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Abstract. The communication between an honest prover and an hon-
est verifier can be intercepted by a malicious man-in-the-middle (MiM),
without the legitimate interlocutors noticing the intrusion. The attacker
can simply relay messages from one party to another, eventually imper-
sonating the prover to the verifier and possibly gaining the privileges of
the former. This sort of simple relay attacks are prevalent in wireless
communications (e.g., RFID-based protocols) and can affect several in-
frastructures from contactless payments to remote car-locking systems
and access-control verification in high-security areas. As the RFID/NFC
technology prevails, a practical and increasingly popular countermeasure
to these attacks is given by distance-bounding protocols. Yet, the security
of these protocols is still not mature. Importantly, the implications of the
return channel (i.e., knowing whether the protocol finished successfully or
not) in the security of some distance-bounding protocols have not been
fully assessed. In this paper, we demonstrate this by a series of theoretical
and practical attacks.
We first show that the Bussard-Bagga protocol DBPK-Log does not fulfill
its goal: it offers no protection against distance fraud and terrorist fraud.
Then, we show how to mount several concrete MiM attacks against several
follow-up variants, including the protocol by Reid et al.

1 Introduction

Relay attacks are man-in-the-middle (MiM) attacks that enable an adversary
to impersonate a prover to a verifier by acting as a carrier for their legitimate
messages. Distance-bounding (DB) protocols are lightweight authentication pro-
tocols considered as a main countermeasure against relay attacks. As their name
suggests, distance-bounding protocols enable a verifier to establish an upper
bound on the physical distance to an un-authenticated prover. This is achieved
by measuring the round trip time-of-flights during several challenge-response
bit-exchanges. Such DB protocols were first introduced in 1993 by Brands and
Chaum [7] in order to preclude MiM attacks against ATMs, whilst the idea of mea-
suring times-of-flight to protect against MiM goes back to Beth and Desmedt [4].
A broad range of distance-bounding protocols followed, being proposed for RFID
communications [21, 24, 25, 30, 33, 39], ultra-wideband (UWB) devices [18, 26, 27],
wireless ad-hoc networks [11,14,38], sensor networks [29], etc.



The importance of distance-bounding protocols in preventing relay attacks
can be easily assessed if we simply look at nowadays ubiquitous applications such
as access-control to high-security areas and contactless payments. Indeed, relay
attacks have also been launched against bankcards [16] and the demonstrated
countermeasure against this type of attacks was again based on an implementation
of a distance-bounding protocol [16]. Another aspect to consider is that of car
manufacturers, who are now using RFID protocols to lock/unlock cars remotely,
even if these protocols are themselves susceptible to relay attacks [17]. Thus, there
is a stringent need for secure distance-bounding protocols in order to safeguard
the growingly spread use of, e.g., RFID-based security-sensitive protocols.

Some MiM attacks also assume that the adversary has access to a side channel
showing whether the protocol completed successfully or not. In the case of, e.g.,
car-locking systems, this would just consist in looking at whether the car opens.
We call this the return channel. In the RFID community, it was not immediate
to realize that the return channel strongly influences the security of the protocols
therein invoked. For instance, the HB+ protocol [23] was proposed to resist MiM
attacks, but—as soon as the adversary is given access to the return channel [19]—
the protocol was found in fact vulnerable to MiM attacks. In the formalism
by Vaudenay [40], adversaries with no access to the return channel are called
narrow adversaries. Again, addressing non-narrow adversaries in RFID proved
challenging. In this paper, we show how non-narrow adversaries can successfully
mount a series of attacks on several DB protocols.

Distance-bounding protocols should resist to distance fraud. I.e., a malicious
prover who is far away from a verifier should not succeed to pass the protocol.
Another well established threat model against distance-bounding is the so-called
notion of terrorist fraud [15]. In this model, a malicious prover who is far away
from a verifier tries to mount a distance fraud with the help of an adversary, but
without giving him any credential or an advantage that he may later abuse. To
defeat terrorist fraud, Bussard and Bagga [8–10] proposed a protocol in which
passing the distance-bounding phase would require the knowledge of a key. Many
follow-up protocols were inspired from [8–10].

Contribution & Structure. In this paper, we first look at the Bussard-Bagga
DBPK-Log protocols [8–10]. We show that its main goals, namely, resistance to
distance fraud and terrorist fraud, are not fulfilled. Then, we consider variants
and successors. We provide a non-narrow MiM adversary who tries to learn the
credential (i.e., the distance-bounding secret key) from an honest prover. This
will enable the MiM to impersonate the prover during the distance-bounding
phase at a later stage. Consequently, a distance-bounding protocol susceptible
to these attacks would not be compliant with its very raison d’être. Namely, we
show concrete forms of this MiM attack mounted onto variants/successors of the
Bussard-Bagga protocols [9, 10] e.g., instances of the Reid et al. protocol [34].
Whilst the main pattern of the attacks follows a simple idea [25] and our extension
on it, these frauds become possible via pretty intricate statistical and general
theoretical analyses that we detail herein.
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This paper is organized as follows. In Section 2, we remind the structure of
numerous [34,39] distance-bounding protocols, and we explain the idea behind
a basic MiM attack-scenario [25] that can be launched against this family of
distance-bounding protocols. We conclude this section by showing how to extend
this simple attack, potentially rendering it more dangerous. In Section 4, we
describe several MiM attacks, concrete instantiations of the scenario presented
in Section 2. In Section 3 we describe the Bussard and Bagga [8–10] or the
so-called DBPK-Log (distance-bounding proof of knowledge based on the discrete
logarithm) protocols. We mount a distance fraud and a terrorist fraud against
DBPK-Log and motivate to consider variants and successors of DBPK. In Section
4 we consider several proposed encryption functions to be used inside the DBPK
distance-bounding protocols and variants, and we expose their failures. In Section
4.4, we present the implementation and evolution of the most elaborate of
these attacks, mounted onto the most involved successor of the DBPK distance-
bounding protocol proposed in [8,9]. In Section 5, we briefly discuss about the
possible fixes to the DB protocols exposed to our kind of threat. Finally, Section
6 concludes the paper.

