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Abstract

The C2 domain is a Ca2*-binding motif of approximately 130 residues in length originally identified in the Ca?*-
dependent isoforms of protein kinase C. Single and multiple copies of C2 domains have been identified in a growing
number of eukaryotic signalling proteins that interact with cellular membranes and mediate a broad array of critical
intracellular processes, including membrane trafficking, the generation of lipid-second messengers, activation of GTPases,
and the control of protein phosphorylation. As a group, C2 domains display the remarkable property of binding a variety
of different ligands and substrates, including Ca®*, phospholipids, inositol polyphosphates, and intracellular proteins.
Expanding this functional diversity is the fact that not all proteins containing C2 domains are regulated by Ca"*,
suggesting that some C2 domains may play a purely structural role or may have lost the ability to bind Ca®*. The present
review summarizes the information currently available regarding the structure and function of the C2 domain and
provides a novel sequence alignment of 65 C2 domain primary structures. This alignment predicts that C2 domains form
two distinct topological folds, illustrated by the recent crystal structures of C2 domains from synaptotagmin I and
phosphoinositide-specific phospholipase C-81, respectively. The alignment highlights residues that may be critical to the

C2 domain fold or required for Ca?>* binding and regulation.

Keywords: calcium-dependent phospholipid-binding domain; C2 domain; calcium signaling; cytosolic
phospholipase A,; phospholipase C; protein kinase C; ras-GTPase-activating protein; synaptotagmin

Identification of C2 domains in eukaryotic signaling proteins

The C2 domain was originally identified as the second of four
conserved domains (C1 though C4) in the a, B8 and vy isoforms of
mammalian Ca”*-dependent protein kinase C (PKC) (Coussens
et al., 1986; Knopf et al., 1986; Ono et al., 1986a; 1986b; Parker
et al., 1986). The N-terminal C1 domain of protein kinase C was
recognized as the cysteine-rich domain that binds phorbol esters
and diacylglycerol, whereas the C-terminal C3 and C4 domains
exhibited primary structures homologous to the two lobes of pro-
tein kinase A (reviewed by Nishizuka, 1988). Because the kinase
activity and phospholipid binding of these ‘classical’ isoforms of
protein kinase C were known to be Ca?* dependent, whereas
‘non-classical’ (‘novel’ and ‘atypical’) isoforms apparently lacking
the C2 domain failed to exhibit Ca* regulation, it was proposed
that the C2 domain was responsible for Ca®* regulation of protein
kinase C.

Subsequent studies have revealed the presence of homologous
C2 domains in other proteins, as summarized in Table 1. Two
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tandem C2 domains were identified in the cytosolic portion of
synaptotagmin, an integral membrane Ca* sensor found in syn-
aptic vesicles and in secretory granules of endocrine cells (Perin
et al., 1990). Because protein kinase C and synaptotagmin shared
the feature of binding phosphatidylserine vesicles upon addition of
Ca?* (Bazzi and Nelsestuen, 1987, 1990; Brose et al., 1992), it
was inferred that the C2 domain was involved in Ca®*-regulated
binding to acidic phospholipids.

Independent studies of the Ca?*-dependent cytosolic phospho-
lipase A, (cPLA;) revealed the presence of a homologue of the C2
domain at the extreme N-terminus of this enzyme (Clark et al.,
1991). In turn, sequence comparisons with cytosolic phospholipase
A; enabled the identification of C2 domain homologues in the
120-kDa mammalian ras-GTPase-activating protein (ras-GAP)
cloned previously (Trahey et al., 1988) and in all three isoforms of
phosphoinositide-specific phospholipase C (PLC) (Rhee et al., 1989;
Kriz et al., 1990). When a 16-kDa N-terminal fragment of cyto-
solic phospholipase A, containing its C2 domain was liberated
from the full-length enzyme by chemical cleavage, it was found to
bind to cell membranes as a function of Ca%*, suggesting that this
C2 domain behaved as a Ca?*-dependent lipid-binding (CaLB)
domain (Clark et al., 1991), as presumably would the correspond-
ing domains of protein kinase C and synaptotagmin. Independent
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Table 1. Proteins containing recognized C2 domains

