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Preface

The Burrows-Wheeler Transform is one of the best lossless compression meth-
ods available. It is an intriguing — even puzzling — approach to squeezing
redundancy out of data, it has an interesting history, and it has applications
well beyond its original purpose as a compression method. It is a relatively
late addition to the compression canon, and hence our motivation to write
this book, looking at the method in detail, bringing together the threads that
led to its discovery and development, and speculating on what future ideas
might grow out of it.

The book is aimed at a wide audience, ranging from those interested in
learning a little more than the short descriptions of the BWT given in stan-
dard texts, through to those whose research is building on what we know
about compression and pattern matching. The first few chapters are a careful
description suitable for readers with an elementary computer science back-
ground (and these chapters have been used in undergraduate courses), but
later chapters collect a wide range of detailed developments, some of which
are built on advanced concepts from a range of computer science topics (for
example, some of the advanced material has been used in a graduate com-
puter science course in string algorithms). Some of the later explanations
require some mathematical sophistication, but most should be accessible to
those with a broad background in computer science.

We have aimed to provide a detailed introduction to the current state
of knowledge about the Burrows-Wheeler Transform. This ranges from ex-
planations and examples of how the transform works, through analyzing the
theoretical performance of the transform from various view points, to con-
sidering issues relevant to implementing it on “real” systems. Each chapter
(except the last one) contains a “further reading” section to guide the reader
around the large collection of literature that has explored the BWT in detail,
and Appendix B points to ongoing research.

An important theme in this book is pattern matching and text indexing
using the BWT. Because the transformed text contains a sorted version of
the original text, it has considerable potential to help with locating patterns,
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and we look in detail at a number of variations that have been proposed and
evaluated.

The BWT literature uses a variety of notation for the various structures
used in the transform. Where possible we have tried to use standard notation,
but unfortunately some key notations conflict with those used in the standard
pattern matching literature, and so we have chosen to coin some new notations
to avoid having the same notation with two meanings, at times in the same
paragraph! Appendix A gives a summary of the notation used to avoid any
confusion.

The BWT continues to be actively researched, and this book is merely a
milestone in its history. Appendix B gives links to web sites that will be worth
watching for future developments of the BWT and related systems.

We are also aware that despite some excellent help with checking this
book, it will contain errors and require updates. An errata site is available
at http://www.cosc.canterbury.ac.nz/tim.bell/bwt/. We welcome feed-
back on the book, and this can be sent to the authors via the contact details
on this web site.
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1

Introduction

The greatest masterpiece in literature is only a dictionary out of order.
Jean Cocteau

Here is a two word phrase in which the characters have been rearranged:
atd nrsoocimpsea. Can you work out what the two words are that contain
all these characters (including the space)? They could be comedian pastors,
but they aren’t. Nor are they darpa economists, massacred potion, maniac
doorsteps or even scooped martians.

This puzzle is an example of the Burrows-Wheeler Transform (BWT),
which uses the intriguing idea of muddling (we prefer to call it permuting) the
letters in a document to make it easier to find a compact representation and to
perform other kinds of processing. What is amazing about the BWT is that
although there are 2,615,348,735,999 different ways to unmuddle the above
characters into possible anagrams, the Burrows-Wheeler Transform makes it
very easy to find the unique correct permutation very quickly.

The main point of permuting a text using the BWT is not to make it dif-
ficult to read, but to make it easy to compress. For example, for the following
line from Hamlet’s famous soliloquy:

“To be or not to be: that is the question, whether tis nobler in the
mind to suffer the slings and arrows of outrageous fortune.”

we get the transformed text:

“sdoosrtesrsefeeoe:nsrrtdn,r h onnhbhhbglfhuhnofu antttttw mltt bs
ioaiui Tttn i fne r eoeetraoguiwi e ao es e. urqstoo o”
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Notice that many characters in the transformed text appear in runs, or
very close to previous occurrences. For longer texts this is even more notice-
able; here is a typical excerpt from a Burrows-Wheeler Transform of all of
Shakespeare’s Hamlet:

nnnnnnnnnnnnnnnnnntnnnnnnnhnnngnnnnnnnnjnnnnnhdnnng

nnnnonnNnnnhhNnnnnnnnnntnnhnnnnnnnnnnnnnnNnndnnnhnn

nnnNnnnnnnnnnnnnnnnnnnnnnonntnnNNnnnnnnnndngnnnnnnn

nnnnnnnNnnnnnnnngnnnnnnnnnnnnnnnnnngnnnnnnnnonnnnnn

nnnNNnlnnnhnnnnnnnnnntdbdnnrrmnnmnmnnnuoccppppppdnr

rDolBbbdddodbbBddbbddbdBdbbdbdDddddBbbbbdDbubbdbdbB

This clustering of characters makes compression very easy. One simplistic
way to code it would be to replace repeated characters with a number that
says how many times it is repeated; for example, the first line above could be
coded as:

19nt7nh3ng8nj5nhd3ng

In practice BWT coders use more sophisticated representations that take
advantage of the mixture of frequently occurring characters (for example, the
first four lines in the above example contain only 8 different characters, almost
all of which are “n”, “N”, “h” or “g”). The point is that the transform makes
the encoding task a lot simpler, and importantly, can give compression that
is comparable with the very best lossless compression methods. Furthermore,
it is generally faster than methods that give a similar amount of compression.

It has transpired that the BWT is useful for a lot more than compression
because it contains an implicit sorted index of the input string. In this book
we will review many of its other uses, especially for pattern-matching and
full-text indexing, which leads to applications ranging from bioinformatics to
machine translation.

