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1. Introduction

The statistical literature contains many new classes of distributions which have been constructed
by extending common families of continuous distributions by means of adding one or more shape
parameters. The inducted extra parameter(s) to the existing probability distribution have been shown
to improve the flexibility and goodness of fits of the distribution against the intuition of model
parsimony. Therefore, many methods of adding a parameter to distributions have been proposed by
several researchers and these new families have been used for modeling data in many applied areas
such as engineering, economics, biological studies, environmental sciences and many more. In fact
the modern computing technology has made many of these techniques accessible if the analytical
solutions are very complicated.

Gupta et al. [18] defined the exponentiated-G (exp-G) class, which consists of raising the cumu-
lative distribution function (cdf) to a positive power parameter and proposed the exponentiated expo-
nential (EE) distribution, defined by the cdf (for x > 0) F(x) = [1− exp(−λx)]θ , where λ ,θ > 0.
This equation is simply the θ th power of the standard exponential cumulative distribution. Many
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generalized distribution functions are constructed in a similar manner, for example the exponenti-
ated gamma, exponentiated Fréchet and exponentiated Gumbel distributions [23], although the way
they defined the cdfs of the last two distributions is slightly different.

Several other classes can be mentioned such as the Marshall-Olkin-G (MO-G) family by Mar-
shall and Olkin [22], beta generalized-G (BG-G) family by Eugene et al. [14], Kumaraswamy-G
(Kw-G) family by Cordeiro and de Castro [9] and exponentiated generalized-G (EG-G) family by
Cordeiro et al. [8], the Lomax generator of distributions by Cordeiro et al. [12], beta odd log-logistic
generalized (BOLL-G) by Cordeiro et al. [11], beta Marshall-Olkin (BMO-G) by Alizadeh et al. [4],
Kumaraswamy odd log-logistic (KwOLL-G) by Alizadeh et al. [6], Kumaraswamy Marshall-Olkin
(KwMO-G) by Alizadeh et al. [5], generalized transmuted-G (GT-G) by Nofal et al. [24], trans-
muted exponentiated generalized-G (TExG-G) by Yousof et al. [26], Kumaraswamy transmuted-G
by Afify et al. [2] and transmuted geometric-G by Afify et al. [1].

In this paper, we introduce a new class of distributions using the Burr-X generator. Burr [7]
introduced twelve different forms of cumulative distribution functions for modeling data. Among
those twelve distribution functions, Burr-Type X and Burr-Type XII received the maximum atten-
tion. The two-parameter Burr-Type X distribution is related to well studied and popular distributions
like gamma distribution, Weibull distribution so we will choose Burr-X distribution for our genera-
tor.

The rest of the paper is organized as follows. In Section 2, we define the Burr X-G (BX-G)
family of distributions. In Section 3, we provide a useful mixture representation for its probability
density function (pdf). In Section 4, we derive some of its general mathematical properties. In
Section 5, we present some characterizations of BX-G family. Two special models of BX-G family
are discussed in Section 6. Maximum likelihood estimation of the model parameters is addressed
in Section 7. In Section 8, simulation results to assess the performance of the proposed maximum
likelihood estimation procedure are discussed. In Section 9, we provide application to real data to
illustrate the importance and flexibility of the new family. Finally, some concluding remarks are
presented in Section 10.

2. The new family

Consider the cdf and the pdf of the Burr X distribution

F (x;θ) =
[
1− exp

(
−x2)]θ , x > 0, θ ≥ 0 (1)

and

f (x;θ) = 2θxexp
(
−x2)[1− exp

(
−x2)]θ−1

, (2)

respectively, where θ is the shape parameter. Let g(x;ξ ) and G(x;ξ ) denote the density and cumu-
lative functions of the baseline model with parameter vector ξ and consider the Burr type X cdf
V (t) =

[
1− exp

(
−t2
)]θ (for t > 0) with positive parameter θ . We replace the argument t by

G(x;ξ )/G(x;ξ ), where G(x;ξ ) = 1 − G(x;ξ ). Hence, the cdf of the Burr X generator (BX-G)
becomes

F(x;θ ,ξ ) = 2θ
∫ G(x;ξ )

G(x;ξ )

0
t exp

(
−t

2
)[

1− exp(−t2)
]θ−1

dt=

{
1− exp

[
−
(

G(x;ξ )
G(x;ξ )

