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Abstract

Insulin/IGF-1 signaling (IIS) is a critical regulator of an organism’s most important biological
decisions, from growth, development, and metabolism to reproduction and longevity. It primarily
does so through the activity of the DAF-16/FOXO transcription factor, whose global targets were
identified in C. elegans using whole-worm transcriptional analyses more than a decade agol. IS
and FOXO also regulate important neuronal and adult behavioral phenotypes, such as the
maintenance of memory2 and axon mgeneration3 with age, in both mammals  and C. elegans, but
the neuron-specific IIS/FOXO targets that regulate these functions are still unknown. By isolating
adult C. elegans neurons for transcriptional profiling, we identified both the wild-type and IIS/
FOXO adult neuronal transcriptomes for the first time. IIS/FOXO neuron-specific targets are
distinct from canonical IIS/FOXO-regulated longevity and metabolism targets, and are required
for 1IS/daf-2 mutants’ extended memory. We also discovered that the activity of the forkhead
transcription factor FKH-9 in neurons is required for daf-2’s ability to regenerate axons with age,
and its activity in non-neuronal tissues is required for daf-2’s long lifespan. Together, neuron-
specific and canonical IIS/FOXO-regulated targets enable the coordinated extension of neuronal

activities, metabolism, and longevity under low insulin-signaling conditions.

The C. elegansI1IS pathway acts both cell autonomously and non-autonomously to control
longevity, growth, dauer formation, metabolism, and reproductionS‘7 through its regulation
of DAF-16/FOXO’s nuclear localization and transcriptional activation. The canonical IIS/
FOXO gene set, which identified primarily intestinal and hypodermal targets (Extended Data
Fig. 1A—B)1’8’9, has been instructive in our understanding of how insulin signaling regulates
a diverse range of activities, including metabolism, autophagy, stress resistance, and
proteostasis. However, IIS mutants also exhibit daf-/6-dependent neuronal phenotypes,
including extended positive olfactory learningz, increased short- and long-term associative
memory2, increased thermotaxis learninglo, improved neuronal morphology
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maintenance“’]z, and improved axon regeneration3. These phenotypes are unlikely to be
regulated by the known intestinal and hypodermal IIS/FOXO targetsl*g. Therefore, to
understand how IIS/daf-2 animals extend behavioral functionality, we must identify the
neuronal targets of FOXO/DAF-16.

We first profiled the expression of daf-16;daf-2 worms with daf-16rescued in specific
tissues6 (Supplementary Table 1). Intestinal daf-16 rescue correlates best with whole-worm
profiles (Extended Data Fig. 1A, C). By contrast, neuronal daf-/6rescue profiles are anti-
correlated with the intestinal DAF-16 and whole-worm profiles (Extended Data Fig. 1A, C).
Surprisingly, many genes induced by neuronal DAF-16 rescue are expressed (Wormbase) or
predicted to be expressed in non-neuronal tissues13 (Extended Data Fig. 1D), and have non-
neuronal functions (e.g., collagensm; Extended Data Fig. 1B, 1E, Supplementary Table 2).
Thus, whole-worm transcriptional analyses of neuronally-rescued DAF-16 failed to reveal
targets that account for daf~2 mutants’ daf-/6-dependent age-related behaviors. Therefore,
we needed to specifically examine transcription in IIS-mutant neurons.

The tough outer cuticle prevents dissociation of adult tissuesls, thus the wild-type adult
neuronal transcriptome has not been described. To solve this problem, we used rapid, chilled
chemomechanical disruption followed immediately by FACS to isolate GFP-marked neurons
from wild-type worms, then RNA-sequenced these isolated cells (Fig. 1A-C, Extended Data
Fig. 2A-C,F,G, Supplementary Table 3). This method is gentle enough to preserve the
integrity of cells and some neurites (Extended Data Fig. 2A), does not involve cell culturing
prior to FACS, in contrast to previous methods , and does not affect transcription
(Actinomycin D; Fig. 1B, Extended Data Fig. 2D,E, Supplementary Table 4).
Downsampling analysis showed that sufficient sequencing depth was achieved (Extended
Data Fig. 2H).