Number of

Protein C2 domains Topology*
Synaptotagmin I-VIII 2 I
Rabphilin-3A 2 I
Double C2 protein (DOC2) 2 I
Perforin 1 11
UNC-13 I-1II 2-3 ITand I
Cytosolic phospholipase A, (cPLA;) 1 I
Phosphoinositide-specific phospholipase C (PLC-y I-1I) 1 I
Phosphoinositide-specific phospholipase C (PLC-8 I-1V) 1 I
Phosphoinositide-specific phospholipase C (PLC-8 I-IV) 1 II
Plant phospholipase D (PLD) 1 11
Yeast phosphatidylserine decarboxylase (PSD2) 1 II
Phosphatidylinositol 3-kinase (PI3K « and B) 1 II
Phosphatidylinositol 3-kinase (VPS34P) 1 11
Phosphatidylinositol 3-kinase (PI3K_68D) 1 1
‘Classical’ protein kinase C (PKC a, B and ) 1 I
‘Non-classical’ protein kinase C (PKC 8, ¢, 1, and 6) 1 |
Yeast protein kinase C (PCK1, 2 and PKC1) 1 11
Protein kinase C-related kinase (PRK1 and 2) 1 II
Yeast cAMP-dependent kinase (SCH9 kinase) 1 I
Ras-GTPase-activating protein (rasGAP) 1 II
Ras-GTPase-activating protein (GAP1 and R-Ras-GAP/GAP1'PFP) 2 1|
Breakpoint-cluster region protein (BCR and ABR) 1 II
BUD2 1 11
RSP5/NEDD-4 1 I

2Topology is classified by homology to synaptotagmin I (type I) or PLC-81 (type II) as summarized in Figure 3.

folding of the C2 domain was demonstrated by recombinant frag-
ments containing the first C2 domain of synaptotagmin (Davletov
and Siidhof, 1993; Chapman and Jahn, 1994). These fragments bound
phospholipid vesicles in vitro upon addition of Ca2*, confirming that
this C2 domain is a CaL.B domain. Similarly, recombinant C2 do-
mains from rabphilin-3A, a protein that binds the small GTPase
Rab3A during vesicular trafficking (Shirataki et al., 1993), and cy-
tosolic phospholipase A, were found to function in vitro as inde-
pendently folded, Ca®* -regulated phospholipid membrane-binding
domains (Yamaguchi et al., 1993; Nalefski et al., 1994).

Most recently, a number of new C2 domains have been identi-
fied by sequence comparison, although the ability of these domains
to confer Ca?* regulation has not yet been tested in many in-
stances. Included are several neuronal and non-neuronal isoforms
of synaptotagmin (Ullrich et al., 1994; Li et al., 1995b), the 100-kDa
mammalian Ras GTPase-activating protein (GAP1™) (Maekawa
et al., 1994) and its Drosophila homologue (GAP19) (Gaul et al.,
1992), a 98-kDa R-Ras GTPase-activating protein similar to GAP1™
(R-Ras-GAP/GAP1'F*BP) (Cullen et al., 1995; Yamamoto et al.,
1995), the DOC?2 protein of synaptic vesicles (Orita et al., 1995),
and a yeast phosphatidylserine decarboxylase (PSD2) (Trotter
et al.,, 1995). Although not initially recognized, C2 domains are
present at the N-termini of the non-classical Ca?*-independent
protein kinase C isoforms including §, €, 7, and 0 as well as novel
lipid-dependent protein kinases related to protein kinase C (PRK1
and PRK2) (Sossin and Schwartz, 1993; Ponting and Parker, 1996).
Recently, C2 domains have been identified in yeast homologues of
protein kinase C (PCK1, PCK2, and PKC1) as well as a yeast
cAMP-dependent protein kinase (SCH9 kinase) (Nonaka et al.,