)2
]}θ

. (3)
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The pdf of the BX-G is given by

f (x;θ ,ξ ) =
2θg(x;ξ )G(x;ξ )

G(x;ξ )3
exp

[
−
(

G(x;ξ )
G(x;ξ )

)2
]{

1− exp

[
−
(

G(x;ξ )
G(x;ξ )

)2
]}θ−1

. (4)

The reliability function (R(x)), hazard rate function (h(x)), reversed hazard rate function (r(x)) and
cumulative hazard rate function (H(x)) of X are given, respectively, by

R(x;θ ,ξ ) = 1−

{
1− exp

[
−
(

G(x;ξ )
G(x;ξ )

)2
]}θ

,

h(x;θ ,ξ ) =
2θg(x;ξ )G(x;ξ )exp

[
−
(

G(x;ξ )
G(x;ξ )

)2
]{

1− exp
[
−
(

G(x;ξ )
G(x;ξ )

)2
]}θ−1

G(x;ξ )3

(
1−
{

1− exp
[
−
(

G(x;ξ )
G(x;ξ )

)2
]}θ

) ,

r (x;θ ,ξ ) =
2θg(x;ξ )G(x;ξ )

G(x;ξ )3
exp

[
−
(

G(x;ξ )
G(x;ξ )

)2
]{

1− exp

[
−
(

G(x;ξ )
G(x;ξ )

)2
]}−1

and

H(x;θ ,ξ ) =−

log

1−

{
1− exp

[
−
(

G(x;ξ )
G(x;ξ )

)2
]}θ

 .
3. Linear representation

In this section, we provide a very useful linear representation for the BX-G density function. If
|z|< 1 and b > 0 is a real non-integer, the power series holds

(1− z)b−1 =
∞

∑
i=0

(−1)i Γ(b)
i!Γ(b− i)

zi. (5)

For simplicity, ignoring the dependence of G(x) and g(x) on ξ and applying (5) to (4) we have

f (x) =
2θg(x)G(x)

G(x)3

∞

∑
i=0

(−1)i Γ(θ)
i!Γ(θ − i)

exp

[
−(i+1)

(
G(x;ξ )
G(x;ξ )

)2
]
. (6)

Applying the power series to the term exp
[
−(i+1)

(
G(x;ξ )
G(x;ξ )

)2
]

, Equation (6) becomes

f (x) = 2θg(x)
∞

∑
i, j=0

(−1)i+ j (i+1) j Γ(θ)
i! j!Γ(θ − i)

G(x)2 j+1

G(x)2 j+3
. (7)

Consider the series expansion

(1− z)−b =
∞

∑
k=0

Γ(b+ k)
k!Γ(b)

zk, |z|< 1, b > 0. (8)
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Applying the expansion in (8) to (7) for the term G(x;ξ )2 j+3, Equation (7) becomes

f (x) = 2θ
∞

∑
i, j,k=0

(−1)i+ j (i+1) j Γ(θ)Γ(2 j+ k+3) [2 j+ k+2]
i! j!k!Γ(θ − i)Γ(2 j+3) [2 j+ k+2]

g(x)G(x)2 j+k+1.

This can be written as

f (x) =
∞

∑
j,k=0

Ω j,k π2 j+k+2(x), (9)

where

Ω j,k =
2θ (−1) j Γ(θ)Γ(2 j+ k+3)

j!k!Γ(2 j+3)(2 j+ k+2)

∞

∑
i=0

(−1)i (i+1) j

i!Γ(θ − i)

and π2 j+k+2(x) = (2 j+ k+2)g(x)G(x)2 j+k+1 . Equation (9) reveals that the density of X can
be expressed as a linear mixture of exp-G densities. So, several mathematical properties of the new
family can be obtained by knowing those of the exp-G distribution. Similarly, the cdf of the BX-G
family can also be expressed as a mixture of exp-G cdfs given by

F(x) =
∞

∑
j,k=0

Ω j,k Π2 j+k+2 (x) (10)

where Π2 j+k+2(x) is the cdf of the exp-G family with power parameter (2 j+ k+2).

4. Mathematical and statistical properties

In this section we will provide some mathematical properties of the BX-G distribution.

4.1. Probability weighted moments

The probability weighted moment(PWM)s are expectations of certain functions of a random vari-
able and they can be defined for any random variable whose ordinary moments exist. The PWM
method can generally be used for estimating parameters of a distribution whose inverse form can-
not be expressed explicitly.
The (s,r)th PWM of X following the Burr type X generator, say ρs,r, is formally defined by

ρs,r = E {X s F(X)r}=
∫ ∞

−∞
xs F(x)r f (x) dx.

