THE C. NEUMANN PROBLEM AS A COMPLETELY INTEGRABLE SYSTEM ON AN ADJOINT ORBIT

BY

TUDOR RATIU

ABSTRACT. It is shown by purely Lie algebraic methods that the C. Neumann problem—the motion of a material point on a sphere under the influence of a quadratic potential—is a completely integrable system of Euler-Poisson equations on a minimal-dimensional orbit of a semidirect product of Lie algebras.

1. The C. Neumann problem. The motion of a point on the sphere S^{n-1} under the influence of a quadratic potential $U(\mathbf{x}) = \frac{1}{2}A\mathbf{x} \cdot \mathbf{x}$, $\mathbf{x} \in \mathbb{R}^n$, $A = \operatorname{diag}(a_1, \ldots, a_n)$ is a completely integrable Hamiltonian system. For n=3 this has been shown by C. Neumann in 1859 [12] and for arbitrary n by K. Uhlenbeck [16], R. Devaney [3], J. Moser [10], [11], M. Adler, and P. van Moerbeke [2]. In this paper we show how this problem fits naturally in the framework of Euler-Poisson equations [4], [5], [14], [17] proving that the C. Neumann problem is a Hamiltonian system on a minimal-dimensional adjoint orbit in a semidirect product of Lie algebras. Thus its complete integrability will follow entirely from Lie algebraic considerations.

The equations of motion are

$$\ddot{x}_i = -a_i x_i + \lambda x_i, \qquad i = 1, \dots, n, \tag{1.1}$$

where the Lagrange multiplier $\lambda = A\mathbf{x} \cdot \mathbf{x} - ||\mathbf{x}||^2$ is chosen such that $\mathbf{x} \in S^{n-1}$ during the motion. Set $\dot{\mathbf{x}} = \mathbf{y}$ and get the equivalent system to (1.1)

$$\dot{x}_i = y_i, \quad \dot{y}_i = -a_i x_i + (A \mathbf{x} \cdot \mathbf{x} - ||\mathbf{y}||^2) x_i, \quad ||\mathbf{x}|| = 1, \quad \mathbf{x} \cdot \mathbf{y} = 0.$$
 (1.2)

The following crucial remark that motivated the present investigation is due to K. Uhlenbeck and can be verified without any difficulties.

LEMMA 1.1. Put $X = (x_i x_j)$, $P = (y_i x_j - x_i y_j)$. System (1.2) is equivalent to

$$\dot{X} = [P, X], \qquad \dot{P} = [X, A], \qquad ||\mathbf{x}|| = 1, \qquad \mathbf{x} \cdot \mathbf{y} = 0.$$
 (1.3)

Remark that if one replaces X and A by $X - \operatorname{Id}/n$ and $A - (\operatorname{Tr}(A))\operatorname{Id}/n$ respectively, where Id is the $n \times n$ identity matrix, equations (1.3) remain unchanged. From now on we shall assume that in (1.3) this change has been made so that X, P, $A \in sl(n)$. The next section gives a Lie algebraic interpretation to these equations.

Received by the editors March 12, 1980.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 58F07, 70H05; Secondary 53C15, 17B99.

Key words and phrases. Complete integrability, adjoint orbit, Hamiltonian system, Euler-Poisson equations, Kirillov-Kostant-Souriau symplectic structure.

^{© 1981} American Mathematical Society 0002-9947/81/0000-0153/\$03.25

2. The equations of motion as a Hamiltonian system on an adjoint orbit. We start by recalling a few facts about the ad-semidirect product $\mathfrak{G}_{ad} \times \overline{\mathfrak{G}}$ of a semisimple Lie algebra \mathfrak{G} with the abelian Lie algebra $\overline{\mathfrak{G}}$ having underlying vector space \mathfrak{G} . If $(\xi_1, \eta_1), (\xi_2, \eta_2) \in \mathfrak{G}_{ad} \times \overline{\mathfrak{G}}$, their bracket is defined by

$$[(\xi_1, \eta_1), (\xi_2, \eta_2)] = ([\xi_1, \xi_2], [\xi_1, \eta_2] - [\xi_2, \eta_1]). \tag{2.1}$$

If κ denotes a bilinear, symmetric, nondegenerate, bi-invariant, two-form on \mathfrak{G} , the form κ_{ϵ} , called the semidirect product of κ with itself and defined by

$$\kappa_s((\xi_1, \eta_1), (\xi_2, \eta_2)) = \kappa(\xi_1, \eta_2) + \kappa(\xi_2, \eta_1)$$
(2.2)

is a bilinear, symmetric, nondegenerate, bi-invariant, two-form on $\mathfrak{G}_{*d} \times \overline{\mathfrak{G}}$.