1995; Ponting and Parker, 1996). The C2 domain has been iden-
tified in the gene product of the breakpoint-cluster region (BCR)
(Boguski et al., 1992) and its relative, the product of the active
breakpoint cluster region-related gene (ABR) (present report), both
of which activate ras-like GTPases (Diekmann et al., 1991; Tan
et al., 1993). C2 domains are found in the unc-13 gene product, a
phorbol ester-binding protein of unknown function whose muta-
tion causes neurological defects in C. elegans (Maruyama and
Brenner, 1991) and in three mammalian homologues of UNC-13
(Brose et al., 1995). Sequences searches have also led to the dis-
covery of C2 domains in several open-reading frames and in the
mammalian gene product NEDD-4 and its homologue in yeast
RSP5 (Brose et al., 1995; Hofmann and Bucher, 1995; Pointing
and Parker, 1996), which suppresses mutations in the yeast tran-
scription factor SPT3. Finally, sequence alignments have also re-
vealed C2 domains in several other proteins, including catalytic
subunits of phosphatidylinositol 3-kinase (PI3Ka and 8) (Stephens
et al., 1993), the VPS34P form of phosphatidylinositol 3-kinase
(Welters et al., 1994), a related phosphatidylinositol 3-kinase from
Drosphila (PI3K_68D) (MacDougall et al., 1995), the pore-forming
protein perforin, and the yeast GTPase-activating protein BUD2
(Ponting and Parker, 1996).

Further analysis of eukaryotic genomes is predicted to reveal
new C2 domains at a rapid pace. Like the ubiquitous EF-hand
Ca®* -binding motif of calmodulin and its relatives (reviewed re-
cently by Falke et al., 1994; Chazin, 1995; Linse and Forsén, 1995;
Tkura, 1996; Kawasaki and Kretsinger, 1996), the C2 domain is
widely distributed in eukaryotes but rare or non-existent in the
prokaryotic world, where Ca?* signaling is less widely used as a
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second messenger. Moreover, not all proteins containing the C2
domain are regulated by Ca’" (see below), just as there exist
proteins containing the EF-hand motif that lack Ca" regulation
and in some cases even fail to bind Ca?”.

Structure of the C2 domain: Two distinct topologies

The structures of two C2 domains have been determined by X-ray
crystallography. The first C2 domain of synaptotagmin I (termed
C,A) was expressed as a cloned fragment in E. coli, and was
solved to 1.9 A resolution (Sutton et al., 1995), as illustrated in
Figure 1A. Subsequently, a recombinant fragment of the phospho-
inositide-specific phospholipase C-81 was solved to 2.4 A resolu-
tion (Essen et al.. 1996), thereby providing the structure of its C2
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domain (as well as its catalytic domain and a calmodulin-like
EF-hand domain). The C2 domains from both proteins are of ap-
proximately 130 residues in length, and they differ by a root mean
square deviation of only 1.4 A throughout 109 equivalent a-carbons
(Essen et al., 1996). Both structures form an eight-stranded anti-
parallel B-sandwich consisting of a pair of four-stranded S-sheets.
Interestingly, however, these C2 domains represent two distinct
topological folds, differing slightly in their B-strand connectivity,
as summarized in Figure 1B. Here we term the fold of the original
synaptotagmin C;A domain ‘topology 1.” while that of the phos-
phoinositide-specific phospholipase C-81 domain is designated ‘to-
pology I1." The two topologies are easily interconverted: topology
I becomes topology 11 when its N- and C-termini are fused and
new termini are generated by cutting the loop between strands 1
and B2. The key difference between the two topologies is that the

Fig. 1. Structure of the synaptotagmin [ C2 domain. (A) Ribbon diagram
of the C,A domain of synaptotagmin I (Sutton et al., 1995), which illus-
trates the topology of type 1 C2 domains. Ca®" is represented by a gold
sphere, and the Ca®”-coordinating loops are colored green. Strand SBl.
which corresponds to strand B8 of type I C2 domains, is highlighted in
red. (B) Schematic representation of the two prototypical C2 domain to-
pologies illustrated by synaptotagmin I (type 1) and PLC-81 (type II), using
the same coloring as in (A) (Sutton et al., 1995; Essen et al.. 1996).
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first strand of topology I occupies the same structural position as
the eighth B-strand of topology II, which shifts the order of ho-
mologous strands in the primary structure (see below).