Using equations (3), (4), (9) and (10) we can write

f (x) F(x)r =
∞

∑
j,k=0

∆ j,kπ2 j+k+2 (x) ,

where

∆ j,k =
2θ (−1) j Γ(2 j+ k+3)

j!k!Γ(2 j+3)(2 j+ k+2)

∞

∑
i=0

(−1)i (i+1) j
(

θ (r+1)−1
i

)
.
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Then, the (s,r)th PWM of X can be expressed as

ρs,r =
∞

∑
j,k=0

∆ j,kE
(
Y s

2 j+k+2
)

dx.

4.2. Residual and reversed residual life

The nth moment of the residual life, say mn(t) =E[(X −t)n |X > t], n= 1,2,. . . , uniquely determine
F(x). The nth moment of the residual life of X is given by

mn(t) =
1

R(t)

∫ ∞

t
(x− t)ndF(x).

Therefore,

mn(t) =
1

R(t)

∞

∑
j,k=0

Ω j,k

n

∑
r=0

(
n
r

)
(−t)n−r

∫ ∞

t
xrπ2 j+k+2(x).

Another interesting function is the mean residual life (MRL) function or the life expectation at age
t defined by m1(t) = E [(X − t) | X > t], which represents the expected additional life length for a
unit which is alive at age t. The MRL of X can be obtained by setting n = 1 in the last equation.

The nth moment of the reversed residual life, say Mn(t) = E [(t −X)n | X ≤ t] for t > 0 and
n = 1,2,. . . uniquely determines F(x). We obtain

Mn(t) =
1

F(t)

∫ t

0
(t − x)ndF(x).

Then, the nth moment of the reversed residual life of X becomes

Mn(t) =
1

F(t)

∞

∑
j,k=0

Ω j,k

n

∑
r=0

(−1)r
(

n
r

)
tn−r

∫ t

0
xrπ2 j+k+2(x).

The mean inactivity time (MIT) or mean waiting time (MWT) also called the mean reversed residual
life function, is given by M1(t) = E[(t −X) | X ≤ t], and it represents the waiting time elapsed since
the failure of an item on condition that this failure had occurred in (0, t).The MIT of the Burr type
X generator of distributions can be obtained easily by setting n = 1 in the above equation.

4.3. Stress-strength model

Stress-strength model is the most widely approach used for reliability estimation. This model is
used in many applications of physics and engineering such as strength failure and system collapse.
In stress-strength modeling, R = Pr(X2 < X1) is a measure of reliability of the system when it is
subjected to random stress X2 and has strength X1. The system fails if and only if the applied stress
is greater than its strength and the component will function satisfactorily whenever X1 > X2. R can
be considered as a measure of system performance and naturally arise in electrical and electronic
systems. Other interpretation can be given as the reliability R of a system is the probability that the
system is strong enough to overcome the stress imposed on it.
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Let X1 and X2 be two independent random variables with BX-G(θ1,ξ ) and BX-G(θ2,ξ ) distri-
butions, respectively. The pdf of X1 and the cdf of X2 can be written from Equations (10) and (9),
respectively as

f1 (x;θ1,ξ ) = f (x) = 2θ1

∞

∑
i, j,k=0

(−1)i+ j (i+1) j Γ(θ1)Γ(2 j+ k+3)
i! j!k!Γ(θ1 − i)Γ(2 j+3)

g(x)G(x)2 j+k+1

and

F2 (x;θ2,ξ ) = 2θ2

∞

∑
h,w,m=0

(−1)h+w (h+1)w Γ(θ2)Γ(2w+m+3)
h!w!m!Γ(θ2 −h)Γ(2w+3)(2w+m+2)

G(x)2w+m+2.

Then, the reliability is defined by

R =
∫ ∞

0
f1 (x;θ1,ξ )F2 (x;θ2,ξ )dx.

