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Abstract—Omics technologies are powerful tools
for analyzing patterns in gene expression data
for thousands of genes. Due to a number of sys-
tematic variations in experiments, the raw gene
expression data is often obfuscated by undesirable
technical noises. Various normalization techniques
were designed in an attempt to remove these non-
biological errors prior to any statistical analysis.
One of the reasons for normalizing data is the need
for recovering the covariance matrix used in gene
network analysis. In this paper, we introduce a
novel normalization technique, called the covari-
ance shift (C-SHIFT) method. This normalization
algorithm uses optimization techniques together
with the blessing of dimensionality philosophy and
energy minimization hypothesis for covariance
matrix recovery under additive noise (in biology,
known as the bias). Thus, it is perfectly suited
for the analysis of logarithmic gene expression
data. Numerical experiments on synthetic data
demonstrate the method’s advantage over the
classical normalization techniques. Namely, the
comparison is made with Rank, Quantile, cyclic
LOESS (locally estimated scatterplot smoothing),
and MAD (median absolute deviation) normaliza-
tion methods. We also evaluate the performance
of C-SHIFT algorithm on real biological data.

Gene expression analysis plays an important role
in genomic research. Several omics technologies such
as RNAseq and microarrays allow for the collection
of massive amounts of simultaneous measurements
of gene expression levels of thousands to tens of
thousands of genes. Analyzing different patterns of
gene expressions helps to gain insight into com-
plex biological phenomena such as development, ag-
ing, onset and progression of diseases, and cellu-
lar response/reaction to drugs/treatments. Although
new technologies are constantly developing, it is
well known that all of them generate some techni-
cal noise which affects the measured gene expres-

sion levels [12], [29]. To extract accurate biologi-
cal information it becomes necessary to normalize
the data to filter out/compensate for these non-
biological noises/errors. Normalization is a crucial
pre-processing step in the gene expression data anal-
ysis. The gene expression data will vary significantly
after different normalization methods. Thus, the re-
sults of further data analysis (e.g. gene expression
network) will be critically dependent on a choice of a
normalization technique. A variety of normalization
procedures have been used on gene expression data
sets. See [4], [5], [17], [20], [22], [24], [26], [28] and
reference therein for a review and comparison of
current normalization strategies. In this paper we
develop a novel normalization technique, called the
covariance shift (C-SHIFT) method, and compare it
to the following well known normalization methods
used in large scale data analysis: Rank, Quantile,
cyclic LOESS (locally estimated scatterplot smooth-
ing), and MAD (median absolute deviation). See [1],
[5], [23], [24] and references therein for more details
on the above listed normalization methods. There
is an important distinction: while Rank, Quantile,
LOESS and other normalizations normalize the data,
C-SHIFT algorithm normalizes the covariances. The
need to normalize the covariances is caused by the
presence of bias.

A. Bias.

Consider a situation where the gene expression
data is subjected to multiplicative noise (aka bias).
Let M be the number of genes and N be the
number of measurements. Next, we let Xpiqn denote
the true gene expression, where subscript index n
stands for the n-th gene in the network and the
superscript index i stands for the i-th measurement.
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The observed gene expression, denoted by rX
piq
n , is

different from X
piq
n due to all gene expressions in the

i-th measurement being distorted by a multiplicative
noise W piq, i.e.,

rXpiqn “W piqXpiqn , (1)

where random variables Xpiqn are independent of the
variable W piq. Additionally random variables W piq

(i “ 1, . . . , N) are assumed to be independent and
identically distributed (i.i.d.). Here, both the ob-
served and the true gene expressions are positive, i.e.,
X
piq
n ą 0 and W piq ą 0.

In biology, the multiplicative noise W piq is referred
to as the bias. The bias is prompted by random
events causing an error in the measurement of the
total amount of RNA. Such random events are often
related to different levels of tissue preservation in
different samples that leads to variability of RNA
degradation. Consequently, this leads to an RNA
detection problem. Additionally, there are other tech-
nical reasons for an error in the measurement of the
total amount of RNA in a given sample that may
lead to a bias in (1). All other noise (e.g. misreading
parts of RNA) goes into the variable Xpiqn .

The multiplicative noise in (1) implies the corre-
sponding additive noise (bias) in the logarithimic
gene expression data:

rY piqn “ Y piqn ` V piq, (2)

where we let rY
piq
n :“ log rX

piq
n , Y

piq
n :“ logXpiqn , and

V piq :“ logW piq.

B. Impact of bias on covariances and correlations.

While the bias may not appear critical, they are
known to cause significant problems in the analy-
ses of gene correlation structure. Specifically, this
phenomenon is known to cause the disappearance
of the large magnitude negative correlations in the
observed biological data, rXn and rYn, which hampers
the ability to perform certain types of statistical
data analysis, such as the false discovery rate (FDR)
method.
The bias, whether multiplicative as in (1) or addi-

tive as in (2), causes the correlations to be shifted
away from ´1. In partiocular, the independent ad-
ditive noise in (2) implies an increase of theoretical
covariance as

CovprYn, rYmq “ CovpYn, Ymq ` ω, (3)

where ω “ V arpV q ą 0. Consequently, the correla-
tions in the logarithmic data are equal to

corrprYn, rYmq “
CovpYn, Ymq ` ω

c

´

V arpYnq ` ω
¯´

V arpYmq ` ω
¯

.

