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The Burr XII power series distributions:
A new compounding family
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Abstract. Generalizing lifetime distributions is always precious for applied
statisticians. In this paper, we introduce a new family of distributions by com-
pounding the Burr XII and power series distributions. The compounding pro-
cedure follows the key idea by Adamidis and Loukas (Statist. Probab. Lett. 39
(1998) 35–42) or, more generally, by Chahkandi and Ganjali (Comput. Statist.
Data Anal. 53 (2009) 4433–4440) and Morais and Barreto-Souza (Comput.
Statist. Data Anal. 55 (2011) 1410–1425). The proposed family includes as
a basic exemplar the Burr XII distribution. We provide some mathematical
properties including moments, quantile and generating functions, order statis-
tics and their moments, Kullback–Leibler divergence and Shannon entropy.
The estimation of the model parameters is performed by maximum likelihood
and the inference under large sample. Two special models of the new family
are investigated in details. We illustrate the potential of the new family by
means of two applications to real data. It provides better fits to these data
than other important lifetime models available in the literature.

1 Introduction

In many practical situations, classical probability distributions do not provide ade-
quate fits to real data. For example, if the data are asymmetric, the normal distribu-
tion will not be a good choice. So, several methods for generating new probability
distributions by adding one or more parameters has been studied in the statistical
literature recently. Among these methods, the compounding of some discrete and
important lifetime distributions has been in the vanguard of lifetime modeling.
Adamidis and Loukas (1998) pioneered a two-parameter exponential–geometric
(EG) distribution by compounding the exponential and geometric distributions. In
a similar manner, the exponential Poisson (EP) and exponential logarithmic (EL)
distributions were introduced by Kus (2007) and Tahmasbi and Rezaei (2008),
respectively. Barreto-Souza et al. (2010) and Lu and Shi (2012) proposed the
Weibull–geometric (WG) and Weibull–Poisson (WP) distributions, which natu-
rally extend the EG and EP distributions, respectively. Further, Rodrigues et al.
(2011) defined the Weibull negative binomial (WNB) distribution, which includes
as sub-models the WG and WP distributions.
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In the same way, several families of distributions were proposed by compound-
ing some useful lifetime and power series distributions in the last few years.
Chahkandi and Ganjali (2009) introduced the exponential power series (EPS) fam-
ily of distributions, which contains as special cases the EP, EG and EL distribu-
tions. Morais and Barreto-Souza (2011) defined the Weibull power series (WPS)
family which includes as sub-models the EPS distributions. The WPS distributions
can have an increasing, decreasing and upside down bathtub failure rate function.
The generalized exponential power series (GEPS) distributions were proposed by
Mahmoudi and Jafari (2012) following the same approach of Morais and Barreto-
Souza (2011). In a very recent paper, Silva et al. (2013) studied the extended
Weibull power series (EWPS) family, which includes as special models the EPS
and WPS distributions.

The Burr XII (BXII) distribution has cumulative distribution function (c.d.f.)
and probability density function (p.d.f.) (for x > 0) given by

G(x; c, k) = 1 − (
1 + xc)−k (1.1)

and

g(x; c, k) = ckxc−1(
1 + xc)−k−1

, (1.2)

respectively, where k > 0 and c > 0 are shape parameters. Its tractability advan-
tage is that the c.d.f. and reliability function have closed-form, which simplify the
computation of the percentiles and the likelihood function for censored data. It has
algebraic tails which are effective for modeling failures that occur with lesser fre-
quency than those with corresponding models based on exponential tails. Further,
it has as special models the logistic and Weibull and it is a very popular distribution
for modeling lifetime data and for modeling phenomenon with monotone failure
rates. When modeling monotone hazard rates, the Weibull distribution may be an
initial choice because of its negatively and positively skewed density shapes. How-
ever, it does not provide a reasonable parametric fit for modeling phenomenon with
non-monotone failure rates such as the bathtub shaped and unimodal failure rates,
which are common in reliability and biological studies. Such bathtub hazard curves
have nearly middle portions and the corresponding densities have a positive anti-
mode. Unimodal failure rates can be observed in course of a disease whose mortal-
ity reaches a peak after some finite period and then declines gradually. Examples
of approximately BXII distributed phenomena may be found in flood frequency,
software reliability, structural and wind engineering. Shao (2004) discussed maxi-
mum likelihood estimation of its parameters and Shao et al. (2004) studied models
for extremes based on the BXII distribution with application to flood frequency
analysis. According to Soliman (2005), this model covers the curve shape char-
acteristics for a large number of distributions. Its versatility and flexibility turns
it quite attractive as a tentative model for lifetime data. For this model, Wu et al.
(2007) examined the estimation problems under progressive type II censoring with
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random removals, where the number of units removed at each failure time has a
discrete uniform distribution and Silva et al. (2008) proposed the log-Burr XII
location-scale regression model as a feasible alternative to the log-logistic regres-
sion model.

In this paper, we define a new family of Burr XII power series (BXIIPS) models
obtained by compounding the BXII and power series distributions. The compound-
ing procedure follows the pioneering work of Adamidis and Loukas (1998). The
new family includes as special models the EPS and WPS distributions in addition
to those which arise as special models of the BXII distribution. The hazard function
of the new distribution can be decreasing and upside-down bathtub shaped. We are
motivated to study the BXIIPS distributions because of the wide usage of (1.1) and
the fact that the current generalization provides means of its continuous extension
to still more complex situations. A positive point of the current generalization is
that the BXII distribution is a basic exemplar of the proposed family.