We can write

R =
∞

∑
j,k,w,m=0

Ψ j,k,w,m

∫ ∞

0
π2 j+2w+k+m+4 (x)dx,

where

Ψ j,k,w,m = 4θ1θ2

∞

∑
j,k,w,m=0

(−1) j+w Γ(2 j+ k+3)Γ(2w+m+3)
j!k!w!m!Γ(θ2 −h)Γ(2 j+3)Γ(2w+3)

∞

∑
i,h=0

(−1)i+h (i+1) j (h+1)w (θ1−1
i

)(θ2−1
h

)
(2w+m+2)(2 j+ k+2w+m+4)

.

and π2 j+2w+k+m+4 (x) = (2 j+ k+2w+m+4) g(x)G(x)2 j+k+2w+m+3. Thus, the reliability, R, can
be expressed as

R =
∞

∑
j,k,w,m=0

Ψ j,k,w,mE
(
Y2 j+2w+k+m+4

)
,

4.4. Order statistics

Order statistics make their appearance in many areas of statistical theory and practice. Let X1, . . . ,Xn

be a random sample from the BX-G of distributions and let X(1), . . . ,X(n) be the corresponding order
statistics. The pdf of ith order statistic, say Xi:n, can be written as

fi:n (x) =
f (x)

B(i,n− i+1)

n−i

∑
j=0

(−1) j
(

n− i
j

)
F j+i−1 (x) , (11)

where B(·, ·) is the beta function.

Using (3), (4), (9) and (10) in equation (11) we get
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f (x) F(x) j+i−1 =
∞

∑
w,k=0

bw,kπ2w+k+2 (x) ,

where

bw,k =
2θ (−1)w Γ(2w+ k+3)

w!k!Γ(2w+3)(2w+ k+2)

∞

∑
m=0

(−1)m (m+1)w
(

θ ( j+ i)−1
m

)
.

The pdf of Xi:n can be expressed as

fi:n (x) =
∞

∑
w,k=0

n−i

∑
j=0

(−1) j (n−i
j

)
bw,k

B(i,n− i+1)
π2w+k+2 (x) .

Then, the density function of the BX-G order statistics is a mixture of exp-G densities. Based on
the last equation, we note that the properties of Xi:n follow from those properties of Y2w+k+2. For
example, the moments of Xi:n can be expressed as

E
(
Xq

i:n
)
=

∞

∑
w,k=0

n−i

∑
j=0

(−1) j (n−i
j

)
bw,k

B(i,n− i+1)
E
(
Y q

2w+k+2

)
. (12)

4.5. Entropies

The Rényi entropy of a random variable X represents a measure of variation of the uncertainty. The
Rényi entropy is defined by

Iδ (X) =
1

1−δ
log
∫ ∞

−∞
f (x)δ dx, δ > 0 and δ ̸= 1.

Using the pdf (4), we can write

f (x)δ =
∞

∑
j,k=0

t j,kg(x;ξ )δ G(x;ξ )δ+2 j+k,

where

t j,k =
(−1) j Γ(3δ +2 j+ k)

j!k!Γ(3δ +2 j)

∞

∑
i=0

2δ θ δ (−1)i (θδ −δ )i

i!(δ + i)− j .

Then, the Rényi entropy of the BX-G is given by

Iδ (X) =
1

1−δ
log

{
∞

∑
j,k=0

t j,k

∫ ∞

−∞
g(x;ξ )δ G(x;ξ )2 j+k+δ dx

}
,

The δ -entropy, say Hδ (X), can be obtained as
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Hδ (X) =
1

δ −1
log

{
1−

[
∞

∑
j,k=0

t j,k

∫ ∞

−∞
g(x;ξ )q G(x;ξ )2 j+k+q dx

]}
.

The Shannon entropy of a random variable X , say SI, is defined by

SI = E {− [log f (X)]} ,

follows by taking the limit of Iδ (X) as δ tends to 1.

5. Characterizations

Characterizations of distributions is an important research area which has recently attracted the
attention of many researchers. This section deals with various characterizations of BX-G dis-
tribution. These characterizations are based on: (i) a simple relationship between two truncated
moments; (ii) the hazard function; (iii) a single function of the random variable. It should be men-
tioned that for characterization (i) the cdf is not required to have a closed form.

5.1. Characterizations based on two truncated moments

In this subsection we present characterizations of BX-G distribution in terms of a simple relation-
ship between two truncated moments. Our first characterization result employs a theorem due to
Glänzel, see Theorem A.1 of Appendix A. Note that the result holds also when the interval H is
not closed. Moreover, as mentioned above, it could be also applied when the cdf F does not have a
closed form. As shown in Glänzel [17], this characterization is stable in the sense of weak conver-
gence.