(4)
If CovpYn, Ymq is negative, by adding ω ą 0 in the
numerator and the denominator, we obtain

corrprYn, rYmq ą corrpYn, Ymq.

Hence, the disappearance of large magnitude nega-
tive correlations.

The purpose of the covariance shift (C-SHIFT) al-
gorithm developed in this current manuscript is to
normalize covariances in the logarithmic data and
restore the correlations, thus offsetting the impact of
the additive bias in (2). Consequently, the compari-
son of C-SHIFT covariance normalization algorithm
with methods of normalizing data such as Rank,
Quantile, or LOESS can only be done in terms of the
effectiveness of recovering true empirical correlations.
This comparison will be implemented on synthetic
data in Section II-B and on real biological data in
Section III.

The problem of improving the existing and develop-
ing new normalization methods is very important for
scientists working with biological data. The fact that
normalization alters the data-correlation structure
was stated in Saccenti [28]. Besides [28] gives a com-
prehensive overview of normalization methods. In
Bolstad et al. [5] the authors compare three complete
data normalization methods (cyclic LOESS, contrast
based method, and quantile), that make use of data
from all arrays in an experiment, with two methods
that make use of a baseline array. The comparison
was done on two publicly available datasets with the
results favoring the complete data methods. For more
on the normalization methods, see [1], [6], [7], [9],
[12], [13], [24], [27], [30].

C. Paper structure and workflow diagram.

The paper is organized as follows. In Section I,
we formulate C-SHIFT method from the underlying
theoretical considerations. Section I also contains
Lemma 1, Lemma 2, and Theorem 1, necessary for
the optimization approach to work. The pseudocode
for the C-SHIFT algorithm is given in Section II-A.
Section II-B contains numerical experiments on two
synthetic datasets, one generated using random co-
variance method (RCM) and another generated with
a cascade method. The effectiveness of recovering
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Fig. 1. Workflow diagram.

the true empirical correlation matrices is evaluated
for C-SHIFT, Rank, Quantile, LOESS, and MAD.
Section III evaluates the outcomes of correlation
recovery using six real biological datasets from GEO
depository. A comparison is made of C-SHIFT with
Rank, Quantile, and LOESS. The results and future
directions are discussed in Section IV. Finally, Sec-
tion V contains the proofs of Proposition 1, Lemma
1, Lemma 2, and Theorem 1.

In Table I we clarify the notation and introduce a few
important quantities that will be used throughout
the paper. Workflow diagram can be found in Fig. 1.

I. Theoretical derivations
Denote by yCov the empirical covariances taken

over N samples for each of
`

M
2
˘

pairs of genes. Sim-
ilarly, let yV ar denote the empirical variance. Then,
equation (2) yields the observed empirical covariance

yCovprYn, rYmq “ yCovpYn, Ymq ´ ân ´ âm ` ω̂ (5)

for all pairs of gene indices n and m, where ân “
´yCovpYn, V q for all n “ 1, . . . ,M , and ω̂ “
yV arpV q ą 0. As is often the case, ω̂ can be very
large relative to the values of ân, causing the disap-
pearance of the large magnitude negative correlations
in empirical data.
The goal of the covariance shift (C-SHIFT) nor-

malization method introduced here is the recovery
of the true empirical covariances yCovpYn, Ymq and
the respective true empirical correlations in the case
of the logarithmic gene expression data or any other
situations with additive noise as in (2).

Let rC “
`

yCovprYn, rYmq
˘

n,m
be the empirical co-

variance matrix of the observed data rY
piq
n , and let

C “
´

yCovpYn, Ymq
¯

n,m
be the empirical covariance

matrix of the cleaned data Y piqn (i.e., the true empir-
ical covariance) that we desire to recover. Formula
(5) rewritten in the matrix form states

C “ rC ` â1T ` 1paT ´ ω̂ 11T , (6)

where â “
`

â1, . . . , âM
˘T , and 1 denotes the column

vector of 1’s, hence 11T is a square matrix of 1’s.
Our goal here is to estimate â and ω̂ in (6), and

thus recover the true empirical covariance matrix C.
We assume large dimension M . There will be two
cases.
Case I: If detp rCq “ 0 (e.g. N ă M), we make a

small perturbation of the diagonal entries of rC (the
variances) resulting in a new covariance matrix being
positive definite whose smallest eigenvalue is still
very close to zero. Next, we use energy minimization
to estimate ân and ω̂ in (6).
Case II: If rC is positive definite (full rank), our ap-

proach exploits the phenomenon sometimes referred
to as the curse of dimensionality [3], [25] and some-
times as the blessing of dimensionality [8], [11], [15],
postulating that in higher dimensions almost all data
points are located near extrema (i.e., in the outer
shell)∗. In other words, for large M , we anticipate
the smallest eigenvalue of C to be near zero. As
a rigorous bound, we observe that if some of the
correlations corrpYn, Ymq are located in r´1, δ ´ 1s
interval, then the smallest eigenvalue of C is located
within

“

0, δmin
n

yV arpYnq
‰

interval. Thus, as in Case
I, under the blessing of dimensionality assumption,
we again use energy minimization for estimating ân
and ω̂.

Next, we will need the following result.