A single bound Ca?* ion in the crystal structure of the synapto-
tagmin I domain was identified by soaking crystals of the apo
protein in Ca®* and examining a difference electron density map
{Sutton et al., 1995). Ca?* binds in a concave depression formed
at the edge of the B-sandwich formed by loops 82-83 and B6-87.
Metal ion coordination is provided by the main-chain carbonyl
oxygen of Phe 231, the well-ordered bidentate side chain of
Asp 230, the well-ordered monodentate side chain of Asp 178, the
partially ordered monodentate side chain of Asp 232, a water mol-
ecule, and perhaps the disordered side chain of Asp 172. That this
site represents a physiological site is strongly supported by exper-
iments in which replacement of Asp 178 or Asp 230 with Asn
generated proteins incapable of Ca®* -dependent phospholipid bind-
ing (Sutton et al., 1995). Interestingly, although the binding of a
single Ca®* ion caused little or no change in the structure, it was
notable that crystals were destroyed by soaking in higher Ca®*
concentrations, suggesting that the binding of additional Ca2* may
drive a significant conformational transition.

A variety of independent structural and biochemical approaches
have strongly suggested that the fully saturated C2 domain binds at
least two metal ions, rather than just one. An NMR study moni-
toring the Ca®" binding pocket of the synaptotagmin C,A domain
revealed a biphasic titration curve saturated by at least two Ca®*
ions, the first exhibiting an apparent dissociation constant of
60 uM, and the second a dissociation constant of 400 uM (Shao
et al., 1996). The first ion appeared to bind at the same location
observed in the mono-Ca?* crystal structure, while the second
bound at an adjacent location in the same site. Analogous NMR
evidence also demonstrated the binding of two or more Ca%* ions
to the C2 domain of protein kinase C (Shao et al., 1996). Similarly,
when crystals of phosphoinositide-specific phospholipase C-61 were
soaked with the Ca?* analogue La’*, two metal ions bound in
approximately the same site observed in synaptotagmin (Essen
et al., 1996; Grobler et al., 1996). Further indirect evidence for the
binding of multiple Ca’* ions has been provided by the steep,
apparently cooperative dependence of membrane binding on the
Ca®" concentration by the first C2 domains of synaptotagmins
(Davletov and Siidhof, 1993; Li et al., 1995a).

Figure 2 illustrates a side-chain coordination scheme recently
proposed for two CaZ* ions bound to a generalized C2 domain of
either topology 1 or Ii, as extrapolated from the NMR and crys-
tallographic studies of the synaptotagmin C>A domain (Shao et al.,
1996). Each Ca®* ion is liganded by (a) bidentate and monoden-
tate Asp carboxylates separated by 5 * 1 residues in the proximal
loop, (b) a bridging Asp carboxylate lying between the two metal
centers, and (c¢) a more distant Asp carboxylate provided by the
distal loop. As observed in the original crystal structure (Sutton
et al., 1995), coordinating positions are provided by both the 8283
and B6-f7 loops, or, in topology II, by the B1-82 and B5-B6
loops. In the synaptotagmin C,A site, the proposed coordinating
side chains are Asp 172, Asp 178, Asp 230, and Asp 232 for the
high-affinity Ca’* ion; and Asp 172, Asp 232, Asp 238, and
Asp 230 for the low-affinity ion. Additional coordination may be
provided by solvent oxygens, and perhaps by backbone carbonyl ox-
ygens as well.

Certain features of the coordination proposed in Figure 2 are
supported by the crystal structure of the phosphoinositide-specific
phospholipase C-81 site occupied by two Sm>* ions, although
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Y(8-10)

X1

X(6-8)

Fig. 2. Model for Ca®*-coordination by the C2 motif. Shown is the pro-
posed coordination environment of two Ca?" ions, as discussed by Rizo
and colleagues (Shao et al., 1996).

significant deviations are observed as well (Grobler et al., 1996).
It remains to be seen whether these deviations represent unique
features of Sm>* coordination, or protein-specific features of the
coordination scheme, or a more accurate representation of a general
coordination scheme. Both the synaptotagmin C,A and phospho-
inositide-specific phospholipase C-81 coordination models envis-
age two bound metal ions and include side-chain ligation by residues
X(6-8), Y(1), and Y(3) in Figure 2, which are thus likely to rep-
resent conserved metal-binding side-chains (Shao et al., 1996; Grob-
ler et al., 1996). By contrast, coordinating residues X(1) and Y(8-
10) in Figure 2 have not yet been directly implicated in any protein
besides synaptotagmin.

