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Abstract: We concentrate on the analysis of the busy period and the waiting
time distribution of a multi-server retrial queue in which primary arrivals occur
according to a Markovian arrival process (MAP). Since the study of a model
with an infinite retrial group seems intractable, we deal with a system having
a finite buffer for the retrial group. The system is analyzed in steady state by
deriving expressions for (a) the Laplace–Stieltjes transforms of the busy period
and the waiting time; (b) the probabiliy generating functions for the number
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1. INTRODUCTION

Many queueing situations have the feature that customers who find
all servers busy upon arrival leave the service area immediately and
repeat their requests for service after a random time. Between requests
customers are assumed to be in a retrial orbit. Retrial queueing systems
are presented as alternatives to clasical waiting lines and loss systems in
the monograph by Falin and Templeton [1]. The practical applications
of retrial models are wide including telephone systems, call centers, local
area networks, communication protocols and queues arising in daily life
where retrials occur due to blocking or impatience. In fact, the retrial
nature of many queueing systems has been noted since the beginning of
queueing theory, and its importance was expressed by Kosten [2] who
writes that “any theoretical result does not take into consideration this
repetition effect should be considered suspect” (p. 33).

The interest and the study of retrial queues is thus justified,
however, we have to note that the majority of retrial systems, even
the Markovian models, are not analytically tractable without imposing
additional restrictions. The reason lies in the spatial heterogeneity of the
underlying process obtained as a result of superimposed flow of repeated
attempts coming from the orbit with the stream of primary arrivals.
Moreover, most retrial queues operate in random order which makes the
waiting time analysis difficult.

In the last few decades there has been an increasing interest in the
application of matrix-analytic methods to a variety of retrial systems. In
particular, many authors have combined matrix-analytic techniques and
approximating methods (i.e., truncation and generalized truncation) to
investigate the queue length characteristics of multi-server retrial queues.
Among others we mention the work by Neuts and Rao [3], Choi and
Chang [4], Diamond and Alfa [5], Breuer et al. [6], and Chakravarthy
et al. [7]. For a detailed bibliography see Gomez-Corral [8].

In contrast, the study of the busy period and the waiting time in
multi-server retrial queues is relatively new. Recently, a number of papers
study these descriptors for the M/M/c retrial queue (see Artalejo et al.
[9], Artalejo and Gomez-Corral [10], Artalejo et al. [11], and Artalejo and
Lopez-Herrero [12]). To the best of our knowledge, there is no literature
available on the study of the busy period and the waiting time analysis
for multi-server retrial queues with MAP arrivals. The main objective
of this paper is to study these descriptors in the context of MAP/M/c
retrial queue. We remark again that the existing literature emphasizes
the necessity of approximating the performance characteristics of multi-
server retrial queues. Thus, in this article, we assume the most natural
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Busy Period and Waiting Time Analysis of MAP/M/c Queue 447

and traditional approach of restricting the orbit capacity to be of finite
size, say K.

The busy period is probably the most important first-passage
descriptor of any queueing model. It gives an interesting measure from
the service provider’s point of view. Performance characteristics of the
busy period and the number of customers served are employed to define
the cost structure of control queueing problems. Our analysis of the busy
period includes the following contributions:

(a) We obtain the Laplace–Stieltjes transforms and the generating
functions governing the length of the busy period and the number of
customers served, respectively. The numerical inversion of the underlying
density and the computation of the probability mass function are carried
out for some selected scenarios.

(b) We develop recursive equations for the computation of any
arbitrary moment of the busy period and the number of customers
served.

On the other hand, the waiting time is the most significant queueing
descriptor from the customer’s point of view. We will deal with a random
order policy among the customers in orbit. Our contributions include the
following:

(c) We obtain the Laplace–Stieltjes transform of the waiting time of
a tagged customer and perform the subsequent numerical inversion. We
also investigate the discrete counterpart of the waiting time consisting in
the number of retrials made by the marked customer before getting a
free server.

(d) The development of recursive schemes for the computation of
arbitrary moments of both the waiting time and the number of retrials
made by a customer.

As related work, we mention Artalejo and Chakravarthy [13] who
investigated the computation of the maximum number of customers in
orbit in the MAP/M/c with an infinite retrial group. The computation of
the stationary distribution of the system state for the MAP/M/c retrial
queue can be obtained as a particular case of the model considered
by Chakravarthy et al. [7], where primary arrivals follow a Markovian
arrival process and the servers with a certain probability search for
customers.

The rest of the paper is organized as follows. In Section 2, we
describe the mathematical model and give a brief presentation of the
stationary distribution of the system state. In Section 3, we develop the
computational analysis for the length of a busy period. The number of
customers served is investigated in Section 4. In Sections 5 and 6, we
investigate respectively the waiting time and the number of retrials made
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448 Artalejo et al.

by a customer before getting service. A brief review of the Markovian
arrival process is given in the appendix. We present some illustrative
numerical results.

For use in sequel, let e�r�, ej�r�, and Ir denote, respectively, the
(column) vector of dimension r consisting of 1’s, column vector of
dimension r with 1 in the jth position and 0 elsewhere, and an
identity matrix of dimension r. When there is no need to emphasize
the dimension of these vectors we will suppress the suffix. Thus, e will
denote a column vector of 1’s of appropriate dimension. The notation “′”
appearing in a matrix will stand for the matrix transpose. The notation
⊗ will stand for the Kronecker product of two matrices. Thus, if A is a
matrix of order m× n and if B is a matrix of order p× q, then A⊗ B will
denote a matrix of order mp× nq whose �i� j�th block matrix is given
by aijB. For more details on Kronecker products, we refer the reader to
Marcus and Minc [14].

2. DESCRIPTION OF THE MATHEMATICAL MODEL
AND STATIONARY DISTRIBUTION

We deal with a multi-server model with c identical servers. The primary
customers arrive according to a Markovian arrival process (MAP) with
representation (D0� D1) of order m. The service times are exponentially
distributed with rate �. Any arriving customer finding all servers busy
enters an orbit of capacity K from where the retrial customers compete
for service. The interretrial times of each customer in orbit are assumed
to be exponentially distributed with rate �. The Markovian arrival
process, the service times, and the retrial times are assumed to be
mutually independent.