Proposition 1. Suppose M is a symmetric positive

definite square matrix, and let

v˚ :“ max
 

v : M´v 11T is positive semidefinite
(

.

Then,

v˚ “
1

1T M´1 1
.

The proof of Proposition 1 is given in Section V.

Suppose the empirical covariance matrix rC is positive
definite, i.e., rC is of full rank. Consider values of a
column vector α “ pα1, . . . , αM q

T such that
rC ` α1T ` 1Tα

∗In this paper we will refer to the phenomenon as the bless-
ing of dimensionality rather than the curse of dimensionality.
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N fi number of measurements
M fi number of genes

X
piq
n fi i-th measurement of true gene expression of the n-th gene, Xpiqn ą

0
W piq fi i.i.d. multiplicative noise variable a.k.a bias, W piq ą 0, indepen-

dent of Xpiqn
X̃
piq
n fi i-th measurement of observed gene expression of the n-th gene,

X̃
piq
n “W piqX

piq
n

Y
piq
n fi i-th measurement of true logarithmic gene expression of the n-th

gene, Y piqn “ logXpiqn
V piq fi additive noise variable (bias), V piq “ logW piq

Ỹ
piq
n fi i-th measurement of the observed logarithmic gene expression of

the n-th gene, Ỹ piqn “ log X̃piqn “ Y
piq
n ` V piq

C̃ fi empirical covariance matrix of observed logarithmic gene expres-
sion data Ỹ piqn , C̃ “

´

yCovpỸn, Ỹmq
¯

n,m
P RMˆM

C fi empirical covariance matrix of true logarithmic gene expression
data Y piqn , C “

´

yCovpYn, Ymq
¯

n,m
P RMˆM

ân fi empirical covariance between true logarithmic gene expression
data Yn and additive bias V , ân “ ´yCovpYn, V q, n “ 1,M

ω̂ fi empirical variance of additive bias V piq, ω̂ “ yV arpV q ą 0

TABLE I
Table of Notations

is positive definite. If we let

vpαq :“ 1
1T

`

rC ` α1T ` 1αT
˘´1

1
, (7)

then Prop. 1 implies

Cα :“ rC ` α1T ` 1αT ´ vpαq11T (8)

is positive semidefinite with detpCαq “ 0.

Next, recall the quantities â and ŵ in (6). If rC is rank
deficient, we perturb its diagonal entries by adding
small positive (random or deterministic) values, and
if rC has full rank, we assume the blessing of dimen-
sionality phenomenon holds. Thus, in either case, we
work under the assumption that rC is positive definite
with its smallest eigenvalue located near zero. Then,
Prop. 1 implies ŵ « vpâq, where vpαq is as defined in
(7). Therefore, letting α “ â in (8), we will have Câ
approximating C expressed as in (6).

Now, for a matrix X, let }X}F denote the Frobenius
norm of X and let EpXq “ 1

2}X}
2
F be the energy

function. Our next assumption states that â can be
estimated by the minimizer α˚ of the energy function
EpCαq, i.e., we estimate â with

α˚ “ argmin}Cα}F .

The assumption is additionally justified by the obser-
vation that a random adjustment of the covariance
via an additive noise (bias) as in (5) will result in an
energy increase, i.e., Ep rCq ą EpCq.

Matrix Cα˚ will approximate Câ, which, in turn,
approximates the desired true empirical covariance
matrix C. The covariance shift (C-SHIFT) algorithm
works as follows: it uses optimization algorithms to
estimate α˚ and outputs Cα˚ as an estimate for C.
See Algorithm 1 in Section II-A.

The following lemma yields a close form expression
for the gradient ∇}Cα}2F that will be used to estimate
α˚ which minimizes }Cα}F .

Lemma 1. Suppose the empirical covariance matrix
rC is of full rank, and the quantities Cα and vpαq are
as in (8) and (7). Then, the gradient of the Frobenius
norm squared is given by

1
4∇}Cα}2F “Mα` rC1` ra´M vpαqs1 (9)

` rM2 v2pαq ´ c vpαq ´ 2MavpαqsA´1
α 1,

where } ¨ }F denotes the Forbenius norm, and we let

Aα :“ rC ` α1T ` 1αT , c :“ 1T rC1, a :“ 1Tα.

The proof of Lemma 1 is given in Section V.
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First, we observe that Cα is invariant under the
addition of multiples of 1. Thus, without loss of
generality, we restrict the domain to a hyperplane
a “ Const. Next, we notice that 1T∇}Cα}2F “ 0
in (9). Thus, in the gradient descent method, the
value of a remains constant, i.e., throughout the
algorithm, vector α remains on the same hyperplane
1Tα “ Const.

In our next lemma, we find the Hessian of }Cα}2F .
When minimizing }Cα}F (equivalently, }Cα}2F ) both
the gradient and the Hessian of }Cα}2F are inputted
in the optimization algorithm such as trust-region or
gradient descent.

Lemma 2. Suppose the empirical covariance matrix
rC is of full rank, and the quantities Cα, vpαq, and
Aα are as in (8), (7), and (10) respectively. Then, the
Hessian of }Cα}

2
F , denoted by Hα :“ Hess

`

}Cα}
2
F

˘

is

expressed as follows

1
4Hα “MI ` 11T ´ 2M vpαq

`

A´1
α 11T ` 11TA´1

α

˘

`
`

3M2 vpαq ´ c´ 2Ma
˘

vpαqA´1
α 11TA´1

α

´
`

M2 vpαq ´ c´ 2Ma
˘

A´1
α , (10)

where I is the identity matrix, c “ 1T rC1, a :“ 1Tα.