We compared gene expression in isolated wild-type neurons with whole-worm expression to
identify genes that are enriched in neurons (Fig. 1A—C). Of the 1507 “neuron enriched”
genes (False Discovery Rate (FDR)<0.1; Supplementary Table 3; Fig. 1A,B), only 4% have
previously-described expression patterns exclusively in non-neuronal tissues, and “Neuron”
is the only significantly-enriched tissue (Fig. 1C, Extended Data Fig. 2F), suggesting the
method is highly selective for neuronal transcripts. Gene promoter-gfp tests of previously
uncharacterized genes from our “neuron enriched” list confirmed neuronal expression, with
no bias for particular neuron types (Extended Data Fig. 3A). We also detected genes
previously reported to be expressed only in single neurons or small subsets of neurons,
including gir-3 (RIA), ttx-3 (AIY/AIA), and npr-14 (AlY) (Wormbase).

The wild-type neuron-enriched set includes synaptic machinery, ion channels,
neurotransmitters, and signaling components (Supplementary Table 3), as well as >700
previously-uncharacterized genes; these genes are predicted to have “neuronal”-like
character and function (Fig. 1D). Comparison of the wild-type embryonic and larval
neuronal transcriptomes with the adult neuronal transcriptome at the same FDR revealed a
shift in functional categories from developmental processes to neuronal function/behavior in
the adult neuronal transcriptome (Fig. 1E, Extended Data Fig. 3B,C, Supplementary Table
5), suggesting that previous isolation methods1 , either due to early developmental stage
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isolation or to re-culturing, biased expression toward developmental genes rather than
neuronal/behavioral genes.

To identify adult neuronal IIS/FOXO targets, we sequenced RNA from isolated daf-2 and
daf-16;daf-2 neurons on Day 1 of adulthood (Fig. 2A, Extended Data Fig. 4, Supplementary
Table 6, 8). The IIS/FOXO neuron-isolated gene set is enriched for neuronal expression:
86% and 92% of the up- and down-regulated genes, respectively, are expressed in wild-type
neurons. While several of DAF-16’s top Class I targets, including Ail-1, sip-1, mtl-1, nnt-1,
ins-6, and daf-16 itself, were upregulated in both daf-2 neurons and daf-2 whole worms
(Group B; Fig. 2B), most of the IIS/FOXO neuronally-regulated set differs from the
canonical whole-worm IIS/FOXOs setl’8 (Fig. 2B). Specifically, in contrast to the
metabolism-dominated functions of canonical whole-worm IIS/FOXO targets1 ’8, the
neuronal IIS set GO terms reflect neuron-like functions (Extended Data Fig. 5B): serpentine
receptors, GPCRs, syntaxin, globins, kinesins, insulins, ion channels, potassium channels,
seven-transmembrane receptors, the NPR-1 neuropeptide receptor, and the SER-3
octopamine receptor are upregulated in daf-2 neurons (Supplementary Table 6). A few genes
(fat-3 and crh-1/CREB) are upregulated in daf-2 neurons but downregulated in whole daf-2

animals.

The IIS/FOXO downregulated set includes serpentine receptors, guanylate cyclases,
signaling peptides and receptors (NLPs, FLPs, and NPRs), and the vesicle trafficking G
protein rab-28 (Supplementary Table 6). Expression of the sensory neuron cilia protein
IFTA-2, which co-localizes with DAF-2 and whose loss increases lifespan ', is
downregulated in daf-2 mutants, consistent with the longevity of daf-2 and ciliated sensory
neuron mutantslg. Similarly, sams-1 (S-adenosyl methionine synthetase), which is
downregulated under long-lived Dietary Restriction conditionsw, and sma-5 and dbl-1,
components of TGF-beta pathways linked with IIS7’2O, are downregulated, perhaps
coordinating the longevity and reproductive output of these pathways.