Furthermore, the new family is well-motivated for industrial applications and
biological studies. As a first example, consider the time to relapse of cancer un-
der the first-activation scheme. Suppose that the number, say N , of carcinogenic
cells for an individual left active after the initial treatment follows a power series
distribution and let Xi be the time spent for the ith carcinogenic cell to produce
a detectable cancer mass, for i ≥ 1. If {Xi}i≥1 is a sequence of i.i.d. BXII ran-
dom variables independent of N , then the time to relapse of cancer of a suscep-
tible individual can be modeled by the BXIIPS family of distributions. Another
example considers that the failure of a device occurs due to the presence of an
unknown number, say N , of initial defects of the same kind, which can be identi-
fiable only after causing failure and are repaired perfectly. Define by Xi the time
to the failure of the device due to the ith defect, for i ≥ 1. If we assume that the
Xi’s are independent and identically distributed (i.i.d.) BXII random variables in-
dependent of N , which follows a power series distribution, then the time to the
first failure is appropriately modeled by the BXIIPS family. For reliability stud-
ies, from X = min{Xi}Ni=1 and Z = max{Xi}Ni=1, the proposed models can be used
in serial and parallel systems with identical components, which appear in many
industrial applications and biological organisms. Further, as discussed by Cooner
et al. (2007), the first activation scheme may be questionable for certain diseases.
Consider that the number N of latent factors that must all be activated by fail-
ure follows a power series distribution and assume that Xi represents the time of
resistance to a disease manifestation due to the ith latent factor has the BXII dis-
tribution. In the last-activation scheme, the failure occurs after all N factors have
been activated. So, the new family of distributions is able for modeling the time to
the failure under last-activation scheme.

This paper is organized as follows. In Section 2, the new family is defined by
mixing the BXII and zero truncated power series distributions, where the mixing
procedure was previously proposed by Morais and Barreto-Souza (2011) and Silva
et al. (2013). In Section 3, some mathematical properties of the new family are
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obtained. In Section 4, the estimation of the model parameters is performed by the
method of maximum likelihood. In Sections 5 and 6, we introduce and study two
special models of the BXIIPS family. In Section 7, two illustrative examples based
on real data are provided. Finally, in Section 8, concluding remarks are addressed.

2 The new family of distributions

The new family of distributions is defined as follows. Given N , let X1, . . . ,XN be
i.i.d. random variables having the BXII distribution (1.1) with shape parameters
c > 0 and k > 0, where N is a discrete random variable having a power series
probability mass function (p.m.f.) (truncated at zero) given by

pn = P(N = n) = anθ
n

C(θ)
, n = 1,2, . . . . (2.1)

The coefficients an’s depend only on n, C(θ) = ∑∞
n=1 anθ

n and θ > 0 is such
that C(θ) is finite. It is important remark that the probability distributions of the
form (2.1) have been considered in Boehme and Powell (1968) and Ostrovska
(2007). In Table 1, we give some power series distributions (truncated at zero)
defined by (2.1) such as the Poisson, logarithmic, geometric and binomial dis-
tributions. Let X(1) = min{Xi}Ni=1. The conditional cumulative distribution of
X(1)|N = n is given by

GX(1)|N=n(x) = 1 − (
1 + xc)−nk

that is, X(1)|N = n has the BXII distribution with parameters c and nk. Hence, we
obtain

P(X(1) ≤ x,N = n) = anθ
n

C(θ)

[
1 − (

1 + xc)−nk]
, x > 0, n ≥ 1.

So, the marginal c.d.f. of X(1) reduces to

F(x; θ, c, k) = 1 − C[θ(1 + xc)−k]
C(θ)

, x > 0. (2.2)

We call (2.2) the BXIIPS family of distributions.

Table 1 Useful quantities for some power series distributions

Distribution an C(θ) C′(θ) C′′(θ) C−1(θ) �

Poisson n!−1 eθ − 1 eθ eθ log(θ + 1) θ ∈ (0,∞)

Logarithmic n−1 − log(1 − θ) (1 − θ)−1 (1 − θ)−2 1 − e−θ θ ∈ (0,1)

Geometric 1 θ(1 − θ)−1 (1 − θ)−2 2(1 − θ)−3 θ(θ + 1)−1 θ ∈ (0,1)

Binomial
(m
n

)
(θ + 1)m − 1 m(θ + 1)m−1 m(m−1)

(θ+1)2−m (θ − 1)1/m − 1 θ ∈ (0,1)



The Burr XII power series distributions 569

The BXIIPS survival function becomes

S(x; θ, c, k) = C[θ(1 + xc)−k]
C(θ)

, x > 0. (2.3)

The p.d.f. corresponding to (2.2) (for x > 0) is given by

f (x; θ, c, k) = θckxc−1(
1 + xc)−k−1 C′[θ(1 + xc)−k]

C(θ)
. (2.4)

Hereafter, we denote a random variable X with density function (2.4) by X ∼
BXIIPS(θ, c, k). The hazard rate function of X reduces to

h(x; θ, c, k) = θckxc−1(
1 + xc)−k−1 C′[θ(1 + xc)−k]

C[θ(1 + xc)−k] , x > 0. (2.5)

In Sections 5 and 6, we verify that the hazard rate function (2.5) can be decreas-
ing and upside-down bathtub shaped for two special BXIIPS models. The BXIIPS
family can be very useful in modeling lifetime data and practitioners may be inter-
ested in using some distributions of the proposed family of models.

3 General properties

3.1 A useful expansion

The following proposition reveals that the new family has the BXII distribution as
a limiting distribution, whereas Proposition 3 provides a useful expansion for the
density function (2.4).

Proposition 1. The Burr XII distribution with parameters c and k is a limiting
case of the BXIIPS family of distributions when θ → 0+.

Proof. The proof is given in the Appendix A. �

Consider now the convenient re-parametrization (c, k) → (ρ,β) with ρ = k−1

and β = k−1/c, for which the kernel of the BXII distribution (1.1) can be expressed
as [1 + ρ(x/β)c]−1/ρ .

Proposition 2. The WPS sub-family of distributions with parameters β−1, c and
θ is a limiting case of the BXIIPS family of distributions when ρ → 0+.

Proof. If ρ → 0+, then

lim
ρ→0+ F(x; θ, ρ,β) = 1 − lim

ρ→0+
C[θ(1 + ρ(x/β)c)−1/ρ]

C(θ)
= 1 − C(θe−(x/β)c )

C(θ)
.

So, the BXIIPS distributions converges to WPS distributions for small values
of ρ. �
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Remark. The EPS distributions can be directly obtained from the WPS distribu-
tions when c = 1. So, for ρ → 0+ and c = 1, we obtain the EPS distributions as
limiting special models.