The proof of Lemma 2 is given in Section V.

Next, we show the convexity of }Cα}2F . This is needed
for the validity of optimization algorithms such as
trust-region or gradient descent.

Theorem 1. Suppose the empirical covariance ma-

trix rC is of full rank, and the quantities Cα and vpαq
are as in (8) and (7). Then, the Frobenius norm

squared }Cα}
2
F is convex, i.e.,

4}Cα}2F ě 0 @α. (11)

The proof of Theorem 1 is given in Section V.

II. C-SHIFT algorithm and experiments
In this section we provide the covariance shift

(C-SHIFT) algorithm and evaluate its perfor-
mance on synthetic datasets. Moreover, we com-
pare the C-SHIFT algorithm with the well-known
and frequently used normalization methods: Quan-
tile, Rank, LOESS, and Median absolute deviation
(MAD). Our empirical results demonstrate that the
C-SHIFT algorithm outperforms other methods.

A. C-SHIFT algorithm

The pseudocode for the C-SHIFT algorithm is
given in Algorithm 1. Note that the algorithms takes

Input: observed covariance matrix rC
Output: recovered empirical covariance
matrix C
if rC is rank deficient then

f Ð i.i.d. Unif [0,1]
C̃ Ð C̃ ` diagpfq

end if

vpαq Ð
”

1T
`

rC ` α1T ` 1αT
˘´1

1
ı´1

Cα Ð rC ` α1T ` 1αT ´ vpαq11T

α˚ Ð arg minα }Cα}2F
C Ð Cα˚

if rC is rank deficient then

C Ð C ´ diagpfq
end if

return C

Algorithm 1: C-SHIFT

into account both cases: when rC has full rank and
when rC is rank deficient (i.e., rC is positive semi-
definite but not positive definite). When rC is rank
deficient the rank of rC `α1T `1αT may exceed the
rank rC by no more than 2, and therefore may also
be rank deficient. Therefore, to make rC a full rank
we add to it a diagonal matrix diagpfq, where f is a
vector of i.i.d. random variables from Unifr0, 1s.
To find the optimal α˚ “ arg minα }Cα}2F , we

use gradient and Hessian, provided in equations (9)
and (10), in the trust-region algorithm to minimize
}Cα}

2
F .

B. Numerical experiments

In this section we conduct experiments on two
synthetic datasets that we generate using random
covariance method (RCM) and cascade method. We
start by describing both methods.

1) Data generation:
a) Random covariance method (RCM): We gen-

erate a synthetic dataset with M “ 2000 genes and
N “ 50 measurements (samples) using RCM. For
that we first generate an auxiliary matrix H P RMˆm
(m “ 2) whose entries are independent random
variables, uniformly distributed over the interval
I “ r´10, 10s. Next, we sample a diagonal matrix
D P RMˆM with diagonal entries being i.i.d. expo-
nential random variables with parameter λD “ 30.
We let Σ “ HHT ` D be the population (param-
eter) covariance matrix. Then we generate the true
empirical logarithmic data Y piq “

`

Y
piq
n

˘

„ N
`

0,Σ
˘

for each i “ 1, . . . , N . Finally, we set the observed
logarithmic data be rY

piq
n “ Y

piq
n ` V piq, where vector

V piq are N
`

´ 0.01, 100
˘

random variables.
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Fig. 2. A bar graph of correlations for the RCM dataset. On the x-axis we display the range of correlations, partitioned into
intervals of length 0.1. The height of each bar describes the number of correlations that belong to the corresponding interval.
Bars of different colors correspond to different correlation matrices, indicated in the legend.
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Fig. 3. The heat maps for the RCM dataset. Each heat map illustrates the transformation of the true empirical correlations
corrpYn, Ymq (horizontal axis) after adding bias and applying the corresponding normalization method. In the top left plot
the vertical axis represents the observed correlations corrprYn, rYmq. In the remaining five heat maps, the vertical coordinates
represent the correlations after normalization. Going clockwise, these five heat maps are Rank, Quantile, MAD, LOESS, and
C-SHIFT. The darker the color, the higher the density. The number on top of each heat map indicates the relative leftover error
after normalization. Smaller numbers indicate better recovery performance.
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Fig. 4. A bar graph of correlations for the Cascade dataset. On the x-axis we display the range of correlations, partitioned into
intervals of length 0.1. The height of each bar describes the number of correlations that belong to the corresponding interval.
Bars of different colors correspond to different correlation matrices, indicated in the legend.
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Fig. 5. The heat maps for the Cascade dataset. Each heat map illustrates the transformation of the true empirical correlations
corrpYn, Ymq (horizontal axis) after adding bias and applying the corresponding normalization method. In the top left plot
the vertical axis represents the observed correlations corrprYn, rYmq. In the remaining five heat maps, the vertical coordinates
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b) Cascade method: The cascade datasets were
generated according by a directed acyclic weighted
network G “ pV,Eq aka directed acyclic graph
(DAG). The graph was randomly generated via a re-
current cascade model. The parent-offspring relation
is represented by the direction of edges E “ tpu, vqu
of the graph G, i.e., u is the parent vertex and v is
its offspring. For any vertex v let papvq be the set of
its parents, papvq “ tu P V : pu, vq P Eu. Next, for
each edge pu, vq P E an independent random weight
cuv is assigned, with c.d.f.