2 Distance-Bounding & MiM Attacks

We first describe a family of distance-bounding protocols [34,39] that use similar
methods to generate the responses to be employed in the challenge/response
phase. Figure 1 depicts a general view of this family of protocols.

More precisely, in all the protocols that belong in this family, the following
steps are executed.

– Initialization phase: Let the prover P and the verifier V share a secret
key x. This initialization phase is not time critical and is executed as follows.
The verifier V chooses a random number NV and transmits it to the prover
P . After receiving NV , the prover P also chooses a random number NP and
computes a session key a such that a = fx(C,NV , NP ), where f denotes a
pseudorandom function (PRF) and C represents any additional parameters
that may be required, e.g., the identifiers of the prover P and the verifier
V . We should note here that the computation of the session key a varies. In
particular, in the protocol in [39] the session key a depends on both random
nonces NV and NP .

– Distance-bounding phase: This time-sensitive phase starts right after
the initialization phase and involves the exchange of challenges-responses at
maximum bit-rate over a period of time. It is repeated m times (rounds),
with i varying from 1 to m. The actual number of rounds m is normally
dictated by a security parameter. At each round i, the challenge-response
delay ∆ti is measured. V starts by choosing a random bit ci, initializing
the clock with zero and transmitting ci to P . The values received by P are
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Verifier V Prover P

shared key x shared key x
Initialization phase

NV ← {0, 1}m
NV−−−−−−−−−−−−−−−−−−−→

NP ← {0, 1}m
a := fx(C,NV , NP )

NP←−−−−−−−−−−−−−−−−−−−
a := fx(C,NV , NP )

Distance-bounding phase
for i = 1 to m

Pick ci ∈U {0, 1}
Start Clock

ci−−−−−−−−−−−−−−−−−−−→

ri :=

{
ai, if ci = 0

ai ⊕ xi, if ci = 1
ri←−−−−−−−−−−−−−−−−−−−

Stop Clock
verify the responses and

that for all rounds ∆ti ≤ 2B
OutV (...)

−−−−−−−−−−−−−−−−−−−→

Fig. 1. The General Structure of Numerous Distance-Bounding Protocols (present
in [34,39])

denoted by ci. Next, P answers by sending

ri :=

{
ai, if ci = 0,

ai ⊕ xi, if ci = 1.

Assuming noiseless communication, we can denote the values received by
V also by ri. Upon receiving ri, V stops the clock and stores the received
answer and the delay time ∆ti.

After the end of the distance-bounding phase, a final verification phase is per-
formed. The verifier V checks the correctness of the received responses and if the
response-times ∆ti are bellow the maximum allowed response-time 2B. At the
end of this phase the verifier V indicates if the prover P is authenticated or not
(OutV = 1 or OutV = 0, respectively).

On noisy/noiseless channels. On the one hand, some of the DB provers used
in distance-bounding are cheap and, whilst having time constraints also, do not
usually cater for error correction. On the other hand, adversaries can be equipped
with powerful devices which are less error-prone and/or are also able to correct all
the errors/noise of the channels. For simplicity, we will mainly consider noiseless
channels in our MiM attacks to follow. However, we note here that noise can be
considered easily [21]. I.e., we can augment the model, requiring that the verifier
allows at most m−τ incorrect answers (answers with errors or delayed). Consider
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the probability p of one response being correct (non-erroneous and not delayed).
Then, the probability that at least τ responses out of m are of the correct kind
is given by

B(m, τ, p) =

m∑
i=τ

(m
i

)
pi(1− p)m−i.

This could then be easily factored into the success probability of our attacks.

On (the feasibility of) MiM attacks. The MiM attacks to be described in here
are mounted along the following intuitive pattern. In a learning phase, the MiM
adversary A can “play” with a prover P , which could be close to V , and “play”
with a verifier V . The subsequent attack phase allows interaction several times
with a far-away prover and one time with the verifier.

We should note here that if the legitimate prover is located far-away from
the legitimate verifier then the MiM attack can be easily deployed. But, we
believe that MiM attacks with a prover and his neighboring verifier are also
easy to mount when the adversary can initiate protocols with both of them,
using a different channel with each. For instance, an attacker could interfere
with the initial frequency-synchronization phase so that each of the participants
(prover and verifier) would end up communicating with the adversary through
two different channels (i.e., frequency bands). Then, the prover does not even
realize that another concurrent conversation is taking place (as such a prover and
the verifier cannot confer, i.e., two users cannot communicate with each other as
long as they “occupy” different frequency bands).

Non-Narrow MiM Attack by Flipping One Challenge [25]: A Case in Point for
DB Insecurity. Linear, active MiM attacks can be launched against any protocol
from the family in Figure 1. The generic sketch of these attacks was briefly
described1 in [25] against [39]. In this attack, a powerful, non-narrow adversary
A acts as an active MiM during the distance-bounding phase. We consider a
scenario where a legitimate verifier and a prover run successfully the initialization
phase of the distance-bounding protocol and both of them compute the session
key a (see Figure 1). We further assume that the prover and the verifier are
close to each other. During the distance-bounding phase, the adversary injects
a modified version c′j of a challenge cj (for some fixed j ∈ {1, . . . , n}). Let r′i
be the response that the attacker sends to V for ci and ri be the response that
the prover sends to A. In fact, the attacker will act such that r′i = ri for i 6= j
and will let r′j be a random bit. In noiseless condition, it is the case that by
looking at the output of the verifier and knowing what choice he made for r′j ,
this non-narrow attacker can make a simple calculation to find the jth bit of the
key x, i.e., :

xj = r′j ⊕ rj ⊕OutV
1 And, to this end, the Swiss-Knife protocol [25] was designed to defeat this attack by

introducing a MAC in the protocol exchanges.
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By repeating this strategy for j = 1, . . . ,m, the adversary is able to deduce all
the bits of the secret key x. In noiseless conditions, the success probability of the
attack is 1.