Proposition 3. The BXIIPS density function can be expressed as an infinite mix-
ture of BXII densities with parameters c and nk given by

f (x; θ, c, k) =
∞∑

n=1

png(x; c, nk). (3.1)

Proof. The proof is given in the Appendix A. �

So, we can obtain some structural quantities of X such as the moments and
generating function from those of the BXII distribution.

3.2 Quantiles and moments

Quantile functions are used in theoretical aspects, statistical applications and
Monte Carlo methods. Monte Carlo simulations employ quantile functions to pro-
duce simulated random variables for classical and new continuous distributions.
The quantile function, say Q(u), of X is given by

x = Q(u) =
{[

C−1[(1 − u)C(θ)]
θ

]−1/k

− 1
}1/c

, (3.2)

where u is a uniform random variable on the unit interval (0,1) and C−1(·) is the
inverse function of C(·).

An explicit expression for the sth moment of X follows from Proposition 3, for
s < ck,

μ′
s = E

(
Xs) = k

∞∑
n=1

npnB

(
nk − s

c
,1 + s

c

)
. (3.3)

The central moments (μs) and cumulants (κs) of X can be determined from (3.3)
as

μs =
p∑

k=0

(
s

k

)
(−1)kμ′s

1 μ′
s−k and κs = μ′

s −
s−1∑
k=1

(
s − 1

k − 1

)
κkμ

′
s−k,

respectively, where κ1 = μ′
1. For lifetime models, it is of interest the sth incom-

plete moment of X defined by Ts(y) = ∫ y
0 xsf (x) dx. The quantity Ts(y) comes

from (3.1) as

Ts(y) = ck

∞∑
n=1

npn

∫ y

0
xs+c−1(1 + x)−nk−1 dx.
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Setting t = (1 + xc)−1, we can write

Ts(y) = k

∞∑
n=1

npn

∫ 1/(1+yc)

0
tnk−s/c−1(1 − t)s/c dt

and then

Ts(y) = k

∞∑
n=1

npnB1/(1+yc)

(
nk − sc−1, sc−1 + 1

)
, (3.4)

where Bz(a, b) = ∫ z
0 ta−1(1 − t)b−1 dt is the incomplete beta function.

An application of the incomplete moments refers to the Lorenz and Bonferroni
curves. They are useful in fields like economics, reliability, demography, insurance
and medicine. For a given probability π , they are defined by L(π) = T1(q)/μ′

1 and
B(π) = T1(q)/(πμ′

1), respectively, where q = Q(π) comes from equation (3.2).
In economics, if π = F(q) is the proportion of units whose income is lower than
or equal to q , L(π) gives the proportion of total income volume accumulated by
the set of units with an income lower than or equal to q . In a similar manner, the
Bonferroni curve B(π) gives the ratio between the mean income of this group and
the mean income of the population.

3.3 Generating function

Let Mk(t) be the moment generating function (m.g.f.) of the BXII(c, k) distribu-
tion. The m.g.f. M(t) of X can be obtained from (3.1) as

M(t) =
∞∑

n=1

pnMnk(t), (3.5)

where Mnk(t) is the BXII(c, nk) generating function. For t < 0, a simple expres-
sion for Mk(t) follows as

Mk(t) = ck

∫ ∞
0

etxxc−1(
1 + xc)−k−1 dx.

This integral can be determined from the Meijer G-function defined by

Gm,n
p,q

(
x

∣∣∣∣ a1, . . . , ap

b1, . . . , bq

)

= 1

2πi

∫
L

∏m
j=1 �(bj + t)

∏n
j=1 �(1 − aj − t)∏p

j=n+1 �(aj + t)
∏p

j=m+1 �(1 − bj − t)
x−t dt,

where i is the imaginary unit and L denotes an integration path; see Section 9.3
in Gradshteyn and Ryzhik (2000) for a description of this path. See also Paranaíba
et al. (2011, 2012). The Meijer G-function contains as particular cases many in-
tegrals with elementary and special functions (Prudnikov et al., 1986). Consider
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the following result, which holds for positive integers m and k, μ > −1 and p > 0
(Prudnikov et al., 1992, page 21):

I

(
p,μ,

m

k
, ν

)
=

∫ ∞
0

exp(−px)xμ(
1 + xm/k)ν dx

= k−νmμ+1/2

(2π)(m−1)/2�(−ν)pμ+1 (3.6)

× G
k,k+m
k+m,k

(
mm

pm

∣∣∣∣ 
(m,−μ),
(k, ν + 1)


(k,0)

)
,

where 
(k, a) = a
k
, a+1

k
, . . . , a+k

k
. If we assume that c = m/k, where m and k are

positive integers, we obtain using the integral (3.6),

Mk(t) = mI

(
−t,

m

k
− 1,

m

k
,−k − 1

)
. (3.7)

This condition is not restrictive since every positive real number can be approxi-
mated by a rational number. Hence, for t < 0, the generating function of X follows
from (3.5) as

M(t) = m

∞∑
n=1

pnI

(
−t,

m

nk
− 1,

m

nk
,−nk − 1

)
. (3.8)

For the special cases c = 1 and c = 2, we obtain simple expressions for Mk(t),
and consequently for M(t), using equations (1) (on page 16) and (2) (on page 20)
of the book by Prudnikov et al. (1992). For c = 1 and t < 0, we have

Mk(t) = k(−t)ke−t�(−k,−t),

where �(v, x) = ∫ ∞
x tv−1e−t dt is the complementary incomplete gamma func-

tion. For c = 2 and t < 0, we obtain

Mk(t) = 1F2

(
1; 1

2
;1 − k; t2

4

)
+ t

2
B

(
2, k − 1

2

)
1F2

(
1; 3

2
;k + 7

2
; −t2

4

)
+ �(−2k)

(−t)−2k
,

where

1F2(a;b, c;x) =
∞∑

r=0

(a)r

(b)r (c)r

xr

r!
is a generalized hypergeometric function and (a)r = a(a + 1) · · · (a + r − 1) de-
notes the ascending factorial.
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3.4 Order statistics

Now, let X1, . . . ,Xm be a random sample with density function (2.4) and Xi:m
be the ith order statistic. The density function of Xi:m, say fi:m(x; θ, c, k), can be
expressed from (2.3) as

fi:m(x; θ, c, k)

= 1

B(i,m − i + 1)
f (x; θ, c, k)F (x; θ, c, k)i−1[1 − F(x; θ, c, k)

]m−i (3.9)

= f (x; θ, c, k)

B(i,m − i + 1)

i−1∑
j=0

(−1)j

(
i − 1

j

)[
C[θ(1 + xc)−k]

C(θ)

]m+j−i

.