pUra´,b´spxq ` p1´ pqUra`,b`spxq,

where the parameters a´ ă b´ ď 0, 0 ď a` ă b`,
and p P p0, 1q are fixed, and UApxq denotes the uni-
form c.d.f. on an interval A. We generated a random
weighted DAG with the nodes v P V representing
the genes. The random variables tYvuvPV represent-
ing the logarithmic gene expressions are generated
as a noisy multiplicative cascade via the following
structural linear recursive equations:

Yv “
ÿ

uPpapvq

cuvYu ` εv,

where the recursion begins with Y0 “ y0, and
proceeds from generation to generation. The noise
variables pεv, v P V q are i.i.d. N

`

0, σ2˘, sampled
independently from the random weights cuv. For
simulation of pYv, v P V q the following values of
parameters were chosen:

p ra´, b´s ra`, b`s σ2 y0 |V |
1{3 r´1.2,´0.5s r0.5, 1.3s 1 4.5 2000

2) Simulation results: We generate two datasets
(RCM and Cascade) using the methods described in
section II-B1. Each date set consists of a matrix with
the empirical data

`

Y
piq
n

˘

P RMˆN and a matrix with
the observed data

`

rY
piq
n

˘

P RMˆN . In both, RCM
and Cascade datasets, we let M “ 2000 genes and
N “ 50 measurements (samples). For each dataset,
we normalize the covariance matrix rC, obtained
from the observed data, by using C-SHIFT, Rank,
Quantile, LOESS, and MAD methods. We compare
the performance of the algorithms using the results
presented in Figures 2-5.

In Figures 2 and 4 we depict the bar graphs of
correlations for RCM and Cascade datasets, respec-
tively. As we can see in both datasets, the correla-
tions of the observed data (yellow) are shifted away
from ´1 so that there are no large magnitude nega-
tive correlations. The aim of the normalization algo-
rithms is to shift the correlations back into correct

positions, i.e., ideally, the correlations of the normal-
ized data should match the empirical correlations.
Note that for both datasets, the C-SHIFT method
correctly recovers the number of correlations in each
interval: the red bars almost perfectly match the
black bars. In contrast, other normalization methods
could not recover the correct numbers of correlations,
especially for the correlations of larger magnitudes.
Specifically, Rank, Quantile and LOESS normaliza-
tion techniques tend to shift correlations mostly
to the center of the bar plot, each forming a bell
shape. Predictably, the MAD method has the worst
performance in correlation recovery. Finally, among
the other three normalization techniques (Quantile,
Rank, and LOESS), the latter method has the poor-
est performance.

Figures 3 and 5 contain six heat maps each,
for RCM and Cascade datasets, respectively. Each
heat map illustrates the transformation of the true
empirical correlations corrpYn, Ymq (horizontal axis)
after adding bias and applying the corresponding
normalization method. We consider 2,001,000 cor-
relations corresponding to all pairs of genes. For
each point, representing a pair of genes pn,mq, the
horizontal coordinate equals the true empirical cor-
relation corrpYn, Ymq in all six plots. The vertical
coordinate in the top left heat map is the correla-
tion in the observed data, corrprYn, rYmq. Importantly,
it shows the shift of correlations rightward in the
observed data. In the remaining five heat maps,
the vertical coordinates represent the correlations
after normalization. Going clockwise, these five heat
maps are Rank, Quantile, MAD, LOESS, and C-
SHIFT. The darker the color, the higher the density.
Notice that the heat map for C-SHIFT is almost
perfectly diagonal, which demonstrates how well C-
SHIFT recovers the correlations. Thus, in addition to
correctly recovering the right numbers of correlations
in each interval (which was demonstrated in Figures
2 and 4), the proposed C-SHIFT algorithm also
returns (shifts back) the correlations to the correct
margins. Hence, the heat map is a diagonal line. The
number on top of each heat map indicates the relative
leftover error after normalization, i.e., the `2-norm of
the vector of differences between the horizontal and
vertical coordinates, scaled by the Frobenius norm of
the difference between the empirical and the observed
correlation matrices. Thus, the left top heat map
is assigned the value 1, and for each normalization
method, the smaller the number the better it recovers
the empirical correlation matrix. Any such number
smaller than one is an improvement. The number
for C-SHIFT is by far the smallest in each dataset

8
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(0.023518 and 0.023881), while in the case of MAD
normalization, the corresponding number even ex-
ceeds 1.

III. Evaluation of C-SHIFT algorithm on
real data

In this section we apply C-SHIFT algorithm to real
biological data, and compare the resulting correla-
tions to the correlations obtained by normalizing the
same data with Rank, Quantile, and LOESS. In the
analysis, we used scaled `1-norm to measure the dis-
tance between correlation matrices. Specifically, for
two correlation matrices, R “

`

ri,j
˘

and R1 “
`

r1i,j
˘

,
the norm

dpR,R1q “
1

MpM ´ 1q
ÿ

1ďiăjďM
|ri,j ´ r

1
i,j | (12)

measures the distance between R and R1 on the scale
from 0 to 1. We considered the following microarray
datasets from GEO depository.