We now extend this attack in [25] to flipping more than one challenge in
one distance-bounding session. We will use both flavors of this scenario in what
follows.

An Extended Variant of Non-Narrow MiM Attacks: Flipping a Batch of Challenges.
As a variant of this attack, the attacker can select a “small size” batch of challenges,
i.e., J ⊆ {1, . . . ,m}, and do c′j = c̄j for all j ∈ J and c′i = ci for all i /∈ J . Let
the responses r′js by the attacker for all j ∈ J be as he pleases and let r′i = ri
for all i /∈ J . If OutV = 1, the attacker deduces xj = rj ⊕ r′j , for all j ∈ J . This

happens with probability 2−|J| in a single protocol version, but may allow the
finding of a batch of the bits of the key at once.

3 The Bussard-Bagga Protocols and Terrorist Fraud

3.1 The Bussard-Bagga Protocols

Bussard and Bagga have proposed in [8–10] a distance-bounding protocol relying
on public key cryptography, e.g., commitments and proofs of knowledge. It is
also called DBPK (distance-bounding proof of knowledge). The protocol uses a
proof of knowledge in order to protect against terrorist frauds.

In the generic DBPK protocol, the prover P has a secret key x and a published
certificate on its public key y = Γ (x). The protocol is composed of four phases:
the initialization phase, the distance-bounding phase, the phase for the opening
of commitments therein used, and the proof of knowledge phase.

– Initialization phase: In the initialization phase, the prover generates a
random secret session key k ∈R {0, 1}m and uses this session key in order to
encrypt his private key x. The encryption of x is done using a publicly known
symmetric key encryption method E : {0, 1}m×{0, 1}m → {0, 1}m. Thus, we
have e = Ek(x). Of course, the knowledge of both e and k reveals the private
key x, i.e., x = Dk(e), where Dk is the decryption function inverting, under
k, the encryption Ek. After encrypting x and computing e, the prover P uses
a secure bit commitment scheme to commit to each bit of k and e using
randomnesses v and v′ respectively. More precisely, if we let i be a bit-index
(i ∈ 1, . . . ,m), then the commitments to the ith bit of the session key k and
of the key e are respectively denoted as

zk,i = commit(ki, vi) and ze,i = commit(ei, v
′
i).

– Distance-Bounding phase: In the distance-bounding phase, a number of
m single-bit challenge-response exchanges take place at maximum bit rate.
At each round i, the challenge-response delay ∆ti is measured. The verifier
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V selects a random bit as the challenge ci and the prover responds with a
response ri such that

ri :=

{
ki, if ci = 0,

ei, if ci = 1.

Verifier V Prover P

public key y = Γ (x) private key x

Initialization phase
session key k ← {0, 1}m
e = Ek(x) ∈ {0, 1}∗
v, v′ ← ({0, 1}∗)m
for i = 1 to m
zk,i = commit(ki, vi)
ze,i = commit(ei, v

′
i)

endfor
zk := (zk,i)i∈{1,...,m}
ze := (ze,i)i∈{1,...,m}

zk,ze←−−−−−−−−−−−−−−−−−−−
Distance-bounding phase

for i = 1 to m
Pick ci ∈U {0, 1}

Start Clock
ci−−−−−−−−−−−−−−−−−−−→

ri :=

{
ki, if ci = 0

ei, if ci = 1
ri←−−−−−−−−−−−−−−−−−−−

Stop Clock
Commitment opening phase

for i = 1 to m

γi :=

{
vi, if ci = 0

v′i, if ci = 1
γi←−−−−−−−−−−−−−−−−−−−

verify the responses

zk,i
?
= commit(ki, γi), if ci = 0

ze,i
?
= commit(ei, γi), if ci = 1

Proof of knowledge phase
PK[(α,β):z=Ω(α,β)∧y=Γ (α)]←−−−−−−−−−−−−−−−−−−−−−→

Fig. 2. The DBPK Protocol proposed by Bussard and Bagga [8–10]

– Commitments’ opening phase: In this phase, the prover P opens some
commitments on the bits of k and e corresponding to his answers in the
distance-bounding phase. I.e., to vouch for his DB responses, the prover sends
the randomness vi to open zk,i if challenge i was 0, and he sends v′i otherwise.
This is denoted in Figure 2 through sending the value γi. In case that the
openings of zk,i and ze,i do not pass, the verifier V sends an error notification
message to the prover P .
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– Proof of knowledge phase: In this phase, the prover P convinces the
verifier V with a zero-knowledge interaction that he has generated the com-
mitments which correspond to a unique private key x and this private key
corresponds to the public key y that is used by the verifier to authenticate
the prover. The proof of knowledge is denoted as

PK[(α, β) : z = Ω(α, β) ∧ y = Γ (α)],

where the knowledge of α, β is being proven, while z, y are as per the protocol,
known to the verifier. In the protocol, we have y = Γ (x) and z = Ω(x, (v, v′)).
The value of z can be computed from the zk,i and ze,i.

The number m of DB rounds and the size m of the key is dictated by a
security parameter. Typically, m varies between 128 and 1024.

3.2 Commitments and the Proof of Knowledge in DBPK-Log

The only instances of DBPK providing concrete commitments and proofs of
knowledge are based on the discrete logarithm in Z∗p and are called DBPK-Log.
We now describe these commitments and proofs of knowledge.