Now, we derive a useful expansion for (3.9). First, we obtain an expansion for
C[θ(1 + xc)−k]j

C
[
θ
(
1 + xc)−k]j
=

[ ∞∑
n=1

anθ
n(

1 + xc)−nk

]j

=
{
a1θ

(
1 + xc)−k

[
1 + a2

a1
θ
(
1 + xc)−k + a3

a1
θ2(

1 + xc)−2k + · · ·
]}j

= a
j
1θj (

1 + xc)−jk

[ ∞∑
m=0

bmθm(
1 + xc)−mk

]j

,

where bm = am+1/a1 for m = 1,2,3, . . . . Using the identity (Gradshteyn and
Ryzhik, 2000) (

∑∞
m=0 bmzm)j = ∑∞

m=0 dj,mzm for a positive integer j , we can
write

C
[
θ
(
1 + xc)−k]j = a

j
1

∞∑
m=0

dj,mθj+m(
1 + xc)−k(j+m)

, (3.10)

where dj,0 = 1 and the coefficients for t ≥ 1 can be obtained from the recurrence
equation dj,t = t−1 ∑t

m=1[m(j + 1) − t]bmdj,t−m.
Secondly, we derive an expansion for C′(θ) = ∑∞

n=1 nanθ
n−1 in f (x; θ, c, k).

We have

C ′[θ(
1 + xc)−k] =

∞∑
r=1

rarθ
r−1(

1 + xc)−k(r−1)

(3.11)

= a1

∞∑
r=0

(r + 1)brθ
r(1 + xc)−rk

,

where br was defined before.
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Inserting equations (3.10) and (3.11) in (3.9), we obtain

fi:m(x; θ, c, k) = 1

B(i,m − i + 1)
(3.12)

×
i−1∑
j=0

∞∑
m,r=0

δj,m,rg
(
x; c, k(j + 2m + r)

)
,

where g(x; c, k(j + 2m + r)) denotes the BXII density function with parameters
c and k(j + 2m + r) and

δj,m,r = (−1)j (r + 1)cθj+2m+ra
m+j
1 brdj,m

(j + 2m + r)C(θ)j+m−2

(
i − 1

j

)
.

Equation (3.12) reveals that the density function of the BXIIPS order statistics is a
triple linear combination of BXII densities, where the quantities δj,m,r depend only
on the discrete distribution in the power family. So, some mathematical properties
of Xi:m can be immediately obtained from those BXII properties.

An explicit expression for the sth moment Xi:m can also be obtained from a
result due to Barakat and Abdelkader (2004)

E
(
Xs

i:m
) = s

m∑
j=m−i+1

(−1)j−m+i−1

(
j − 1

m − i

)(
m

j

)∫ ∞
0

xs−1S(x, θ, c, k)j dx

(3.13)

= s

m∑
j=m−i+1

(−1)j−m+i−1

C(θ)j

(
j − 1

m − i

)(
m

j

)∫ ∞
0

xs−1C
[
θ
(
1 + xc)−k]j dx,

for i = 1, . . . ,m. Using (3.10) and the (s − c)th moment of the BXII distribution,
the last integral (for s > c) can be reduced to∫ ∞

0
xs−1C

[
θ
(
1 + xc)−k]j dx = a

j
1

c

∞∑
r=0

θj+rdj,r

[k(j + r) − 1]B
[
k(j + r) − s, s

]
.

In Sections 5 and 6, explicit expressions for (3.13) are presented for some special
cases.

3.5 A characterization

Shannon (1948) introduced the probabilistic definition of entropy following a dual
concept in statistical mechanics. The Shannon entropy plays a central role in in-
formation theory and sometimes is referred to as a measure of uncertainty. The
entropy of a random variable is defined in terms of its probability distribution and
can be shown to be a good measure of randomness or uncertainty. Let X be a
random variable with continuous distribution and density function f . Then, the
Shannon entropy of X is defined by

HSh(f ) = −
∫
R

f (x; θ, c, k) logf (x; θ, c, k)dx. (3.14)
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Jaynes (1957) pioneered one of the most powerful techniques employed in the
field of probability and statistics called the “maximum entropy method.” This
method is closely related to the Shannon entropy and considers a family of density
functions

F = {
f (x; θ, c, k) : Ef

(
Ti(X)

) = αi, i = 0, . . . ,m
}
,

where T1(X), . . . , Tm(X) are absolutely integrable functions with respect to f , and
T0(X) = a0 = 1. In the continuous case, the maximum entropy principle suggests
deriv ing the unknown density function of the random variable X by the model
that maximizes the Shannon entropy (3.14) subject to the information constraints
defined in the family F. Shore and Johnson (1980) treated axiomatically the maxi-
mum entropy method. This method has been successfully applied to a wide variety
of fields and has also been used for the characterization of several standard prob-
ability distributions; see, for example, Kapur (1989), Soofi (2000) and Zografos
and Balakrishnan (2009).

The maximum entropy distribution is the density of the family F, denoted by
f ME, determined as the solution of the optimization problem

f ME(x; θ, c, k) = arg max
f ∈F HSh.

Jaynes (1957, page 623) demonstrated that the maximum entropy distribution
f ME obtained by the constrained maximization problem described above “is the
only unbiased assignment we can make; to use any other would amount to arbitrary
assumption of information which by hypothesis we do not have.” It is the distribu-
tion which should not incorporate additional exterior information other than which
is specified by the constraints. We now derive suitable constraints in order to pro-
vide a maximum entropy characterization for the family (2.4). For this purpose,
the next result plays an important role.

