Behavior Research Methods & Instrumentation
1974, Vol. 6, No. 2, 171-173

The BUS-ALL:
An inexpensive set of interface
for the SKED system

F. E. BUTLER
University of Iowa, lowa City, lowa 52242

A cost-effective relay-transistor interface has been developed for connecting the minicomputer with
the experimental environment. The interface contains a 10-msec clock, input (response) channels, and

output (stimulus channels,

The SKED software has been in existence for the last
6 years (Snapper, Knapp, Kushner, & Kadden, 1967).
The software has been continuously upgraded, and it has
used several types of interfaces (Snapper & Walker,
1971; Walker & Snapper, 1971; Snapper & Kadden,
1973). The new software has eliminated previous
restrictions and has economized the processing time. The
interface has not, until now, been made cost effective.

The present SKED software requires a clock that
causes an interrupt every 10 msec, at which time input
and output functions are performed. This is a change
from the previous versions of SKED that required the
responses to cause an interrupt.

THE NOTION OF INTERFACE

An interface is all the hardware that is needed to
transform real-world events to and from computer
events. At the speed of a computer, a switch closure is
not a discrete all-or-none event; rather, the switch
bounces. This can cause the computer to read many
closures of the switch when there was only one closure.
The switch closure must be filtered to eliminate switch
bounce.

The power-driving capability of a computer is limited.
A computer is not capable of activating a dipper by
itself. The interface must contain devices, such as relays,
capable of driving several amps.

The computer must know when it is time to process
the information that comes in and the information that
the computer puts out. This is done by means of an
interrupt. Every 10 msec, an interrupt occurs. An
interrupt can be caused by the clock, the Teletype, the
high-speed reader, or the high-speed punch. When an
interrupt has been caused by a device, a flip-flop is set.
The computer decides which device caused the interrupt
by means of the skip line. If the device is active, then it
is serviced and the appropriate functions are performed.

The PDP-8 transfers all programmed interrupts
through the 12-bit accumulator. There is an 8-bit device
code (BMB3 through BMBS8), which allows the
computer to service 64 12-bit interfaces. There are three

171

more bits that are used along with the device code,
namely, the three IOP pulses. The IOP pulses are issued
only on input or output command from the computer.
When the IOP pulses along with the device code are true,
the interface is serviced.

CONSIDERATIONS PROMPTING
ANOTHER INTERFACE

There are several ways of interfacing the computer
which will be considered. Each method has limitations.

One may interface the PDP-8 using the “systems”
approach. This consists of purchasing a system from a
company, such as the UDC from Digital Equipment
Corporation. This option is close to a turn-key system.
The cost of such a system is prohibitive for most.

A laboratory engineer can design and build the
interface, but many laboratories are without such
technical help. The psychologist can take the time (or
have a graduate student take the time) to learn about the
idiosyncrasies of the Flip-Chips offered by DEC. After
the logic and the polarities are worked out, the interface
may be designed and built.

In laboratories equipped with a PDP-8/e, -8/f, or -8/m,
DRS input and output cards may be used. This is a fine
system, provided the number of inputs and outputs is
small. If the number is large, the size of the cables
entering the computer becomes a problem. (This method
cannot be used with a PDP-8/L.)

Any new interface should meet certain criteria. The E
should be able to interact with the interface at the
computer site. This necessitates lights and switches on
the interface. The interface should be as turn-key as
possible. The interface should be isolated from the
laboratory as much as possible. The use of relays on the
inputs and outputs allows a high degree of isolation. The
interface should be cost effective.

The interface presented here meets these criteria. It
consists of an input, an output, and a clock card. The
input and and output cards have the logic to handle 36
bits. Relays, with the associated switches and lights, are
added in blocks of 12. The appropriate device code is

172 BUTLER

.

1

|

1 RS 3
!

) Ll e MULTI-

- FLoP PLEXER
NC N
s INO L)

15v

8M8 3 —] EMB 9
pp— e
5~ DEVICE
p—
 J—
s—_|SELECTOR

108 1 —— o i

e BMS 10

wired on the input, output, and clock cards. The relay
cards are connected to the input and output cards. The
input, output, and clock cards are inserted into slots. All
that remains for the E is to attach the external switches
and devices to the relays, load SKED, and start the
experiments, The cost per bit (exclusive of the relay,
switch, and light) is $4.17. The least expensive
alternative to this interface design is with Flip-Chips
(one M735, one M050, and two M203, for interfacing 12
in and 12 out). The cost of the Flip-Chip approach is
$8.54 per bit.

SYSTEMS ANALYSIS

Input

A simplified diagram of the input interface is given in
Fig. 1. A lever (S1) activates a relay. The relay indicates
its operation by turning on a light; the relay also sets an
R/S flip-flop. The switch will bounce, but it never
bounces all the way back to reset the flip-flop. When the
appropriate device code and IOP pulses are selected, the
output of the flip-flop is multiplexed into a bus driver
that goes into the corresponding accumulator bit. The
multiplexer gates three inputs.