Let N�t�, C�t�, and M�t� denote, respectively, the number of
customers in the retrial orbit, the number of busy servers, and the phase
of the arrival process at time t. The process ��N�t�� C�t��M�t��� t ≥ 0� is
a continuous-time Markov chain with state space given by

S = ��i� j� k�� 0 ≤ i ≤ K� 0 ≤ j ≤ c� 1 ≤ k ≤ m�	

We partition S as follows

0∗ = ��0� 0� k�� 1 ≤ k ≤ m��

0 = ��0� j� k�� 1 ≤ j ≤ c� 1 ≤ k ≤ m��

i = ��i� j� k�� 0 ≤ j ≤ c� 1 ≤ k ≤ m�� 1 ≤ i ≤ K	
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Busy Period and Waiting Time Analysis of MAP/M/c Queue 449

Then, the infinitesimal generator of the Markov chain ��N�t�� C�t��
M�t��� t ≥ 0� has the form

Q�K� =



D0 e′1�c�⊗D1

�e1�c�⊗ I A10 A00

A21 A11 A0

	 	 	
	 	 	

	 	 	

A2�K−1 A1�K−1 A0

A2K A∗
1K


� (1)

where the coefficient matrices appearing in (1) are given by

A10 =


D0 − �I D1

2�I D0 − 2�I D1

	 	 	
	 	 	

	 	 	

c�I D0 − c�I

 �

A00 is a rectangular matrix of dimensions cm× �c + 1�m whose elements
are all zero except the �c� c + 1�th block entry which is given by D1,

A1i =



D0 − i�I D1

�I D0 − �� + i��I D1

	 	 	
	 	 	

	 	 	

�c − 1��I D0 − ��c − 1�� + i��I D1

c�I D0 − c�I


�

1 ≤ i ≤ K − 1�

A∗
1K is defined as A1K except for the �c + 1� c + 1�th block entry that is

replaced by Q∗ − c�I ,

A21 = �


I

I
	 	 	

I
0

 � A2i = i�


0 I

I
	 	 	

I
0

 � 2 ≤ i ≤ K�

and A0 is a square matrix of dimension �c + 1�m whose elements are all
zero except for the �c + 1� c + 1�th block entry which is given by D1.

Let x, partitioned as x = �x∗� x�0�� 	 	 	 � x�K��, denote the stationary
probability vector of Q�K�. That is, x satisfies

xQ�K� = 0� xe��K + 1��c + 1�m� = 1	
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450 Artalejo et al.

The computation of the stationary distribution is reduced to solving a
finite block tridiagonal system. At this point we refer to Chakravarthy
et al. [7] from where the details for the computation of the vector x for
our model can be obtained by taking p = 0 in their model. In fact, the
existence of finite block tridiagonal matrix structures will be a common
feature in the sequel, but a comparison among different methods of
solution is not our aim in this article. Here, we simply mention that
a number of well-known methods can be used such as block forward-
elimination-backward substitution, aggregate/disaggregate techniques,
block Gaussian–Seidel iteration, etc.

3. THE LENGTH OF THE BUSY PERIOD

The busy period of the MAP/M/c/K retrial queue is the duration
commencing when an arriving customer finds the system empty (i.e., the
arriving customer sees the state 0∗) and ends when the system visits state
0∗ again at a service completion.

First, we introduce some notation:
T

�K�

�i�j�k� = the first-passage time to the level 0∗ given that the initial
state is �i� j� k�,



�K�

�i�j�k��s� = E
[
exp

{− sT
�K�

�i�j�k�

}]
� Re�s� ≥ 0� �i� j� k� ∈ S	

The following vectors comprise the above Laplace–Stieltjes
transforms partitioned according to the orbit levels:

�
�K�
0 �s� = (



�K�

�0�1�1��s�� 	 	 	 � 

�K�

�0�c�m��s�
)′
�

�
�K�
i �s� = (



�K�

�i�0�1��s�� 	 	 	 � 

�K�

�i�c�m��s�
)′
� 1 ≤ i ≤ K�

��K��s� = (
�

�K�
0 �s�� 	 	 	 ��

�K�
K �s�

)′
	

Moreover, we have �
�K�

0∗ �s� = e�m�.

Theorem 1. The Laplace–Stieltjes transforms �

�K�

�i�j�k��s�� �i� j� k� ∈ S�

satisfy the following tridiagonal system

T
�K�
L �s���K��s� = f �K�� (2)

where T
�K�
L �s� = �Q�K� − sIcm+K�c+1�m and f �K� = −��e1�c�⊗ e�m�� 0�′. The

matrix �Q�K� is obtained from Q�K� by removing the first (block) column and
the first (block) row.
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Busy Period and Waiting Time Analysis of MAP/M/c Queue 451

Proof. We employ first-step analysis to get



�K�

�i�j�k��s� =
∑
k′ �=k

d0
kk′

�k + j� + i�+ s


�K�

�i�j�k′��s�+
∑
k′

d1
kk′

�k + j� + i�+ s


�K�

�i�j+1�k′��s�

+ j�

�k + j� + i�+ s


�K�

�i�j−1�k��s�+
i�

�k + j� + i�+ s


�K�

�i−1�j+1�k��s��

0 ≤ i ≤ K� 0 ≤ j ≤ c − 1� 1 ≤ k ≤ m� �i� j� �= �0� 0�� (3)



�K�

�i�c�k��s� =
∑
k′ �=k

d0
kk′

�k + c� + s


�K�

�i�c�k′��s�+
∑
k′

d1
kk′

�k + c� + s


�K�

�i+1�c�k′��s�

+ c�

�k + c� + s


�K�

�i�c−1�k��s�� 0 ≤ i ≤ K − 1� 1 ≤ k ≤ m� (4)



�K�

�K�c�k��s� =
∑
k′ �=k

q∗
kk′

q∗
k + c� + s



�K�

�K�c�k′��s�+
c�

q∗
k + c� + s



�K�

�K�c−1�k��s�� (5)

where q∗
k = �k�1− pkk�1��, for 1 ≤ k ≤ m, and q∗

kk′ = �k�pkk′�0�+ pkk′�1��,
for k �= k′.