Two datasets come from GSE7803 in GEO depos-
itory [32]. Dataset GSE7803[Carcinoma] looks
into 21 samples of invasive squamous cell carcinomas
and 4, 152 genes. Dataset GSE7803[Normal] has
10 normal cervical samples and 4, 709 genes.

Dataset GSE152738 from GEO depository [19]
consists of 58 liver specimens from adult liver donors
and 12, 164 genes.

Dataset GSE86858 obtained in [16] has 15, 312
genes and 8 samples from obese diabetic mice
treated with γ-oryzanol-encapsulated nanoparticles,
of which, 4 were taken from liver and 4 from hypotha-
lamus.

Two datasets come from GSE59412 [31], where it was
discovered that the ectopic expression of miR-K12-
11 differentially affected gene expression in BJAB
cells of lymphoid origin and TIVE cells of endothe-
lial origin. Dataset GSE59412[TIVE] consists of
8 samples of TIVE cells and 16, 700 genes. Dataset
GSE59412[BJAB] consists of 24 samples of BJAB
cells and 19, 296 genes.

All six datasets considered were not normalized prior
to the analysis. Affy R package and MAS-5 method
[2], [10], [14], [21] was used for reading and prelimi-
nary data analysis at the probe-level of affymetrix
CEL files. We calculated Abesnt/Present Call for
each probe set and subselected only the genes that
are expressed in all samples.

Next, we summarize our observations. First, we no-
tice that in all real and synthetic datasets considered

in this analysis, the correlations produced by Rank,
Quantile, and LOESS are close to each other. In
the synthetic data, where the desired true empiri-
cal correlations are known, one easily encounters a
situation where under a strong bias the correlations
produced by C-SHIFT are significantly different from
the correlations produced by Rank, Quantile, or
LOESS. See Fig. 5.

Recall that dpR,R1q defined in (12) measures the
distance between correlation matrices on the scale
from 0 to 1. In the six real datasets considered in
this work, we notice that the distances between the
correlations obtained from C-SHIFT and either one
of the three normalization methods used in compar-
ison (Rank, Quantile, and LOESS) range between
0.01 and 0.1. See Table II and Figures 6, 7, 8, 9,
10, and 11. In five out of six datasets, the distance
between C-SHIFT and any of the three normalization
approaches does not exceed 0.05. A small but sizable
mismatch of « 0.1 between C-SHIFT and each of the
three normalization methods is observed in dataset
GSE86858.

IV. Discussion
In systems biology, the gene co-expression net-

works (GCN) are reconstructed from the correla-
tions between the genes. GCN recovery relies on
removing the bias with a normalization method,
and thus improving the estimation of correlations
between the pairs of genes. However, the standard
normalization techniques such as Rank, Quantile,
LOESS, and MAD are known to be insufficient at
recovering true empirical correlations while the C-
SHIFT algorithm is specifically designed to recover
the true empirical correlations. The multiple ex-
periments with synthetic datasets demonstrate the
algorithm’s superior performance at recovering true
empirical correlations in comparison to the standard
normalization techniques.

Also, we observed that the correlations recovered
by C-SHIFT, Rank, Quantile, and LOESS would
essentially match in five out of six real datasets
considered in this paper. One dataset demonstrated
small but sizable difference hinting at a greater vari-
ance of the bias.

Importantly, we notice that the C-SHIFT algo-
rithm corrects the positive shift of covariances (and
correlations) observed when ω̂ “ yV arpV q is larger
than ân “ ´yCovpYn, V q (n “ 1, . . . ,M) in (5).
Hence, the independence of V from Yn assumption
can be replaced with a weaker assumption stating
that CovpYn, V q ! V arpV q. This will be explored in
a follow-up publication.
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Fig. 6. Top row: heat maps for GSE7803[Carcinoma] dataset that compare the correlations obtained by Rank, Quantile, and
LOESS to C-SHIFT. The number on top of each heat map represents the distance between correlation matrices as defined in (12).
Bottom row: numbers of correlations for GSE7803[Carcinoma] dataset. Different colors correspond to different correlation
matrices, indicated in the legend. Horizontal axis is partitioned into intervals of length 0.1.
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Fig. 7. Top row: heat maps for GSE7803[Normal] dataset that compare the correlations obtained by Rank, Quantile, and
LOESS to C-SHIFT. The number on top of each heat map represents the distance between correlation matrices as defined in
(12). Bottom row: numbers of correlations for GSE7803[Normal] dataset. Different colors correspond to different correlation
matrices, indicated in the legend. Horizontal axis is partitioned into intervals of length 0.1.
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Dataset Rank vs. C-SHIFT Quantile vs. C-SHIFT LOESS vs. C-SHIFT
GSE7803[Carcinoma] 0.02824 0.017624 0.017557
GSE7803[Normal] 0.03425 0.023438 0.025578
GSE152738 0.019763 0.014113 0.015207
GSE86858 0.096963 0.095617 0.10688
GSE59412[TIVE] 0.046627 0.041095 0.043859
GSE59412[BJAB] 0.041824 0.038841 0.04086

TABLE II
Distance (12) between pairs of correlation matrices recovered by normalization methods in the six datasets.
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Fig. 8. Top row: heat maps for GSE152738 dataset that compare the correlations obtained by Rank, Quantile, and LOESS to
C-SHIFT. The number on top of each heat map represents the distance between correlation matrices as defined in (12). Bottom
row: numbers of correlations for GSE152738 dataset. Different colors correspond to different correlation matrices, indicated
in the legend. Horizontal axis is partitioned into intervals of length 0.1.