Unlike canonical IIS/FOXO targetsl, neuronal IIS/FOXO gene promoters are not enriched
for the DBE (DAF-16 Binding Element, GTAAAt/cA), but the overlapping, upregulated
(Group B) targets’ promoters contain twice as many DBEs (Extended Data Fig. 5SA). The
overlapping downregulated (Group F) targets are enriched for the PQM-IS/DAE motif
(CTTATCA]’S; Supplementary Table 7). DAF-16 may regulate neuronal activities indirectly
through activation of ~60 IIS/FOXO-upregulated transcription factors (Supplementary Table
6).

We next tested the roles of top-scoring genes in daf-2-regulated neuronal phenotypes. Long-
term and short-term associative memory are both extended in daf-2 mutants in a daf-16-
dependent manner2 (Extended Data Fig. 6). The bZIP transcription factor CREB, which is
required for long-term memory in many organisms, including C. e]egansz, is upregulated by
IIS/FOXO in neurons (Supplementary Table 6), correlating with daf-2’s increased long-term
memoryz’m. However, short-term associative memory (STAM; Fig. 2C) is CREB-
independentz, and the genes that enable daf-2’s STAM extension are unknown. While the
DAF-16 non-neuronal target sod-3 had no effect on daf-2’s extended STAM (Fig. 2C,
Extended Data Fig. 6B-D), knockdown of 8 of the 10 top-ranked, upregulated IIS/FOXO
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targets significantly decreased daf-2(el370)s STAM (Fig. 2D,E), both in whole-life and
adult-only RNAI tests. (Neuronal RNAI is effective in learning, STAM, and LTAM testsm.)
The variety of genes (ion channels, transcription factors, G-proteins, vesicle fusion proteins)
required for daf-2’s extended STAM suggests that decreased insulin signaling affects a broad
network of memory extension genes. Several of these genes are also required for wild type’s
learning and memory (Extended Data Fig. 6G) suggesting that daf-2 mutants maintain
neuronal function, rather than utilizing an alternative short-term memory mechanism.

daf-2 mutants also maintain motor neuron axon regeneration ability with age in a daf-/6-
dependent manner3, and we found this is also true for mechanosensory neurons (Fig. 3A,B,
Extended Data Fig. 7A-D). To identify factors that enable axon regeneration with age, we
isolated and RNA-sequenced six adult mechanosensory neurons (Fig. 3C, Supplementary
Table 9); this set includes 94 known larval regeneration genes from limited candidate
screens22 (p £1.82 x 10729). To find daf-2/daf-16-dependent axon regeneration candidates,
we identified mechanosensory genes that are also regulated by neuronal IIS/FOXO (Fig. 3C,
Supplementary Table 9; p<0.002). The forkhead transcription factor FKH-9 is a neuronal
IIS/FOXO target (Supplementary Table 6) and a canonical Class I targetl, and is expressed
in mechanosensory neurons (Supplementary Table 9). fkh-9’°s promoter is occupied by
DAF-16, which we confirmed by chIP-qPCR (Fig. 3E, Extended Data Fig. 8§A, B).
FKH-9::GFP localized to nuclei, and neurons were the primary site of differential
FKH-9::GFP levels in daf-2 mutants (Fig. 3F, Extended Data Fig. 8C), all suggesting a role
for FKH-9 in daf-2/daf-16-mediated neuronal function.