The input interface is a scanning type. The
information is not stored, but is scanned on every clock
pulse. The relay has been derated from 24 to 15 V. This
slows the speed of the relay, so that no storage of
information is necessary.

If the switch closure lasts less than 10 msec, as may be
the case in work with pigeons, the normally closed
contact of the relay may be disconnected and a one-shot
attached to the reset of the flip-flop. The one-shot is
triggered by the device code and another IOP pulse.
Such a feature is incorporated in the interface.

Output

When the appropriate device code and IOP pulse are
selected, information from the accumulator is transfered
to a D flip-flop, as shown in Fig. 2. The output of the

DRIVER

—w AC IN

Fig. 1.
interface.

Simplified diagram of input

flip-flop drives a 7406 intergrated circuit. This device is
capable of driving 30 V at 40 mA. A relay is driven by
the 7406. A light indicates the status of the relay.

Clock

A M404 crystal clock is used. The lowest frequency of
the clock is 5kHz. SKED requires a clock rate of
100 Hz. Therefore, the rate must be divided by 50. The
50th clock pulse sets a flip-flop. The output of the
flip-flop causes an interrupt. The computer will then
execute an input/output command. If this command has
the appropriate device code and IOP, it will cause the
computer to skip the next instruction. The command
also clears the flip-flop. A simplified diagram is seen in
Fig. 3.

A switch may be added to the M404 to select 5 or

5y

Y

1 r—-—
] NO
1
1
1
DRIVER _L_o\,\
AC OuT D 1 tlc—’

[

FLIP 15v

FLOP

=

DEVICE

SELECTOR

Fig. 2. Simplified diagram of the output interface.

5 KHZI CiLOCK

Fig. 3. Simplified diagram of the clock
interface.

BMS 3 —

Y pe—

5 —

& —

DEVICE

THE BUS-ALL 173
DRIVER
INT
- H——q
® S
=50 FLI?P
" F : Lor
Dq‘lvll
sKir

7 SELECTOR
 ——
10 1 —

50 kHz. This selection translates into 100 or 1,000 Hz.
The switch can also open the circuit between the clock
and the divider. This effectively disables the interrupt so
that other programs (i.e., FOCAL, etc.) may be run.

THE BUS-ALL APPROACH

The quad size input, output, and clock cards are
placed in a H933 mounting panel. The signals, as they
come from a PDP-8/L or the KAS8-A, are bussed across
the H933. The device code is wired on the input, output,
and clock cards. The input and output cards may be
placed in any slot. The clock card has resistors to

Behavior Research Methods & Instrumentation
1974, Vol. 6, No. 2, 173-176

terminate the IOP pulses, therefore it must be placed in
the last slot, furthest from the cables.

REFERENCES

Snapper, A. G., & Kadden, R. M. Time-sharing in a small
computer based on the use of a behavioral notation system. In
B. Weiss (Ed.), Digital computers in the behavior laboratory.
New York: Appleton-Century-Crofts, 1973. Pp, 41-97.

Snapper, A. G., Knapp, J. Z., Kushner, H. K., & Kadden, R. M.
A notation system and computer program for behavioral
experiments. Paper presented at the meeting of the Digital
Equipment Computer Users Society, New York, June 1967.

Snapper, A. G., & Walker, A. The SKED software system.
DECUS Program Library, DECUS 8-465, 1971,

Walker, A., & Snapper, A. G. Improvements to the SKED
processor central software system. In DECUS Proceedings,
Spring 1971. Pp. 7-12.

Programming special functions
in the SKED system

ARTHUR SNAPPER
Western Michigan University, Kalamazoo, Michigan 49001

and

BRUCE HAMILTON
American University, Washington, D.C. 20016

Machine language subroutines can be integrated with the SKED system. These subroutines can shorten
lengthy programs that could otherwise be handled by SKED, and can provide complex decision
functions, data recording schemes, and software for new peripheral devices. Rules and examples for each

function will be presented.

SKED is a higher level, general language used to
simplify programming the PDP-8 for experimental
control and data recording. An unfortunate restriction
shared by many user-oriented languages is their
inflexibility when faced with a specific requirement
unforeseen by the creators of the system. Some user
finds his application needs 8.5K of core in an 8K
machine, or that it is impossible to apply a program that
was originally designed for schedules of reinforcement to
verbal behavior experiments or to automated
psychoanalysis.

Although SKED has more generality than most
process control languages, for some applications the
system will be either inefficient or impossible to use. For
this reason, the Run Time System (RTS) has a built-in
method for referencing machine language subroutines, so
that the special-purpose programs can be readily
accessed at the appropriate time or by the specified
response in the state program,

The special-purpose program can be written (by an
experienced programmer) in machine language,
assembled by PAL III, and loaded along with the RTS in

173