By expressing Equations (3)–(5) in matrix form we obtain the
expression (2). �

Since the busy period starts by visting a state of the sub-level
�0� 1� = ��0� 1� k�� 1 ≤ k ≤ m�, we next consider the unconditional
version with Laplace–Stieljes transform defined as

��K��s� = ��K���K��s�� (6)

where ��K� is the row vector of dimension cm+ K�c + 1�m given by

��K� = 1
x∗D1e�m�

�x∗D1� 0�	

Let fL�x� denote the unconditional density associated with ��K��s�.
Its value at point x = 0 follows from the Tauberian result: fL�0� =
lims→
 s��K��s�. Since

lim
s→
 s


�K�

�i�j�k��s� =
{
�� if �i� j� k� = �0� 1� k��

0� otherwise�

we find that fL�0� = �.
We now turn our attention to the nth moment of T

�K�

�i�j�k� which

is denoted by m
�K�

�i�j�k��n� = E�T
�K�

�i�j�k��
n�, for n ≥ 0. With the help of

Leibnitz’s formula for the derivative of a product, we differentiate the
expression given in (2) to get

T
�K�
L �s�

dn

dsn
��K��s�− n

dn−1

dsn−1
��K��s� = 0	

D
ow

nl
oa

de
d 

by
 [

B
ib

lio
te

ca
 U

ni
ve

rs
id

ad
 C

om
pl

ut
en

se
 d

e 
M

ad
ri

d]
 a

t 0
2:

17
 1

4 
M

ar
ch

 2
01

2 



452 Artalejo et al.

Let m�K��n� denote the vector containing the moments partitioned in
accordance with the orbit levels, i.e., we have

m�K�
0 �n� = (

m
�K�

�0�1�1��n�� 	 	 	 � m
�K�

�0�c�m��n�
)′
� n ≥ 0�

m�K�
i �n� = (

m
�K�

�i�0�1��n�� 	 	 	 � m
�K�

�i�c�m��n�
)′
� 1 ≤ i ≤ K� n ≥ 0�

m�K��n� = (
m�K�

0 �n�� 	 	 	 �m�K�
K �n�

)′
� n ≥ 0	

Since m�K��n� = �−1�n dn

dsn
��K��s��s=0 and T

�K�
L �0� = �Q�K� we notice

that

�Q�K�m�K��n� = −nm�K��n− 1�� n ≥ 1�

m�K��0� = e�cm+ K�c + 1�m�	
(7)

We also notice that the unconditional moments are given by

ELn� = ��K�m�K��n�� n ≥ 0	

We next present numerical results involving the first two moments
and the numerical inversion of the unconditional transform ��K��s�. In
the following examples, we fix c = 5 and � = 1	0. In addition, we denote
the traffic intensity by � = �/c� = �5��−1. We increase successively the
truncation level until the first four decimal digits of two successive values
of EL� match. Table 1 summarizes the resulting values of K, for several
choices of the traffic intensity, �, and the retrial rate, �. Each block
gives the truncation levels corresponding, from left to right, to the arrival
processes ERL, EXP, HEX, and MMPP (see the appendix).

In Table 2, we consider the three renewal inputs and display the
mean, EL�, and the standard deviation, ��L�, for different values of �
and �. As is to be expected, both the measures are increasing functions
of � and decreasing functions of �.

Using Euler and Post-Widder algorithms, we can numerically invert
the expression given in (6), and obtain the density function fL�x�. In
Figures 1 and 2 we illustrate the influence of � and � for the arrival

Table 1. Truncation levels K associated with EL�

� = 0	25 � = 0	5 � = 0	75

� = 0	05 3, 7, 14, 33 11, 25, 59, 75 54, 99, 207, 209
� = 0	5 1, 4, 9, 18 8, 15, 40, 49 30, 49, 138, 145
� = 1	0 2, 5, 10, 19 8, 15, 37, 49 31, 50, 121, 130
� = 2	5 2, 4, 9, 21 9, 15, 34, 46 28, 47, 140, 121
� = 5	0 1, 5, 9, 19 7, 14, 32, 48 28, 44, 125, 129
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Busy Period and Waiting Time Analysis of MAP/M/c Queue 453

Table 2. Moments of the unconditional busy period L

� = 0	25 � = 0	5 � = 0	75

EL� ��L� EL� ��L� EL� ��L�

� = 0	05 ERL 2	28930 3	15885 20	84490 40	33858 2334	59355 3817	40231
EXP 2	94830 6	24091 41	75191 95	75959 3794	35110 6417	54554
HEX 7	33213 20	21505 155	75531 313	02446 2588	76030 4195	64390

� = 0	5 ERL 2	27990 3	06292 14	02606 20	31492 115	37530 165	90911
EXP 2	52350 3	15530 12	71971 17	77823 76	19950 113	16275
HEX 3	50993 4	43020 15	69120 20	54201 57	98240 89	40936

� = 1	0 ERL 2	27950 3	06133 13	76183 19	75304 98	44500 138	96143
EXP 2	50500 3	09491 12	01540 16	31635 62	66100 92	27115
HEX 3	37880 4	08798 14	07320 17	60480 49	04640 74	05324

� = 2	5 ERL 2	27930 3	06061 13	62571 19	47443 89	81731 125	35888
EXP 2	46622 3	07062 11	67232 15	63480 56	24280 79	48115
HEX 3	31692 3	94726 13	32370 16	27244 44	83870 66	67907

� = 5	0 ERL 2	27924 3	06040 13	58560 19	39336 87	15331 121	17625
EXP 2	49410 3	06522 11	57512 15	44442 54	35280 76	30562
HEX 3	30102 3	91341 13	10752 15	88795 43	56590 64	41793

process MMPP. First, in Figure 1, we fix � = 1	0 and display three
curves corresponding to � = 0	25� 0	5, and 0	75. We notice that fL�0� =
� = �5��−1, in agreement with the Tauberian result. All curves exhibit
decreasing shapes with heavier tails for higher values of �.

In Figure 2, we plot the density fL�x� for � = 0	5 and � =
0	05� 1	0, and 5	0. We notice that the three densities are graphically
indistinguishable in the displayed domain. However, when � decreases
the tail of the distribution becomes heavier. In fact, EL� = 124	42, for
the model with � = 0	05, whereas EL� = 9	95 when � = 5	0.

Figure 1. The density fL�x� versus �.
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454 Artalejo et al.

Figure 2. The density fL�x� versus �.

4. THE NUMBER OF CUSTOMERS SERVED

In this section we study the number of customers served during a
busy period. The study of this descriptor complements the busy period
analysis providing a discrete counterpart of the length of the busy period.
The methodology is similar to that employed in Section 3, and hence in
the sequel we omit the repetitive details.