While there is no effect on the first day of adulthood (Extended Data Fig. 7E,F), loss of
1kh-9 severely impairs daf-2’s axon regeneration ability in aged (Day 5) worms (Fig. 4A),
correlating with an increased difference in 7kA-9 expression levels between wild-type and
daf-2 (Fig. 3D). Pan-neuronal fkA-9 expression rescues the ability of Day 5 daf-2;fkh-9
worms to regenerate PLM axons (Fig. 4B,C). fkh-9levels are critical for neuron
morphology, as fkAh-9 neuronal overexpression causes axonal defects (Extended Data Fig.
7G)

Adult-specific and whole-life reduction of fkA-9 also severely impair daf-2’s extended
STAM (Fig. 4D, Extended Data Fig. 9). daf-2;fkh-9 double mutants are defective in both
STAM and learning, and neuronal fkA-9 expression rescues these defects (Fig. 4E, Extended
Data Fig. 9D,E), suggesting fkh-9is required for daf-2’s extended memory and normal
neuronal development. Day 1 and 5 fk#A-9 expression levels correlate with STAM and axon
regeneration (Fig 3D). fkh-9reduction delays development, and reduction during adulthood
causes severe matricide (Extended Data Fig. 10A-C). fkh-9 knockdown in adult daf-2
worms treated with FUdR to block matricide20 significantly shortens lifespan (40-50%; Fig
4F). Pan-neuronal fkh-9 expression does not rescue lifespan (Extended Data Fig. 10D),
suggesting that FKH-9 acts in non-neuronal tissues to regulate lifespan. Thus, IIS/FOXO-
regulated FKH-9 function is important for both neuronal and non-neuronal growth and
development, as well as adult memory and axon regeneration. Interestingly, FKH-9’s
mammalian homolog FoxGl1 is required for axon outgrowth23 and is the most highly-
induced gene in spinal cords treated with radial glial cell transplant following spinal cord

injury
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Network analysis using fk/-9 and the other 8 neuronal DAF-16 STAM genes (Fig. 4G,
Supplementary Table 10) identified casy-/, which is required for several forms of associative

learning and memoryz’2 7, apl-1, the C. elegans ortholog of amyloid precursor protein
(APP) that can disrupt sensory plasticityzg, and dik-1, the only previously known regulator
of age-dependent axon regeneration - . Additionally, genes involved in neuronal
degeneration (mec-17), neuronal development (eg/-44, sem-4), neuronal function (eg/-21,
mc-1, vab-9, cysl-1), synaptic regulation and function (cab- 1, hlb-1, magu-4, sph-1, unc-64),
and axon outgrowth (unc-14) and regeneration (egl/-8, fos-1, pmk-3), were connected to the
STAM genes. PQM-1", whose motif (DAE) is overrepresented in neuronal IIS target
promoters, and other IIS (akt-2, dct-6, hih-30), TGF-P (daf-14, sma-4, crm-1, sma-9, sma-1,
sta-1), and MAPK pathway (vhp-1, pmk-3) components emerged in the network.
Transcriptional regulation by IIS/FOXO and its targets may lead to broader, indirect
transcriptional and non-transcriptional regulation of genes with important neuronal

functions.

Plasticity in development, reproduction, and longevity allows organisms to respond
appropriately to nutrient availability and changes in their environment. The IIS pathway is a
critical mediator of these decisions, with FOXO selecting transcriptional targets to execute
specific biochemical functions in each tissue, including factors that maintain cognitive
function with age. daf~2 worms maintain neuronal behaviors with age by utilizing a set of
transcriptional targets that are distinct from previously-identified metabolic and stress
resistance targets expressed in other tissues. These genes may regulate additional neuronal
targets through non-transcriptional mechanisms (Fig. 4G). The regulation of tissue-specific
transcriptional programs is important to coordinate phenotypic responses, extending
neuronal abilities in concert with daf-2’s extended longevity and reproductive span.