Proposition 5.1. Let X : Ω → (0,∞) be a continuous random variable and let q1 (x) ={
1− exp

[
−
(

G(x;ξ )
G(x)

)2
]}1−θ

and q2 (x) = q1 (x)exp
[
−
(

G(x;ξ )
G(x)

)2
]

for x > 0. The random vari-

able X belongs to BX-G family (4) if and only if the function η defined in Theorem A.1 has the
form

η (x) =
1
2

exp

[
−
(

G(x;ξ )
G(x)

)2
]
, x > 0. (13)

Proof. Let X be a random variable with pdf (4), then

(1−F (x))E [q1 (x) | X ≥ x] = exp

[
−
(

G(x;ξ )
G(x;ξ )

)2
]
, x > 0,

and

(1−F (x))E [q2 (x) | X ≥ x] =
1
2

exp

[
−
(

G(x;ξ )
G(x;ξ )

)2
]
, x > 0,

and finally
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η (x)q1 (x)−q2 (x) =−1
2

q1 (x)

{
−exp

[
−
(

G(x;ξ )
G(x;ξ )

)2
]}

< 0 f or x > 0.

Conversely, if η is given as above, then

s′ (x) =
η ′ (x)q1 (x)

η (x)q1 (x)−q2 (x)
=

2g(x;ξ )G(x;ξ )(
G(x;ξ )

)3 , x > 0,

and hence

s(x) =
(

G(x;ξ )
G(x;ξ )

)2

, x > 0.

Now, in view of Theorem A.1, X has density (4) . �

Corollary 5.1. Let X : Ω → (0,∞) be a continuous random variable and let q1 (x) be as in Propo-
sition 5.1. The pdf of X is (4) if and only if there exist functions q2 and η defined in Theorem A.1
satisfying the differential equation

η ′ (x)q1 (x)
η (x)q1 (x)−q2 (x)

=
2g(x;ξ )G(x;ξ )(

G(x;ξ )
)3 , x > 0. (14)

The general solution of the differential equation in Corollary 5.1 is

η (x) = exp

[
−
(

G(x;ξ )
G(x;ξ )

)2
]−∫ 2g(x;ξ )G(x;ξ )

(G(x;ξ ))
3 exp

[(
G(x;ξ )
G(x;ξ )

)2
]
×

(q1 (x))
−1 q2 (x)dx +D,


where D is a constant. Note that a set of functions satisfying the differential equation (14) is given in
Proposition 5.1 with D = 0. However, it should be also noted that there are other triplets (q1,q2,η)

satisfying the conditions of Theorem A.1.

5.2. Characterization based on hazard function

It is known that the hazard function, hF , of a twice differentiable distribution function, F , satisfies
the first order differential equation

f ′(x)
f (x)

=
h′F(x)
hF(x)

−hF(x). (15)

For many univariate continuous distributions, this is the only characterization available in terms
of the hazard function. The following characterization establishes a non-trivial characterization for
BX-G distribution in terms of the hazard function when θ = 1, which is not of the trivial form given
in (15). Clearly, we assume that G(x;ξ ) is twice differentiable.
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Proposition 5.2. Let X : Ω → (0,∞) be a continuous random variable. Then for θ = 1, the pdf of
X is (4) if and only if its hazard function hF (x) satisfies the differential equation

h′F (x)−
g′ (x)
g(x)

hF (x) =
2g(x;ξ )(1+2G(x;ξ ))(

G(x;ξ )
)4 , (16)

with the boundary condition hF (0) = 0.

Proof. If X has pdf (4), then clearly (16) holds. Now, if (16) holds, then

d
dx

{
(g(x))−1 hF (x)

}
= 2

d
dx

{
G(x;ξ )(
G(x;ξ )

)3

}
,

or, equivalently,

hF (x) =
2g(x;ξ )G(x;ξ )(

G(x;ξ )
)3 ,

which is the hazard function of the BX-G distribution. �

5.3. Characterization based on truncated moment of certain function of the random
variable

The following propositions have already appeared in (Hamedani, Technical Report, [19]), so we
will just state them here which can be used to characterize BX-G distribution.

Proposition 5.3. Let X : Ω → (a,b) be a continuous random variable with cdf F . Let ψ (x) be
a differentiable function on (a,b) with limx→a+ ψ (x) = 1. Then for δ ̸= 1 ,

E [ψ (X) | X ≥ x] = δψ (x) , x ∈ (a,b) ,

if and only if

ψ (x) = (1−F (x))
1
δ −1 , x ∈ (a,b) .