Why does the C2 domain bind multiple Ca?* ions? One advan-
tage could be the use of positive cooperativity to steepen the Ca**
binding profile, thereby generating a narrower activation threshold
as observed for cooperative Ca?” binding to many proteins of the
EF-hand class (Linse and Forsén, 1995). Alternatively, multiple
Ca’" ions can facilitate protein binding to phospholipids, as ob-
served in annexin V (see below), The Ca2* affinities of proteins
containing C2 domains are often enhanced by the presence of
target membranes or proteins (Bazzi and Nelsestuen, 1990; Brose
et al., 1992; Wijkander and Sundler, 1992). This fact should be
noted when evaluating the Ca®* binding affinities and stoichiom-
etries required to trigger the physiological docking interactions.

Sequence alignment of 65 different C2 domains

Figure 3 presents a manual alignment of 65 distinct C2 domains
from different proteins or isoforms, guided by (a) patterns of bur-
ied positions in the B-strands of the synaptotagmin domain, and (b)
similarities between protein isoforms. The alignment procedure
avoided introduction of gaps and insertions in the middle of sec-
ondary structural elements and sought to align residues at positions
that are likely to maintain the C2 fold. For convenience, the align-
ment is referenced to the residue numbers of the synaptotagmin I
C,A domain, and the positions of B-strands are shown for both this
topology I domain and for the topology II domain of phospho-
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C2 domain calcium-binding motif

leseass un:a s | Topology I (Bym)

143-154 synI(a)
144-155 synII(a)
299-310 synIII(a)
155-166 synIVia)
10-31 wynVia)
233-343  synVI(a)
137-148 synvII(a)
75-86 synVIII(as)
374-385 wmynI(b)
275-386 synlI(b)
431-442 synIII(b)
289-300 synIV(b)
143-153 symv(b)
364-375 synVI(b)
268-279 synVII(b)
203-3214 synVIII(b)
404-415 rabphilin(a)
563-573 rabphilin(b)

~
w
w
i
N
=
-
= a
g

FEACNS N PO NOPEENENAFOEENROD
-
-
w
0
-
w
-
AEELEEEEE

1178-1189 PLCy2
787-798 PLCPL
789-800 PLCP2
B818-829 PLCRI
B813-824 PLCR4
746-756 PLCAL
747-758 PLCE2
725-736 PLCH3
755-766 PLCHM
131-132 UNC-13I(a)
B09-830 UWC-13I(b)

1560-1571 ONC-13I(c)

1096-1107 UNC-13II(a)

1815-1826 UNC-13II(b)
615-630 PSED2
471-482 PI3Ka
455-466 PIIKR
147-158 VPS3I4P PIIK

1751-1762 PIIK_686D

1025-1036 BCR
581-592 ABR
139-150 PLD
515-526 perforin
139-140 REPS
Topology II (PLC-51)
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Fig. 4. Sequence alignment of structurally homologous f-strands: strand 1
of topology I and strand 8 of topology II. Shown are the aligned sequences
of strand 1 from topology I (designated by closed circles) and strand & from
topology 11 (designated by open circles) C2 domains, illustrating the se-
quence homology between these structurally equivalent elements. Se-
quences and classification of residues are the same as in Figure 3.

inositide-specific phospholipase C-81. Figure 4 confirms the ex-
pected homology between strand B1 of topology I and strand B8 of
topology II, which occupy structurally equivalent positions in the
tertiary structure (see Fig. 1B).