We next introduce some definitions and notations. We have

N
�K�

�i�j�k� = the number of customers served during T
�K�

�i�j�k��

�
�K�

�i�j�k��z� = E
[
zN

�K�
�i�j�k�

]
� �z� ≤ 1� �i� j� k� ∈ S�

�
�K�
0 �z� = (

�
�K�

�0�1�1��z�� 	 	 	 � �
�K�

�0�c�m��z�
)′
�

�
�K�
i �z� = (

�
�K�

�i�0�1��z�� 	 	 	 � �
�K�

�i�c�m��z�
)′
� 1 ≤ i ≤ K�

��K��z� = (
�

�K�
0 �z�� 	 	 	 ��

�K�
K �z�

)′
�

m̃
�K�

�i�j�k��n� = E
[
N

�K�

�i�j�k� 	 	 	 �N
�K�

�i�j�k� − n+ 1�
]
� n ≥ 1� and m̃

�K�

�i�j�k��0� = 1�

m̃�K�
0 �n� = (

m̃
�K�

�0�1�1��n�� 	 	 	 � m̃
�K�

�0�c�m��n�
)′
� n ≥ 0�

m̃�K�
i �n� = (

m̃
�K�

�i�0�1��n�� 	 	 	 � m̃
�K�

�i�c�m��n�
)′
� 1 ≤ i ≤ K� n ≥ 0�

m̃�K��n� = (
m̃�K�

0 �n�� 	 	 	 � m̃�K�
K �n�

)′
� n ≥ 0	

Once again we may use the first-step analysis to get the system of
equations governing the dynamic of the generating functions �

�K�

�i�j�k��z�.

For states of the level 0∗, we have �
�K�

�0�0�k��z� = 1, for 1 ≤ k ≤ m. The
resulting system has the form (3)–(5) for s = 0, but the service rates
j� are replaced by j�z. The corresponding result is summarized in the
following.
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Theorem 2. The generating functions ��
�K�

�i�j�k��z�� �i� j� k� ∈ S� satisfy the
following block tridiagonal system

T
�K�
N �z���K��z� = f �K��z�� (8)

where T
�K�
N �z� = �Q�K� − A�K��z�� f �K��z� = zf �K� and

A�K��z� = �1− z��

(
W0 0
0 IK ⊗W

)
⊗ Im�

W0 =


0

2
	 	 	

	 	 	
	 	 	

c 0

 �W =


0

1
	 	 	

	 	 	
	 	 	

c 0

 	

By differentiating the expresion in (8) in Theorem 2, we find that

T
�K�
N �z�

dn

dzn
��K��z�+ nA�K��0�

dn−1

dzn−1
��K��z� = �n1f

�K��

where �n1 denotes Kronecker’s function.
Noting that m̃�K��n� = dn

dzn
��K��z��z=1 and T

�K�
N �1� = �Q�K�, we get an

appropriate formula for computing any arbitrary vector m̃�K��n� in terms
of the vector containing moments of one less order:

�Q�K�m̃�K��n� = �n1f
�K� − nA�K��0�m̃�K��n− 1�� n ≥ 1�

m̃�K��0� = e�cm+ K�c + 1�m�	
(9)

We also observe that the unconditional factorial moment is given by

EN 	 	 	 �N − n+ 1�� = ��K�m̃�K��n�� n ≥ 0	

Our numerical experience indicates the two measures, the mean and
standard deviation of the number of customers served during a busy
period, behave very similar to the ones reported in Table 2 for L, i.e.,
both descriptors decrease with increasing retrial rates and increase with
increasing values of �.

Because the spatial heterogeneity caused by the retrial rates, it seems
impossible to deal with the model with infinite orbit capacity (i.e., the
case K = 
) and solve the system (8), for the generating functions
�

�K�

�i�j�k��z�, or the system (9), for the moments m̃�K�

�i�j�k��n�. The same occurs
for the corresponding systems (2) and (7) in Section 3. In contrast, we
next show how the probability mass function of the number of customers
served, given any initial state �i� j� k�, can be recursively computed
without truncating the orbit capacity.
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456 Artalejo et al.

Let N�i�j�k� be the number of customers served during a busy period
of the MAP/M/c retrial queue, i.e., N�i�j�k� = N

�
�

�i�j�k�. For �i� j� �= �0� 0�,

we define x
�n�

�i�j�k� = P�N�i�j�k� = n�� n ≥ 1� i ≥ 0� 0 ≤ j ≤ c� 1 ≤ k ≤ m. The
corresponding partition gives

xn
0 = (

xn�0�1�1�� 	 	 	 � x
n
�0�c�m�

)′
�

xn
i = (

xn�i�0�1�� 	 	 	 � x
n
�i�c�m�

)′
�

xn = (
xn
0� x

n
1� 	 	 	

)′
	

We note that the definition can be extended to cover the boundary
cases n = 0 and �i� j� = �0� 0� as follows

x0�i�j�k� =
{
1� if �i� j� k� ∈ 0∗�
0� otherwise,

xn�0�0�k� = 0� n ≥ 1	

A first-step argument yields

xn�i�j�k� =
∑
k′ �=k

d0
kk′

�k + j� + i�
xn�i�j�k′� +

∑
k′

d1
kk′

�k + j� + i�
xn�i�j+1�k′�

+ j�

�k + j� + i�
xn−1
�i�j−1�k� +

i�

�k + j� + i�
xn�i−1�j+1�k��

n ≥ 1� i ≥ 0� 0 ≤ j ≤ c − 1� 1 ≤ k ≤ m� �i� j� �= �0� 0�� (10)

xn�i�c�k� =
∑
k′ �=k

d0
kk′

�k + c�
xn�i�c�k′� +

∑
k′

d1
kk′

�k + c�
xn�i+1�c�k′�

+ c�

�k + c�
xn−1
�i�c−1�k�� n ≥ 1� i ≥ 0� 1 ≤ k ≤ m	 (11)

For every fixed n ≥ 1, we observe that xn�i�j�k� = 0, for i+ j > n.
As a result, the systems given in (10) and (11) involve only a finite
number of unknowns corresponding to the orbit levels i = 0� 	 	 	 � n. The
matrix formulation of Equations (10) and (11), for 0 ≤ i ≤ n, leads to the
following block tridiagonal system:

�Q̃�n� − A�n��0��xn�n� = �n1f
�n� − A�n��0�xn−1�n�� (12)

where xn�n� = �xn
0� 	 	 	 � x

n
n�

′ and xn−1�n� = �xn−1
0 � 	 	 	 � xn−1

n−1� 0�
′, and Q̃�n�

is the square matrix of order cm+ n�c + 1�m obtained from �Q�n� by
replacing the �n+ 1� n+ 1�th block entry by A1n.