Adult cell isolation

Day 1 adult neuronally GFP-labeled worms (Punci19::GFP or Pmec-4::GFP) were prepared
for cell isolation as previously described15 with modifications (Extended Data Fig. 2).
Synchronized adult worms were washed with M9 buffer to remove excess bacteria. The
pellet (~250 ul) was washed with 500 pl lysis buffer (200 mM DTT, 0.25% SDS, 20 mM
Hepes pH 8.0, 3% sucrose) and resuspended in 1000 ul lysis buffer. Worms were incubated
in lysis buffer with gentle rocking for 6.5 minutes at room temperature. The pellet was
washed 6x with M9 and resuspended in 20 mg/ml pronase from Streptomyces griseus
(Sigma-Aldrich). Worms were incubated at room temperature (<20 minutes) with periodic
mechanical disruption by pipetting every 2 min. When most worm bodies were dissociated,
leaving only small debris and eggs, ice-cold PBS buffer containing 2% fetal bovine serum
(Gibco) was added. RNA from FACS-sorted neurons was prepared for RNA-seq and
subsequent analysis (see Extended Data for details).

Short-term associative memory assay

. 2
Memory assays were performed as described .
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. )
In vivo laser axotomy of PLM neurons was performed as described .

Extended Data
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Page 6

A) DAF-16 tissue-specific transgenics; heat map of all genes with expression differences

>|.5-fold in 33 arrays. B) Significant Gene Ontology (GO) cluster terms from
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Punc-119::daf-16-regulated up- and down-regulated genes (Enrichment score >1). C)
Pairwise Pearson correlations between arrays of DAF-16-up-regulated or down-regulated
targets. The red box highlights the negative correlation between neuronal DAF-16 rescued
targets (Punc-119::daf-16..glp,;dat-16,;daf-2 vs daf-16,;daf-2) and intestinal DAF-16 targets
(Pges-1::daf-16::gtp;daf-16;dat-2 vs dat-16,daf-2), while the blue box shows the positive
correlation between intestinal DAF-16 targets (Pges-1::daf-16::gtp;daf-16,daf-2 vs
daf-16;daf-2) and whole worm DAF-16 targets (Pdat-16::dat-16::gtp; dat-16;dat-2 vs
dat-16;daf-2). The green box shows the weak correlation between neuronal rescued and
whole worm DAF-16 targets. D) Tissue enrichment analysis (Mean + SEM) of significant
DAF-16-rescued up- and down-regulated genes (Supplementary Table 1) (FDR < 0.5). E)
Significant Gene Ontology (GO) terms (adjusted p-value < 0.05) for DAF-16 up-regulated
and down-regulated genes from whole worm, intestine-, neuron-, and muscle-rescued
DAF-16 strains. Genes used for GO analysis (Supplementary Table 2) were derived from
SAM analysis of the microarrays in (A) and Supplementary Table 1.
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Extended Data Fig 2.
A) Pipeline for isolation of adult cells for FACS and RNA sequencing. B) Workflow for

RNAseq data analysis of isolated neurons. C) Heat map of wild type neuron-expressed
relative to whole worm-expressed genes. D) Actinomycin D (transcription inhibitor)
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treatment (100 pg/ml) during the cell isolation process demonstrates that the neuron

isolation technique induces minimal transcriptional changes in wild type animals. Gene

Ontology (GO) Terms represent genes up-regulated in the absence of Actinomycin D (Fig
1B, Supplementary Table 4). E) The 26 differentially expressed genes from Actinomycin D
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treatment are listed. F) C. elegans tissue gene expression prediction confirms neuronal
character of adult wild-type neuron-enriched genes. Neuron-enriched genes were divided
among equal bins according to p-value. Bin 1: FDR<0.003%; Bin 2: 0.003%-0.03%; Bin 3:
0.03%-1.3%; Bin 4: 1.3%-4%; Bin 5: 4-10%. G) Principal component analysis (PCA)
shows a clear separation between wild-type adult neuronal and whole-worm samples. H)
Down-sampling of wild-type neuron sequencing reads demonstrates sufficient sampling
depth. The number of genes detected at the 3 counts per million threshold (for expressed
genes) with different proportions of total sequencing depth analyzed.
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Extended Data Fig 3.
A) Promoter::GFP transcriptional fusions of candidate uncharacterized neuronal genes (Day

