
||u(0)||2H2

)
+

∫ t

0

(1 + ||∂xu(s)||∞) ds +

∫ t

0

dMs.

(4.25)

We need a good control of the semimartingale term in (4.25), which can done
by invoking Burkholder–Davis–Gundy inequality (2.7). Hence, it suffices to
estimate the quadratic variation of the stochastic process

[∫ t

0

dMs

]

t

= 4

∫ t

0

(〈Qu(s), u(s)〉L2 + 〈∂xxQu(s), ∂xxu(s)〉L2)
2

||u(s)||4H2

ds

�

∫ t

0

||u(s)||4H2

||u(s)||4H2

ds � t.

Here, we have used estimation (4.16) to bound the numerator term in the
integral above. Finally, applying Burkholder–Davis–Gundy inequality (2.7),
we obtain

E

[

sup
s∈[0,t]

∣
∣
∣
∣

∫ s

0

dMτ

∣
∣
∣
∣

]

�
√

t. (4.26)

Taking expectation on (4.25) and using estimate (4.26), we establish

E

[

sup
s∈[0,τ∞

n ∧m]

log
(
||u||2H2

)

]

� log
(
||u0||2H2

)
+ m(n + 1) +

√
m < ∞, (4.27)

for any n, m ∈ N. Therefore

E

[

log

(

sup
s∈[0,τ∞

n ∧m]

(||u(s)||H2)
2

)]

< ∞,



NoDEA The Burgers’ equation with stochastic transport Page 25 of 33 57

which in particular means that for n, m ∈ N, sup
s∈[0,τ∞

n ∧m]

||u(s)||H2 is a finite

random measure P almost surely. To conclude the proof, one just needs to
notice that if

P

(

sup
s∈[0,τ∞

n ∧m]

||u(s)||2H2 < ∞
)

= 1,

for every n, m ∈ N, then τ∞ ≤ τ2 (cf. [8]). Note that we have omitted sub-
scripts. Nevertheless, Fatou’s Lemma enables us to take limits on uν

r as ν tends
to zero and r to infinity, recovering our result in the limit. �

4.3. Global well-posedness of a viscous stochastic Burgers’ equation

The viscous stochastic Burgers’ equation is given by

du + u∂xu dt + Qu ◦ dWt = ν∂xxu dt (4.28)

in the Stratonovich sense, supplemented with initial condition u(x, 0) = u0(x).
In the Itô sense, this can be rewritten as

du + u∂xu dt + Qu dWt =
1

2
Q2u dt + ν∂xxu dt. (4.29)

The main result of this section establishes the global regularity of solutions of
(4.29).

Theorem 4.8. Let u0 ∈ H2(T, R). Then there exists a unique maximal strong
global solution u : [0,∞)×T×Ξ → R of the viscous stochastic Burgers’ equation
(4.29) with ν > 0 in H2(T, R).

For our purpose, we prove the following result:

Proposition 4.9. Let u0 ∈ H2(T, R), T > 0, and u(t, x) be a smooth enough
solution to Eq. (4.29) defined for t ∈ [0, T ]. Then there exists a constant C(T ),
only depending on ||u0||H2 and T, such that

E

[

sup
t∈[0,T ]

||u(t)||2H2

]

≤ C(T ). (4.30)

Once we have proven the a priori estimate (4.30) we can repeat the ar-
guments in Sect. 4.1 to obtain Theorem 4.8. However, since this is repetitive
and tedious, we do not explicitly carry out these arguments here. Hence, we
just provide a proof of Proposition 4.9.

Proof. Let us start by computing the evolution of the L2 norm of the solution
u. First note that

ν〈∂xxu, u〉L2 = −ν||∂xu||2L2 .

By taking this into account and applying the same techniques as in Sect. 4.1
(use estimate (2.5)), we obtain

d||u||2L2 + 2〈Qu, u〉L2 dWt + 2ν||∂xu||2L2 dt � ||u||2L2 dt,
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and therefore, by following techniques in Sect. 4.1, we get

E

[

sup
t∈[0,T ]

||u(t, ·)||2L2

]

≤ C1(T ), E

[

ν

∫ T

0

||∂xu(s, ·)||2L2 ds

]

≤ C2(T ).