If we take into account the distribution of the first state visited when
the busy period starts, we get the unconditional distribution given by

P�N = n� = 1
x∗D1e�m�

x∗D1x
n
�0�1�� n ≥ 1� (13)
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Figure 3. Probability mass function of N versus �.

where xn
�0�1� =

(
xn�0�1�1�� 	 	 	 � x

n
�0�1�m�

)′
. Thus, an initial truncation is needed

to determine the distribution of the first state visited. Then, the recursive
use of formulas (12) and (13) gives the desired unconditional distribution
of the number of customers served.

Table 3. Probability mass function of N , arrivals EXP and MMPP

� = 0	05 � = 0	5 � = 1	0 � = 5	0

n = 1 EXP 0.28571 0.28571 0.28571 0.28571
MMPP 0.32720 0.32720 0.32720 0.32720

n = 2 EXP 0.09070 0.09070 0.09070 0.09070
MMPP 0.09908 0.09908 0.09908 0.09908

n = 3 EXP 0.05628 0.05628 0.05628 0.05628
MMPP 0.05958 0.05958 0.05958 0.05958

n = 4 EXP 0.04260 0.04260 0.04260 0.04260
MMPP 0.04401 0.04401 0.04401 0.04401

n = 5 EXP 0.03533 0.03533 0.03533 0.03533
MMPP 0.03575 0.03575 0.03575 0.03575

n = 6 EXP 0.03034 0.03055 0.03063 0.03072
MMPP 0.02874 0.02989 0.03020 0.03046

n = 7 EXP 0.02642 0.02703 0.02724 0.02745
MMPP 0.02277 0.02547 0.02615 0.02668

n = 8 EXP 0.02315 0.02427 0.02463 0.02495
MMPP 0.01801 0.02212 0.02306 0.02377

n = 9 EXP 0.02036 0.02204 0.02251 0.02292
MMPP 0.01432 0.01953 0.02064 0.02143

n = 10 EXP 0.01797 0.02018 0.02076 0.02123
MMPP 0.01149 0.01749 0.01867 0.01949
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458 Artalejo et al.

In Figure 3 we fix � = 1	0 and c = 5. Then, we analyze the effect
of the traffic intensity in the model with MMPP arrivals. We notice that
the lowest value at the point n = 1 corresponds to the case � = 0	75 and,
consequently, the heaviest tail also is associated with this traffic intensity.

Finally, in Table 3 we compare the probability mass function of a
model with renewal input of type EXP versus the nonrenewal arrival
process described by MMPP. To this end, we fix � = 0	5 and display
P�N = n�, for 1 ≤ n ≤ 10. Since the repeated attempts occur only when
all servers are busy, the probabilities P�N = n�, for 1 ≤ n ≤ 5, do not
depend on the retrial rate. For all choices of �, we observe that the queue
with MMPP has a larger mass at the origin, for 1 ≤ n ≤ 5, whereas the
model with EXP arrivals exhibits a heavier tail.

5. THE WAITING TIME

In this section we turn our attention to the waiting time which is
defined as the sojourn time of a tagged customer in the retrial orbit.
In retrial queues it is typically assumed that customers in the retrial
orbit behave independently of each other. It means that the retrial
group operates under a random order policy. This assumption makes the
analysis difficult because we need to consider not only the system state
at the arrival time of the tagged customer, but also the possibility that
the customers arriving at later time will compete for free servers.

Define
W

�K�

�i�j�k� = the residual waiting time of the tagged customer given that
the system state is �i� j� k�,

W
�K�

�i�j�k��s� = Eexp�−sW
�K�

�i�j�k����Re�s� ≥ 0, for any �i� j� k� ∈ S with
i > 0.

We partition the above Laplace–Stieltjes transforms according to the
orbit levels in a similar manner as follows:

W�K�
i �s� = (

W�K�

�i�0�1��s�� 	 	 	 �W
�K�

�i�c�m��s�
)′
� 1 ≤ i ≤ K�

W�K��s� = (
W�K�

1 �s�� 	 	 	 �W�K�
K �s�

)′
	

The following theorem gives a system of linear equations for the
Laplace–Stieltjes transforms W�K�

�i�j�k��s�.

Theorem 3. The Laplace–Stieltjes transforms �W�K�

�i�j�k��s�� �i� j� k�∈ S� i > 0�
satisfy the following block tridiagonal system

T
�K�
W �s�W�K��s� = g�K�� (14)
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where T
�K�
W �s� = Q̂�K� − sIK�c+1�m and g�K� = −�e�K�⊗ �e�c + 1�− ec+ 1

�c + 1��⊗ e�m�. The matrix Q̂�K� is of the form

Q̂�K� =



A11 A0

Â22 A12 A0

	 	 	
	 	 	

	 	 	

Â2�K−1 A1�K−1 A0

Â2K A∗
1K


�

and Â2i = A2i�i− 1�/i, for 2 ≤ i ≤ K.

Proof. Using again the first principles, we find that

W
�K�

�i�j�k��s� =
∑
k′ �=k

d0
kk′

�k+j�+i�+s
W

�K�

�i�j�k′��s�+
∑
k′

d1
kk′

�k+j�+i�+s
W

�K�

�i�j+1�k′��s�

+ j�

�k+j�+i�+s
W

�K�

�i�j−1�k��s�+
�i−1��

�k+j�+i�+s
W

�K�

�i−1�j+1�k��s�

+ �

�k+j�+i�+s
� 1≤ i≤K� 0≤j≤c−1� 1≤k≤m�

(15)

W
�K�

�i�c�k��s� =
∑
k′ �=k

d0
kk′

�k+c�+s
W

�K�

�i�c�k′��s�+
∑
k′

d1
kk′

�k+c�+s
W

�K�

�i+1�c�k′��s�

+ c�

�k+c�+s
W

�K�

�i�c−1�k��s�� 1≤ i≤K−1� 1≤k≤m� (16)

W
�K�

�K�c�k��s� =
∑
k′ �=k

q∗
kk′

q∗
k+c�+s

W
�K�

�K�c�k′��s�+
c�

q∗
k+c�+s

W
�K�

�K�c−1�k��s�	 (17)