Proposition 4. If X is a random variable with density function (2.4) and Y ∼
BXII(c, k), we have

C1 E
{
logC′[θ(

1 + Xc)−k]} = θ

C(θ)
E

{
C′[θ(

1 + Y c)−k] logC′[θ(
1 + Y c)−k]}

,

C2 E
[
log(X)

] = θ

C(θ)
E

{
C′[θ(

1 + Y c)−k] log(Y )
}
,

C3 E
[
log

(
1 + Xc)] = θ

C(θ)
E

{
C′[θ(

1 + Y c)−k] log
(
1 + Y c)}.

Proof. The constraints C1, C2 and C3 are easily demonstrated and the proofs are
omitted. �

In the next proposition, we demonstrate that the BXIIPS family has maximum
entropy in the family of all probability distributions specified by the constraints
stated therein.
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Proposition 5. The density function f (·) of a random variable X, given by (2.4),
is the unique solution of the optimization problem

f = arg max
h∈F HSh(h),

under the constraints C1, C2 and C3 given in Proposition 4.

Proof. The proof is given in the Appendix A. �

The intermediate steps in the proof of the above proposition in fact provide the
following explicit expression for the Shannon entropy of X:

HSh(f ) = logC(θ) − log(θck) − θ(c − 1)

C(θ)
E

{
C′[θ(

1 + Y c)−k] log(Y )
}

− θ

C(θ)
E

{
C′[θ(

1 + Y c)−k] logC′[θ(
1 + Y c)−k]}

+ θ(k − 1)

C(θ)
E

{
C′[θ(

1 + Y c)−k] log
(
1 + Y c)},

where Y has p.d.f. given by (1.2).
Some results in this section can be obtained numerically in any symbolic soft-

ware such as MAPLE, MATLAB, MATHEMATICA, Ox and R. The Ox (for academic
purposes) and R are freely distributed and available at http://www.doornik.com
and http://www.r-project.org, respectively. The infinity limit in these sums can be
substituted by a large positive integer such as 20 or 30 for most practical purposes.

4 Maximum likelihood estimation and inference

The unit log-density of X with observed value x is given by

 = (θ, c, k)

= log(θck) + (c − 1) logx − (k + 1) log
(
1 + xc)

+ logC′[θ(
1 + xc)−k] − logC(θ)

and the corresponding score function is U = (∂/∂θ, ∂/∂c, ∂/∂k)	, where

Uθ = ∂

∂θ
= 1

θ
+ C′[θ(

1 + xc)−k]−1 ∂C′[θ(1 + xc)−k]
∂θ

− C′(θ)

C(θ)
,

Uc = ∂

∂c
= 1

c
+ logx − c(k + 1)

xc−1

1 + xc
+ C′[θ(

1 + xc)−k]−1 ∂C′[θ(1 + xc)−k]
∂c

and

Uk = ∂

∂k
= 1

k
− log

(
1 + xc) + C′[θ(

1 + xc)−k]−1 ∂C′[θ(1 + xc)−k]
∂k

.

http://www.doornik.com
http://www.r-project.org
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For a random sample x = (x1, . . . , xn) of size n from X and � = (θ, c, k)	, the
total log-likelihood for � is

n = n(�) =
n∑

i=1

(i)
n ,

where 
(i)
n is the log-likelihood for the ith observation (i = 1, . . . , n) as given

before. The total score function is Un = Un(�) = ∑n
i=1 U(i), where U(i) (for

i = 1, . . . , n) has the form given before. The observed information matrix is

Jn(�) = n

⎛⎝Jθ,θ Jθ,c Jθ,k

· Jc,c Jc,k

· · Jk,k

⎞⎠ ,

whose elements are obtained from standard calculations. They are listed in Ap-
pendix C. The maximum likelihood estimator (MLE) �̂ of � is obtained numeri-
cally from the solution of the non-linear system of equations Un = 0.

Often with lifetime data and reliability studies, one encounters censoring.
A very simple random censoring mechanism that is often realistic is one in which
each individual i is assumed to have a lifetime Xi and a censoring time Ci , where
Xi and Ci are independent random variables. Suppose that the data consist of n in-
dependent observations xi = min(Xi,Ci) and δi = I (Xi ≤ Ci) is such that δi = 1
if Xi is a time to event and δi = 0 if it is right censored for i = 1, . . . , n. The
censored likelihood L(�) for the model parameters is

L(�) ∝
n∏

i=1

[
f (xi; θ, c, k)

]δi
[
S(xi; θ, c, k)

]1−δi ,

where f (xi; θ, c, k) and S(xi; θ, c, k) are given by (2.4) and (2.3), respectively.
Under conditions that are fulfilled for the parameter � in the interior of the

parameter space but not on the boundary, the asymptotic result holds
√

n(�̂ −
�)

A∼ N3(0,K(�)−1), where ‘
A∼’ stands for the asymptotic distribution, K(�) =

limn→∞ n−1Jn(�) is the unit information matrix. The approximate multivariate
normal distribution N3(0, Jn(�̂)−1), where the observed matrix Jn(�) is evaluated
at �̂, can be used to construct confidence intervals for the model parameters. The
well-known likelihood ratio (LR) statistic can be adopted for testing hypotheses
on the parameters in the usual way. In particular, this statistic is useful to check
if the fit using the BXIIPS distribution is statistically superior to a fit using other
distributions for a given data set.

5 The Burr XII Poisson distribution

We consider the composition defined by the BXII (with parameters c > 0 and
k > 0) and zero truncated Poisson (with parameter θ > 0) distributions. This
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model is called the Burr XII Poisson (BXIIP) distribution. This distribution comes
from (2.2) using the function C(θ) = eθ − 1, θ > 0, which corresponds to the trun-
cated Poisson distribution. Thus, the BXIIP cumulative function reduces to

F(x; θ, c, k) = 1 − exp{θ(1 + xc)−k} − 1

eθ − 1
, x > 0. (5.1)

From the general expressions (2.4) and (2.5), the density and hazard rate func-
tions reduce to

f (x; θ, c, k) = θck

eθ − 1
xc−1(

1 + xc)−k−1 exp
{
θ
(
1 + xc)−k}

, x > 0 (5.2)

and

h(x; θ, c, k) = θckxc−1(1 + xc)−k−1

1 − exp{−θ(1 + xc)−k} , x > 0.