The Burrows-Wheeler Transform method is often referred to as “block
sorting”, because it takes a block of text and permutes it. The main disad-
vantage of the block-wise approach is that it cannot process text character by
character; it must read in a block (typically tens of kilobytes) and then com-
press it. This is not a limitation for most purposes, but it does rule out some
applications that need to process data on-the-fly as it arrives. Another im-
portant point is that the text can be sorted ; throughout this book we assume
a unique ordering on the characters or symbols that are in the text so that
substrings can be compared by the sorting algorithms. Most implementations
work with a character set such as ascii or 8-bit bytes, for which comparisons
are trivial, but we shall see later that variations are possible where we take a
more sophisticated approach to the ordering.
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1.1 An example of a Burrows-Wheeler Transform

In this section we will give a simple example of how a text is transformed
and reconstructed using the BWT. The method described here is for clarity
of explanation, and in later chapters we will look at equivalent approaches
that are a lot faster and simpler to implement, so don’t be put off if it seems
to be resource-hungry.

We will use a rather short block of text in this example: “aardvark$”.
The dollar sign is a sentinel, or end of string character, that we’ve added to
simplify the explanation.

To generate the BWT, we list all nine rotations of the nine-character string,
as shown in Figure 1.1a; that is, for every position in the string, we create a
string of nine characters, wrapping around to the beginning if it runs off the
end. The list is then sorted into lexical (dictionary) order (Figure 1.1b) (in
this case we’ve assumed that $ comes at the start of the lexical ordering). The
transform is now complete, and the last column (i.e. last character of each
row from top to bottom) is the output (Figure 1.1c).

aardvark$

ardvark$a

rdvark$aa

dvark$aar

vark$aard

ark$aardv

rk$aardva

k$aardvar

$aardvark

$aardvark

aardvark$

ardvark$a

ark$aardv

dvark$aar

k$aardvar

rdvark$aa

rk$aardva

vark$aard

k$avrraad

(a) (b) (c)

Fig. 1.1. Burrows-Wheeler Transform of the string “aardvark$”: (a) all rotations
of the text are listed; (b) the list is sorted; (c) the last column is extracted as the
BWT

The transform is that simple; in fact, in practice it is even simpler, as the
substrings are never created, but are simply stored as references to positions in
the original string. The size of the transformed text is identical to the original,
and contains exactly the same characters but in a different order. This might
seem to have achieved nothing, but as we shall see, it makes the text much
easier to compress because it has drawn together characters that occur in
related contexts — that is, characters that precede the same substrings.

It might seem that decoding the transformed text would be very difficult;
after all, how do you “unmuddle” a list when there is an exponential number
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of ways to do it? The amazing thing about the BWT is that the reverse
transform not only exists, but it can be done efficiently. A key observation
is that we can reconstruct the list in Figure 1.1b, one column at a time.
Figure 1.2a reproduces the list that we wish to construct, with the columns
labeled. Traditionally we use F and L to label the first and last columns
respectively; the others have been numbered for reference.

F2345678L

$aardvark

aardvark$

ardvark$a

ark$aardv

dvark$aar

k$aardvar

rdvark$aa

rk$aardva

vark$aard

F2345678L

        k

        $

        a

        v

        r

        r

        a

        a

        d

F2345678L

$       k

a       $

a       a

a       v

d       r

k       r

r       a

r       a

v       d

LF            F2

k$           $a

$a           aa

aa           ar

va           ar

rd           dv

rk           k$

ar           rd

ar           rk

dv           va

F2345678L

$a      k

aa      $

ar      a

ar      v

dv      r

k$      r

rd      a

rk      a

va      d

F2345678L

$aa     k

aar     $

ard     a

ark     v

dva     r

k$a     r

rdv     a

rk$     a

var     d

(a) (b) (c)

(d) (e) (f) (g)

sort

Fig. 1.2. Decoding the BWT: (a) the encoding information that we are trying to
reconstruct; (b) the transformed BWT text in column L; (c) adding column F ; (d)
using L and F to extract all pairs of characters; (e) sorting the pairs; (f) adding the
sorted pairs to the reconstruction; (g) adding sorted triples to the reconstruction
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Column L is what the encoder sent to the decoder, so the reconstruction
can start by filling column L (Figure 1.2b). Now observe that column F is
simply all of the characters in the text in lexical order. Since the transformed
text contains all of the characters, we can reproduce column F simply by
sorting column L (Figure 1.2c).

Our next observation is that because of the wrap-around from the rotations
used to generate the substrings, for a particular row, the character in column
L must be followed by the one in column F in the original string. Thus we
can find all pairs of characters in the original string by taking pairs from the
last and then first columns (Figure 1.2d). If we sort these pairs (Figure 1.2e),
they will give us the pairs in column 1 (F ) and 2, and we now know three of
the columns (Figure 1.2f).

Applying the wrap-around principle again, we can find all triples in the
original text, sort them, and add them to the list (Figure 1.2g). We continue
doing this until the whole list has been reproduced, giving us the information
that the encoder had (Figure 1.2a). At this point it is trivial to read off the
original string; we can take any row, and starting after the end-of-file symbol,
read the characters, wrapping around at the end of the row.

This may seem like a lot of work to do the decoding. In practice most of
the process just described is unnecessary and decoding can be done in O(n)
time by creating an auxiliary array that enables us to navigate around the
transformed text. This is covered in detail in Chapter 2, but in the meantime,
we will observe that the relationships just described mean that we can easily
match the characters in columns L and F .

The transform that we have just described doesn’t change the size of the
file that has been transformed. However, when it is done to large files, we shall
see that it makes the file a lot easier to compress because we end up with a
very obvious clustering of characters.