The contribution due to repeated attempts is explained as follows.
The last term on the right-hand side of formula (15) is associated with
the case where the first event corresponds to an attempt for service made
by the tagged customer. In contrast, if another retrial customer applies
for service, we obtain the term �i− 1����k + j� + i�+ s�−1W

�K�

�i−1�j+1�k��s�.
Now, after routine (block) identification, we may express the system in
(15)–(17) as given in (14). �

The marked customer must wait in orbit if upon arrival he finds the
system at any state in the subset SW = ��i� c� k�� 0≤ i≤K − 1� 1≤ k ≤ m�.
Thus, we define the unconditional version of the waiting time,W , as follows

��K��s� = 1− ��K�e�K�c + 1�m�+ ��K�W�K��s�� (18)
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460 Artalejo et al.

where ��K� is the row vector of dimension K�c + 1�m given by

��K� = �−1�0� x�0� c�D1� 	 	 	 � 0� x�K − 1� c�D1�� (19)

and x�i� c� = �x�i�c�1�� 	 	 	 � x�i�c�m��, for 0 ≤ i ≤ K − 1, i.e., x�i� c� is the sub-
vector containing the stationary probabilities of the sub-level �i� c� =
��i� c� k�� 1 ≤ k ≤ m�, and � is the normalizing constant given by

� = x∗D1e�m�+ x�0��e�c�⊗D1e�m��+
K∑
i=1

x�i��e�c + 1�⊗D1e�m��	

Wenotice that formula (18) includes two contributions: a)P�W = 0�=
1− ��K�e�K�c + 1�m� representing the probability of no-waiting, which
occur either when the tagged customer finds a free server or when he sees
the sub-level �K� c� and becomes a lost customer, and b) the transform of
the continuous contribution with density fWc�x� on �0�
�.

We notice that

lim
s→
 sW

�K�

�i�j�k��s� =
{
�� if 0 ≤ j ≤ c − 1�

0� if j = c	
(20)

Combining (19) and (20), we have

fWc�0� = lim
s→
 s��K�W�K��s� = 0	

We also define the nth moment of W
�K�

�i�j�k� which is denoted by

m̄
�K�

�i�j�k��n� = E
[(
W

�K�

�i�j�k�

)n]
, for n ≥ 0. Now we introduce some notation:

m̄�K�
i �n� = (

m̄
�K�

�i�0�1�� 	 	 	 � m̄
�K�

�i�c�m��n�
)′
� 1 ≤ i ≤ K� n ≥ 0�

m̄�K��n� = (
m̄�K�

1 �n�� 	 	 	 � m̄�K�
K �n�

)′
� n ≥ 0	

By differentiating the expression in (14), we get

T
�K�
W �s�

dn

dsn
W�K��s�− n

dn−1

dsn−1
W�K��s� = 0	

Since m̄�K��n� = �−1�n dn

dsn
W�K��s��s=0, we obtain

Q̂�K�m̄�K��n� = −nm̄�K��n− 1�� n ≥ 1�

m̄�K��0� = e�K�c + 1�m�	

Finally, the moments of the unconditional version satisfy that

EWn� = ��K�m̄�K��n�� n ≥ 0	
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Figure 4. The distribution FWc �x� versus �.

Our numerical experience indicates that EW� and ��W� increase with
increasing values of � and, in contrast, they decrease with increasing values
of �.

We next present numerical results regarding the inversion of the
distribution function FWc�x�. Once again the displayed curves correspond
to those orbit levels that guarantee at least four decimal places of EW�
corresponding to two successive orbit levels are matched.

In Figure 4, we apply the numerical inversion algorithms to get the
distribution function for the case of MMPP arrivals by fixing � = 1	0, c =
5, and � = 1, and varying � = 0	25, 0	5, and 0	75. The jump at the point x =
0 equals the probability P�W = 0�, and it becomes higher as long as � takes
smaller values. Obviously, for � = 0	75 we observe that the distribution
function exhibits a heavier tail.

The effect of the retrial rate is illustrated in Figure 5.We keep the same
arrival process and c = 5. Then, we fix � = 0	5 and plot the distribution,
FWc�x� for � = 0	05, 1	0, and 5	0. It should be noticed that when � decreases
the distribution becomes sparser. Moreover, when � increases, an arriving
customer will have more competition (from the retrial customers) to
occupy a free server. As a result, P�W = 0� decreases when � increases.

Figure 5. The distribution FWc �x� versus �.
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462 Artalejo et al.

6. THE NUMBER OF RETRIALS MADE BY A CUSTOMER

In this section we deal with R, the number of repeated attempts made by a
tagged customer until he reaches a free server. This descriptor provides a
discrete counterpart of the waiting time W studied in Section 5.

First of all, we define
R

�K�

�i�j�k� = the number of retrials that a tagged customer will make, given
that the system state is �i� j� k�,

R
�K�

�i�j�k��z� = EzR
�K�
�i�j�k� �� �z� ≤ 1, for any �i� j� k� ∈ S with i > 0.

The partition according to the orbit levels gives:

R�K�
i �z� = (

R
�K�

�i�0�1��z�� 	 	 	 � R
�K�

�i�c�m��z��
′� 1 ≤ i ≤ K�

R�K��z� = (
R�K�

1 �z�� 	 	 	 �R�K�
K �z��′	

The following theorem establishes a relationship for the generating
functions R�K�

�i�j�k��z�.

Theorem 4. The generating functions �R�K�

�i�j�k��z�� �i� j� k� ∈ S� i > 0� satisfy
the following block tridiagonal system

T
�K�
R �z�R�K��z� = g�K��z� (21)

where T�K�
R �z� = Q̂�K� + �1− z�h�K�� h�K� = − �IK ⊗ �ec+1�c + 1�e′c+1�c+ 1��

⊗Im and g�K��z� = zg�K�.