Let G be a Lie group with Lie algebra \mathfrak{G} . The Ad-semidirect product $G_{Ad} \times \overline{\mathfrak{G}}$ is a Lie group with underlying manifold $G \times \mathfrak{G}$ and composition law

$$(g_1, \xi_1)(g_2, \xi_2) = (g_1g_2, \xi_1 + Ad_{g_1}\xi_2).$$
 (2.3)

Note that the identity element is (e, 0) and the inverse $(g, \xi)^{-1} = (g^{-1}, -Ad_{g^{-1}}\xi)$. The Lie algebra of $G_{Ad} \times \overline{\otimes}$ is $\otimes_{ad} \times \overline{\otimes}$. The adjoint action of the Lie group $G_{Ad} \times \overline{\otimes}$ on $\otimes_{ad} \times \overline{\otimes}$ is given by

$$Ad_{(g,\theta)}(\xi,\eta) = (Ad_g\xi, Ad_g\eta + [\theta, Ad_g\xi]). \tag{2.4}$$

In the considerations that follow, the orbit symplectic structure plays a central role (see Abraham and Marsden [1] and Ratiu [14] for proofs). If a Lie algebra \mathfrak{G} has a bilinear, symmetric, nondegenerate, bi-invariant two-form κ ,

$$\omega_{\xi}(\mathrm{Ad}_{g}\xi)([\eta,\mathrm{Ad}_{g}\xi],[\zeta,\mathrm{Ad}_{g}\xi]) = -\kappa([\eta,\zeta],\mathrm{Ad}_{g}\xi)$$
 (2.5)

for ξ , η , $\zeta \in \mathfrak{G}$, $g \in G$, defines the canonical symplectic structure on the adjoint orbit $G \cdot \xi$ through ξ . If $E, E' \colon \mathfrak{G} \to \mathbf{R}$, the Hamiltonian vector field of $E | G \cdot \xi$ is given by

$$X_{E|G:\xi}(\mathrm{Ad}_{g}\xi) = -[(\mathrm{grad}\ E)(\mathrm{Ad}_{g}\xi),\,\mathrm{Ad}_{g}\xi]$$
 (2.6)

and the Poisson bracket of $E|G \cdot \xi, E'|G \cdot \xi$ is

$$\{E|G \cdot \xi, E'|G \cdot \xi\}(\mathrm{Ad}_{g}\xi) = -\kappa([(\mathrm{grad}\ E)(\mathrm{Ad}_{g}\xi), (\mathrm{grad}\ E')(\mathrm{Ad}_{g}\xi)], \mathrm{Ad}_{g}\xi)$$
(2.7)

where grad denotes the gradient with respect to κ .

For the semidirect product these formulas become

$$\omega(\xi, \eta)([(\xi, \eta), (\zeta_1, \zeta_1')], [(\xi, \eta), (\zeta_2, \zeta_2')])$$

$$= -\kappa_s((\xi, \eta), [(\zeta_1, \zeta_1'), (\zeta_2, \zeta_2')]), \qquad (2.8)$$

$$X_{E}(\xi, \eta) = -\left(\left[\left(\operatorname{grad}_{2} E\right)(\xi, \eta), \xi\right], \left[\left(\operatorname{grad}_{2} E\right)(\xi, \eta), \eta\right] + \left[\left(\operatorname{grad}_{1} E\right)(\xi, \eta), \xi\right]\right), \tag{2.9}$$

$$\{E, E'\}(\xi, \eta) = -\kappa(\xi, [(\operatorname{grad}_2 E)(\xi, \eta), (\operatorname{grad}_1 E')(\xi, \eta)])$$

$$-\kappa(\xi, [(\operatorname{grad}_1 E)(\xi, \eta), (\operatorname{grad}_2 E')(\xi, \eta)])$$

$$-\kappa(\eta, [(\operatorname{grad}_2 E)(\xi, \eta), (\operatorname{grad}_2 E')(\xi, \eta)]), \qquad (2.10)$$

where (grad₁, grad₂) denotes the usual gradient with respect to $\kappa \times \kappa$; note that the gradient with respect to κ_s is (grad₂, grad₁).

Assume that $\mathfrak{G} = \mathfrak{R} \oplus \mathfrak{R}$, where \mathfrak{R} is a vector subspace and \mathfrak{R} a Lie subalgebra of \mathfrak{G} , \mathfrak{R} having N as underlying closed Lie subgroup of G. Denote by $\Pi_{\mathfrak{R}}$, $\Pi_{\mathfrak{R}}$ the projections of \mathfrak{G} on \mathfrak{R} and \mathfrak{R} respectively. Then $\mathfrak{G}^* = \mathfrak{R}^* \oplus \mathfrak{R}^*$. The nondegeneracy of κ on \mathfrak{G} defines the isomorphisms $\mathfrak{R}^{\perp} \cong \mathfrak{R}^*$, $\mathfrak{R}^{\perp} \cong \mathfrak{R}^*$ and thus the coadjoint action of N on \mathfrak{R}^* induces an action of N on \mathfrak{R}^{\perp} given by

$$N \times \mathbb{R}^{\perp} \ni (n, \xi) \mapsto \Pi_{\mathbf{g}^{\perp}} \operatorname{Ad}_{n} \xi \in \mathbb{R}^{\perp}$$
 (2.11)

where $\Pi_{\Re^{\perp}} \colon \mathfrak{G} \to \Re^{\perp}$ denotes the canonical projection defined by the direct sum decomposition $\mathfrak{G} = \Re^{\perp} \oplus \Re^{\perp}$. Thus the orbit $N \cdot \xi$ equals

$$N \cdot \xi = \{ \Pi_{\mathfrak{R}^{\perp}}(\mathrm{Ad}_{n} \, \xi) | n \in N \} \subseteq \mathfrak{R}^{\perp}, \qquad \xi \in \mathfrak{R}^{\perp}, \tag{2.12}$$

whose tangent space at $\bar{\xi} \in N \cdot \xi$ is

$$T_{\bar{\xi}}(N \cdot \xi) = \left\{ \Pi_{\Re^{\perp}} \left[\bar{\xi}, \eta \right] \middle| \eta \in \Re \right\} \subseteq \Re^{\perp}. \tag{2.13}$$