1 of adulthood). B) Gene Ontology clusters were generated from the categories in Fig 1E.
Non-overlapping GO Terms suggest a transition from development-related processes in
embryonic and larval animals to neuronal processes involved in behavior in adults
(Supplementary Table 5). C) Venn diagram depicting the overlap between genes classified as
“expressed” among embryonic and larval neurons ~ and adult neurons from our RNA-seq
analysis (Supplementary Table 5).
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A) Principal Components Analysis of the whole worm and isolated adult neuron samples
obtained for this study. B) Venn diagram depicting the overlap of daf-2- and daf-16;daf-2-
expressed genes with those expressed in wild-type adult neurons. C) Spearman correlation
of whole-worm and isolated adult neuron samples. D) The DAF-16 cell-autonomous and cell
non-autonomous targets are distinct. The number of genes that overlap between neuronal
DAF-16-rescued whole-worm targets (Punc-119::daf-16::gtp;daf-16;dat-2 vs dat-16;daf-2)
and isolated neuron IIS targets (daf-2 vs daf-16;dat-2) is shown (Supplementary Table 8).
Hypergeometric distribution analysis (p-values) shows that the extent of overlap between the

gene categories is not significant.
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Extended Data Fig 5.

A) The different classes of neuronal IIS/FOXO genes shown in Figure 2B were analyzed for

DBE and DAE sequences in the 1kb upstream promoter regions. The genome-wide % of
DBE and DAE occurrences across the 1kb promoters of all gene-encoding regions is

reported. Comparison of whole-worm (Class I)8 vs neuronal-IIS/FOXO-regulated targets. P-

values: hypergeometric distributions. B) GO terms of Class I whole worm8 vs. neuronal-IIS

up-regulated genes (left) and Class II whole worm8 vs neuronal-IIS down-regulated genes

(right) (Supplementary Table 5).
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Extended Data Fig 6. 59730 33
daf-2is required for various forms of C. elegans associative learning™ -~ — . daf-161is
required for daf-2’s improvements and extensions of abilities with age™. daf-2 mutants are
. . . 273031 . . . .
defective for salt chemotaxis learning -~ ", and daf-/61s not involved in salt chemotaxis
. 273031 . .. . . 27 .
learning -~ -~ . Furthermore, salt learning utilizes a unique daf-2cisoform™ in a daf-16-

. 30 . . . .. ..
independent manner  , suggesting a learning mechanism distinct from the associative
memory paradigms studied here. We are specifically interested in understanding how
activation of DAF-16 results in the improved and extended abilities of daf-2 mutants to carry
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out olfactory associative learningz, short-term associative memory2’33, and long-term
associative memoryz, all of which require daf-16. A) Chemotaxis index profile of wild type
(N2) and daf-2 animals at time points following memory training. B) RNAi knockdown of
sod-3, a non-neuronal DAF-16-regulated target that influences lifespan, has no effect on the
extended short-term associative memory (STAM) of daf-2 mutants when treated with RNAi-
feeding bacteria throughout the whole life (B) or only the post-developmental (adult-only)
period (C, D) of the animal. daf-2 worms treated with daf-/6 RNAi have defective STAM, as
previously reportedz. E) Knockdown of the neuronal IIS candidate genes zip-5 and best-23
does not affect STAM. Time-courses showing the chemotaxis index for each time point are
shown in D and E. Learning indices are shown in B, C, F, and G. B-E) Two-way repeated
measures ANOVA, Bonferroni post hoc tests. F) Treatment of daf-2 worms with neuronal
DAF-16 target RNAI does not affect short-term associative learning. G) Neuronal-RNAi
sensitive worms (Punc-119::sid-1) in a wild-type background were treated only during
adulthood with RNAI targeted against the neuronal DAF-16 target genes. (Oh) Learning and
1 h short-term associative memory time points are shown. A—G) Mean + SEM, *p < 0.05,
**p < 0.01, ***p < 0.001, ****p <0.0001.
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Extended Data Fig 7.