Proof. From the first principles we see

R
�K�

�i�j�k��z� =
∑
k′ �=k

d0
kk′

�k + j� + i�
R

�K�

�i�j�k′��z�+
∑
k′

d1
kk′

�k + j� + i�
R

�K�

�i�j+1�k′��z�

+ j�

�k + j� + i�
R

�K�

�i�j−1�k��z�+
�i− 1��

�k + j� + i�
R

�K�

�i−1�j+1�k��z�

+ z�

�k + j� + i�
� 1 ≤ i ≤ K� 0 ≤ j ≤ c − 1� 1 ≤ k ≤ m� (22)

R
�K�

�i�c�k��z� =
∑
k′ �=k

d0
kk′

�k + c� + �
R

�K�

�i�c�k′��z�+
∑
k′

d1
kk′

�k + c� + �
R

�K�

�i+1�c�k′��z�

+ c�

�k + c� + �
R

�K�

�i�c−1�k��z�+
z�

�k + c� + �
R

�K�

�i�c�k��z��

1 ≤ i ≤ K − 1� 1 ≤ k ≤ m� (23)

R
�K�

�K�c�k��z� =
∑
k′ �=k

q∗
kk′

q∗
k + c� + �

R
�K�

�K�c�k′��z�+
c�

q∗
k + c� + �

R
�K�

�K�c−1�k��z�

+ z�

q∗
k + c� + �

R
�K�

�K�c�k��z�	 (24)
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To derive formulas (22)–(24), we avoid the consideration of vain retrial
attempts made by nontagged customers which neither affect the event
under study nor modify the current system state. The incidence of a retrial
made by the tagged customers depends on the number of free servers. In
(22) we have free servers, so the existence of a retrial means that the tagged
customer gets service. On the other hand, if j = c and the tagged customer
retries, then the system state does not change but we do count that repeated
attempt.

Comparing these with the system given in (15)–(17) for the waiting
time analysis, we observe some similarities. Putting s = 0, formula (15)
agrees with (22). Moreover, when j = c we must add the contribution
−��1− z� at the main diagonal of the matrix of coefficients. This yields the
matrix form expression (21). �

We also define the unconditional version of the number of retrials
made by a customer as

��k��z� = 1− ��K�e�K�c + 1�m�+ ��K�R�k��z��

and the nth factorial moment of R�K�

�i�j�k� which is denoted by m̂
�K�

�i�j�k��n� =
ER

�K�

�i�j�k� 	 	 	
(
R

�K�

�i�j�k� − n+ 1�
]
� n ≥ 1, and m̂

�K�

�i�j�k��0� = 1, for n ≥ 0. We
denote

m̂�K�
i �n� = (

m̂
�K�

�i�0�1��n�� 	 	 	 � m̂
�K�

�i�c�m��n�
)′
� 1 ≤ i ≤ K� n ≥ 0�

m̂�K��n� = (
m̂�K�

1 �n�� 	 	 	 � m̂�K�
K �n�

)′
� n ≥ 0	

By differentiating the expression in (21), we get

T
�K�
R �z�

dn

dzn
R�K��z�− nh�K��z�

dn−1

dzn−1
R�K��z� = �n1g

�K�	

Since m̂�K��n� = dn

dzn
R�K��z��z=1, we obtain

Q̂�K�m̂�K��n� = �n1g
�K� + nh�K�m̂�K��n− 1�� n ≥ 1�

m̂�K��0� = e�K�c + 1�m�	

Then, the moments of the unconditional random variable satisfies

ER 	 	 	 �R− n+ 1�� = ��K�m̂�K��n�� n ≥ 0	

Table 4 gives the values of ER� and ��R� for the queueing model with
c = 5 and for the three renewal arrival processes with � = 1. Firstly, we
determine the values of K for which the first four decimal digits of ER�
agree. Table 4 shows that both the performance measures are increasing
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464 Artalejo et al.

Table 4. Moments of the number retrials R

� = 0	25 � = 0	5 � = 0	75

ER� ��R� ER� ��R� ER� ��R�

� = 0	05 ERL 0.00019 0.01417 0.02860 0.18411 0.34060 0.79291
EXP 0.00776 0.09004 0.10522 0.35730 0.57930 1.03684
HEX 0.04080 0.20782 0.30191 0.61823 1.06930 1.54204

� = 0	5 ERL 0.00022 0.01720 0.04435 0.29991 0.66210 1.67478
EXP 0.00942 0.11398 0.17301 0.63143 1.25420 2.58730
HEX 0.05433 0.28657 0.63720 1.43764 3.56840 6.17578

� = 1	0 ERL 0.00026 0.02041 0.05991 0.41842 0.98970 2.60948
EXP 0.01130 0.14095 0.24391 0.92948 1.97510 4.29800
HEX 0.06820 0.37078 0.99150 2.33362 6.28670 11.27336

� = 2	5 ERL 0.00035 0.02957 0.10263 0.75490 1.92423 5.35854
EXP 0.01651 0.21829 0.44780 1.80771 4.09041 9.38993
HEX 0.10720 0.61507 2.01590 4.98086 14.33750 26.47920

� = 5	0 ERL 0.00050 0.04425 0.17032 1.30115 3.44221 9.90257
EXP 0.02490 0.34446 0.77930 3.25581 7.57670 17.84378
HEX 0.16951 1.01375 3.68880 9.35609 27.67170 51.75798

functions of � and �. It should be noticed that a rapid reattempt for service
has a significant chance of being blocked, so ER� and ��R� increase for
increasing values of �.

The numerical inversion of the expression in (21) can be performed
with the help of a Fast Fourier transform algorithm. An alternative
approach may be attained introducing the probabilities

zrl��i�j�k��K� = the probability that the tagged customer produces r
retrials before entering service, given that he has accumulated l retrials and
the current system state is �i� j� k�, for �i� j� k� ∈ S, i > 0.

We note that the probability mass function of R is given by

P�R = 0� = 1− ��K�e�K�c + 1�m�� (25)

P�R = r� = ��K�zr0�K�� r ≥ 1� (26)

where zrl �K� is the column vector of dimension K�c + l�m containing the
unknowns zrl��i�j�k��K�.

A generalization of the arguments given by Artalejo and Lopez–
Herrero [12] for theM/M/c retrial queue gives

T
�K�
R zrr−1�K� = g�K�� r ≥ 1� (27)

T
�K�
R zrl �K� = h�K�zrl+1�K�� r ≥ 1� 0 ≤ l ≤ r − 2� (28)

where T�K�
R = Q̂�K� + h�K�.
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Figure 6. Probability mass function of R versus �.

For any fixed r ≥ 1, Equations (27) and (28) can be recursively solved
to get zrl �K�, from l = r − 1 to l = 0.