We use a strong prime p, two generators g, h of Z∗p, an element x of Z∗p−1,
and y = gx mod p.2

We have commit(b, v) = gbhv mod p. The main property of this commitment

is that given all zk,i, ze,i, vi, v
′
i, we can form z =

∏
i(zk,ize,i)

2i−1

, v =
∑
i(vi +

v′i)2
i−1, and obtain that

z = commit((k + e) mod (p− 1), v).

The proposed encryption methods use e = (ux − k) mod (p − 1) with either
u = 1 [10] or u random and publicly revealed [8,9]. So, the proof of knowledge
consists of proving knowledge of x and v such that y = gx and z = guxhv in Zp.

The proof of knowledge [9] is repeating t times what follows: the prover
sends w1 = guρ1hρ2 mod p for some random ρ1, ρ2 ∈ Zp−1; the verifier sends
some challenge c ∈ {0, 1}; the prover responds by s1 = ρ1 − cx mod (p − 1)
and x2 = ρ2 − cv mod (p − 1); the verifier checks w1 = zcgus1hs2 mod p and
w2 = ycgs1 mod p.

3.3 Terrorist Fraud and Distance Fraud against DBPK-Log

We now show that the public-key techniques which are used in the DBPK-Log
protocol are ineffective to defeat terrorist fraud. For this, we consider a malicious
prover who is far away from an honest verifier. There is an adversary close to
the verifier who will get some help from the prover to pass the protocol without
getting any advantage to further impersonate the prover. The attack is sketched
in Fig. 3.

2 In [8–10], h is not necessarily a generator and x ∈ Zp−1\{q} with q = p−1
2

.
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Verifier V Adversary A Prover P

Initialization phase
z←−−−−−− z = guxhv mod p

A guesses the future value c1 and compute the commitments:
set zk,i := commit(ki, vi), ze,i := commit(ei, v

′
i) for all i > 1

set zk,1 := commit(k1, vi) if c1 = 0 (ze,1 is a free variable)
set ze,1 := commit(e1, v

′
i) if c1 = 1 (zk,1 is a free variable)

solve z =
∏
i(zk,ize,i)

2i−1
in the remaining free variable

for i = 1 to m

z :=
∏
i(zk,ize,i)

2i−1 zk,i,ze,i←−−−−−−

Distance-bounding phase
for i = 1 to m

ci−−−−−−→if i = 1 and c1 incorrect, abort

ri←−−−−−− ri :=

{
ki if ci = 0

ei if ci = 1

Commitment opening phase
for i = 1 to m

γi←−−−−−− γi :=

{
vi if ci = 0

v′i if ci = 1

Proof of knowledge phase

verify z
PoK←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ prove x, v for z

Fig. 3. Terrorist Fraud against DBPK-Log
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First, the malicious prover selects u and v ∈ Zp−1 (with either u = 1 or
a random u, as specified in DBPK-Log), then computes z = guxhv mod p and
sends z to the adversary. The adversary selects some random ki, ei, vi, v

′
i,

i = 1, . . . ,m, and a random bit c1. Then, he computes zk,i = commit(ki, vi) and
ze,i = commit(ei, v

′
i) for i = 2, . . . ,m. If c1 = 0, he sets zk,1 = commit(k1, v1) and

ze,1 remains free. If c1 = 1, he sets ze,1 = commit(e1, v
′
1) and zk,1 remains free.

Then, he can solve the equation z =
∏
i(zk,ize,i)

2i−1

mod p in the remaining free
variable. Next, the adversary runs the DBPK-Log initialization phase, distance-
bounding phase, and opening phase using these values. Note that if the value
of the challenge c1 received from the verifier differs from the value of the bit c1
which were selected, the attack aborts.3 Otherwise, it is straightforward to see
that the adversary can answer all challenges and open all commitments. Then,
the verifier will compute z which matches the one selected by the malicious
prover. Finally, the adversary relays the proof of knowledge for x and v (such
that z = guxhv mod p).

Clearly, this attack succeeds with probability 1
2 (or even 1 if the verifier allows

an error in the first round). It is also clear that since the proof-of-knowledge is
zero-knowledge and that x is not used anywhere else, that the adversary learns
no information about x. So, it is a valid terrorist fraud.

Distance Fraud. In distance-fraud settings, the malicious prover could simulate
the adversary in the above attack and select ki = ei, i = 2, . . . ,m. This way, the
prover could answer to ci by ri = ki = ei before receiving the challenge ci and
therefore making the correct response to arrive on time to the verifier.

Equivalently, a malicious prover could just simulate the honest prover selecting
k ≈ x

2 and u = 1 and answering to the challenges by anticipation. Concretely,
if x is even, the malicious prover can select k = e = x

2 and u = 1 and we have
ri = ki = ei for every i. If x is odd, he could select k = x−1

2 , e = x+1
2 , and

u = 1 so that ri = ki = ei for i ≥ 2. The i = 1 case can be counted in the error
tolerance.

4 Non-Narrow MiM Attacks against DBENC

We now consider the protocol by Reid et al. [34] which is a variant of DBPK no
longer based on public-key cryptography. Indeed, the prover and the verifier now
share the secret x. In addition to this, k and e are derived from PRF computations
(done at both sides) based on x and some nonces. (See Fig. 4.) This protocol, that
we call DBENC, has no longer any commitment or proof of knowledge phase.