A) Six adult mechanosensory neurons labeled by mec-4p.:GFP were isolated for RNA-seq.

B) Axon length from the cell body to the site of injury was measured in um immediately

after axotomy and 24 hours later. Regenerative capacity of wild-type PLM axons declines

from day 1 to day 5 of adulthood. C) Day 5 wild-type animals regrow axons that are

significantly shorter than in Day 1 animals. D) Axotomies of daf-2 mutants grown on vector
control, sod-3, or daf-16 RNAi demonstrate that sod-3, a lifespan-regulating DAF-16 target,
does not influence the axon regeneration capacity of daf-2 worms at Day 5 of adulthood. E)
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tkh-9 does not affect the regenerative capacity of daf-2 axons on Day 1 of adulthood. F)
tkh-9is not required for axon regeneration in Day 1 adults. B-F) Mean + SEM, Fisher’s
exact test, *p < 0.05. G) Overexpression of the a and b isoforms of fkA-9in wild-type
animals causes axonal structural defects. Rescuing fkA-9 activity in the mechanosensory
neurons of daf-2;fkh-9 mutants results in severe beading and degeneration of axons.
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Extended Data Fig 8.
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Wormbase (www.wormbase.org) gene models for (A) fkh-9 and (B) sod-3 are shown with
modENCODE data for DAF-16 ChIP-seq experiments. A) Primer sets for ChIP-qPCR are
depicted. C) Posterior intestinal FKH-9::GFP expression is only modestly increased in daf-2
compared to wild-type animals expressing fkh-9p::tkh-9:.gfp. N= 25 animals.
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Extended Data Fig 9.
A, B) Whole-life RNAI of fkh-9reduces daf-2 STAM. C) RNAi knockdown of fkh-9

exclusively during adulthood results in reduced daf-2 STAM comparable to daf-16 RNAi-
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treatment. D, E) daf-2;fkh-9 mutants have reduced learning (tested immediately following
STAM training) and STAM compared to daf-2. Mean = SEM, *p < 0.05, **p < 0.01, ***¥p <
0.001, ****p < 0.0001. Mean = SEM, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
Time-courses showing the chemotaxis index for each time point are shown in B and E.
Learning indices are shown in A, C, and D.
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Extended Data Fig 10.
Adult-only (A) or whole-life (B) fkh-9 RNAI treatment increases matricide in daf-2 worms.

The cumulative % of animals dead as a result of bagging and/or exploding was recorded
every other day. Two biological replicates were performed, with a representative experiment
shown. C) Neuronal rescue of fkh-9in daf-2;fkh-9 animals does not diminish the rate of
vulval protrusions with age. N >60 per conditions for each experiment. D) Neuronal rescue
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of fkh-9 does not restore longevity of the daf-2;fkh-9 double mutant. daf-2 median lifespan:
41 days, daf-2;fkh-920 days, dat-2;tkh-9;Punc-119::tkh-9 20 days. p < 0.0001 for daf-2vs.
both daf-2;fkh-9 and daf-2;tkh-9;Punc-119::fkh-9. N=112 worms per strain. Censor rate for
daf-219%, dat-2;tkh-9 51%, daf-2;tkh-9;Punc-119::tkh-956%.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Page 21

A) Volcano plot of neuron-expressed relative to whole worm-expressed genes obtained by

neuron-specific RNA sequencing of adult wild-type animals. B) Neuron-expressed and

enriched genes are not influenced by cell isolation: treatment with the transcription inhibitor
Actinomycin D affected only 0.22% of all neuronal genes (Supplementary Table 4). C)
Tissue expression prediction of wild-type adult neuron-enriched genes. Mean + SEM. D)
GO terms highlight the neuronal characteristics of both all and previously uncharacterized
neuron-enriched genes. E) Embryonicl6, 1arvall6, and adult neuron-enriched genes and
significant GO terms transition from developmental to neuronal and behavioral functions