1.2 Genesis of the Burrows-Wheeler Transform

The Burrows-Wheeler Transform is one of the most effective text compres-
sion methods to come out of the 20th century, yet its intriguing method of
compression and its unusual history have meant that it was almost overlooked!

Data compression has turned out to be fundamental to getting things done
on digital devices. Without mp3 files we couldn’t download music or carry lots
of songs in portable devices; without jpeg files digital cameras would only take
a few shots before filling up and photos on web pages would take forever to
load; and without the mpeg standard DVDs would only hold a few minutes
of movies and the phrase “viral video” would never have been coined.

In this book we focus on lossless methods, which are able to decompress
a file to exactly the same as it was before being compressed. However, many
lossy methods (which are typically used for sound and images) rely on lossless
methods in their final stage.
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Compression on computers spans the second half of the 20th century. Shan-
non’s ground-breaking paper on information theory is generally regarded as
the foundation of compression systems (Shannon, 1948). The paper included
a proposed coding method that has come to be known as Shannon-Fano cod-
ing, which was one of the earliest methods used to take advantage of some
characters being more likely than others. Shannon-Fano coding is suboptimal,
and it was one of Fano’s students, David Huffman, who in 1952 published his
well-known algorithm (Huffman, 1952), which became a stock technique and
is still used today as a part of many kinds of compression system, includ-
ing general-purpose lossless methods and systems for compressing audio and
images. The next major improvements in compression performance came in
the late 1970s, when Ziv and Lempel published the “LZ” methods which are
still widely used in formats such as gif and png images, as well as the zip

and gzip utilities (Ziv and Lempel, 1977, 1978). The LZ family of methods
became popular because it gave excellent compression and yet was practical
to run on computers at the time. By the time the 1980s arrived, Rissanen and
Langdon (1979) had published a significant improvement on Huffman coding,
called “Arithmetic Coding”1. This opened up a new way of looking at com-
pression, and became the basis of a new wave of compression methods in the
mid 1980s that used sophisticated models of text to achieve a new level of
compression by “predicting” what the next character would be. At the time
these methods were too resource intensive to be used as a utility, but they
provided a new benchmark for compression performance. Of particular note
was the PPM method, developed by Cleary and Witten (1984), and several
subsequent variations that set new records for the amount of compression that
could be achieved.

Arguably the last 20th century breakthrough in general purpose lossless
compression methods was Burrows and Wheeler’s enigmatic transform, the
BWT. David Wheeler had come up with the transform as early as 1978,
but it wasn’t until 1994 that, with the help of Mike Burrows, the idea was
turned into a practical data compression method, which was then published
in a Digital Systems Research Center (Palo Alto) research report (Burrows
and Wheeler, 1994). Their “block-sorting code”, also dubbed the “Burrows-
Wheeler Transform”, left compression practitioners scratching their heads, as
it involved rearranging the characters in a text before encoding, and then
magically arranging them back in their original order in the decoder. The
fact that the original can be re-created at all is somewhat astonishing, and
their early work took some time to receive the recognition it deserved. Within
a couple of years several authors and programmers had picked up the idea,
apparently mainly through publications by Peter Fenwick (Fenwick, 1995b,c,

1 Peter Elias had come up with the idea some time earlier, but apart from a brief
mention in Abrahamson’s 1963 book Information Theory and Coding, it did not
get published as a feasible coding method until Rissanen and Langdon’s paper
appeared.
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1996a,b) which led to Julian Seward’s bzip implementation. Around the same
time there was a writeup by Mark Nelson in Dr Dobb’s Journal (Nelson,
1996), and the BWT also appeared through informal channels such as on-line
discussion groups.

Burrows and Wheeler have other significant achievements in the field of
computing. David Wheeler (1927–2004) had a distinguished career, having
worked on several early computers, including EDSAC which, in 1949, be-
came the first stored program computer to be completed. Wheeler invented a
method of calling closed subroutines which led to having a library of carefully
tested subroutines, a concept that has been crucial for breaking down com-
plexity in computer programming. Together with Maurice Wilkes and Stanley
Gill, in 1951 he published the first book on digital computer programming2.
He also did important work in cryptography, including the “Tiny Encryption
Algorithm” (TEA), an encryption system that could be written in just eight
lines of code, which made a mockery of US regulations that controlled the
export of encryption algorithms — this one was small enough to memorize!
Wheeler also designed and commissioned the first version of the Cambridge
Ring, an experimental local network system based on a ring topology.

(a) (b)

Fig. 1.3. (a) David Wheeler (b) Michael Burrows

His work on compression developed during his time as a research consul-
tant at Bell Labs (Murray Hill, N.J.) in 1978 and 1983. He retired in 1994
(the same year that the seminal BWT paper was released). His distinctions
include being a Fellow of the Royal Society (1981), and a Fellow of the ACM
(1994).

Michael Burrows also has a high profile outside his contribution to the
BWT. He is one of the main people who developed the AltaVista search

2 The Preparation of Programs for an Electronic Digital Computer, published by
Addison-Wesley Press, Cambridge.
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engine in 1995, which represented the state of the art prior to the arrival of
Google’s search engine. He later worked for Microsoft, and in 2007 is a senior
researcher working at Google on their distributed infrastructure. Burrows had
been supervised by Wheeler in the mid-1980s doing a PhD at Cambridge, and
then went to work at Digital in the US. Wheeler had invented the transform in
the 1970s, but it wasn’t until he visited Digital in Palo Alto and then worked
remotely with Burrows by email in 1990 that it was finally written up as a
compression method.