The symplectic structure on $N \cdot \xi$ equals, by (2.5),

$$\omega_{\xi}(\bar{\xi})(\Pi_{\mathfrak{R}^{\perp}}[\eta,\bar{\xi}],\Pi_{\mathfrak{R}^{\perp}}[\zeta,\bar{\xi}]) = -\kappa([\eta,\zeta],\bar{\xi}), \qquad \bar{\xi} \in \mathbb{N} \cdot \xi \subseteq \mathfrak{R}^{\perp}, \quad (2.14)$$

and the Hamiltonian vector field defined by $E|N \cdot \xi, E: \mathfrak{G} \to \mathbf{R}$, is, by (2.6),

$$X_{E|N\cdot\xi}(\bar{\xi}) = -\Pi_{\Re^{\perp}} \Big[\Pi_{\Re}(\operatorname{grad} E)(\bar{\xi}), \bar{\xi} \Big], \qquad \bar{\xi} \in N \cdot \xi \subseteq \Re^{\perp}.$$
 (2.15)

Finally the Poisson bracket of $E|G \cdot \xi, E'|G \cdot \xi$ is given by (2.7),

$$\{E|G\cdot\xi,E'|G\cdot\xi\}\big(\bar{\xi}\big) = -\kappa\Big(\big[\Pi_{\mathfrak{R}}(\operatorname{grad} E)\big(\bar{\xi}\big),\Pi_{\mathfrak{R}}(\operatorname{grad} E')\big(\bar{\xi}\big)\big],\bar{\xi}\Big), \quad (2.16)$$

for $\bar{\xi} \in N \cdot \xi \subseteq \mathbb{R}^{\perp}$. All previous considerations naturally live on the duals but this is the form we shall use for the C. Neumann problem; see Ratiu [14] for a parallel description on duals.

We shall apply all previous results to a specific Lie algebra. Let $\mathfrak{G} = sl(n)_{ad} \times sl(n)$, $G = Sl(n)_{Ad} \times \overline{sl(n)}$, $\mathfrak{R} = so(n) \times sym$, $N = SO(n) \times sym$, $\mathfrak{R} = sym \times so(n)$, where $sym \subset sl(n)$ denotes the vector space of all symmetric matrices. Clearly \mathfrak{R} is a Lie subalgebra and \mathfrak{R} a vector subspace of \mathfrak{G} , N a Lie subgroup of G with Lie algebra \mathfrak{R} . Thus by our general considerations N acts on \mathfrak{R}^{\perp} . It is easy to check that with respect to κ_s , where $\kappa(A, B) = -\frac{1}{2} \text{Tr}(AB)$, $\mathfrak{R}^{\perp} = \mathfrak{R}$, $\mathfrak{R}^{\perp} = \mathfrak{R}$. In what follows we shall determine explicitly a particular N-orbit; note first that in the case above $\Pi_{\mathfrak{R}^{\perp}}$ in formula (2.11) is not necessary, i.e. the action of N on \mathfrak{R}^{\perp} is given by (2.4).

If $\mathbf{y}, \mathbf{z} \in \mathbb{R}^n$, denote by $\mathbf{y} \otimes \mathbf{z}$ the matrix having entries $y_i z_j$ and remark that if $g \in SO(n)$, $g(\mathbf{y} \otimes \mathbf{z})g^{-1} = (g\mathbf{y}) \otimes (g\mathbf{z})$. Let $\mathbf{z} = (1, \dots, 1)/\sqrt{n}$ and take $(\mathbf{z} \otimes \mathbf{z} - \mathrm{Id}/n, 0) \in \mathbb{R}^\perp$. Let $g \in SO(n)$ be arbitrary and denote $\mathbf{x} = g\mathbf{z}$. Then $\|\mathbf{x}\| = \|\mathbf{z}\| = 1$ and $g(\mathbf{z} \otimes \mathbf{z} - \mathrm{Id}/n)g^{-1} = \mathbf{x} \otimes \mathbf{x} - \mathrm{Id}/n$ which is a matrix X having all off-diagonal entries equal to $x_i x_j$ and diagonal entries $x_i^2 - 1/n$. Thus the first component of the N-orbit through $(\mathbf{z} \otimes \mathbf{z} - \mathrm{Id}/n, 0)$ is the matrix X occurring in Lemma 1.1. We compute the second component. If $\theta \in sym$, $X_{ij} = x_i x_j$, $X_{ii} = x_i^2 - 1/n$, then