The evolution of ||∂xu||L2 can be estimated as

1

2
d||∂xu||2L2 + 〈∂x(Qu),Qu〉L2 dWt = −〈∂x(u∂xu), ∂xu〉L2 dt

+ ν〈∂x(∂xxu), ∂xu〉L2 dt

+
1

2
〈∂x(Qu), ∂x(Qu)〉L2 dt

+
1

2
〈∂x(Q2u), ∂xu〉L2 dt.

Integrating by parts on the first term of the RHS, using Hölder’s inequality,
and Young’s inequality we have that

−〈∂x(u∂xu), ∂xu〉L2 = 〈u∂xu, ∂xxu〉L2

� ||u||∞||∂xu||L2 ||∂xxu||L2

≤ 1

2ν
||u||2∞||∂xu||2L2 +

ν

2
||∂xxu||2L2 . (4.31)

The second term on the RHS can be rewritten as

ν〈∂x(∂xxu), ∂xu〉L2 = −ν〈∂xxu, ∂xxu〉L2 = −ν||∂xxu||2L2 . (4.32)

Finally, the sum in the last line can be estimated (thanks to inequality (2.6)
for P = ∂x) as

∣
∣〈∂x(Qu), ∂x(Qu)〉L2 + 〈∂x(Q2u), ∂xu〉L2

∣
∣ � ||u||2H1 . (4.33)

Notice that to bound rigorously the local martingale terms, we should in-
troduce a sequence of stopping times and then by taking expectation those
term should vanish. However we don’t repeat this same argument, in order to
simplify the exposition. Putting together (4.31–4.33), one derives

d||∂xu||2L2 + 2〈∂x(Qu),Qu〉L2 dWt + ν||∂xxu||2L2 dt

≤ 1

ν

(
||u||2∞ + 1

)
||∂xu||2L2 dt.

Therefore, mimicking the arguments in Sect. 4.1, one obtains

E

[

sup
t∈[0,T ]

||∂xu(t)||2L2

]

≤ E

[

sup
t∈[0,T ]

||∂xu0||2L2

]

+
1

ν
E

[
∫ T

0

||u(s)||2∞||∂xu(s)||2L2 ds

]

, (4.34)

and

νE

[
∫ T

0

||∂xxu(s)||2L2 ds

]

≤ E

[

sup
t∈[0,T ]

||∂xu0||2L2

]
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+
1

ν
E

[
∫ T

0

||u(s)||2∞||∂xu(s)||2L2 ds

]

. (4.35)

Now we claim that the following maximum principle holds true

||ut||∞ ≤ C(T )||u0||∞, (4.36)

for some positive constant C(T ), which we show in Lemma 4.10. By taking
into account (4.36), it is easy to infer that by (4.34) and (4.35), together with
Grönwall’s lemma, the quantities

E

[

sup
t∈[0,T ]

||∂xu(t, ·)||2L2

]

, νE

[
∫ T

0

||∂xxu(s, ·)||2L2 ds

]

,

are bounded by constants depending only on T and u0. Finally, when carrying
out the estimates for the H2 norm of u, one can apply once again similar
arguments, realising that thanks to (4.36) the quantities

E

[

sup
t∈[0,T ]

||u(t, ·)||2H2

]

, νE

[
∫ T

0

||∂3
xu(s, ·)||2L2 ds

]

,

can be bounded by constants depending only on T and u0. This concludes the
proof. �

Lemma 4.10. The maximum principle (4.36) is satisfied.

Proof. Let Q be of the form Qu = a(x)∂xu + b(x)u, where a, b are assumed
to be smooth and bounded. We perform the following change of variables:
v(t, x) = eb(x)Wtu(t, x), and by Itô’s formula in Stratonovich form we obtain

dv(t, x) = b(x)v(t, x) ◦ dWt + eb(x)Wt ◦ du(t, x)

= b(x)v(t, x) ◦ dWt − u(t, x)∂xv(t, x) dt − b(x)v(t, x) ◦ dWt

− a(x)∂xv(t, x) ◦ dWt + ν∂xxv(t, x) dt

= −u(t, x)∂xv(t, x) dt − a(x)∂xv(t, x) ◦ dWt + ν∂xxv(t, x) dt.

