
The Byzantine Empire in the Intercloud

Marko Vukolić

IBM Research - Zurich
CH-8803 Rüschlikon, Switzerland

mvu@zurich.ibm.com

Abstract

The relevance of Byzantine fault tolerance in the context of cloud computing has been
questioned [3]. While arguments against Byzantine fault tolerance seemingly makes sense in the
context of a single cloud, i.e., a large-scale cloud infrastructure that resides under control of a
single, typically commercial provider, these arguments are less obvious in a broader context of
the Intercloud, i.e., a cloud of multiple, independent clouds.

In this paper, we start from commonly acknowledged issues that impede the adoption of
Byzantine fault tolerance within a single cloud, and argue that many of these issues fade when
Byzantine fault tolerance in the Intercloud is considered.

1 Introduction

In dependable computing, the term “Byzantine” fault is a catch-all for any type of software or
hardware fault. It is frequently associated with malicious behavior and intrusion tolerance; however,
it also encompasses spurious and arbitrary faults as well as conventional crash faults. Hence, it is
not surprising that Byzantine fault tolerance (BFT) has received a lot of research attention ever
since the concept of a Byzantine fault was introduced three decades ago [24, 26], as it promises
dependable systems that tolerate any type of misbehavior.

Despite this attention and appealing promises, BFT suffers from very limited practical adoption
[21]. Notable exceptions include a modest number of safety critical embedded and real-time systems,
e.g., in the aerospace industry [14]. However, in the more conventional distributed systems, BFT
remains sidelined.

In particular, the relevance of BFT has been questioned in the context of cloud computing,
which is arguably one of the main drivers of the distributed systems agenda in the last few years.
Practitioners, whose daily bread-and-butter is dealing with (very) large-scale distributed systems
that propel modern cloud services, describe BFT as of “purely academic interest” for a cloud [3].
Such a lack of interest for BFT within a cloud is in sharp contrast to the popularity of mechanisms
for tolerating crash faults which are routinely employed in such large-scale systems. Furthermore,
the wealth of BFT research that is doing hard work to make BFT practical and to bring the
performance of BFT protocols close to that of their crash-tolerant counterparts (e.g., [8, 12, 19]),
appears incapable of spurring the interest for BFT applications.

Factors that impede wider adoption of BFT arguably include notorious difficulties in design,
implementation, proofs and even simple understanding of BFT protocols, especially when BFT

1



protocols also have to face asynchrony [17]. However, while relevant, this seems not to be the core
of the problem. In fact, it seems that there are strong reasons to believe that even if the BFT
community came up with provably optimal and best-possible protocols, such BFT protocols would
still fail to make it into the large scale cloud; we discuss these reasons and arguments in more
details in Section 2.

However, one should beware of not seeing the forest for the trees: the cloud computing landscape
obviously does not end with a single cloud. The sky is very cloudy these days, with many clouds
that come in different shapes and colors, forming the cloud of clouds, or simply, the Intercloud1.
These many shapes and colors reflect different implementations and administrative domains, which
are like a dream come true for a designer of dependable and fault-tolerant systems, e.g., in terms
of failure-independence. There are already some very early protocols that are designed for and
deployed in the Intercloud [1, 4, 6] that leverage multiple clouds to add value to the client beyond
the dependability guarantees of any individual cloud. The Intercloud can be simply seen as the
second layer in the cloud computing stack and it calls for considerably different protocols than the
“bottom” layer, i.e., the inner-cloud layer [6].

In this paper, we develop the argument around the observation made in [7], that it is in this
second layer, in the Intercloud, where the modern Byzantine Empire might find its place. More
specifically, we argue (Section 3) why the Intercloud is suitable for BFT, but also (and perhaps
more importantly) why BFT is suitable for the Intercloud.

2 Limitations of BFT for the Inner-cloud

Today’s inner-cloud is characterized by large-scale distributed systems, such as Amazon’s Dynamo
[13], Google’s File System (GFS) [16] and BigTable [10], Yahoo’s Zookeeper [20] or Facebook’s
Cassandra 2, running in a single administrative domain and powering some of the most popular
services in existence. While these protocols deal with crash-failures routinely, there is no (known)
trace of BFT inside them. Let us hypothetically consider the best possible and by all means optimal
BFT protocol for a given task. The following arguments would still impede the adoption of such a
protocol in the inner-cloud.