Here, a random variable T following (5.1) and (5.2) is denoted by T ∼
BXIIP(θ, c, k). From Propositions 1 and 2, the BXII and WP distributions are
limiting special cases of the BXIIP distribution. Further, the EP distribution is ob-
tained directly from the WP distribution for c = 1. Plots of the density and hazard
rate functions of the BXIIP distribution are displayed in Figure 1 to show its flexi-
bility to model lifetime data.

The sth moment of T has a closed-form expression obtained from (3.3) as

E
(
T s) = k

eθ − 1

∞∑
n=1

θn

�(n)
B

(
nk − s

c
,1 + s

c

)
, s < ck.

The moments of the order statistics T1:m, . . . , Tm:m from a random sample of
the BXIIP distribution are given by

E
(
T s

i:m
) = s

m∑
j=m−i+1

(−1)j−m+i−1

C(θ)j

(
j − 1

m − i

)(
m

j

)

×
∫ ∞

0
zs−1{

exp
[
θ
(
1 + zc)−k] − 1

}j dz.

They are easily obtained numerically. Further, after some algebraic calculations,
the Shannon entropy for the BXIIP distribution reduces to

HSh(f ) = log
(

eθ − 1

θck

)
− θ(c − 1)

eθ − 1
E

{
C′[θ(

1 + Y c)−k] log(Y )
}

− θ

eθ − 1
E

{
C′[θ(

1 + Y c)−k] logC′[θ(
1 + Y c)−k]}

+ θ(k − 1)

eθ − 1
E

{
C′[θ(

1 + Y c)−k] log
(
1 + Y c)}.
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(a) θ = 0.2 and c = 1 (b) θ = 0.5 and k = 0.5

(c) θ = 0.2 and k = 2 (d) θ = 0.9 and c = 0.9

Figure 1 Plots of the BXIIP density and hazard functions for some parameter values.

Setting u = (1 + yc)−k , we obtain

E
{
C′[θ(

1 + Y c)−k] log(Y )
} = 1

c

∫ 1

0
eθu log

(
u−1/k − 1

)
du

and

E
{
C′[θ(

1 + Y c)−k] logC′[θ(
1 + Y c)−k]} =

∫ 1

0
θueθu du = eθ (θ − 1) + 1

θ
.

By expanding eθu in power series and using (for a > −1)
∫ 1

0 ua log(u)du = −(a +
1)−2, we have

E
{
C′[θ(

1 + Y c)−k] log
(
1 + Y c)} = −1

k

∫ 1

0
eθu log(u)du = 1

k

∞∑
j=0

θj

(j + 1)2j ! .
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Hence,

HSh(f ) = log
(

eθ − 1

θck

)
− θ(c − 1)

c(eθ − 1)

∫ 1

0
eθu log

(
u−1/k − 1

)
du

(5.3)

− eθ (θ − 1) + 1

eθ − 1
+ θ(k − 1)

eθ − 1

∞∑
j=0

θj

(j + 1)2j ! .

The integral in (5.3), say J1, is determined in the Appendix B as

J1 = −k(a + 1)

∞∑
k=0

θnHk(n+1)−k2+1

n! − k−1
∞∑

n=0

θn

(n + 1)2n! ,

here Ha+1 is the harmonic number.

6 The Burr XII geometric distribution

The Burr XII geometric (BXIIG) distribution arises by taking C(θ) = θ(1 − θ)−1

corresponding to the geometric distribution in (2.2). We denote a random variable
Z with the BXIIG distribution by T ∼ BXIIG(θ, c, k). The c.d.f. and p.d.f. of T

are given by

F(x; θ, c, k) = 1 − (1 + xc)−k

1 − θ(1 + xc)−k
, x > 0

and

f (x; θ, c, k) = ck(1 − θ)xc−1(1 + xc)−k−1

[1 − θ(1 + xc)−k]2 , x > 0. (6.1)

Its hazard rate function becomes

h(x; θ, c, k) = ckxc−1

(1 + xc)[1 − θ(1 + xc)−k] , x > 0.

It is quite clear that the BXII distribution is the limiting case when θ → 0+. For
β and θ → 0+, we obtain the Weibull distribution as a limiting case. So, the WG
distribution is also a special case of the BXIIG distribution when β → 0. The EG
distribution is immediately obtained from the WG distribution for c = 1. Plots of
the BXIIG density and hazard rate functions are displayed in Figure 2.

The sth moment of T is given by

E
(
T s) = k(1 − θ)

∞∑
n=1

nθn−1B

(
nk − s

c
,1 + s

c

)
.

An explicit expression for the sth moment of the ith order statistic Ti:m is given by

E
(
T s

i:m
) = s

m∑
j=m−i+1

(−1)j−m+i−1

C(θ)j

(
j − 1

m − i

)(
m

j

)∫ ∞
0

zs−1
(

1

θ(1 + zc)k − 1

)j

dz.



The Burr XII power series distributions 581

(a) θ = 0.2 and c = 2 (b) θ = 0.5 and k = 2

(c) θ = 0.2 and c = 2 (d) θ = 0.5 and k = 0.5

Figure 2 Plots of the BXIIG density and hazard functions for some parameter values.

Further, we obtain an expression for the BXIIG Shannon entropy

HSh(f ) = − log
[
ck(1 − θ)

] − 2
[
θ + log(1 − θ)

] − (1 − θ)(k − 1) log(1 − θ)

(6.2)

− (1 − θ)(c − 1)

∫ 1

0

log(z−1/k − 1)

(1 − θz)2 dz.