Next, following a similar type of argument used in [4], consider the SDE

dXt = a(Xt) ◦ dWt, (4.37)

and let ψt(X0) be the corresponding flow of (4.37), which is a diffeomorphism
provided a(x) is smooth and satisfies conditions (3.5) and (3.6) (see [37]). By
the Itô–Wentzell formula (2.9), we evaluate v along Xt := ψt(X0), getting

v(t, Xt) = v(0, X0) −
∫ t

0

u(s, Xs)∂xv(s, Xs) ds + ν

∫ t

0

∂xxv(s, Xs) ds

−
∫ t

0

a(Xs)∂xv(s, Xs) ◦ dWs +

∫ t

0

∂xv(s, Xs) ◦ dXs

︸ ︷︷ ︸

=0, a.s.

, (4.38)
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so the stochastic term cancels almost surely. Consider the change of variables
w(t, X0) := v(t, ψt(X0)) and by chain rule, obtain

∂xv(t, Xt) =
∂ψ−1

t

∂x
(ψt(X0))

∂w

∂X0
(t, X0),

∂xxv(t, Xt) =
∂2ψ−1

t

∂x2
(ψt(X0))

∂w

∂X0
(t, X0) +

(
∂ψ−1

t

∂x
(ψt(X0))

)2
∂2w

∂X2
0

(t, X0).

Hence, (4.38) is equivalent to a PDE with random coefficients

∂w

∂t
+ w̃

∂w

∂X0
= ν̃

∂2w

∂X2
0

, (4.39)

where

w̃ :=
∂ψ−1

t

∂x
(ψt(X0))u(t, ψt(X0)) − ν

∂2ψ−1
t

∂x2
(ψt(X0)),

ν̃ := ν ·
(

∂ψ−1
t

∂x
(ψt(X0))

)2

.

We claim that w satisfies the maximum principle ‖wt‖∞ ≤ ‖w0‖∞. In-
deed, we perform the change of variables f(t, X0) = e−αtw(t, X0) for any
α > 0. We obtain

∂f

∂t
+ w̃

∂f

∂X0
= −αf(t, X0) + ν̃

∂2f

∂X2
0

. (4.40)

Now, assume by contradiction that f attains a maximum at (t∗, X∗
0 ) ∈ [0, T ]×T

such that t∗ > 0. Then we have ∂tf(t∗, X∗
0 ) ≥ 0, ∂X0

f(t∗, X∗
0 ) = 0, and

∂2
X0

f(t∗, X∗
0 ) ≤ 0. However, since f(t, ·) > 0 for all t > 0, we obtain −αf(t, ·) <

0. Also since ν̃ > 0, the left-hand side of (4.40) is nonnegative but the right-
hand side is strictly negative which is a contradiction. Taking α → 0, the claim
follows.

Since ψt is a diffeomorphism, we have ||v(t, ·)||∞ = ||w(t, ·)||∞ so the
maximum principle also follows for v. Hence, we have shown

∥
∥
∥eb(x)Wtut

∥
∥
∥

∞
= ‖vt‖∞ ≤ ‖v0‖∞ = ‖u0‖∞,

for all t > 0. Now, let c > 0 be a constant such that |b(x)| > c for all x ∈ R.
Then we have

‖ut‖∞ ≤ e−cWt‖u0‖∞ ≤ C(T )‖u0‖∞,

where C(T ) = sup0≤t≤T e−cWt < ∞. With this, we conclude the proof. �

5. Conclusion and outlook

In this paper, we studied the solution properties of a stochastic Burgers’ equa-
tion on the torus and the real line, with the noise appearing in the transport
velocity. We have shown that this stochastic Burgers’ equation is locally well-
posed in Hs(T, R), for s > 3/2, and furthermore, found a blow-up criterion
which extends to the stochastic case. We also proved that if the noise is of the
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form ξ(x)∂xu◦dWt where ξ(x) = αx+β, then shocks form almost surely from
a negative slope. Moreover, for a more general type of noise, we showed that
blow-up occurs in expectation, which follows from the previously mentioned
stochastic blow-up criterion. Also, in the weak formulation of the problem, we
provided a Rankine–Hugoniot type condition that is satisfied by the shocks,
analogous to the deterministic shocks. Finally, we also studied the stochas-
tic Burgers’ equation with a viscous term, which we proved to be globally
well-posed in H2.