In the late 1990s BWT was still regarded as being too slow for many appli-
cations, but its compression performance became well understood. Wheeler’s
“bred” (block reduce) and “bexp” (block expand) programs provided a pub-
licly available implementation of the BWT method that proved the concept,
but it was Julian Seward’s efficient implementation as a general purpose util-
ity called bzip in 1996 that established BWT as something that had practical
utility. A new version of Seward’s utility called bzip2 is now widely used be-
cause on today’s hardware it can compress large files at speeds that are quite
acceptable for interaction, to a smaller size than other widely used general
purpose methods. For example, the 4 Mbyte file “bible.txt” from the Canter-
bury corpus can be compressed by bzip2 in about 2 seconds on a 2.4 GHz
computer, and decompressed in about 1 second. The gzip utility compresses
about three times as fast (and decompresses an order of magnitude faster),
but the gzip file is 40% larger than the bzip2 one. Interestingly, bzip2 com-
bines one of the most recent compression breakthroughs (BWT) with one of
the first (Huffman coding).

By the late 1990s researchers began to realize that the BWT approach
might be useful for more than just compressing text. Because the BWT hap-
pens to “sort” the text into alphabetical order, the permuted text has the
added benefit of acting as a kind of dictionary for the original text. Tradi-
tionally an index and the compressed text would be stored separately, even
though they contain effectively the same information. In this light, the BWT
is an intermediate representation that is halfway between a text and an index;
the original text can be reconstructed efficiently from it, yet sorted lists like
the one shown in Figure 1.1b are ripe for binary searching, giving very fast
searching for arbitrary fragments in the text.

In this book we explore this intriguing view of a transformed file as both
the text and an index, and look at applications that exploit this. But first let’s
take a look at some key ideas behind the BWT: transformation, permutation,
and recency.

1.3 Transformation

Suppose you had to calculate, in Roman numerals, the sum MCMXCIX + I.
Perhaps you know a method for adding Roman numerals, but chances are that
you would have transformed the problem into a more familiar notation: 1999
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+ 1. The sum is now easily calculated, and the answer in Roman numerals is
obtained by a reverse transform, as shown in Figure 1.4.

MCMXCIX + I 1999 + 1

2000MM

transform

reverse transform

calculate
in easier
domain

Fig. 1.4. Calculating MCMXCIX + I using a transform

Different representations have different strengths; Roman numerals might
not seem that easy to work with, but they look impressive, and some say that
they are used to show the dates in movie and TV credits to make it difficult
for a casual viewer to determine how old the film is.

Transformations have long been put to more practical uses in engineering,
to convert a representation to a “space” in which it is easier to work with.
One of the best known is the Fourier transform, which converts a signal into
the sum of a set of sine waves. In this format, it is easy to perform operations
such as boosting the bass in an audio signal (just increase the amplitude of
the low frequency sine waves), or to find areas in an image with a lot of detail
(look for high frequency sine waves with a high amplitude).

Transformations related to the Fourier transform, especially the Discrete
Cosine Transform (DCT), have long been used in lossy compression methods
for audio and image compression, such as mp3 and jpeg. Viewing a signal as a
sum of cosine waves makes it easy to compress because it is possible to decrease
the level of detail stored, especially for components that are difficult to hear or
see — in fact, some frequencies could even be eliminated. The information is
also easy to decompress, as it is simply the sum of the frequency components.

Transforms open up new ways to manipulate and store data, in the same
way as the language one is using can affect the way that we understand our
world (the Sapir–Whorf hypothesis). Or more bluntly, when the only tool that
you have is a hammer, every problem looks like a nail. A transformation gives
us a new tool to solve a problem, a new language to describe what we can do
with the data.

Generally a transform doesn’t change the amount of data used to represent
a signal; it just gives us a new way of looking at it. Here, any compression
happens after the transformation, and is done either by exploiting patterns
exposed by the transformation, or by using a less accurate representation for
components in a way that is not likely to be perceived by a human.
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The Burrows-Wheeler Transform was a breakthrough because it provided a
reversible transformation for text that made it significantly easier to compress.
There are many other reversible transformations that could be applied to a
text — for example, the characters could be stored backwards, or the first
two letters after each space could be transposed — but these don’t help us
to compress the text. The power of the BWT is that it pulls together related
characters, in the same way that a Fourier transform separates out high-
frequency components from low-frequency ones.

For example, Figure 1.5 shows a segment of a BWT-sorted file for Shake-
speare’s Hamlet. It is sorted into lexical order, starting at the first (F ) column.
Because each row of the table is generated by wrapping around the original
text, the last (L) column is actually the character that comes before the one
in the F column. So from the figure we can see that “ot ” is normally pre-
ceded by n, but occasionally by h, g or j. It now becomes clear why we get so
much repetition in the transformed file; the characters are clustered according
to what words or phrases they are likely to precede — u is likely to precede
estion, m or w are likely to precede ent, and so on. Some characters are very
predictable — osencrantz and Guildenstern is always preceded by an R,
while others are less so — est occurs in Hamlet preceded by every letter of
the alphabet except a, o, q, v, x, y and z.