The integral in (6.2), say J2, is determined in the Appendix B as

J2 = k

∞∑
n,j=1

nθn−1

j (nk + j)
− log(1 − θ)

kθ
.
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7 Empirical illustrations

In this section, we compare the fits of some special models of the BXIIPS class
by means of two real data sets to show the potential of the new class. In order to
estimate the parameters of these special models, we adopt the maximum likeli-
hood method (as discussed in Section 4) and all the computations were done using
the subroutine NLMixed of the SAS software. We also fit the BXII and WP dis-
tributions to make a comparison with the BXIIPS models. The c.d.f. of the WP
distribution (for x > 0) is given by

F(x; θ,α,β) = [
eθ exp(−βxα) − eθ ](

1 − eθ )−1
,

where θ,α and β are positive parameters. For these distributions, we estimate the
model parameters and compare the valu es of the Kolmogorov–Smirnov (K–S)
statistic, −2(�̂), Akaike information criterion (AIC) and Bayesian information
criterion (BIC).

The first data set consists of the 1519 observations of budget share for fuel
expenditure of british households. They were drawn from the 1980–1982 British
Family Expenditure Surveys (FES) and studied by Blundell et al. (1998) which
has been concerned with investigating the ‘shape’ of consumer preferences using
semi-parametric methods. In Table 2, we list the MLEs of the parameters (with
corresponding standard errors in parentheses), −2(�̂), the K–S, AIC and BIC
statistics for the BXIIP, BXIIG, BXII and WP models.

Roughly, we conclude that all competing distributions can be used to model
these data. However, the K–S test and the current statistics indicate that the
BXIIPS distributions outperform the other distributions. Plots of the estimated
p.d.f. and c.d.f. of the fitted BXIIP, BXIIG, BXII and WP models to the first
data set are displayed in Figure 3, confirming the superiority of the BXIIG
model.

Table 2 Parameter estimates, K–S, AIC and BIC statistics for the first data set

Distribution θ̂ ĉ k̂ α̂ β̂ K–S −2(�̂) AIC BIC

BXIIP 4.8519 2.3229 49.4268 – – 0.2216 −5219 −5213 −5197
(0.4989) (0.0442) (7.8702)

BXIIG 0.9997 3.2964 1.3124 – – 0.2161 −5276 −5270 −5254
(0.0001) (0.0697) (1.0877)

BXII – 1.9063 76.8212 – – 0.2617 −5082 −5078 −5067
– (0.0336) (5.4854)

WP 4.9389 – – 2.4126 47.1347 0.2278 −5215 −5209 −5193
(0.4968) – – (0.0446) (7.4834)
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(a) (b)

Figure 3 Estimated (a) p.d.f. and (b) c.d.f. for the BXIIP, BXIIG, BXII and WP models for the first
data set.

Table 3 Parameter estimates, K–S, AIC and BIC statistics for the second data set

Distribution θ̂ ĉ k̂ α̂ β̂ K–S −2(�̂) AIC BIC

BXIIP 7.5291 2.4189 30.8878 – – 0.1075 −61.6 −55.6 −52.6
(2.2724) (0.3279) (17.9114)

BXIIG 0.9999 4.1000 1.2937 – – 0.0945 −72.4 −66.4 −63.4
(0.0000) (0.9625) (3.3203)

BXII 1.6924 29.9045 – – 0.3087 −53.9 −49.9 −49.2
(0.2235) (12.5340)

WP 5.1247 2.3989 27.3059 0.2395 −61.1 −55.1 −52.2
(2.2736) (0.3326) (16.8773)

As a second example, we consider a data set from Murthy et al. (2004) consist-
ing of the failure times of 20 mechanical components. The data are: 0.067, 0.068,
0.076, 0.081, 0.084, 0.085, 0.085, 0.086, 0.089, 0.098, 0.098, 0.114, 0.114, 0.115,
0.121, 0.125, 0.131, 0.149, 0.160 and 0.485. In Table 3, we display the MLEs of
the parameters (with corresponding standard errors in parentheses) and the val-
ues of the K–S, −2(�̂), AIC and BIC statistics for the BXIIP, BXIIG, BXII and
WP models. They indicate that the BXIIP and BXIIG distributions are superior to
the other distributions in terms of model fitting. From the figures in Table 3, we
conclude that the BXIIPS distributions provide better fits to these data than the
BXII and WP models. Plots of the estimated p.d.f. and c.d.f. of the fitted BXIIP,
BXIIG, BXII and WP models to the second data set are displayed in Figure 4.
They indicate that the BXIIG yields the best fit.
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(a) (b)

Figure 4 Estimated (a) p.d.f. and (b) c.d.f. for the BXIIP, BXIIG, BXII and WP models for the
second data set.

8 Concluding remarks

We define a new class of lifetime models called the Burr XII power series (BXIIPS)
family of distributions. It includes the Weibull power series distributions (Morais
and Barreto-Souza, 2011) as limiting cases. The BXIIPS density function can be
expressed as a mixture of BXII density functions. This property is important to
explore several new results for special models. Explicit expressions are derived for
the ordinary and incomplete moments, quantile and generating functions, order
statistics and their moments and Shannon entropy. The estimation of the model
parameters was performed using maximum likelihood. The observed information
matrix is determined. We fit the BXIIPS models to two real data sets to show the
potential of the proposed family. Finally, we hope that this generalization may
attract more complex applications in the literature of lifetime models.

Appendix A: Proofs of Propositions 1, 2 and 3

Proof of Proposition 1. For x > 0, we have

lim
θ→0+ F(x) = 1 − lim

θ→0+

∑∞
n=1 an[θ(1 + xc)−k]n∑∞

n=1 anθn

= 1 − lim
θ→0+

(1 + xc)−k + a−1
1

∑∞
n=2 anθ

n−1(1 + xc)−nk

1 + a−1
1

∑∞
n=2 anθn−1

= 1 − (
1 + xc)−k

. �
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Proof of Proposition 3. We have C′(θ) = ∑∞
n=1 nanθ

n−1. By using this result in
(2.4), we obtain

f (x; θ, c, k) = ckθ

C(θ)
xc−1(

1 + xc)−k−1
∞∑

n=1

nanθ
n(

1 + xc)−k(n−1)

=
∞∑

n=1

anθ
n

C(θ)
cnkxc−1(

1 + xc)−nk−1 =
∞∑

n=1

png(x; c, nk),

where g(x; c, nk) is the BXII density function with parameters c and nk. �

Proof of Proposition 5. Let z(·) be a p.d.f. which satisfies the constraints C1, C2
and C3. The Kullback–Leibler divergence between the densities z and f is

D(z,f ) =
∫
R

z log
(

z

f

)
dx.