$$\left[\theta,X\right]_{ij}=\left(\sum_{k=1}^n\theta_{ik}x_k-x_iC(\mathbf{x},\theta)\right)x_j-x_i\left(\sum_{k=1}^n\theta_{jk}x_k-x_jC(\mathbf{x},\theta)\right),$$

where $C(\mathbf{x}, \theta) = \sum_{k,i} x_i x_k \theta_{ik}$. Put $y_i = \sum_{k=1}^n (\theta_{ik} x_k - x_i C(\mathbf{x}, \theta))$ and remark that if $\mathbf{y} = (y_1, \dots, y_n)$, $\mathbf{x} \cdot \mathbf{y} = 0$ since $\|\mathbf{x}\| = 1$. Thus the second component of the N-orbit consists of matrices $P \in so(n)$, $P_{ij} = y_i x_j - x_j y_i$, $\mathbf{x} \cdot \mathbf{y} = 0$. We showed hence that this N-orbit consists of pairs $(X, P) \in sym \times so(n)$ with X, P defined as in Lemma 1.1.

Remark that the correspondence $(X, P) = \lambda(\mathbf{x}, \mathbf{y})$ defines a diffeomorphism of this orbit onto the tangent bundle TS^{n-1} of the unit sphere S^{n-1} in \mathbb{R}^n . A tangent vector at (X, P) to this orbit is $[(X, P), (\xi, \eta)]$ for $(\xi, \eta) \in so(n) \times sym$ and is of the form $(V, W) \in sym \times so(n)$, where $V_{ij} = v_j x_i + x_j v_i$, $v_i = \sum_{k=1}^n x_k \xi_{ki}$, $W_{ij} = w_i x_j - x_i w_j + y_i v_j - y_j v_i$, $w_i = \sum_{k=1}^n (y_k \xi_{ki} - x_k \eta_{ki}) + x_i \sum_{k,i} x_i x_k \eta_{ik}$ as a short calculation shows. Thus the tangent map of λ is given by $(V, W) \mapsto (\mathbf{v}, \mathbf{w})$, where $\mathbf{v} = (v_1, \ldots, v_n)$, $\mathbf{w} = (w_1, \ldots, w_n)$.

 TS^{n-1} has a natural symplectic structure induced by the canonical symplectic form $-\sum_{i=1}^{n} dx_i \wedge dy_i$ of \mathbb{R}^{2n} . By (2.8) the canonical symplectic structure ω on the orbit is given by

$$\omega(X, P)([(X, P), (\xi^1, \eta^1)], [(X, P), (\xi^2, \eta^2)]) = \kappa_s([(\xi^2, \eta^2), (\xi^1, \eta^1)], (X, P)).$$

Let V^i , W^i , \mathbf{v}^i , \mathbf{w}^i be defined by ξ^i , η^i , $i = 1, 2$. We have by bi-invariance of κ_s , antisymmetry of ξ^2 , symmetry of η^1 , and by (2.8), (2.14)

$$(\lambda_* \omega)(\mathbf{x}, \mathbf{y})((\mathbf{v}^1, \mathbf{w}^1), (\mathbf{v}^2, \mathbf{w}^2)) = \omega(X, P)((V^1, W^1), (V^2, W^2))$$

$$= -\kappa_s((\xi^2, \eta^2), (V^1, W^1))$$

$$= \frac{1}{2} \operatorname{Tr}(\xi^2 W^1) + \frac{1}{2} \operatorname{Tr}(\eta^2 V^1)$$

$$= \sum_{k=1}^n \left(w_k^1 \sum_{i=1}^n x_i \xi_{ik}^2 \right) - \sum_{k=1}^n \left(v_k^1 \sum_{i=1}^n y_i \xi_{ik}^2 \right) + \sum_{k=1}^n \left(v_k^1 \sum_{i=1}^n x_i \eta_{ik}^2 \right)$$

$$= -\sum_{k=1}^n \left(v_k^1 w_k^2 - w_k^1 v_k^2 \right)$$

$$= \left(-\sum_{k=1}^n dx_k \wedge dy_k \right) ((\mathbf{v}^1, \mathbf{w}^1), (\mathbf{v}^2, \mathbf{w}^2)).$$

This shows that λ is a symplectic diffeomorphism:

$$\lambda_* \omega = \left(-\sum_{i=1}^n dx_i \wedge dy_i \right) |TS^{n-1}.$$

Let $L: sl(n) \to sl(n)$ be given by $L(\xi) = -\xi$. L is clearly a κ -symmetric isomorphism. The following Euler-Poisson Hamiltonian (see [4], [5], [15], [17] for motivations) $E(\xi, \eta) = \frac{1}{2}\kappa(\eta, L(\eta)) + \kappa(A, \xi)$ for $A \in sl(n)$ a fixed diagonal matrix, induces a Hamiltonian vector field on the N-orbit through ($\mathbf{z} \otimes \mathbf{z} - \mathrm{Id}/n$, 0) given by (2.15), $(X, P) \mapsto ([P, X], [X, A])$, i.e. we get equations (1.3). Hence we proved the following.