F . . . L

ot look upon his like again. . . . n

ot look upon me; Lest with th . . . n

ot love on the wing,-- As I p . . . h

ot love your father; But that . . . n

ot made them well, they imita . . . n

ot madness That I have utter’ . . . n

ot me’? Ros. To think, my lor . . . n

ot me; no, nor woman neither, . . . n

ot me? Ham. No, by the rood, . . . g

ot mend his pace with beating . . . n

ot mine own. Besides, to be d . . . n

ot mine. Ham. No, nor mine no . . . n

ot mock me, fellow-student. I . . . n

ot monstrous that this player . . . n

ot more like. Ham. But where . . . n

ot more native to the heart, . . . n

ot more ugly to the thing tha . . . n

ot more, my lord. Ham. Is not . . . j

ot move thus. Oph. You must s . . . n

ot much approve me.--Well, si . . . n

Fig. 1.5. Part of the BWT sorted list for Shakespeare’s Hamlet
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1.4 Permutation

Permutations are rearrangements of the order of symbols, such as the re-
arrangement of letters in anagrams which we have already mentioned (for
example “eleven plus two” is an anagram of “twelve plus one”). Traditionally
permutations don’t allow the repetition of a symbol — in fact, a mathematical
permutation is a subset of symbols taken from a set of distinct symbols. In
the context of this book we are interested in rearrangements of a string that
can contain duplicate characters.

If duplicates are not allowed then the number of permutations of n sym-
bols is simply n!, the factorial of n. For example, the 6 characters abcdef can
be arranged 6! = 720 ways. Allowing duplicates reduces the number of per-
mutations; in the extreme, a string such as aaaaaa which contains only one
distinct character has only one permutation. In general, if we have n charac-
ters in the text, with one character occurring n1 times, another n2 times and
so on, then the number of permutations possible is n!

n1!n2!...nk! . Hence for our
opening example, atd nrsoocimpsea, we have n = 16, three of the ni values
are 2 (for a, s and o), and the rest are 1, giving us 16!

2.2.2 =2,615,348,736,000
possible permutations (including the unpermuted text itself). The number
of permutations for a text will generally exhibit a combinatorial explosion
of possibilities, which makes the existence of the reverse BWT all the more
surprising.

Permutations have been a staple method for encryption, and are featured
in the widely used “Advanced Encryption Standard” (AES), and its 1976 pre-
decessor, the “Data Encryption Standard” (DES). In encryption, the function
of permutation is to remove any clues that might be obtained by the juxtapo-
sition of characters. It is somewhat ironic that the Burrows-Wheeler Trans-
form, which also permutes the text, has almost the opposite purpose, as it
highlights the regularities of adjacent characters. It may even be that one of
the reasons that the BWT was initially viewed with some suspicion is that
the main application of permutations in coding up to that time had been to
make it impossible to reverse the coding. The connection with encryption is
intriguing because Burrows also developed the “Tiny Encryption Algorithm”
(TEA) mentioned earlier, which is based on a similar structure to DES and
AES.

Two special cases of a permutation arise in the process of performing the
Burrows-Wheeler Transform. One is the circular shift permutation, which can
be seen in the rows of Figure 1.1a, where all of the characters are moved one
position to the left, and the first character moves to the last position. A text of
n characters usually has n circular shift permutations, although if the text is
entirely composed of repeated substrings (such as blahblahblah) then some
of the n circular shifts will produce the same string. This situation is very
unlikely to occur in practice (the most likely case being a file containing only
a single character repeated many times), but it is a case which causes unusual
behavior for the BWT.
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The other kind of permutation that arises in the BWT is one found in
the columns of a sorted list such as the one in Figure 1.1b. Each column is
also a permutation of the input text, with the first one containing all identical
characters grouped together. This column is the result of sorting the input
characters, and indeed sorting is a special case of permutation. The last col-
umn is the output of the transform, and is the one permutation of the text
that we are the most interested in. The BWT uses this particular permuta-
tion which is dictated by the sort order, but later we will look at methods
that use slightly different permutations based on different ways of comparing
substrings of the text.

Finally, a trivial permutation which comes up when discussing the Burrows-
Wheeler Transform is the reverse of the input string. The simplest implemen-
tation of the BWT will output the file in reverse order, although this is easily
avoided by reversing the input when it is read into memory before encoding,
or reversing the output from the decoder. In general reversing a string does
not affect compression performance, but in some practical situations it can.
This is discussed in Section 2.2.

1.5 Recency

In the physical world, it’s often efficient to keep recently used documents,
equipment or other resources nearby on the basis that the most recently used
items are the most likely to be used again. Of course, one can argue the
opposite: if something has been used a lot recently then perhaps we will be
finished with it soon! In practice the recency effect is a safe observation to
take advantage of, and the output of the Burrows-Wheeler Transform very
much amplifies any recency effects in the text by bringing together characters
that have occurred in related contexts.

The traditional use of the recency effect on computers is the LRU (least
recently used) mechanism for caching: when data needs to be displaced from
high-speed memory, we generally favor discarding the data that has been used
furthest in the past. The extreme form of a recency mechanism is the stack,
which allows access to only the most recently used item. While this might seem
limiting, the stack is a very powerful construct, especially for the complex task
of parsing recursively structured input such as programming languages; and
of course, the stack is fundamental to most programming language implemen-
tations for allowing recursive function invocations.

There are various ways to take advantage of the recency effect of the
BWT output, and these are discussed in detail in Chapter 3. The original
BWT paper used a “move-to-front” (MTF) system where the shortest codes
are allocated to the characters at the “front” of a list. When a character is to
be coded, its position in the list is transmitted and then it is moved to the
front of the list, thereby demoting all the other characters that were ahead
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of it in the list. Variations of this approach have been used very successfully
with the BWT.

To implement the MTF system, the compression of the BWT output could
be done by simply storing how many different characters have been encoun-
tered since the previous occurrence of the current character. For example, if
the text abbc has just been decoded then if a 2 is received next it would rep-
resent an a (because you would need to skip two different characters to get
to the previous a), while a b would be coded as a 1, and c as a 0. Very small
numbers will be common in the output from the MTF system, and these num-
bers are then represented by codes that use fewer bits for smaller numbers,
and more bits for the larger ones.