Inherent cost. The inherent cost of BFT in terms of number of replicas needed to tolerate failures
is often cited as one of its major drawbacks. Consider state-machine replication (SMR) [5, 30] as a
classical example: crash and asynchrony-tolerant implementations like Paxos [22], require at least
2f +1 nodes to tolerate f failures, whereas in the case of BFT Paxos 3f +1 nodes are required [23].
While assuming small trusted hardware components inside nodes can eliminate this overhead (see
e.g., [25, 32] for recent contributions), trusted architectures have yet to be embraced more widely.

Failure independence. All fault-tolerant protocols, including BFT, require some level of failure
independence [31]. However, in the case of BFT, this level is particularly high. Consider for ex-
ample a Byzantine failure that results from a malicious exploit of a vulnerability of a given node.
To prevent such a failure to propagate to other nodes, one must assume different implementations,
different operating systems, separate administrative domains and even different hardware. This
should be complemented by the diversity required for independent crash-failures, which includes

1http://www.google.com/search?q=intercloud
2The Apache Cassandra Project. http://cassandra.apache.org/

2



different power supplies and possibly even geographical diversity. “In-house” maintenance of the
level of infrastructural diversity that BFT requires is prohibitively expensive even for the large-scale
cloud providers [21].

Does the model match the threats? Clearly, the above issues which are in the end associated
with the cost of deploying BFT, would not be as critical if the Byzantine model would be adequate
for the threats within a cloud. However, the Byzantine failure model is often seen as too general,
allowing for any type of failures, notably malicious ones. Although attacks on well-known cloud
providers occur on a regular basis and sometimes have success 3, exploits that would allow the
attacker to hijack the critical part of the internal cloud infrastructure are yet to be seen. Such
infrastructure chooses intrusion prevention and detection over intrusion tolerance, and is carefully
protected and isolated from the “outside” world. Consider, for example, Google’s Chubby [9], a
distributed locking and low-volume storage service based on Paxos (and a rare example of SMR
within a cloud). Chubby is a shielded service offered to very selected clients such as Google’s own
GFS and BigTable nodes which do not present a realistic misbehavior threat for Chubby. The
same is true for other critical parts of the inner-cloud (e.g., Yahoo Zookeeper) — these critical
services that could potentially profit from BFT simply seem not to need it since they typically run
in protected environments.

Rare non-crash failures in the inner-cloud call for a failure model more restricted than Byzantine,
that would ideally come with a lower cost. However, devising such an adequate failure model for
such a single administrative domain, that would be more restricted than Byzantine yet allow for
some randomized behavior and a few bugs, is not obvious. Other popular models in the BFT
community, like BAR (in which nodes can be Byzantine, altruistic or rational) [2] were devised
with a different setting in mind (e.g., cooperative services in peer-to-peer networks) and are clearly
not applicable here. This model/threat mismatch seems to be one of the main factors that keep
BFT out of the inner-cloud picture.

3 BFT in the Intercloud

Despite their high availability goals, individual cloud services are still subject to outages (see e.g.,
[7]). Moreover, studies show that over 80% of company executives “fear security threats and loss
of control of data and systems”.4 One way to approach these issues is to leverage the Intercloud,
i.e., the cloud of clouds. The key-high level idea here is essentially to distribute the security, trust
and reliability across different cloud providers to improve on the offerings of any individual one.
Early examples of such dependable systems in the Intercloud target reliable distributed storage
[11] some of which employ a subset of BFT techniques. For example, RACS (Redundant Array
of Cloud Storage) [1] casts RAID into the Intercloud setting to improve availability of data and
protect against vendor lock-in. HAIL (High Availability and Integrity Layer) [4] leverages multiple
clouds to boost the integrity and availability of the data stored in the clouds. ICStore (Intercloud
storage) [6] goes a step beyond RACS and HAIL in terms of dependability, and aims to allow a
la carte modular combinations of individual layers dedicated to boosting confidentiality, integrity,

3Official Google Blog: A new approach to China. http://googleblog.blogspot.com/2010/01/

new-approach-to-china.html
4Survey: Cloud computing ’no hype’, but fear of security and control slowing adoption. http://www.circleid.

com/posts/20090226_cloud_computing_hype_security/

3



reliability and consistency of the data stored in the clouds. In the following, we argue why the In-
tercloud is a big opportunity for BFT in general and what BFT applications could appear early-on
in this novel context.