Let us conclude by proposing some future research directions and open
problems that have emerged during the course of this work:

• Regarding shock formation, it is natural to ask whether our results can
be extended to show that shock formation occurs almost surely for more
general types of noise.

• Another possible question is whether our global well-posedness result can
be extended for the viscous Burgers’ equation with the Laplacian replaced
by a fractional Laplacian (−∆)α, α ∈ (0, 1). The main difficulty here is
that in the stochastic case, the proof of the maximum principle (Propo-
sition (4.10)) does not follow immediately since the pointwise chain rule
for the fractional Laplacian is not available. In the deterministic case,
this question has been settled and it is known that the solution exhibits
a very different behaviour depending on the value of α: for α ∈ [1/2, 1],
the solution is global in time, and for α ∈ [0, 1/2), the solution develops
singularities in finite time [33,35]. Interestingly, when an Itô noise of type
βu dWt is added, it is shown in [39] that the probability of solutions blow-
ing up for small initial conditions tends to zero when β > 0 is sufficiently
large. It would be interesting to investigate whether the transport noise
considered in this paper can also have a similar regularising effect on the
equation.

• Similar results could be derived for other one-dimensional equations with
non-local transport velocity [5,13,14]. For instance, the so called CCF
model [5] is also known to develop singularities in finite time, although by
a different mechanism to that of Burgers’. To our knowledge, investigating
these types of equations with transport noise is new.
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d’été de Probabilités de Saint-Flour XL-2010, vol. 2015. Springer, Berlin (2011)

[24] Glatt-Holtz, N., Vicol, V.: Local and global existence of smooth solutions for
the stochastic Euler equation with multiplicative noise. Ann. Probab. 42, 80–
145 (2014). https://doi.org/10.1214/12-AOP773

[25] Gess, B., Maurelli, M.: Well-posedness by noise for scalar conservation laws
(2017). arXiv:1701.05393

[26] Goldstein, J.A.: Semigroups of Linear Operators and Applications. Courier
Dover Publications, New York (1985)

[27] Gess, B., Souganidis, P.E.: Stochastic non-isotropic degenerate parabolic–
hyperbolic equations. Stoch. Process. Appl. 127(9), 2961–3004 (2017)

[28] Harrison, J.: Stokes’ theorem for nonsmooth chains. Bull Am. Math. Soc. 29(2),
235–242 (1993)

[29] Harrison, J.: Flux across nonsmooth boundaries and fractal
Gauss/Green/Stokes’ theorems. J. Phys. A 32, 5317 (1999)

http://arxiv.org/abs/1803.05319
https://doi.org/10.1214/12-AOP773
http://arxiv.org/abs/1701.05393


57 Page 32 of 33 D. Alonso-Orán, A. Bethencourt de León, and S. Takao NoDEA

[30] Harrison, J., Norton, A.: The Gauss–Green theorem for fractal boundaries. Duke
Math. J 67(3), 575–588 (1992)

[31] Hocquet, A., Nilssen, T., Stannat, W.: Generalized Burgers equation with rough
transport noise (2018). arXiv:1804.01335

[32] Holm, D.D.: Variational principles for stochastic fluid dynamics. Proc. R. Soc.
Lond. A Math. Phys. Eng. Sci. 471(2176) (2015)

[33] Kiselev, A.: Regularity and blow up for active scalars. Math. Model. Nat. Phe-
nom. 5(4), 225–255 (2010)

[34] Kato, T., Ponce, G.: Commutator estimates and the Euler and Navier–Stokes
equations. Commun. Pure Appl. Math. 41(7), 891–907 (1988)

[35] Kiselev, N.F.A., Shterenberg, R.: Blow up and regularity for fractal Burgers
equation. Dyn. PDE 5(3), 211–240 (2008)
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