An alternative approach which has found favor in recent years for com-
pressing the BWT output avoids using the move-to-front strategy to capture
the recency effect; we simply use a conventional coder (adaptive Huffman or
arithmetic coding) and bias the probabilities to favor recent occurrences of
characters. Since the coders work with estimated probabilities, we just need
a system that estimates high probabilities for characters that have occurred
a lot recently, since the coder will use shorter codes for the high probability
events. This is done by having recent occurrences of a character contribute
significantly more to its estimated probability than past ones by reducing the
weight of “old” characters. For the BWT this bias for recency has to be very
strong, as repeated characters can occur in relatively small clusters. This will
be discussed in more detail in Section 3.2.

1.6 Pattern matching

Compression and pattern matching are closely related. One way of looking at
a compression method is that it simply looks for patterns, and takes advan-
tage of them to remove repetition. For example, Ziv-Lempel methods search
previous sections of a text for matches; if Shakespeare’s “Hamlet” is being
compressed3, and the next string to be encoded is the 18th occurrence of the
string “noble”, the system will search to find that the string occurred 1366
characters earlier, and can replace it with a reference that points back 1366
characters, and gives the length of the match (5 characters). In other com-
pression methods the pattern is a context that is being searched for, to make
predictions based on what has happened in past occurrences of the context
— for example, a compression system might want to know what character
is most likely to come after “noble”, and could find this out by locating all
previous occurrences of “noble” which will reveal that 16 of the 17 previous
occurrences were followed by a space, and one was followed by an “r”.

Because the compression process involves pattern matching, it makes sense
to try to harness all the searching done during compression if a user wants

3 There are several versions of Hamlet available; these statistics are for a particular
version from Project Gutenberg.
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to search for a key in the compressed text. This means that we might be
able to search a compressed document without decompressing it, which is
“compressed-domain searching”. Simplistically, one might compress the search
key, and try to find the encoded key in the compressed file. Unfortunately this
is unlikely to work in practice because the encoding of a substring can depend
on other text surrounding it, although a number of algorithms have been
developed for compression methods that are able to work around this.

For the Burrows-Wheeler Transform, however, the matching process is
much simpler, at least in principle, because the encoding is based on sorting
every substring of the text into lexical order — we have a sorted list (ideal
for binary search) available as a by-product of compression! For example,
Figure 1.6 shows some of the sorted strings that are generated during the
BWT encoding of Shakespeare’s Hamlet. Of course, the full substrings aren’t
actually generated; they are simply a list of references to positions in the
original text. The L column (which shows the BWT output4) is really just
the character in the original string that comes before the one in the F column.
What makes searching in the Burrows-Wheeler Transformed text easy is that
using an auxiliary array that is needed for decoding, the rows in the list can
be accessed randomly, and characters in each row are easily read off in linear
time. Thus, without fully decoding the text we are able to perform a binary
search of the original text.

For example, if we were to search for the word “nobler” in the text, we
would begin by decoding the middle few characters of the sorted list (“there’s
a special providence. . . ”) and discover that “nobler” is lexically earlier in the
file. Carrying on with the binary search brings us to the section in Figure 1.6,
and consequently to the line beginning “nobler in the mind to suffer. . . ”,
which can be decoded for as many characters as are required to show the
matched part of the text.

From this point of view, the compressed text is like a wound-up spring,
containing lexical energy added by the sorting during encoding, and waiting
to be released in a search.

1.7 Organization of this book

Now that we have looked informally at how the BWT can achieve compression,
yet still allow efficient searching, in the next chapter we will describe in some
detail how the BWT is implemented in practice, including data structures for
doing the transformation quickly, and for reversing it efficiently. Chapter 3
will consider what to do with the transformed text, as there are a variety of
methods that can be used to code the very repetitive text that is generated.

Chapter 4 looks at suffix trees and suffix arrays, which are important ideas
in compression and pattern matching. They pre-date the Burrows-Wheeler

4 The Hamlet text is similar in length to the block size used by BWT coders, so
the L column shows the level of repetition typical of the output of a BWT coder.
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F . . . L
no_sooner_shall_the_mountains . . . _

no_spirit_dare_stir_abroad;_T . . . _

no_such_stuff_in_my_thoughts. . . . _

no_such_thing?_Laer._Know_you . . . _

no_tokens._Which_done,_she_to . . . _

no_tongue,_Nor_any_unproporti . . . _

no_tongue,_will_speak_With_mo . . . _

no_tongue:_I_will_requite_you . . . _

no_tongues_else_for’s_turn._H . . . _

no_touch_of_it,_my_lord._Ham. . . . _

no_truant._But_what_is_your_a . . . _

no_wind_shall_breathe;_But_ev . . . _

no_words_of_this;_but_when_th . . . _

nobility_of_love_Than_that_wh . . . _

noble_Hamlet:_Mine_and_my_fat . . . _

noble_and_most_sovereign_reas . . . _

noble_dust_of_Alexander_till_ . . . _

noble_father_in_the_dust:_Tho . . . _

noble_father_lost;_A_sister_d . . . _

noble_father_slain_Pursu’d_my . . . _

noble_father’s_person,_I’ll_s . . . _

noble_heart.--Good_night,_swe . . . _

noble_in_reason!_how_infinite . . . _

noble_lord?_Hor._What_news,_m . . . _

noble_mind_is_here_o’erthrown . . . _

noble_mind_Rich_gifts_wax_poo . . . _

noble_rite_nor_formal_ostenta . . . _

noble_son_is_mad:_Mad_call_I_ . . . _

noble_substance_often_doubt_T . . . _

noble_youth,_The_serpent_that . . . _

noble_youth:_mark._Laer._What . . . _

nobler_in_the_mind_to_suffer_ . . . _

noblest_to_the_audience._For_ . . . _

nocent_love,_And_sets_a_blist . . . n

nock_him_about_the_sconce_wit . . . k

nocked_about_the_mazard_with_ . . . k

nocking_each_other;_And_with_ . . . k

noculate_our_old_stock_but_we . . . i

nod,_take_away_her_power;_Bre . . . y

nods,_and_gestures_yield_them . . . _

noint_my_sword._I_bought_an_u . . . a

Fig. 1.6. Another part of the BWT sorted list for Shakespeare’s Hamlet; spaces are
shown as an underscore
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Transform, which is very similar to a suffix array, and it is valuable to study
them to help understand the BWT better.