An alternative version of the C-SHIFT algorithm
is based on trace minimization approach instead of
energy minimization. In this alternative C-SHIFT
algorithm, the positive semi-definite matrix Cα˚ with

α˚ “ argminTr
`

Cα
˘

is used to approximate the true empirical covariance
matrix C. The analogs of Lemmas 1 and 2 and the
convexity result in Theorem 1 are also established
for Tr

`

Cα
˘

in the trace minimization approach. See
[18]. Empirically it appears that this alternative
approach produces the same α˚ as the original C-
SHIFT algorithm based on energy minimization as
presented in this paper, and therefore it recovers

the empirical covariance C with the same accuracy.
Thus, the alternative, trace minimizing C-SHIFT
algorithm can be used instead of Algorithm 1. This
approach will be analyzed in a follow-up paper.

Finally, the C-SHIFT algorithm was deposited on
GitHub at https://github.com/evcphd/C-SHIFT

V. Proofs
Proof of Proposition 1. Observe that

xT
`

M´ v 11T
˘

x “ xTMx´ v
´

ÿ

xi

¯2
ě 0

for all x P RM if and only if v ď v˚, where v˚

minimizes xTMx under the condition
ř

xi “ Const.
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Fig. 9. Top row: heat maps for GSE86858 dataset that compare the correlations obtained by Rank, Quantile, and LOESS to
C-SHIFT. The number on top of each heat map represents the distance between correlation matrices as defined in (12). Bottom
row: numbers of correlations for GSE86858 dataset. Different colors correspond to different correlation matrices, indicated in
the legend. Horizontal axis is partitioned into intervals of length 0.1.

Next, applying the Lagrange multipliers method, we
obtain 2Mx “ λ1, and therefore,

v˚ “
xTMx

p
ř

xiq2
“

λ
2x

T1

p
ř

xiq2
“

λ{2
1Tx

“
1

1T M´1 1

as x “ λ
2 M´11.

Proof of Lemma 1. By (8), we have

}Cα}
2
F “}

rC}2F ` 2M
M
ÿ

i“1
α2
i `M

2 v2pαq ` 4
´

1T rCα
¯

` 2a2 ´ 2c vpαq ´ 4Mavpαq (13)

Notice that
B

Bαi
Aα “ ēi1

T ` 1ēTi and

B

Bαi
A´1
α “ ´A´1

α

`

ēi1
T ` 1ēTi

˘

A´1
α , (14)

where ēi is the i-th coordinate vector. Therefore, we
have

B

Bαi
vpαq “ v2pαq1TA´1

α

`

ēi1
T ` 1ēTi

˘

A´1
α 1

“ 2vpαq1TA´1
α ēi (15)

implying
∇vpαq “ 2vpαqA´1

α 1. (16)

Next, the gradient ∇}Cα}2F in (9) is found via the
equations (13) and (16).

Proof of Lemma 2. By (9), we have
1
4Hα “

1
4∇

`

∇}Cα}2F
˘T

“M∇αT `∇1T
`

a´M vpαq
˘

(17)

`

´

∇
`

M2 v2pαq ´ c vpαq ´ 2Mavpαq
˘

¯

1TA´1
α

`
`

M2 v2pαq ´ c vpαq ´ 2Mavpαq
˘

∇1TA´1
α ,

where ∇ “

´

B
Bα1

, . . . , B
BαM

¯T

was used as the column
vector of the partial derivative operators. The sum-
mation parts in (17) are calculated as follows. First,

M∇αT “MI. (18)

Next, (16) implies

∇
`

M2 v2pαq ´ c vpαq ´ 2Mavpαq
˘

(19)
“ 2

`

2M2 vpαq ´ c´ 2Ma
˘

vpαqA´1
α 1´ 2Mvpαq1.

12



E. Chunikhina et al. The C-SHIFT algorithm for normalizing covariances

0.046627

-1 -0.5 0 0.5 1
C-SHIFT

-1

-0.5

0

0.5

1
R
an
k

0

0.5

1

1.5

2

2.5

3

3.5

106 0.041095

-1 -0.5 0 0.5 1
C-SHIFT

-1

-0.5

0

0.5

1

Q
ua
nt
ile

0

0.5

1

1.5

2

2.5

3

3.5

106 0.043859

-1 -0.5 0 0.5 1
C-SHIFT

-1

-0.5

0

0.5

1

LO
ES
S

0

0.5

1

1.5

2

2.5

3

3.5

106

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
Magnitude of correlations

0

1

2

3

N
um

be
r o

f c
or

re
la

tio
ns

107

Observed
C-SHIFT
Rank
Quantile
LOESS

Fig. 10. Top row: heat maps for GSE59412[TIVE] dataset that compare the correlations obtained by Rank, Quantile, and
LOESS to C-SHIFT. The number on top of each heat map represents the distance between correlation matrices as defined in
(12). Bottom row: numbers of correlations for GSE59412[TIVE] dataset. Different colors correspond to different correlation
matrices, indicated in the legend. Horizontal axis is partitioned into intervals of length 0.1.
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Fig. 11. Top row: heat maps for GSE59412[BJAB] dataset that compare the correlations obtained by Rank, Quantile, and
LOESS to C-SHIFT. The number on top of each heat map represents the distance between correlation matrices as defined in
(12). Bottom row: numbers of correlations for GSE59412[BJAB] dataset. Different colors correspond to different correlation
matrices, indicated in the legend. Horizontal axis is partitioned into intervals of length 0.1.
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Equation (14) yields