Proposition 5.4. Let X : Ω → (a,b) be a continuous random variable with cdf F . Let ψ1 (x) be
a differentiable function on (a,b) with limx→b− ψ1 (x) = 1. Then for δ1 ̸= 1 ,

E [ψ1 (X) | X ≤ x] = δ1ψ1 (x) , x ∈ (a,b) ,

if and only if
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ψ1 (x) = (F (x))
1

δ1
−1

, x ∈ (a,b) .

Remark.It is easy to see that for certain functions ψ (x) and ψ1 (x) on (0,∞); (a) Proposition
5.3 provides a characterization of BX-G distribution for θ = 1 and (b) Proposition 5.4 provides a
characterization of BX-G distribution.

6. Special BX-G models

In this section, we provide two special cases of the BX-G family of distributions. The pdf (4) will
be most tractable when G(x;ξ ) and g(x;ξ ) have simple analytic expressions. These special models
generalize some well-known distributions in the literature.

6.1. The Burr X-Weibull (BXW) distribution

Consider the cdf and pdf (for x > 0) G(x) = 1− exp[−(αx)
β
] and g(x) = βαβ xβ−1 exp[−(αx)

β
],

respectively, of the Weibull distribution with positive parameters α and β . Then, the pdf of the
BXW model is given by

f (x) = 2θβαβ xβ−1 exp
{

2(αx)
β −
[
exp(αx)

β −1
]2
}

×
{

1− exp
[
−(αx)

β
]}(

1− exp
{
−
[
exp(αx)

β −1
]2
})θ−1

.

The BXW distribution includes the Burr X-Rayleigh (BXR) distribution when β = 2. For β = 1, we
have the Burr X-exponential (BXE) distribution. The plots of the BXW density for some parameter
values are displayed in Figure 1.
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Fig. 1. pdf of BXW distribution for different values of parameters
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6.2. The Burr X-Lomax (BXL) distribution

The cdf and pdf (for x > 0) of the Lomax distribution with positive parameters α and β are G(x) =
1− [1+(x/β )]−α and g(x) = (α/β )[1+(x/β )]−α−1, respectively. Then, the cdf and pdf of the
BXL distribution becomes

F(x) =

{
1− exp

[
−
([

1+
x
β

]α
−1
)2
]}θ

,

f (x) =
2θα

β

[
1+

x
β

]α−1([
1+

x
β

]α
−1
)

exp

{
−
([

1+
x
β

]α
−1
)2
}{

1− exp

[
−
([

1+
x
β

]α
−1
)2
]}θ−1

.

The plots of the BXL density are displayed in Figure 2 for some parameter values.
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Fig. 2. pdf of BXL distribution for different values of parameters

7. Parameter Estimation

Several approaches for parameter estimation were proposed in the literature but the maximum like-
lihood method is the most commonly employed. So, we consider the estimation of the unknown
parameters of this family from complete samples only by maximum likelihood.

Let x1, . . . ,xn be a random sample from the BX-G family with parameters θ and ξ . Let
Θ =(θ ,ξ ᵀ)ᵀ be the p × 1 parameter vector. For determining the MLE of Θ, we have the log-
likelihood function

ℓ = ℓ(Θ) = n log2+n logθ +
n

∑
i=1

logg(xi;ξ )+
n

∑
i=1

logG(xi;ξ )

−3
n

∑
i=1

logG(xi;ξ )−
n

∑
i=1

s2
i +(θ −1)

n

∑
i=1

log
[
1− exp

(
−s2

i
)]
,

where si = G(xi;ξ )/G(xi;ξ ).
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The components of the score vector, U(Θ) = ∂ℓ
∂Θ =

(
∂ℓ
∂θ ,

∂ℓ
∂ξ

)ᵀ
, are

Uθ =
n
θ
+

n

∑
i=1

log
[
1− exp

(
−s2

i
)]

and

Uξ =
n

∑
i=1

g′ (xi;ξ )
g(xi;ξ )

+
n

∑
i=1

G′ (xi;ξ )
G(xi;ξ )

+3
n

∑
i=1

G′ (xi;ξ )
G(xi;ξ )

−
n

∑
i=1

2siG′ (xi;ξ )/G(xi;ξ )2 +2(θ −1)
n

∑
i=1

pisiexp
(
−s2

i
)

1− exp
(
−s2

i

) ,
where g′ (xi;ξ ) = ∂g(xi;ξ )/∂ξ ,G′ (xi;ξ ) = ∂G(xi;ξ )/∂ξ and pi =

∂G(xi;ξ )/G(xi;ξ )
∂ξ

Setting the nonlinear system of equations Uθ = 0 and Uξ = 0 and solving them simultaneously

yields the MLE Θ̂ = (θ̂ , ξ̂ ᵀ)ᵀ. To solve these equations, it is usually more convenient to use nonlin-
ear optimization methods such as the quasi-Newton algorithm to numerically maximize ℓ.