Clearly, the attack scenario in Section 2 lends itself to concrete attacks against
the DBENC protocol. First consider that a non-narrow MiM adversary specializes
in the batch-version of the attack on the DB phase. Namely, let first |J | ≥ 2.
This attacker selects indexes J ⊆ {1, . . . ,m} for flipped challenges. Then, for this

3 The attack could also go on with the adversary taking c1 as the value he selected,
and counting on that the verifier will accept this error as due to noise.
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Verifier V Prover P

shared key x shared key x
Initialization phase

NV ← {0, 1}m
IDV ,NV−−−−−−−−−−−−−−−−−−−→ NP ← {0, 1}m

k := fx(IDP ||IDV ||NV ||NP )
e = Ek(x)

k := fx(IDP ||IDV ||NV ||NP )
IDP ,NP←−−−−−−−−−−−−−−−−−−−

e = Ek(x)

Distance-bounding phase
for i = 1 to m

Pick ci ∈U {0, 1}
Start Clock

ci−−−−−−−−−−−−−−−−−−−→

ri :=

{
ei, if ci = 0

ki, if ci = 1
ri←−−−−−−−−−−−−−−−−−−−

Stop Clock
verify the responses and

for all rounds ∆ti ≤ 2∆tmax
OutV (...)

−−−−−−−−−−−−−−−−−−−→

Fig. 4. Protocol proposed by Reid et al. [34]

protocol, with probability 2−|J|, he obtains the following: 1. the bits ej and kj ,
for all j ∈ J ; 2. either the bit ei or the bit ki, when j /∈ J . Secondly, for the case
that |J | = 1, the success probability of the attacker is 1, as per Section 2. In any
case, depending the encryption algorithm, this can help in recovering some piece
of information about x.

The designers of DBPK and DBENC suggest [8–10, 34] several possible
encryption methods (E) to be used therein. In the next subsections, we consider
them in a case-by-case fashion (see Sections 4.1, 4.2, 4.3), showing the concrete
MiM attack that would break the corresponding instance of the DBENC protocol.
In DBPK-Log, the encryption is based on the modulo p− 1 arithmetic. We fully
describe attacks in these cases (Sections 4.2 and 4.3).

4.1 MiM Attack on the “One-Time-Pad DBENC”

We consider here that Ek(x) = x⊕ k is to be used as the encryption inside the
DBENC protocol, with x ∈ {0, 1}m and k ∈U {0, 1}m. We denote it simply by
e = x⊕k. Of course, for any bit position i ∈ {1, . . . ,m}, we then have ei = xi⊕ki.
Hence, the attack-schema in Section 2, recovers xj = ej ⊕ kj (for j ∈ J) by using
a single session with a flipped challenge cj . By iterating at most m times (in the
single-flip case), he fully recovers x.

Reid et al. [34] suggested to use a “semantically secure encryption function”
and proposed one-time pad: Ek(x) = x⊕ k. Clearly, instances of DBENC based
on one-time pad fall under the attack in Section 2.
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4.2 MiM Attack on the “Addition Modulo n DBENC”

We consider here that Ek(x) = x− k mod n is to be used as the encryption inside
the DBENC protocol, with x ∈ Zn, k ∈U Zn, and some fixed n of m bits.4 We
denote this encryption simply by e = x− k mod n. Clearly, we have

e = x− k + cn, (1)

where c = 1k>x. For e1 = lsb(e), we have

e1 =

{
x1 ⊕ k1, if x ≥ k,
x1 ⊕ k1 ⊕ n1, if x < k.

This can be written as e1 = x1 ⊕ k1 ⊕ c× n1.
The actual tactics of the attack will be separated into subcases, upon the

characteristic of n, e.g., considering whether n is odd or even. Some of these
sub-cases contain cross-references to one another.

The n even case.
� The subcase where n = 2m. For n = 2m, of course, n1 = 0. Then, based

on (1), we reduce to e1 = x1 ⊕ k1. Hence, our attacker recovers x1 = e1 ⊕ k1 by
using a single session. Then, once he learned x1, he can recover x2 by employing
the fact that e2 = x2 ⊕ k2 ⊕ x̄1k1. To see this, first note that if the query to the
prover reveals e1, the adversary can infer k1 = e1 ⊕ x1. Otherwise, the query
reveals k1 anyway. Hence, we can take for granted that k1 is known to the attacker.
Since a second iteration of our attack recovers e2 and k2, he can clearly deduce
x2 = e2 ⊕ k2 ⊕ x̄1k1. He can continue further to uncover all bits of x using m
iterations.

� The subcase where n = 2m
′
n′ with n′ odd. Let n = 2m

′
n′ with n′

odd. Again, we are in the case where e = (x − k) mod 2m
′
n′. So, we have

e ≡ x − k (mod 2m
′
). Thus, using the previous attack, the attacker can first

recover x1, . . . , xm′ using m′ iterations. Then, he will have to employ the attack-
scenario for the case for a modulus which is odd, here for n′; this case is stated
below. Combining the two results will give the attacker the bits x1, . . . , xm′ of x.

The n odd case.
� Calculating the least significant bit in the n odd case. For n odd,

we have n1 = 1. Then, based on (1), we have e1 = x1 ⊕ k1 ⊕ c where c = 1k>x.
Let p = P[c = 1], then it holds that

p = P[c = 1] = P[k > x] = 1− (x+ 1)

n
·

Hence, when x is far from n/2, c is strongly biased. On the one hand, if x > n/2,
most of c’s are 0, so x1 is the majority of the obtained e1 ⊕ k1. On the other
hand, if x < n/2, x1 is the complement of the majority of the obtained e1 ⊕ k1.

4 In [10], it is proposed for DBPK-Log with n = p− 1 and a strong prime p.
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Assuming that the adversary first guesses whether x > n/2, then he deduces
x1 by mounting a statistical attack. In more detail, assume that the adversary
tries N sessions, i.e.,:

Biti = e1 ⊕ k1 = x1 ⊕ ci, ∀i ∈ {1, . . . , N},

where ci depends on the session i since k is refreshed in every session. The
adversary uses a majority function to find x1 such as

Majority(Bit1, . . . ,BitN ) ≈

{
x1, if x > n

2 ,

x1 ⊕ 1, if x < n
2 .