Chapter 5 reviews theoretical results for BWT-based schemes, such as uni-
versal compression, optimality issues, and computational complexity. It also
covers current challenges in improving the BWT algorithm, with respect to
compression performance, theoretical space and time complexity. This chap-
ter also explores the connection between the BWT and other compression
algorithms, such as PPM (Prediction by Partial Matching), DMC (Dynamic
Markov Compression) and LZ (Ziv-Lempel) coding.

Chapter 6 will discuss other approaches that are very closely related to
the BWT. This will include members of the class of compression algorithms
that perform compression based on sorted contexts, such as permutation-
based coding, block-sorting schemes, and newer approaches such as word-
based BWT.

Chapter 7 introduces the problem of pattern matching, and some standard
algorithms for searching uncompressed text. We then look at methods that
perform searching with the aid of the BWT, including both methods that
store indexes as part of the BWT-based compression scheme, and those that
perform searching with limited partial decompression of the BWT. These
methods exploit the sorted contexts used by BWT and other members of this
class of compression algorithm. The remainder of the chapter moves away
from exact matching, and presents several algorithms for approximate pattern
matching, longest common subsequence and sequence alignment, including
algorithms for approximate pattern matching using the BWT. It also briefly
considers hardware-based methods for pattern matching.

Chapter 8 explores emerging applications of the BWT, different from text
compression and text pattern matching, such as using the BWT for com-
pressed suffix arrays and compressed suffix trees, compressed full-text index-
ing, image compression, shape analysis, DNA sequence analysis in bioinfor-
matics, and entropy estimation.

We conclude in Chapter 9 with an overview of the BWT with speculation
on the short- and long-term direction of research work on BWT.

1.8 Further reading

The “Further reading” section at the end of each chapter will provide key
references and tangential information that may be relevant to those wanting
to study the topic of the chapter further.

The key reference for this book is Burrows and Wheeler’s original 1994
paper titled “A block-sorting lossless data compression algorithm” (Burrows
and Wheeler, 1994). Early descriptions of the method were written by Fen-
wick, initially in three technical reports (Fenwick, 1995b,c, 1996a), and then
in a 1996 article in the Computer Journal (Fenwick, 1996b). Fenwick’s work
lead to Julian Seaward’s bzip program, which evolved into bzip2, a widely
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used general-purpose implementation based on the BWT. A 1996 article by
Mark Nelson in the Dr Dobb’s Journal (Nelson, 1996) also helped to make
the idea public. Soon after that papers about the BWT appeared in the Data
Compression Conference (held annually in Snowbird, Utah) and the method
became more widely understood. A survey article about the Burrows-Wheeler
compression can be found in Fenwick (2003a). A meeting to mark the tenth
anniversary of the BWT was held by the DIMACS Center at Rutgers Uni-
versity in August 2004, and a special edition of Theoretical Computer Science
in November 2007 (volume 387, issue 3) is focused on the BWT. The special
edition includes a foreword by Michael Burrows, which gives some interesting
background to how the method was developed. It also includes three papers
that provide useful overviews and analysis of BWT: Fenwick (2007), Kaplan
et al. (2007), and Giancarlo et al. (2007).

The move-to-front (MTF) method used in the original BWT paper is based
on work by Bentley et al. (1986) which uses the MTF list for compression,
although in this case it was based on coding words rather than characters,
and thus the MTF list had to be able to deal with a large vocabulary.

The puzzle at the start of the chapter is an anagram of data compression,
which can be decoded using the inverse Burrows-Wheeler Transform5. It also
happens to decode to “don amar to spices”. Purists might have preferred us to
use the example “The Magic Words are Squeamish Ossifrage” (made famous
by the 1977 RSA cipher challenge). Interestingly “Squeamish Ossifrage” has
an anagram relevant to data compression: “I squish for a message”. However,
the BWT of “squeamish ossifrage” is “hreugiassma sfiseoq”. The example used
from Shakespeare (“To be or not to be. . . ”) also has an interesting anagram,
discovered by Cory Calhoun: “In one of the Bard’s best-thought-of tragedies,
our insistent hero, Hamlet, queries on two fronts about how life turns rotten.”

Shannon’s original 1948 paper that is the basis of much of the work in
data compression was published in the Bell System Technical Journal (Shan-
non, 1948), and subsequently in a book by Shannon and Weaver (1949).
Other important milestones in data compression prior to the Burrows-Wheeler
Transform were Huffman’s codes (Huffman, 1952), Ziv and Lempel’s meth-
ods (Ziv and Lempel, 1977, 1978), arithmetic coding (Pascoe, 1976; Rissanen,
1976; Rissanen and Langdon, 1979), and “Prediction by Partial Matching”
(Cleary and Witten, 1984). General texts about data compression include
Storer (1988), Bell et al. (1990), Nelson and Gailly (1995), Williams (1991),
Witten et al. (1999), Sayood (2000), Moffat and Turpin (2002), Sayood (2003)
and Salomon (2004).