8. Simulation study

In this section, we present some simulations results for different sample sizes to assess the accuracy
of the MLEs. For illustrative purposes, we will choose the BXL distribution. An ideal technique for
simulating from the BXL distribution is the inversion method. We can simulate X by

X = β

[{
1+
[
− log(1−U1/θ )

]1/2
}1/α

−1

]
,

where U is a uniform random number in (0,1). For selected combinations of α,β and θ , we gener-
ate samples of different sizes from the BXL distribution. We repeat the simulations 1,000 times and
evaluate the mean estimates and the root mean square errors (RMSEs). The required computations
use a script AdequacyModel of the R-package written by Marinho et al. [21]. Empirical results
obtained for selected values of triplets (α,β ,θ) are given in Tables 1 and 2.Observe that our estimates are pretty stable and as the sample size increases the mean square
error decreases. Therefore, the maximum likelihood method works very well to estimate the model
parameters of the BXL distribution.

9. Application to cancer patients data

In this section, we provide an application to real data to illustrate the flexibility of the BXL model
presented in Section 6. The goodness-of-fit statistics for these models are compared with other
competitive models and the MLEs of the model parameters are determined. The data set refers to
the remission times (in months) of a random sample of 128 bladder cancer patients studied by Lee
and Wang [20]. For these data, we compare the fit of the BXL distribution with those of the L,
transmuted linear exponential (TLE), transmuted additive Weibull (TAW), BX and exponentiated
transmuted generalized Rayleigh (ETGR) models (x > 0 for all of them).
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Table 1. Empirical means and the RMSEs of the BXL distribution for α = 1, β = 2 and θ = 1.5

n α̂ β̂ θ̂
10 1.16551 2.34014 1.97799

(0.42087) (1.19099) (1.10104)
20 1.14729 2.38295 1.66762

(0.36093) (1.01954) (0.533004)
50 1.04212 2.12087 1.57064

(0.23805) (0.75753) (0.31329)
100 1.06694 2.20435 1.51423

(0.17699) (0.56757) (0.20657)
200 0.98302 1.93524 1.54343

(0.08605) (0.26025) (0.17740)

Table 2. Empirical means and the RMSEs of the BXL distribution for α = 1.5, β = 2 and θ = 3

n α̂ β̂ θ̂
10 1.68605 2.25143 3.67227

(0.53095) (0.83961) (1.48749)
20 1.69259 2.29826 3.29538

(0.44873) (0.76963) (0.97611)
50 1.54496 2.06713 3.19786

(0.33149) (0.61679) (0.69367)
100 1.57582 2.13539 3.05440

(0.26203) (0.48819) (0.43556)
200 1.50372 2.03331 3.01899

(0.07566) (0.11298) (0.20671)

The TLE density (Tian et al., [25]) given by

f (x) = (α + γx)
[
1− e−(αx+ γ

2 x2)
]{

1−λ +2λe−(αx+ γ
2 x2)
}
.

The TAW density (Elbatal and Aryal, [13]) given by

f (x) = e−(αxθ+γxβ)
(

αθxθ−1 + γβxβ−1
){

1−λ +2λe−(αxθ+γxβ)
}
.

The ETGR density (Afify et al., [3]) given by

f (x) = 2αδβ 2 xe−(βx)2
(

1− e−(βx)2
)αδ−1

×
[
1+λ −2λ

(
1− e−(βx)2

)α] {
1+λ −λ

(
1− e−(βx)2

)α}δ−1
.