THEOREM 2.1. The $N = so(n) \times sym$ -orbit through $(\mathbf{z} \otimes \mathbf{z} - \mathrm{Id}/n, 0)$ in $\Re^{\perp} = \Re$ $= sym \times so(n)$, $\mathbf{z} = (1, \ldots, 1)/\sqrt{n}$, consists of all pairs (X, P), $X_{ij} = x_i x_j$ for $i \neq j$, $X_{ii} = x_i^2 - 1/n$, $P_{ij} = y_i x_j - x_i y_j$, $\|\mathbf{x}\| = 1$, $\mathbf{x} \cdot \mathbf{y} = 0$. With the Kirillov-Kostant-Souriau symplectic structure this (2n - 2)-dimensional orbit is symplectically diffeomorphic via $(X, P) \mapsto (\mathbf{x}, \mathbf{y})$ to TS^{n-1} with the symplectic structure induced from \mathbf{R}^{2n} by $-\sum_{i=1}^n dx_i \wedge dy_i$. The Hamiltonian $E(X, P) = -\frac{1}{2}\kappa(P, P) + \kappa(A, X)$ defines on this orbit the equations of motion of the C. Neumann problem

$$\dot{X} = [P, X], \quad \dot{P} = [X, A], \quad \|\mathbf{x}\| = 1, \quad \mathbf{x} \cdot \mathbf{y} = 0.$$
 (2.17)

REMARK. M. Adler and P. van Moerbeke [2] have independently observed that (2.17) is a Hamiltonian system in a semidirect product.

3. The complete set of integrals and their involution.

LEMMA 3.1. The equations $\dot{X} = [P, X], \dot{P} = [X, A], ||\mathbf{x}|| = 1, \mathbf{x} \cdot \mathbf{y} = 0$ are equivalent to

$$(-X + P\lambda + A\lambda^2) = [-X + P\lambda + A\lambda^2, -P - A\lambda]$$
 (3.1)

for any parameter λ .

The proof is a straightforward verification. It follows that the functions $(1/2(k+1))\operatorname{Tr}(-X+P\lambda+A\lambda^2)^{k+1}$ are conserved on the flow of (3.1). If $t\mapsto (X(t),P(t))$ denotes the flow of (2.17), then $t\mapsto -X(t)+P(t)\lambda+A\lambda^2$ is the flow of (3.1) and we conclude that the coefficients of λ in the expansion of $(1/2(k+1))\operatorname{Tr}(-X+P\lambda+A\lambda^2)^{k+1}$ are conserved along the flow of (2.17). Let $f_k(X,P)$ be the coefficient of λ^{2k} in this expansion for $k=1,\ldots,n-1$. We shall prove in this section that all f_k are in involution. The method of the proof follows Ratiu [13], [15] closely.

THEOREM 3.2. Let \mathfrak{G} be a Lie algebra with a bilinear, symmetric, nondegenerate, bi-invariant, two-form κ . Let $f, g \colon \mathfrak{G} \to \mathbf{R}$ satisfy $[(\operatorname{grad} f)(\xi), \xi] = 0$, $[(\operatorname{grad} g)(\xi), \xi] = 0$ for all $\xi \in \mathfrak{G}$. Denote $f_a(\xi, \eta) = f(\xi + a\eta + a^2\varepsilon)$, $g_b(\xi, \eta) = g(\xi + b\eta + b^2\varepsilon)$ for $\varepsilon \in \mathfrak{G}$ fixed and a, b arbitrary parameters. Then f_a , g_b Poisson commute in the bracket of \mathfrak{G} and $\varepsilon \in \mathfrak{G}$ defined by its symplectic decomposition in adjoint orbits.

PROOF. Clearly $(\operatorname{grad}_1 f_a)(\xi, \eta) = (\operatorname{grad} f)(\xi + a\eta + a^2\varepsilon)$, $(\operatorname{grad}_2 f_a)(\xi, \eta) = a(\operatorname{grad} f)(\xi + a\eta + a^2\varepsilon)$ and similarly for g_b . By (2.10)

$$\begin{split} \{f_a,g_b\}(\xi,\eta) &= -\kappa \big(\big[(\operatorname{grad}_1 f_a)(\xi,\eta), (\operatorname{grad}_2 g_b)(\xi,\eta) \big], \xi \big) \\ &- \kappa \big(\big[(\operatorname{grad}_2 f_a)(\xi,\eta), (\operatorname{grad}_1 g_b)(\xi,\eta) \big], \xi \big) \\ &- \kappa \big(\big[(\operatorname{grad}_2 f_a)(\xi,\eta), (\operatorname{grad}_2 g_b)(\xi,\eta) \big], \eta \big) \\ &= -\kappa \big((a+b)\xi + ab\eta, \big[(\operatorname{grad} f)(\xi + a\eta + a^2\varepsilon), \\ & (\operatorname{grad} g)(\xi + b\eta + b^2\varepsilon) \big] \big) \\ &= \big(b^2 / (a-b) \big) \kappa \big(\big[\xi + a\eta + a^2\varepsilon, (\operatorname{grad} f)(\xi + a\eta + a^2\varepsilon) \big], \\ & (\operatorname{grad} g)(\xi + b\eta + b^2\varepsilon) \big) \\ &+ \big(a^2 / (a-b) \big) \kappa \big(\big[\xi + b\eta + b^2\varepsilon, (\operatorname{grad} g)(\xi + b\eta + b^2\varepsilon) \big], \\ & (\operatorname{grad} f)(\xi + a\eta + a^2\varepsilon) \big) = 0 \end{split}$$