Following Cover and Thomas (1991), we obtain

0 ≤ D(z,f ) =
∫
R

z log z dx −
∫
R

z logf dx = −HSh(z) −
∫
R

z logf dx.

Let Y have p.d.f. given by (1.2). From the definition of f and based on the con-
straints C1, C2 and C3, we have∫

R

z logf dx = log(θck) − logC(θ) + θ(c − 1)

C(θ)
E

{
C′[θ(

1 + Y c)−k] log(Y )
}

+ θ

C(θ)
E

{
C′[θ(

1 + Y c)−k] logC′[θ(
1 + Y c)−k]}

− θ(k − 1)

C(θ)
E

{
C′[θ(

1 + Y c)−k] log
(
1 + Y c)}

=
∫
R

f logf dx = −HSh(f ).

So, we obtain HSh(z) ≤ HSh(f ) with equality if and only if z(x) = f (x) for all x,
except for a null measure set, thus proving the uniqueness. �

Appendix B: Integrals J1 and J2

B.1 Integral J1

By writing J1 = ∫ 1
0 eθu[log(1 − u1/k) − k−1 log(u)]du, we can determine the first

integral, say J11, after setting x = 1−u1/k , from the power series for the exponen-
tial function and the integral (for a > −1)

∫ 1
0 (1 − u)a log(u)du = −Ha+1/(a − 1)

given by Mathematica. Here, Ha+1 is the harmonic number defined for real
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a > 0 by Ha+1 = (a + 1)
∑∞

k=1[k(a + k + 1)]−1 (see http://en.wikipedia.org/
wiki/Harmonic_number). We obtain J11 = −k(a + 1)

∑∞
k=0 n!−1θnHk(n+1)−k2+1.

For the second integral J12, we expand the exponential function in power series
and use

∫ 1
0 za log(z)dz = −(a + 1)−2 (for a > −1). After some algebra, we have

J12 = −k−1 ∑∞
n=0 θn/[(n + 1)2n!]. Combining the results, we obtain J1 given in

Section 5.

B.2 Integral J2

The integral J2 in (6.2) can be determined by writing

J2 =
∫ 1

0

log(1 − z1/k)

(1 − θz)2 dz −
∫ 1

0

log(z1/k)

(1 − θz)2 dz.

By using (1 − θz)−2 = ∑∞
n=1 n(θz)n−1 and setting z = xk , the first integral J21 in

J2 can be written as

J21 = k

∞∑
n=1

nθn−1
∫ 1

0
xnk−1 log(1 − x)dx.

Since log(1 − x) = −∑∞
j=1 xj/j , we obtain J21 = k

∑∞
n,j=1[nθn−1]/[j (nk +

j)]. The second integral J22 in J2 is computed using Mathematica as J22 =
(kθ)−1 log(1 − θ). Then, it follows J2 as given in Section 6.

Appendix C: Elements of the observed information matrix

The elements of the 3 × 3 information matrix Jn(�) are

Jθ,θ = − n

θ2 +
n∑

i=1

z3i

z2i

[(
1 + xc

i

)−k]2 −
n∑

i=1

z2i

z2
1i

[(
1 + xc

i

)−k]2 − nC(θ)−1 ∂2C(θ)

∂θ2

+ nC(θ)−2
[
∂C(θ)

∂θ

]2

,

Jθ,c = θk

n∑
i=1

[(
z2i

z1i

)2

− z2
2i

z1i

]
xc
i

(
1 + xc

i

)−2k−1 logxi

− k

n∑
i=1

z2
2i

z1i

xc
i

(
1 + xc

i

)−k−1 logxi,

Jθ,k = θ

n∑
i=1

(
z2i

z2
1i

− z3i

z1i

)(
1 + xc

i

)−2k log
(
1 + xc

i

)

−
n∑

i=1

z2i

z1i

(
1 + xc

i

)−k log
(
1 + xc

i

)
,

http://en.wikipedia.org/wiki/Harmonic_number
http://en.wikipedia.org/wiki/Harmonic_number
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Jc,c = −n

c
− (k + 1)

n∑
i=1

xc
i (logxi)

2

1 + xc
i

+ (θk)2
n∑

i=1

(
z3i

z1i

− z2i

z1i

)
x2c
i

(
1 + xc

i

)−2(k+1)
(logxi)

2

+ θk(1 + k)

n∑
i=1

z2i

z1i

x2c
i

(
1 + xc

i

)−k−2
(logxi)

2

− θk

n∑
i=1

z2i

z1i

xc
i

(
1 + xc

i

)−k−1
(logxi)

2,

Jc,k = θ2k

n∑
i=1

(
z3i

z1i

− z2i

z1i

)
xc
i

(
1 + xc

i

)−2k−1 log(xi) log
(
1 + xc

i

) −
n∑

i=1

xc
i logxi

1 + xc
i

+ θ(k − 1)

n∑
i=1

z2i

z1i

xc
i

(
1 + xc

i

)−k−1 log(xi) log
(
1 + xc

i

)
and

Jk,k = −n

k
+ θ2

n∑
i=1

(
z3i

z1i

− z2i

z1i

)(
1 + xc

i

)−2k log2(
1 + xc

i

)

+ θ

n∑
i=1

z2i

z1i

(
1 + xc

i

)−k log2(
1 + xc

i

)
,

where z1i = C′(θ(1 + xc
i )

−k), z2i = C′′(θ(1 + xc
i )

−k) and z3i = C′′′(θ(1 + xc
i )

−k)

for i = 1, . . . , n.
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