The parameters of the above densities are all positive real numbers except the parameter λ where
|λ | ≤ 1.
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Table 3. The Goodness-of-fit criteria for the cancer data

Model −2ℓ̂ AIC CAIC HQIC BIC W ∗ A∗

BXL 822.277 828.277 828.47 831.753 836.833 0.05807 0.37468
L 827.644 831.644 831.74 833.962 837.348 0.05905 0.55862

TLE 826.971 832.971 833.165 836.448 841.528 0.06085 0.55402
TAW 828.478 838.478 838.97 844.272 852.739 0.11288 0.70326
BX 858.431 862.431 862.527 864.748 868.135 0.39647 2.35125

ETGR 858.35 866.35 866.675 870.985 877.758 0.39794 2.36077

Table 4. MLEs and their standard errors (in parentheses) for the cancer data

Model Estimates

TAW
α̂= 0.1139
(0.032)

β̂= 0.9722
(0.125)

γ̂= 3.0936 ·10−5

(0.006106)
θ̂= 1.0065
(0.035)

λ̂=−0.163
(0.28)

ETGR
α̂= 7.3762
(5.389)

λ̂= 0.118
(0.26)

β̂= 0.0473
(0.003965)

δ̂= 0.0494
(0.036)

BXL
α̂= 0.2982
(0.051)

β̂= 1.0194
(0.664)

θ̂= 0.9337
(0.25)

TLE
α̂= 0.0612
(0.01)

λ̂= 0.8568
(0.203)

γ̂= 3.0877 ·10−5

(0.0006819)

L
α̂= 13.9187
(15.3472)

β̂= 120.8281
(142.3413)

BX
α̂= 0.364
(0.037)

β̂= 0.0476
(0.00.907)

In order to compare the fitted models, we consider some goodness-of-fit measures including
the Akaike information criterion (AIC), consistent Akaike information criterion (CAIC), Hannan-
Quinn information criterion (HQIC), Bayesian information criterion (BIC) and −2ℓ̂, where ℓ̂ is the
maximized log-likelihood. Further, we adopt the Anderson-Darling (A∗) and Cramér-von Mises
(W ∗) statistics in order to compare the fits of the two new models with other nested and non-nested
models. The statistics are widely used to determine how closely a specific cdf fits the empirical
distribution of a given data set. The smaller these statistics are, the better the fit.

Table 3 lists the values of −2ℓ̂, AIC, CAIC, HQIC, BIC, W ∗ and A∗, whereas the MLEs and
their corresponding standard errors (in parentheses) of the model parameters are given in Table 4.
In Table 3, we compare the fits of the BXL model with the L, TLE, TAW, BX and ETGR models.
We note that the BXL model has the lowest values for the −2ℓ̂, AIC, CAIC, HQIC, BIC, W ∗ and
A∗ statistics (for the cancer data) among the fitted models. So, the BXL model could be chosen as
the best model. Figures 3 ad 4 display the fitted pdfs and Q-Q plots for the BXL distribution and
other distributions. They reveal that the new distribution can be better model the data than other
competitive lifetime models.
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Fig. 3. Estimated pdfs and of the BXL model and competing models for the cancer data
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Fig. 4. Q-Q plots of the BXL model and its competing models for the cancer data

10. Conclusions

The idea of generating new extended models from the classical ones has been of great interest
among researchers in the past decade. We present a new Burr X-G (BX-G) family of distributions
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by adding one extra shape parameter. Many well-known distributions emerge as special cases of
the proposed family by taking integer parameter values. We provide some mathematical properties
of the new family. To illustrate a usefulness of proposed distribution we have studied the remission
times (in months) of a random sample of 128 bladder cancer patients. Although time to remission
depends on many covariates we have shown that the remission time can be modeled using BXL
distribution.
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Appendix A.

Theorem A.1. Let (Ω,F ,P) be a given probability space and let H = [d,e] be an interval for
some d < e (d =−∞, e = ∞ might as well be allowed) . Let X : Ω → H be a continuous random
variable with the distribution function F and let q1 and q2 be two real functions defined on H such
that

E [q2 (X) | X ≥ x] = E [q1 (X) | X ≥ x]η (x) , x ∈ H,

is defined with some real function η . Assume that q1,q2 ∈C1 (H), η ∈C2 (H) and F is twice contin-
uously differentiable and strictly monotone function on the set H. Finally, assume that the equation
ηq1 = q2 has no real solution in the interior of H. Then F is uniquely determined by the functions
q1,q2 and η , particularly

F (x) =
∫ x

a
C
∣∣∣∣ η ′ (u)
η (u)q1 (u)−q2 (u)

∣∣∣∣exp(−s(u)) du ,

where the function s is a solution of the differential equation s′ = η ′ q1
η q1−q2

and C is the normalization
constant, such that

∫
H dF = 1.
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