by hypothesis. By continuity $\{f_a, g_b\} = 0$ holds also for a = b. \square

REMARK. The condition $[(\operatorname{grad} f)(\xi), \xi] = 0$ for all $\xi \in \mathfrak{G}$ is the infinitesimal version of Ad-invariance of f as an easy computation shows.

THEOREM 3.3. Let G be a Lie group, N a closed subgroup, with Lie algebras \mathfrak{G} and \mathfrak{R} respectively. Assume $\mathfrak{G} = \mathfrak{R} \oplus \mathfrak{R}$, \mathfrak{R} a vector subspace, $[\mathfrak{R}, \mathfrak{R}] \subseteq \mathfrak{R}$, and that \mathfrak{G} has a bilinear, symmetric, nondegenerate, bi-invariant, two-form κ . Assume that f, g: $\mathfrak{G} \to \mathbf{R}$ Poisson commute on \mathfrak{G} , i.e.

$$\kappa(\lceil (\operatorname{grad} f)(\xi), (\operatorname{grad} g)(\xi) \rceil, \xi) = 0,$$

for all $\xi \in \mathfrak{G}$. If either

- (1) \Re is a Lie subalgebra, or
- (2) $\Pi_{\mathfrak{R}}[\Pi_{\mathfrak{R}}(\operatorname{grad} f)(\eta), \Pi_{\mathfrak{R}}(\operatorname{grad} g)(\eta)] = 0$ for all $\eta \in \mathbb{R}^{\perp}$, then on any N-orbit in \mathbb{R}^{\perp} , the functions f, g Poisson commute.

PROOF. Let $\eta \in \mathbb{R}^{\perp}$. By hypothesis and (2.16) we get

$$0 = -\kappa([(\operatorname{grad} f)(\eta), (\operatorname{grad} g)(\eta)], \eta)$$

= $\{f|N \cdot \eta, g|N \cdot \eta\}(\eta) - \kappa(\Pi_{\Re}[\Pi_{\Re}(\operatorname{grad} f)(\eta), \Pi_{\Re}(\operatorname{grad} g)(\eta)], \eta).$

The second term vanishes in either hypothesis 1 or 2.

Remark. Both theorems have identical versions on duals and κ is not needed there.

These two general theorems prove the involution of the functions f_k in the following way. In Theorem 3.2 take $\mathfrak{G} = sl(n)$ and let

$$\phi_k(\xi, \eta) = (1/2(k+1))Tr(-\xi + \eta \lambda_{k+1} + A\lambda_{k+1}^2)^{k+1}.$$

Then $\{\phi_k, \phi_l\} = 0$ on $sl(n)_{ad} \times \overline{sl(n)}$ for any parameters $\lambda_{k+1}, \lambda_{l+1}$, i.e. ϕ_{k+1} is constant on the flow defined by ϕ_{l+1} no matter what $\lambda_{k+1}, \lambda_{l+1}$ are, i.e. the coefficients of λ_{k+1} in ϕ_{k+1} are constant on the flow defined by ϕ_{l+1} for all λ_{l+1} . Hence $\{f_k, \phi_l\} = 0$ for all λ_l and thus $\{f_k, f_l\} = 0$ for any k, l. In Theorem 3.3 take $\mathfrak{G} = sl(n)_{ad} \times \overline{sl(n)}$, $\mathfrak{R} = sym \times so(n)$, $\mathfrak{R} = so(n) \times sym$ and remark that $[\mathfrak{R}, \mathfrak{R}] \subseteq \mathfrak{R}$. f_k , f_l Poisson commute on \mathfrak{G} by what we just proved, so in order to conclude that they Poisson commute on the N-orbit through $(\mathbf{z} \otimes \mathbf{z} - \mathrm{Id}/n, 0)$ we have to check condition (2) of Theorem 3.3 for $\eta = (X, P) \in \mathfrak{R}^\perp = \mathfrak{R}$. An easy computation shows that

$$f_k(X, P) = \frac{1}{2(k+1)} \operatorname{Tr} \left[-\sum_{i=0}^k A^i X A^{k-i} + \sum_{\substack{i+j+l=k-1\\i,j,l>0}} A^i P A^j P A^l \right]$$
(3.2)

so that the gradient of f_k with respect to κ_s is

$$(\operatorname{grad} f_k)(X, P) = \left(-\sum_{i=0}^{k-1} A^{i} P A^{k-1-j}, A^k\right) \in \operatorname{so}(n) \times \operatorname{sym} = \Re$$
 (3.3)

and hence $\Pi_{\mathfrak{S}}(\operatorname{grad} f_k)(X, P) = 0$.