Unprecedented failure independence. The Intercloud offers different implementations of se-
mantically similar services along with the unprecedented failure independence. Intuitively, there is
much less failure dependence between a virtual machine hosted by Amazon EC2 and another one
by Rackspace Cloud Servers than between two machines in a given local cluster [18]. These two
virtual machines come in different administrative domains with different proprietary cloud archi-
tecture and middleware, possibly different operating systems, not to mention different geographical
locations and power supplies. And, best of all, this diversity comes to a BFT designer essentially
for free — the maintenance of this diversity remains in the hands of individual cloud providers.
Practically, BFT designers and developers are left worrying only about careful programming of
their own protocols. The need for n-version programming might persist, but this becomes easier
with the use of right abstractions and the modular approach to the problem [17, 28, 31]. Overall,
the inherent diversity of the Intercloud promises to significantly reduce the costs of deploying and
maintaining BFT protocols.

The threat calls for BFT. Furthermore, the threat that a virtual machine accessible from any-
where faces is arguably different from the one faced by a Paxos node running deeply within the
protected environment of a provider’s inner-cloud infrastructure. For example, the increased con-
cern over a virtual machine security stems from the possibility of the compromise of the credentials
needed to access the virtual machine remotely, but also from the issues related to cloud multi-
tenancy (see e.g., [27]). Hence, the Byzantine model seems to reasonably fit the threat faced by a
virtual machine hosted by the cloud; users, including company executives, might sleep better know-
ing that their (Inter)cloud service is dependable and protected from attack on any individual cloud.

How about inherent cost? On the other hand, the Intercloud clearly does not reduce the in-
herent cost overhead of BFT compared to crash fault-tolerance in terms of a number of replicas.
However, while putting trusted hardware components into virtual machines might not be as simple
as putting them into physical machines, there is increasing effort to address those aspects of cloud
computing (e.g., Terra [15] and TCCB [29]). The Intercloud and BFT will inevitably profit from
these efforts that aim to strengthen the security guarantees of individual clouds; these efforts would
allow established BFT protocols that leverage trusted architectures to shine in a new light of the
Intercloud. An unresolved issue would still be for industry to embrace such architectures. However,
given the level of customers’ concerns over cloud security, we might witness market differentiation
bootstrapping the process of the adoption of trusted cloud architectures.

What early-bird applications? The Intercloud indeed seems to be a promising candidate for
an answer to the question on “where” (in the cloud context) should BFT be deployed [21]. On the
other hand, to answer questions “why” and “when” [21], we still need to identify an application that
will illustrate the full benefits of BFT in the Intercloud and promote its adoption. This might be
BFT state machine replication in an implementation of a very reliable low volume storage service,
along the lines of Chubby. This service could be shared among different clients coming from, e.g.,
small private clouds, and for which the clients would be prepared to pay the premium in order not

4



to deal with complexities and the cost of the maintenance of such a service “in-house”. Such a low
volume storage application in the Intercloud could in fact need BFT since, unlike Chubby, neither
its clients nor its server nodes scattered among the clouds can be fully trusted. Furthermore, BFT
could be used in the Intercloud to mask possible inconsistencies inherent to the eventually consistent
semantics of a highly available cloud [33]. In this approach an inconsistent reply from an otherwise
correct cloud service could be masked as a Byzantine and the Intercloud service could leverage
other clouds to improve on the overall consistency. Finally, integrity of data and computation
seems like a strong candidate for BFT in the Intercloud and, and as we already discussed, we are
already witnessing research efforts in this direction [4, 6]. Clearly, this is not an exhaustive list and
we expect to witness an increasing number of ideas for BFT applications in the Intercloud in the
near future.