(Supplementary Table 5); FDR<10% for all gene sets.
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Fig 2. RNA-seq transcriptional profile of isolated neuronsreveals || SSFOXO neuronal
transcriptome
A) Volcano plot of daf-2-regulated, daf-/6-dependent up- (red) and down-regulated (green)

neuronal genes (p<0.05). B) Comparison of whole-worm (Class 1)8 vs neuronal-IIS/FOXO
targets. P-values: hypergeometric distributions. C-E) Short-term associative memory
(STAM) assays. C) Schematic of STAM assay and chemotaxis profiles of daf-2 treated with
(C) sod-3 or (D, E) neuronal IIS/FOXO target gene RNAi. D) Learning indices relative to
control RNAI at 3h post-training of daf-2 treated with adult-only (green) or whole life (blue)
neuronal IIS/FOXO target gene RNAi. Mean + SEM, *p<0.05, **p<0.01, ***p<0.001,
*#%%p<0.0001, two-way repeated measures ANOVA, Bonferroni post hoc tests.
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Fig 3. FKH-9isadirect target of DAF-16 and is expressed in mechanosensory neurons
A, B) daf-161s required for daf2’s enhanced Day 5 axon regeneration, Mean + SEM,

*p<0.05, Fisher’s exact test. C) Known larval regeneration genes are significantly enriched
in the Day 1 adult mechanosensory transcriptome. 63 genes are both DAF-16 targets and
expressed in mechanosensory neurons (<5%FDR). D) fkh-9 mRNA levels are higher in aged
daf-2 compared to wild type in a daf-/6-dependent manner. N=4 biological replicates, two-
way ANOVA, Bonferroni post hoc tests. E) Chromatin immunoprecipitation of
DAF-16::GFP worms with and without heat shock, which mobilizes DAF-16 into the
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nucleus. DAF-16 binds to the sod-3 promoter but not its 3° UTR, and to the fkA-9 promoter
at multiple locations (Extended Data Figure 8). Fold enrichment relative to wild-type (not
expressing DAF-16::GFP) is shown (mean + SEM, two-tailed t-test, N=3 biological
replicates). F) Neuronal FKH-9::GFP (fkh-9p..tkh-9::gfp) expression in daf-2 compared to
wild type. N=25 animals. Mean + SEM, two-tailed t-test. D-F) *p<0.05, **p<0.01,
*#%p<0.001.
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Fig 4. FKH-9isrequired for daf-2's improved axon regeneration, short-term associative memory,
and lifespan

A) fkh-9knockdown reduces axon regeneration of Day 5 daf-2 mutants, as does daf-16
knockdown. B, C) Neuronally-expressed fkA-9rescues Day 5 axon regeneration in
dat-2;fkh-9 mutants. Mean + SEM, *p<0.05, Fisher’s exact test. D) fkA-9is required for
daf-2’s enhanced memory in adult-only RNAi-treated worms. E) Neuronally-expressed
tkh-9rescues extended STAM in daf-2;fkh-9 mutants with defective learning and memory.
Mean + SEM, **p<0.01, ***p<0.001, ****p<0.0001, two-way repeated measures ANOVA,
Bonferroni post hoc tests. F) Adult-specific fkA-9 RNAi treatment reduces daf-2 mutant
lifespan. Median lifespan: control RNAi 42 days, fkh-9RNAi 21 days, daf-16 RNAi 21
days. p<0.0001 for control RNAI vs. daf-/6 RNAI and control vs. fkh-9 RNAI, log-rank test.
N=144 worms per strain. G) IMP network analysis of DAF-16 neuronal target genes with
STAM phenotypes (red circles).
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