THEOREM 3.4. The functions f_k , k = 1, ..., n - 1, are constants of the motion in involution for the C. Neumann problem. $f_1 = -E$, E = energy function.

REMARK. Equation (3.1) is Hamiltonian in the Kac-Moody extension of sl(n); see Adler and van Moerbeke [2].

4. Independence. Throughout this section we assume that $A = diag(a_1, \ldots, a_n)$ has all entries distinct.

Let $\mathcal{V} = \text{span}\{X_{f_k}(X, P)|k=1, \ldots, n-1\}$. We have to show that generically $\dim(\mathcal{V}) = n-1$.

Denote by U_{ki} the coefficient of λ^i in the expansion of $(-X + P\lambda + A\lambda^2)^k$. From (3.3) it follows that $(\operatorname{grad} f_k)(X, P) = (-U_{k,2k-1}, U_{k,2k})$, so that $\mathcal{V} = \operatorname{ad}_{(X, P)}\mathcal{C}_0$, where $\mathcal{C}_0 = \operatorname{span}\{(-U_{k,2k-1}, U_{k,2k})|k=1,\ldots,n-1\}$. Since $U_{k,2k} = A^k$ and A has all entries distinct we conclude that $\{A^k|k=1,\ldots,n-1\}$ are linearly independent in sl(n) and thus $\dim(\mathcal{C}_0) = n-1$; in particular $\dim(\mathcal{V}) \leq \dim(\mathcal{C}_0) = n-1$ which was already obvious from the definition of \mathcal{V} .

Let $\mathcal{C}_j = \text{span}\{(-U_{k,2k-1-2j}, U_{k,2k-2j})|k=j,\ldots,n-1\}$ where we make the convention that any U_{ki} with i < 0 is identical zero; thus $\dim(\mathcal{C}_j) \le n-j$, $j = 1,\ldots,n-1$. Denote $\mathcal{C}_j = \text{ad}_{(X,P)}\mathcal{C}_j$, $j = 0,1,\ldots,n-1$, so that $\mathcal{C}_j = \mathcal{C}_0$.

LEMMA 4.1. The linear map $f_{A,P}$: $sl(n) \times sl(n) \rightarrow sl(n) \times sl(n)$ defined by

$$f_{A,P}(\xi,\eta) = ([\eta,P] - [\xi,A], [A,\eta])$$

is injective on all \mathcal{Q}_i , $j = 1, \ldots, n-1$, for generic (X, P).

This is a direct, but somewhat lengthy verification (see [15] for a more complicated similar proof).

LEMMA 4.2. The following relations hold for any k = 1, ..., n - 1:

$$-\left[U_{k,2k-i},X\right]+\left[U_{k,2k-i-1},P\right]+\left[U_{k,2k-i-2},A\right]=0.$$

This is obvious if one notes that the expression above is the coefficient of λ^j in the expansion of $[(-X + P\lambda + A\lambda^2)^k, -X + P\lambda + A\lambda^2] \equiv 0$.

We have thus by the two prior lemmas

$$\begin{aligned} \operatorname{ad}_{(X,P)}(-U_{k,2k-1-2j}, U_{k,2k-2j}) \\ &= \left(\left[U_{k,2k-1-2j}, X \right], \left[X, U_{k,2k-2j} \right] + \left[U_{k,2k-1-2j}, P \right] \right) \\ &= \left(\left[U_{k,2k-2-2j}, P \right] + \left[U_{k,2k-3-2j}, A \right], \left[A, U_{k,2k-2j-2} \right] \right) \\ &= f_{A,P}(-U_{k,2k-2j-3}, U_{k,2k-2j-2}), \end{aligned}$$

i.e. $f_{A,P}(\mathcal{C}_{j+1}) \subseteq \mathrm{ad}_{(X,P)}(\mathcal{C}_j) = \mathcal{V}_j$. $f_{A,P}$ injective implies $\dim(\mathcal{V}_j) > \dim(\mathcal{C}_{j+1})$, $j = 0, 1, \ldots, n-1$. Assume from now on that for any $j = 1, \ldots, n-1$, $X^j \neq 0$; this condition is generically satisfied. Since $U_{j,0} = (-1)^j X^j$ we conclude $\mathrm{ad}_{(X,P)}(0, U_{j,0}) = (0, 0)$ and hence $\dim(\mathcal{C}_j) > 1 + \dim(\mathcal{V}_j)$ for j > 1. Hence we obtain

$$\dim(\mathcal{C}_i) \geqslant 1 + \dim(\mathcal{C}_{i+1}), \quad j = 1, \dots, n-1, \mathcal{C}_n = 0.$$
 (4.1)

Clearly $\mathcal{C}_{n-1} = \operatorname{span}(0, U_{n-1,0})$ so that $\dim(\mathcal{C}_{n-1}) = 1$. Repeated application of (4.1) yields then $\dim(\mathcal{C}_1) \ge n-1$, which combined with $n-1 \ge \dim(\mathcal{V}_0) \ge \dim(\mathcal{C}_1)$ gives $\dim(\mathcal{V}) = n-1$.