4 Conclusions

In this paper we summarized the limitations of Byzantine fault-tolerance for applications in the
large-scale distributed systems of the inner-cloud. We also argued that Byzantine fault-tolerance is
more suitable to the Intercloud, a cloud of clouds, which is emerging as the second layer in the cloud
computing stack to complement the inner-cloud layer. The Intercloud offers an unprecedented fail-
ure independence at a low maintenance cost — this is provided by the diversity of cloud providers
and differences in their internal implementations. Moreover, Byzantine failure model appears well
suited for the threats that the Intercloud faces.

Acknowledgments. I would like to thank Christian Cachin, Robert Haas and Rachid Guerraoui
for their valuable comments and many interesting discussions.

References

[1] H. Abu-Libdeh, L. Princehouse, and H. Weatherspoon. Racs: a case for cloud storage diversity.
In SoCC ’10: Proceedings of the 1st ACM symposium on Cloud computing, pages 229–240, New
York, NY, USA, 2010. ACM.

[2] A. S. Aiyer, L. Alvisi, A. Clement, M. Dahlin, J.-P. Martin, and C. Porth. BAR fault tolerance
for cooperative services. In SOSP ’05: Proceedings of the ACM SIGOPS 20th Symposium on
Operating Systems Principles, pages 45–58, New York, NY, USA, 2005. ACM.

[3] K. Birman, G. Chockler, and R. van Renesse. Toward a cloud computing research agenda.
SIGACT News, 40(2):68–80, 2009.

[4] K. D. Bowers, A. Juels, and A. Oprea. HAIL: A high-availability and integrity layer for cloud
storage. In CCS ’09: The 16th ACM Conference on Computer and Communications Security,
pages 187–198, 2009.

[5] C. Cachin. State machine replication with Byzantine faults. In Bernadette Charron-Bost,
Fernando Pedone, and André Schiper, editors, Replication: Theory and Practice, LNCS, vol.
5959, pages 169-184. Springer, 2010.

5



[6] C. Cachin, R. Haas, and M. Vukolić. Dependable storage in the Intercloud. Research Report
RZ 3783, IBM Research, Aug. 2010.

[7] C. Cachin, I. Keidar, and A. Shraer. Trusting the cloud. SIGACT News, 40(2):81–86, 2009.

[8] M. Castro and B. Liskov. Practical Byzantine fault tolerance and proactive recovery. ACM
Trans. Comput. Syst., 20(4):398–461, 2002.

[9] T. D. Chandra, R. Griesemer, and J. Redstone. Paxos made live: an engineering perspective.
In PODC ’07: Proceedings of the 26th annual ACM Symposium on Principles of Distributed
Computing, pages 398–407, New York, NY, USA, 2007. ACM.

[10] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T. Chandra,
A. Fikes, and R. E. Gruber. Bigtable: A distributed storage system for structured data. ACM
Trans. Comput. Syst., 26(2):1–26, 2008.

[11] G. Chockler, R. Guerraoui, I. Keidar, and M. Vukolić. Reliable distributed storage. IEEE
Computer, 42(4):60–67, 2009.

[12] A. Clement, M. Kapritsos, S. Lee, Y. Wang, L. Alvisi, M. Dahlin, and T. Riche. Upright
cluster services. In SOSP ’09: Proceedings of the ACM SIGOPS 22nd Symposium on Operating
Systems Principles, pages 277–290, New York, NY, USA, 2009. ACM.

[13] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin, S. Siva-
subramanian, P. Vosshall, and W. Vogels. Dynamo: Amazon’s highly available key-value
store. In SOSP ’07: Proceedings of the ACM SIGOPS 21st Symposium on Operating Systems
Principles, pages 205–220, New York, NY, USA, 2007. ACM.

[14] K. Driscoll, B. Hall, H. Sivencrona, and P. Zumsteg. Byzantine fault tolerance, from theory to
reality. In SAFECOMP ’03: Proceedings of the 22nd International Conference on Computer
Safety, Reliability, and Security, pages 235–248, 2003.