5 Actually, the transform gives only the order of the letters; some extra information
is needed to establish which letter is the starting point, but it is a puzzle after
all!
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How the Burrows-Wheeler Transform works

This chapter will look in detail at how the Burrows-Wheeler Transform is
implemented in practice. The examples given in Chapter 1 overlooked some
important practical details — to transform a text of n characters the encoder
was sorting an array of n strings, each n characters long, and the decoder
performed n sorts to reverse the transform. This complexity is not necessary
for the BWT, and in this chapter we will see how to perform the encoding
and decoding in O(n) space, and O(n log n) time. In fact, using a few tricks,
the time can be reduced to O(n).

We will also look at various auxiliary data structures that are used for
decoding the Burrows-Wheeler Transform, as some of them, while not essential
for decoding, are useful if the transformed text is to be searched. These extra
structures can still be constructed in O(n) time so in principle they add little
to the decoding cost.

This chapter considers only the transform; in the next chapter we will
look at how a compression system can take advantage of the transformed
text to reduce its size; we refer to this second phase as the “Local to Global
Transform”, or LGT.

We will present the Burrows-Wheeler Transform for coding a string T of
n characters, T [1 . . . n], over an alphabet Σ of |Σ| characters. Note that there
is a summary of all the main notation in Appendix A on page 309.

2.1 The forward Burrows-Wheeler Transform

The forward transform essentially involves sorting all rotations of the input
string, which clusters together characters that occur in similar contexts. Fig-
ure 2.1a shows the rotations A that would occur if the transform is given T
= mississippi as the input1, and Figure 2.1b shows the result of sorting A,
which we will refer to as As.

1 We will use mississippi as a running example in this chapter. This string is
often used in the literature as an example because it illustrates the features of
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mississippi

ississippim

ssissippimi

sissippimis

issippimiss

ssippimissi

sippimissis

ippimississ

ppimississi

pimississip

imississipp

(a)

imississipp

ippimississ

issippimiss

ississippim

mississippi

pimississip

ppimississi

sippimissis

sissippimis

ssippimissi

ssissippimi

(b)

Fig. 2.1. (a) The array A containing all rotations of the input mississippi; (b)
As, obtained by sorting A. The last column of As (usually referred to as L) is the
Burrows-Wheeler Transform of the input

However, rather than use O(n2) space as suggested by Figure 2.1, we can
create an array R[1 . . . n] of references to the rotated strings in the input
text T . Initially R[i] is simply set to i for each i from 1 to n, as shown in
Figure 2.2a, to represent the unsorted list. It is then sorted using the substring
beginning at T [R[i]] as the comparison key. Figure 2.2b shows the result of
sorting; for example, position 11 is the first rotated string in lexical order
(imiss...), followed by position 8 (ippim...) and position 5 (issip...);
the final reference string is R = [11, 8, 5, 2, 1, 10, 9, 7, 4, 6, 3].

The array R directly indexes the characters in T corresponding to the first
column of As, referred to as F in the BWT literature. The last column of As

(referred to as L) is the output of the BWT, and can be read off as T [R[i]−1],
where i ranges from 1 to n (if the index to T is 0 then it refers to T [n]). In
this case the transformed text is L = pssmipissii. We also need to transmit
an index a to indicate to the decoder which position in L corresponds to the
last character of the original text (i.e. which row of As contains the original
string T ). In this case the index a = 5 is included.

In the above description the transform is completed using just O(n) space
(for R). The time taken is O(n) for the creation of the array R , plus the time
needed for sorting. Conventionally sorting is regarded as taking O(n log n)
average time if a standard method such as quicksort is used. However, some
string sequences can cause near-worst-case behavior in some versions of quick-
sort, particularly if there is a lot of repetition in the string and the pivot for
quicksort is not selected carefully. This corresponds to the traditional O(n2)
worst-case of quicksort where the data is already sorted — if T contains long
runs of the same character then the A array will contain long sorted sequences.

the BWT well. Note that there is no unique sentinel (end of string) symbol in this
example; it is not essential for the BWT, although it can simplify some aspects,
particularly when we deal with suffixes later.
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 R        T

 1        m

 2        i

 3        s

 4        s

 5        i

 6        s

 7        s

 8        i

 9        p

10        p

11        i

(a) (b)

 R           T

11           m

 8           i

 5           s

 2           s

 1           i

10           s

 9           s

 7           i

 4           p

 6           p

 3           i

...

...

...

...

...

...

...

Fig. 2.2. The R array used to sort the sample file mississippi

For example, Figure 2.3 shows the A array for the input aaaaaab. It is already
sorted because of the way the b terminates the long sequence of a characters.
It is possible to avoid this worst case behavior in quicksort with techniques
such as the median-of-three partition selection, but the nature of the BWT
problem means that even better sorting methods are possible.

Not only can the pre-sorted list cause poor performance in some versions of
quicksort, but the long nearly identical prefixes mean that lexical comparisons
will require many character comparisons, which means that the constant-time
assumption for comparisons is invalid; if all the characters are identical then
it could take O(n) time for each of the O(n2) comparisons, which would be
extremely slow, especially considering that for such a case the BWT involves
no permutations at all. Long repeated strings can occur in practice in images
that contain many pixels of the same color (such as a scan of a black-and-
white page with little writing on it) and in genomic data where the alphabet
is very small and repeated substrings are common.

aaaaaab

aaaaaba

aaaabaa

aaabaaa

aabaaaa

abaaaaa

baaaaaa

Fig. 2.3. The array A containing all rotations of the input aaaaaab