More precisely, P[Biti = x1 ⊕ 1x<n/2] = 1/2 + |p − 1/2|. Thus, thanks to the
Chernoff bound (Lemma 2, in the Appendix),

P
[
Majority(Bit1, . . . ,BitN ) = x1 ⊕ 1x<n/2

]
≥ 1− e−2N(p−1/2)2 .

We can just take N ≈ (1/2− (x+ 1)/n)−2 to deduce x1 by the guess 1x<n/2.

� Calculating the i-th least significant bit in the n odd case. Assuming
that x1, . . . , xi−1 have been recovered (possibly from a guess on the sign of x−n/2),
similarly as before, the queries to the prover leak k1, . . . , ki−1. Thus, based on
(1), we have

ei = xi ⊕ ki ⊕B(c, k1, . . . , ki−1, x1, . . . , xi−1) , (2)

where c = 1k>x and B is a Boolean function computing the carry on the ith bit
in x− k + cn. To express the dependence of B on the overall value of c, we write

B(c, k1, . . . , ki−1, x1, . . . , xi−1) =

cα(k1, . . . , ki−1, x1, . . . , xi−1)⊕ β(k1, . . . , ki−1, x1, . . . , xi−1).

There are many cases where α(k1, . . . , ki−1, x1, . . . , xi−1) = 0 (i.e., B does not
depend on c and can be computed by the attacker using just the informa-
tion on the bits 0 to i − 1 of the known parts). So, by Equation (2), the at-
tacker can recover xi in one session. There are rare cases in which we have
α(k1, . . . , ki−1, x1, . . . , xi−1) = 1, whatever k1, . . . , ki−1. Such a case is given by
i = 0, as shown in the last paragraph. So, in these corner cases, a statistical
attack is needed in order to recover xi.

� Calculating several most significant bits and the least significant
one bit in the n odd case. Going back to the attack on the least significant
bit, we realize that the statistics on the estimate of P[c = 1] = P[k > x] reveals
several most significant bits of x.

Let B = (1/N)
∑N
i=1 Biti, the average of Biti’s. Note that E[Biti] = E[ci]

or E[Biti] = 1 − E[ci]. Hence, we get either E[B] = E[ci] = 1 − (x + 1)/n or
E[B] = 1− E[ci] = (x+ 1)/n. It holds that∣∣∣∣12 − E[B]

∣∣∣∣ =

∣∣∣∣ (x+ 1)

n
− 1

2

∣∣∣∣ (3)
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and we can recover the ` most significant bits of x by using Hoeffding’s Bound
(Lemma 1, in the Appendix), i.e., P

[
|B − E[B]| ≤ ε

]
> 1− 2e−2Nε

2

. To recover
the ` most significant bits, we set ε = 2−` and N = 22`. Notice that this attack
is similar to the statistical attack described before, hence, the attacker can get
x1, as well.

� Calculating the least significant bit in the n odd case, revisited.
Assuming that the adversary guesses the most significant bit xm of x, then he
pays attention to (xm, cm, rm). In many cases, c can be deduced non-ambiguously
from this. For instance, if cm = 0 (so rm = km) and xm 6= rm, then c = km for
sure. In the case where xm = 0, if cm = 1 (so rm = em) and rm = 1, then c = 1
for sure. If c cannot be deduced, the adversary waits for another session. Hence,
with J = {1}, he directly deduces

x1 = e1 ⊕ k1 ⊕ c.

He can proceed to recover all other bits by ruling out sessions in which c
cannot be deduced. This way, he can always compute c and deduce

xi = ei ⊕ ki ⊕B(c, k1, . . . , ki−1, x1, . . . , xi−1).

This can be used as follows to recover all bits based on the guess of xm: assuming
xm, x1, . . . , xj−1 are known, the attack with J = {j} will reveal the response
to either ki or ei for i = 1, . . . , j − 1 (while xi is known), and the response to
both kj and ej . So, for each i ≤ j we know two out of the three values xi, ki, ei.
The above relation allows to compute the third one iteratively for each i ≤ j, so
deduce xj . The expected number of sessions to recover all bits is here less than
4m. Indeed, the key has length m and the probability of deducing c is larger than
the probability that c0 = 0 and xm 6= km, which is 1/4.

4.3 MiM Attack on the “Modular Addition with Random Factor
DBENC”

We consider here Ek(x) = (u, ux − k mod n) with x ∈ Zn, k ∈U Zn, u ∈U Z∗n
freshly selected for each encryption, and some number prime n of m bits.5 We
denote e = ux− k mod n.

We have

e = (ux mod n)− k + cn,

where c = 1k>ux mod n.

By looking at the least significant bit (i.e., J = {1}), we note that

lsb(ux mod n) = e1 ⊕ k1 ⊕ c.

5 In [9], the value u = 0 is authorized. However, since it does not make decryption
possible, we omit it in this section. Our results are not affected by this choice.
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For simplicity reasons, we assume that x ∈ Z∗n. Therefore, (ux mod n) ∈U Z∗n.
In sessions where km and km−1 are revealed and happen to be both 1 (i.e.,
cm = cm−1 = 0 and rm = rm−1 = 1), the probability that c = 1 is

E
[
k − 1

n− 1

∣∣∣∣ k ≥ 2m−1 + 2m−2
]
≥ 3

4
·

Hence, we can rule out other sessions (we need 16 sessions to have one unruled),
and consider that c is a biased bit with P[c = 1] ≥ 3/4.

Next, by writing u = 2u′ mod n, we observe that

lsb(ux mod n) = lsb
(
2(u′x mod n)− n1u′x mod n≥n2

)
= 1u′x mod n≥n2 .