THEOREM 4.3. Let $A = diag(a_1, \ldots, a_n)$ have all entries distinct. The C. Neumann problem is a completely integrable Hamiltonian system, n-1 generically independent integrals in involution being given by

$$f_{k+1}(X, P) = \frac{1}{2(k+1)} \operatorname{Tr} \left[-\sum_{i=0}^{k} A^{i} X A^{k-i} + \sum_{\substack{i+j+l=k-1\\i,j,l>0}} A^{i} P A^{j} P A^{l} \right].$$

REMARKS. (1) The geodesic spray on an ellipsoid in \mathbb{R}^n with all axes distinct is also completely integrable and given by the Euler-Poisson equations on the *same* orbit

$$\dot{X} = [Q, X], \qquad \dot{P} = [Q, P] + [X, A^{-1}],$$

for $Q_{ij} = -P_{ij}/a_i a_j$, with Hamiltonian $E(X, P) = -\frac{1}{2}\kappa(P, Q) + \kappa(X, A^{-1})$. It has the same integrals f_k since the previous equations can be written as

$$(-X + P\lambda + A\lambda^2)^{\cdot} = [-X + P\lambda + A\lambda^2, -Q - A^{-1}\lambda].$$

This follows easily from the work of Moser [10], [11] and has been independently observed by Adler and van Moerbeke [2] who also linearize the flow.

(2) The geodesic spray on S^{n-1} corresponds to A=0 in the C. Neumann problem, or to $A=\mathrm{Id}$ in the ellipsoidal problem. The Euler-Poisson equations on the *same* orbit are $\dot{X}=[P,X], \dot{P}=0$ and the integrals in involution are

$$f_k(X, P) = \begin{cases} \kappa \left(P^k - \left(\frac{1}{n} \operatorname{Tr} P^k \right) \operatorname{Id}, X \right), & k = \text{even,} \\ \frac{1}{2(k+1)} \operatorname{Tr}(P^{k+1}), & k = \text{odd.} \end{cases}$$

The Hamiltonian is $-f_1(X, P) = -\frac{1}{2}\kappa(P, P)$. The prior proof of independence can be easily modified step-by-step to show that X_{f_k} , $k = 1, \ldots, n - 1$, are generically independent.

ACKNOWLEDGEMENTS. I want to thank K. Uhlenbeck for telling me equations (1.3) which started the present investigation. A conversation with C. Moore on semidirect products is gratefully acknowledged.

BIBLIOGRAPHY

- 1. R. Abraham and J. Marsden, Foundations of mechanics, 2nd ed., Benjamin, New York, 1978.
- 2. M. Adler and P. van Moerbeke, Completely integrable systems, Kac-Moody Lie algebras, and curves and Linearization of Hamiltonian systems, Jacobi varieties, and representation theory, Adv. in Math. (to appear).
 - 3. R. Devaney, Transversal homoclinic orbits in an integrable system, preprint, 1978.
 - 4. V. Guillemin and S. Sternberg, The moment map and collective motion, Ann. of Physics (to appear).
- 5. A. Iacob and S. Sternberg, *Coadjoint structures, solitons, and integrability*, Lecture Notes in Phys., vol. 120, Springer, Berlin and New York, 1980.
- 6. D. Kazhdan, B. Kostant and S. Sternberg, Hamiltonian group actions and dynamical systems of Calogero type, Comm. Pure Appl. Math. 31 (1978), 481-508.
- 7. B. Kostant; The solution to a generalized Toda lattice and representation theory, M.I.T., 1979, (preprint).
- 8. H. McKean, *Integrable systems and algebraic curves*, Lecture Notes in Math., vol. 755, Springer-Verlag, Berlin and New York, 1979.

- 9. A. S. Mishchenko and A. T. Fomenko, Euler equations on finite dimensional Lie groups, Math. USSR-Izv. 12 (1978), 371-389.
- 10. J. Moser, Various aspects of integrable Hamiltonian systems, Dynamical Systems (C.I.M.E., Bressanone, Italy, July 1978), Progress in Math., no. 8, Birkhäuser, Basel.
 - 11. _____, Geometry of quadrics and spectral theory, Chern Symposium, Berkeley, 1979 (to appear).
- 12. C. Neumann, De problemate quodam mechanica, quod ad primam integralium ultra-ellipticorum classem revocatur, J. Reine Angew. Math. 56 (1859), 54-66.
 - 13. T. Ratiu, The motion of the free N-dimensional rigid body, Indiana J. Math. 29 (1980), 609-629.
- 14. _____, Involution theorems, Lectures Notes in Math., vol. 755, Springer-Verlag, Berlin and New York, 1980, pp. 219-257.
 - 15. _____, Euler-Poisson equations on Lie algebras, Thesis, Univ. of California, Berkeley, 1980.
 - 16. K. Uhlenbeck, Minimal 2-spheres and tori in S^k , informal preprint, 1975.
 - 17. P. van Moerbeke and T. Ratiu, The Lagrange top (to appear).

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MICHIGAN, ANN ARBOR, MICHIGAN 48109