We next present numerical examples on R. In Figure 6 we consider the
MMPP/M/5 retrial queue with � = 1	0 and display P�R = r� as a function

Table 5. Probability mass function of R, arrivals EXP and MMPP

� = 0	05 � = 0	5 � = 1	0 � = 5	0

r = 0 EXP 0.90912 0.89748 0.89124 0.87803
MMPP 0.72031 0.68845 0.67337 0.64173

r = 1 EXP 0.07856 0.06247 0.05151 0.02300
MMPP 0.02240 0.13638 0.09757 0.03547

r = 2 EXP 0.01056 0.02339 0.02573 0.01786
MMPP 0.04406 0.07364 0.06574 0.03014

r = 3 EXP 0.00148 0.00935 0.01349 0.01405
MMPP 0.00904 0.04041 0.04457 0.02605

r = 4 EXP 0.00021 0.00395 0.00738 0.01117
MMPP 0.00196 0.02308 0.03084 0.02279

r = 5 EXP 0.00003 0.00175 0.00418 0.00897
MMPP 0.00044 0.01370 0.02181 0.02014

r = 6 EXP 5	0× 10−6 0.00080 0.00244 0.00727
MMPP 0.00010 0.00840 0.01573 0.01792

r = 7 EXP 7	7× 10−7 0.00038 0.00146 0.00595
MMPP 0.00002 0.00530 0.01154 0.01604

r = 8 EXP 1	2× 10−7 0.00018 0.00090 0.00490
MMPP 6	4× 10−6 0.00341 0.00860 0.01443

r = 9 EXP 1	9× 10−8 0.00009 0.00056 0.00407
MMPP 1	6× 10−6 0.00224 0.00648 0.01303

r = 10 EXP 3	1× 10−9 0.00004 0.00035 0.00340
MMPP 4	3× 10−7 0.00150 0.00495 0.01180
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466 Artalejo et al.

of �. The probability P�R = 0� decreases as � increases. This behavior is as
expected since an increase in � causes more congestion and consequently
more retrials. Heaviest tail corresponds to the case when � = 0	75.

Finally, in Table 5 we compare the EXP andMMPP arrival processes.
We consider c = 5, � = 0	5, and display P�R = r�, for 0 ≤ r ≤ 10. Themass
functions are decreasing, but the queue withEXP arrivals has a larger mass
at r = 0.However,MMPP arrivals have a heavier tails as compared toEXP
arrivals.

APPENDIX

We next give a brief description of theMAP and introduce some notation.
The MAP is a tractable class of Markov renewal processes that includes
many well-known processes such as Poisson, Markov modulated Poisson
process, and PH-renewal processes. For appropriate particularizations of
the MAP parameters, the underlying arrival process becomes a renewal
process. The idea of the MAP is to generalize the Poisson processes and
still keep the tractability for stochastic modelling purposes. Since in many
practical applications the arrival input do not form a renewal process,
the MAP is a versatile tool to model both renewal and non-renewal input
streams.

In this paper, we need only the MAP in continuous time which is
described as follows. Let the underlying Markov chain be irreducible and
letQ∗ be the corresponding infinitesimal generator. At the end of a sojourn
time in state i, that is exponentially distributedwith parameter �i, one of the
following two events could occur: i) with probability pij�1� the transition
corresponds to an arrival and the underlying Markov chain is in state j
with 1 ≤ i� j ≤ m, and ii) with probability pij(0) the transition corresponds
to no arrival and the state of the Markov chain is j� j �= i. Note that the
Markov chain can go from state i to state i only through an arrival. Also,
we have

m∑
j=1

pij�1�+
m∑

j=1�j �=i

pij�0� = 1� 1 ≤ i ≤ m	

Define matrices D0 = �d0
ij� and D1 = �d1

ij� such that d0
ii = −�i, 1 ≤ i≤m,

d0
ij = �ipij�0�, for j �= i and d1

ij = �ipij�1�� 1 ≤ i� j ≤ m. By assuming D0

to be a non-singular matrix, the interarrival times will be finite with
probability one and the arrival process does not terminate. Hence, we see
thatD0 is a stable matrix. The generatorQ∗ is then given byQ∗ =D0 +D1.
Thus, D0 governs the transitions corresponding to no arrival and D1

governs those corresponding to an arrival.
Let � be the stationary probability vector of the Markov process with

generatorQ∗. That is,� is the unique positive probability vector satisfying.

�Q∗ = 0� �e�m� = 1	
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Let � be the initial probability vector of the underlying Markov chain
governing the MAP. Then, by choosing � appropriately we can model the
time origin to be: a) an arbitrary arrival point, b) the end of an interval
during which there are at least k arrivals, and c) the point at which the
system is in specific state such as the busy period ends or busy period
begins. The most interesting case is the one where we get the stationary
version of the MAP by � = �. The constant � = �D1e�m�, referred to as
the fundamental rate, gives the expected number of arrivals per unit of time
in the stationary version of theMAP.

Often, in model comparisons, it is convenient to select the time scale
of the MAP so that � has a certain value. That is accomplished, in the
continuous MAP case, by multiplying the coefficient matrices D0 and D1,
by the appropriate common constant. For further details onMAP and their
usefulness in stochastic modelling, we refer to Lucantoni [15] and Neuts
[16], and for a review and recent work on MAP we refer the reader to
Chakravarthy [17].

For the numerical examples along the article, we consider the
following set of values for D0 and D1.

1. Erlang (ERL):

D0 =


−5 5 0 0 0
0 −5 5 0 0
0 0 −5 5 0
0 0 0 −5 5
0 0 0 0 −5

 � D1 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
5 0 0 0 0

 	

2. Exponential (EXP):

D0 = �−1�� D1 = �1�	

3. Hyperexponential (HEX):

D0 =
(
−1	90 0

0 −0	19

)
� D1 =

(
1	710 0	190

0	171 0	019

)
	

4. Markov Modulated Poisson Process (MMPP):

D0 =
55
86

−1	3 0	5 0	3

1 −2	5 0	5

2	4 0 −10	4

 � D1 =
55
86

0	5 0 0

0 1 0

0 0 8

 	

The above fourMAP processes have arrival rate � = 1. The first three
arrival processes are renewal processes, whereas theMMPP has correlated
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468 Artalejo et al.

arrivals. On the other hand, the ratio of the standard deviations of these
four arrival processes with respect to ERL are 1	0, 2	236067, 5	019353, and
2	181479, respectively.
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