The function 1u′x mod n≥n2 is sometimes called the most significant bit of u′x mod
n in the literature, although it is not always the most significant bit in the binary
representation. For this reason, we write it M1(u′x mod n). Hence, our attack
recovers some (u′,M1(u′x mod n) ⊕ c) pairs. The problem of finding x is then
called the Hidden Number with Noise Problem (HNNP) [5].

More generally, we have lsb`(ux mod n) = e + k − cn mod 2`. By setting
J = {1, . . . , `}, we recover lsb`(ux mod n) with probability 2−`. We filter sessions
for which km, . . . , km−`′+1 are revealed and are all 1 so that P[c = 1] ≥ 1− 2−`

′
.

We need 2`+2`′ sessions to get one sample. We have that

lsb`(ux mod n) = lsb`

(
2`(u′x mod n)−n

⌊
u′x mod n
n/2`

⌋)
, for u = 2`u′ mod n. This

is an one-to-one mapping of M`(u
′x mod n) =

⌊
u′x mod n
n/2`

⌋
.

The Hidden Number Problem (HNP) was introduced by Boneh and Venkatesan
[5] to prove the hardness of the most significant bits of the secret keys in Diffie-
Hellman schemes. In HNP, for a given prime n and a given generator g of Z∗n, the
aim is to find a hidden number α ∈ Z∗n by querying an oracle which has access
to a function Ln,`,α such that

Ln,`,α(x) ,M`(α× gx mod n).

This leads to two versions of the problem called randomized or sampling
HNP. In our case, x is chosen uniformly and independently at random in Z∗n.
Boneh-Venkatesan [5] solved this problem by providing an algorithm which works
for any ` ≥ ε

√
log n in running time polynomial in log n for all ε > 0. Hence, it

can work in practice with a very low `. It also works with noise provided that
2`
′ ≥ log n.

It requires D samples to recover x according to [32] (where, in [5], D is equal
to 2
√

log n). The complexity is nO(1/ log logn) for ` = log log n (or even ` = 2 but
with an oracle to find the L∞-closest vector in a lattice). Therefore, we have a
practical attack (even though not polynomial) using 22`

′ × 2` ×D sessions.
The attack runs as follows:

1: for each session do
2: if it leaks km, . . . , km−`′+1, and all bits are 1 then
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3: if the attack with J = {1, . . . , `} reveals lsb`(e) and lsb`(k) then
4: deduce u′ and M`(u

′x mod n) (except with probability ≤ 2−`
′
)

5: stop when D such pairs are deduced
6: end if
7: end if
8: end for.

With the D pairs, run the hidden problem solver algorithm.
The HPN solving algorithm works roughly as follows. Given u′i and vi =

M`(u
′
ix mod n) for i = 1, . . . , D, we define the lattice of dimension D+1 spanned

by the vector (u′1, . . . , u
′
D, 1/n) and the D vectors (0, . . . , 0, n, 0, . . . , 0, 0). In these

last vectors, the value n appears iteratively from position 1 to position D, up
to the exhaustion of the set. Then, the lattice vector closest to (v1, . . . , vD, 0)
is likely to be (u′1x mod n, . . . , u′Dx mod n, x/n). Indeed, the Euclidean distance

between them is about (n/2`)
√
D and the volume of the lattice is nD−1. Since

such a short distance is quite unusual in a volume of this size, this is likely to be
indeed the closest vector. If it is found, then x can be deduced.

4.4 Feasibility of the Latter Attack

The latter attack is the most intricate and demanding of all the attacks in this
section. Thus, we endeavored in studying its practical feasibility. We hereby
report our findings.

Implementation Details. In our implementation, we used a modified version of
the lattice reduction of HNP in [5]: the basis reduction is done with the BKZ
(Block Korkin-Zolotarev) [36] algorithm6, and the closest vector is found using
Babai’s closest plane algorithm [3]. These algorithms are implemented in NTL [37]
and, in our coding of the attack, we use these implementations.

Implementation Results. In our implementation, we are mainly interested in the
number of protocol sessions needed to perform the attack, for a given length
of the modulus. Table 1 reports the above aim, together with the variation of
several key parameters presented in the previous section. When we called the
BKZ algorithm with its default NTL parameters, we obtained the respective
number of protocol sessions reported in the table. When we manually tuned
some of BKZ’s parameters through extensive experiments, we succeeded in a
slight reduction in this number of sessions. This improvement is reported with
underlined figures in our table of results (i.e., in line 3, we show a drop from 216

to 215 in number of sessions, through adjusting BKZ’s calling-parameters).
Note that—up to some point—we can achieve a time/accuracy trade-off (and

implicitly lower `). Namely, one can β-block reduce7 the basis of a lattice to

6 This algorithm is a generalization of the famous LLL algorithm [28], from blocks of
size 2 to blocks of larger sizes.

7 Vaguely speaking, a lattice basis is block reduced with block size β if for every β
consecutive vectors, the orthogonal projections of them in the span of some previous
vectors are reduced in the sense of Hermite and Korkin-Zolotarev [35].
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get much better closest vector solutions [36], where β is at most the size of the
lattice (in our case, we have β = D + 1, with D ∈ O(

√
log n) as in the table).

If the size of the modulus is small, β will increase, but we can always increase
D to lower ` (and require less sessions), and choose a sensible value for β. This
trade-off can reduce the number of sessions by a few, but it can dramatically
increase the running time. These facts were also confirmed experimentally. In the
implemented attack, we took `′ = 3. Below, we report values that yield efficient
attacks.