[15] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh. Terra: a virtual machine-based
platform for trusted computing. In SOSP ’03: Proceedings of the 19th ACM Symposium on
Operating Systems Principles, pages 193–206, New York, NY, USA, 2003. ACM.

[16] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google file system. In SOSP ’03: Proceedings
of the ACM SIGOPS 19th Symposium on Operating Systems Principles, pages 29–43, New
York, NY, USA, 2003. ACM.

[17] R. Guerraoui, N. Knežević, V. Quéma, and M. Vukolić. The next 700 BFT protocols. In
Eurosys ’10: Proceedings of the 5th ACM SIGOPS/EuroSys European Conference on Computer
Systems, pages 363–376, 2010.

[18] R. Guerraoui and M. Yabandeh. Independent faults in the cloud. In LADIS ’10: Proceed-
ings of the 4th ACM SIGOPS/SIGACT Workshop on Large-Scale Distributed Systems and
Middleware, pages 12–16, 2010.

[19] J. Hendricks, G. R. Ganger, and M. K. Reiter. Low-overhead Byzantine fault-tolerant storage.
In SOSP ’07: Proceedings of 21st ACM SIGOPS Symposium on Operating Systems Principles,
pages 73–86, New York, NY, USA, 2007. ACM.

6



[20] F. P. Junqueira and B. Reed. The life and times of a zookeeper. In PODC ’09: Proceedings
of the 28th annual ACM Symposium on Principles of Distributed Computing, page 4, 2009.

[21] P. Kuznetsov and R. Rodrigues. BFTW3: Why? When? Where? Workshop on the theory
and practice of Byzantine fault tolerance. SIGACT News, 40(4):82–86, 2009.

[22] L. Lamport. Paxos made simple. ACM SIGACT News, 32(4):18–25, 2001.

[23] L. Lamport. Lower bounds for asynchronous consensus. FuDiCo ’03: Future directions in
distributed computing, pages 22–23, 2003.

[24] L. Lamport, R. Shostak, and M. Pease. The Byzantine generals problem. ACM Trans. Pro-
gram. Lang. Syst., 4(3):382–401, 1982.

[25] D. Levin, J. R. Douceur, J. R. Lorch, and T. Moscibroda. TrInc: Small trusted hardware
for large distributed systems. In NSDI ’09: Proceedings of the 6th USENIX Symposium on
Networked Systems Design and Implementation, pages 1–14, 2009.

[26] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence of faults. J. ACM,
27(2):228–234, 1980.

[27] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage. Hey, you, get off of my cloud: exploring
information leakage in third-party compute clouds. In CCS ’09: Proceedings of the 16th ACM
Conference on Computer and Communications Security, pages 199–212, New York, NY, USA,
2009. ACM.

[28] R. Rodrigues, M. Castro, and B. Liskov. BASE: using abstraction to improve fault tolerance. In
SOSP ’01: Proceedings of the ACM SIGOPS 18th Symposium on Operating Systems Principles,
2001.

[29] N. Santos, K. P. Gummadi, and R. Rodrigues. Towards trusted cloud computing. In HotCloud
’09: The 1st USENIX Workshop on Hot Topics in Cloud Computing, 2009.

[30] F. B. Schneider. Implementing fault-tolerant services using the state machine approach: a
tutorial. ACM Comput. Surv., 22(4):299–319, 1990.

[31] F. B. Schneider and L. Zhou. Implementing trustworthy services using replicated state ma-
chines. In Bernadette Charron-Bost, Fernando Pedone, and André Schiper, editors, Replica-
tion: Theory and Practice, LNCS, vol. 5959, pages 151-167. Springer, 2010.

[32] P. Sousa, A. N. Bessani, M. Correia, N. F. Neves, and P. Veŕıssimo. Highly available
intrusion-tolerant services with proactive-reactive recovery. IEEE Trans. Parallel Distrib. Syst.,
21(4):452–465, 2010.

[33] W. Vogels. Eventually consistent. Commun. ACM, 52(1):40–44, 2009.

7