∇1TA´1
α “

M
ÿ

i“1
ēi1

T B

Bαi
A´1
α

“ ´

M
ÿ

i“1
ēi1

TA´1
α

`

ēi1
T ` 1ēTi

˘

A´1
α

“ ´

M
ÿ

i“1

`

ēTi A
´1
α 1

˘

ēi1
TA´1

α

´
`

1TA´1
α 1

˘

M
ÿ

i“1
ēiē

T
i A

´1
α

“ ´A´1
α 11TA´1

α ´
`

1TA´1
α 1

˘

A´1
α

“ ´A´1
α 11TA´1

α ´
1

vpαq
A´1
α . (20)

Finally, (16) is used to derive

∇1T
`

a´M vpαq
˘

“ 11T ´ 2M vpαqA´1
α 11T . (21)

Combining together equations (18)-(21) and substi-
tuting them into (17) we obtain (10).

Proof of Theorem 1. We will use the notations from

Lemmas 1 and 2 such as c :“ 1T rC1 and a :“
M
ř

i“1
αi.

Without loss of generality we consider α on the
hyperplane a “ 0.

Here, Aα “ rC`α1T `1αT is a positive definite sym-
metric matrix with eigenvalues λ1 ě . . . ě λM ą 0
counted with respect to algebraic multiplicity, and let
tviui“1,...,M be the corresponding orthonormal basis
of eigenvectors.

As 4}Cα}2F “ Tr
`

Hα

˘

, equation (10) implies

1
44}Cα}2F “M2

´

1´ vpαqTr
`

A´1
α

˘

¯

`c
´

Tr
`

A´1
α

˘

´ vpαq1TA´2
α 1

¯

`3M
´

Mv2pαq1TA´2
α 1´ 1

¯

. (22)

The Laplacian in (22) is shown to be strictly positive
in the following three steps. First, by the Cauchy-
Bunyakovsky-Schwarz inequality, we have

Mv2pαq1TA´2
α 1´ 1

“ v2pαq
´

›

›1
›

›

2
2

›

›A´1
α 1

›

›

2
2 ´

`

1TA´1
α 1

˘2
¯

ě 0. (23)

Next, observe that Mx ` p1 ´ xq2 ě 1 for M ě

2, and all x P r0, 1s. Thus, for a given probability
mass function tpkuk“1,...,M such that pk ă 1 for all k,

and a given index i P t1, . . . ,Mu, Jensen’s inequality
implies

Mpi `

˜

ÿ

j:j “i
λ´1
j pj

¸˜

ÿ

j:j “i
λjpj

¸

“Mpi ` p1´ piq2
˜

ÿ

j:j “i
λ´1
j qj

¸˜

ÿ

j:j “i
λjqj

¸

ěMpi ` p1´ piq2 ě 1 (24)

where we let qj “ pj

1´pi
for all j “ i. Summing over

all i in (24), we obtain,

ÿ

i

λ´1
i pi`

1
M

ÿ

i

λ´1
i

˜

ÿ

j:j “i
λ´1
j pj

¸˜

ÿ

j:j “i
λjpj

¸

ě
1
M

ÿ

i

λ´1
i . (25)

Eqn. (25) implies

ÿ

i

λ´1
i pi`

1
M

ÿ

i

λ´1
i pi

˜

ÿ

j:j “i
λ´1
j

¸˜

ÿ

k

λkpk

¸

ě
1
M

ÿ

i

λ´1
i . (26)

which rewrites as
ÿ

i

λ´1
i pi `

1
M

˜

ÿ

i

λ´1
i pi

¸˜

ÿ

j

λ´1
j

¸˜

ÿ

k

λkpk

¸

ě
1
M

˜

ÿ

i

λ´2
i pi

¸˜

ÿ

k

λkpk

¸

`
1
M

ÿ

i

λ´1
i .

(27)

Finally, we let pi “ 1
M

`

1T vi
˘2 and substitute the

following expressions into (27):
ÿ

i

λipi “
1
M

1TAα1 “
1
M

1T rC1 “
c

M
as a “ 0,

ÿ

i

λ´1
i pi “

1
M

1TA´1
α 1 “

1
M vpαq

,

ÿ

i

λ´1
i “ Tr

`

A´1
α

˘

, and
ÿ

i

λ´2
i pi “

1
M

1TA´2
α 1.

Consequently, (27) rewrites as

M2
´

1´ vpαqTr
`

A´1
α

˘

¯

`c
´

Tr
`

A´1
α

˘

´ vpαq1TA´2
α 1

¯

ě 0. (28)

Substituting (23) and (28) into (22), we then
obtain 4}Cα}2F ě 0.
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