Table 1. Number of Sessions per Modulus Size

Prime size ` D β # sessions Time (s)

8 3 b6
√

lognc = 12 13 212 0.002
16 4 b6

√
lognc = 24 25 214 0.005

32 4 b6
√

lognc = 30 31 214 0.357
64 5 b3

√
lognc = 24 25 216,215 0.18

128 5 b6
√

lognc = 66 31 217 71
256 7 b6

√
lognc = 96 25 220,219 267

512 9 b5
√

lognc = 110 20 226,221 1920
1024 15 b3

√
lognc = 96 23 232,227 1616

In the above table, we present the results for the attack working with a
probability greater than or equal to 7/8 (i.e., we took `′ = 3). The last column
indicates the running time it took to find the secret on a 2GHz Dual Core
processor with 4GB of RAM, given the ` most significant bits of the key (with `
respectively reported in the table).

There may be further optimization to perform onto our implementation. For
instance, there is the new BKZ 2.0 [12] that could be implemented separately (i.e.,
it is not available in NTL). This could yield faster, more accurate solutions for the
CVP, which in itself could allow β to go higher. With such a reduced basis, for a
higher β, one could replace NTL’s versions of Babai’s Nearest Plane algorithm
(found in NTL) with more efficient algorithms for the CVP such as Enum [1].
We feel however that this is a project in its own right, concerning optimizations
of lattice-based implementations, which is out of our scope. Through this section,
we desired to show that our computationally most expensive attack could still be
deployed in practice, with a significant yet not impossible effort.

5 On Strengthening/Fixing DBENC (and DB in general)

As we showed, the DBENC protocols (e.g., variants of Reid et al. [34]) are
vulnerable to reasonable MiM attacks. In this section, we assess the possible
(existent or to-be-found) alternative.

DBPK appeared with the aim of protecting against terrorist-fraud [15]. Some
other protocols followed its path in more recent years. We briefly discuss now
such descendants and their countermeasures to attacks. On the one hand, the
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Swiss-Knife protocol [25] can counter terrorist fraud, and—by using a MAC
and a secret sharing scheme—it eliminates the pattern of insecurity by Kim [25]
that we extend to full statistical attacks in here. On the other hand, the Tu
and Piramuthu protocol [39] is fully susceptible to the type of attacks described
in here (see [31] for more on the insecurity of Tu and Piramuthu’s protocol).
As per the actual DBPK protocol itself, we also consider that a first way in
which it could improve its insecurity status consists of changing the proof of
knowledge into the authentication of the protocol exchanges. Another way is that
of employing different encryption functions or other cryptographic primitives to
those proposed by the authors.

Unfortunately, changing the encryption to some more involved scheme leads
to other vulnerabilities against terrorist fraud, as shown by Hancke [20].

Most importantly, the sad aspect in DB is that most arguments of security
(and insecurity for that matter) are heuristic. And, other, completely different
patterns of attacks have been exposed recently [6] for a large class of DB protocols.
That attack pattern demolished the PRF assumption, which has been voidly
invoked in some security arguments for DB protocols. In that sense, even in the
Bussard-Bagga protocol, it should not be sufficient to replace the encryption by
a PRF in a vacuous manner, i.e., with no further conditions/proofs.

We personally consider that the solution of basing the responses on pre-
established sub-secrets and on secrets by using a secret sharing scheme [2] (along
with other assessed modifications) is viable.

Nevertheless, this brief encounter into the status of DBPK-Log and DBPK’s
descendants goes to show that the threats exhibited are real and should carefully
be considered, especially in implementations of (these terrorist-fraud protecting)
DB.

Consequently, we emphasize that what is really missing is a clear, sound
security model for DB, where resistance to terrorist-fraud and resistance to MiM
can provably co-exist.

6 Conclusions

In this paper, we raise the signal that distance fraud, terrorist fraud, and MiM
attacks can be launched against allegedly secure existing distance-bounding
protocols. We show intricate applications of this attack-scenario, using statistical
and theoretical analyses. These concrete frauds are respectively performed against
the different proposed instantiations and successors of the DBPK distance-
bounding protocols [8–10]. We present a distance fraud and a terrorist fraud
against DBPK-Log, thus disproving its very purpose. Our non-narrow MiM
adversaries can therein retrieve all or several bits of the secret key, depending on
the used encryption scheme in the respective instantiation of DBENC, i.e. variants
of Reid et al. [34]. We present an implementation and short evaluation of the most
demanding of these attacks. Our results show that a bad choice of the encryption
function inside concrete instantiations of proposed protocol-schemas can lead
to MiM attacks. This vouches for our feeling that this serious attack-strategy
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possibly finds applications in many other DB protocols. Simple fixes (replacing
the encryption with a PRF) may not be the way forward either [6], since the core
issue is the absence of necessary and sufficient conditions to describe DB security.
Further, this dwells within the lack of sound, clear security models for DB with
accompanying provably secure protocols. We herein provide some cases in point.
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A Appendix

If X1, . . . , Xn are independent Bernoulli random variables with Xk ∈ {0, 1} and
P[Xk = 1] = µ for all k, then

P

[
n∑
k=1

Xk ≥ u

]
=

u∑
k=0

(
n

k

)
µk(1− µ)n−k. (4)

This probability can be bounded via Hoeffding’s inequality [22], i.e.,:

Lemma 1 (Hoeffding Bound). For independent random variables X1, . . . , Xn

such that Xi ∈ [ai, bi], with µi , EXi and t > 0,

P

[
n∑
i=1

Xi ≥
n∑
i=1

µi + nt

]
= P

[
n∑
i=1

Xi ≤
n∑
i=1

µi − nt

]
≤ exp

(
− 2n2t2∑n

i=1(bi − ai)2

)
.
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Lemma 2 (Chernoff Bound [13]). For independent Bernoulli random vari-
ables X1, . . . , Xn with P[Xi = 1] = µ > 1/2, then the probability of simultaneous
occurrence of more that n/2 of the events {Xk = 1} has a lower bound, namely

P ≥ 1− exp(−2n(µ− 1/2)2).
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