The illustrated alignment is the first, to our knowledge, to in-
corporate both topologies of the C2 domain. At present, all recog-
nized C2 domain sequences can be aligned to one topology or the
other: a total of 26 of the sequences conform to topology I, while
the remaining 39 correspond to topology II. C2 domains located at
the extreme N-termini of their parent proteins typically use topol-
ogy II, while C2 domains at the C-terminus may utilize either
topology. Tandem C2 domains may exhibit either topology, but
both members of the pair are topologically identical. As illustrated
by the dendrogram published by Brose et al. (1995), which com-
pared the relationships between several C2 domain sequences,
topology I C2 domains are more closely interrelated than they are
related to type Il C2 domains. These sequence relationships may
reflect common ancestries or primary structural constraints im-
parted by the two topologies. Nevertheless, these two topologies
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may play an important functional role: they are likely to confer
different orientations of the C2 domain relative to the rest of the
protein. In the phosphoinositide-specific PLC-81, the presumed
Ca®" -dependent lipid-binding surface of the C2 domain is oriented
on the same side of the enzyme as its active site (Essen et al., 1996).

The alignment reveals considerable homology between the C2
domains of diverse proteins. Of the approximately 130 total resi-
dues in the C2 domain, 26 positions exhibit greater than 50%
sequence identity and are hereafter termed ‘consensus’ residues.
Many other positions, termed ‘conserved,’ exhibit less than 50%
identity but display at least 80% side-chain homology, including
28 positions dominated by non-polar or aromatic residues, and 35
positions characterized by polar or charged side chains. Most of
the consensus and conserved positions are localized to the eight
[B-strands, where a clear pattern of alternating polar and nonpolar
residues is often apparent except at 3-bulge positions and in strands
lying at the edges of the two 3-sheets (Sutton et al., 1995; Essen
et al., 1996). Proline and glycine residues are highly concentrated
in the loops between B-strands, where they are likely to facilitate
turns. Moreover, large insertions are sometimes observed in the
interstrand loops, where they may well impart protein-specific
functions.

Significant homology is also observed at positions implicated in
Ca®* coordination. Of the five Asp side chains proposed to coor-
dinate Ca>" in synaptotagmin (Sutton et al.. 1995; Shao et al.,
1996), three lie at consensus Asp positions (Asp 178, Asp 230, and
Asp 232), one lies at a conserved polar position (Asp 238), and the
remaining one lies at a non-conserved loop position (Asp 172),
where 70% of the observed residues are capable of Ca®* coordi-
nation. However, 40 of the 65 total sequences, including the ma-
jority of those exhibiting topology II, lack Asp or Glu at one or
more of the five putative coordinating positions. In such cases,
other loop residues capable of Ca®" coordination (Asn, Gln, Ser,
Thr) are often found at or near the corresponding sequence posi-
tion. This variability may arise from minor perturbations of the
proposed coordination scheme or from the existence of entirely
different coordination schemes. At any rate, it is clear that the
Ca’*-binding sites of different C2 domains are specialized, pre-
sumably to provide optimized Ca**-binding parameters, changes
in conformation upon Ca’* binding, or docking interactions for
different biological functions.

Finally, a comparison of C2 domain sequences for a given pro-
tein isolated from different species reveals significantly less diver-
gence than is observed between functionally distinct proteins. For
example, the C2 domain of the only known isoform of cytosolic
phospholipase A exhibits greater than 50% sequence identity at all
positions corresponding to residues 18—-141 in organisms ranging
from fish through humans (Nalefski et al., 1994). This conserva-
tion helps to calibrate the greater sequence divergence found in C2
domains from different proteins (Fig. 3). Such divergence must
stem either from a longer period of random evolutionary drift or
from specialization for different functions. Interestingly, two of the
known exon boundaries in phospholipase A, (following Ile 11 and
Val 138) are located at the predicted ends of the C2 domain,
supporting the contention that the C2 domain is a functional mod-
ule that has been inserted into a wide array of signaling proteins
(Clark et al., 1995). The modular use of the C2 domain. shown in
Figure 5, is evident in the crystal structure of residues 133 to 756
from phosphoinositide-specific phospholipase C-81, which exhib-
its three distinct functional modules including the C2 domain (Es-
sen et al., 1996).
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BCR/ABR

Lipid
Vesicular Modification Protein
Transport A Phosphorylation
cPLA;
synaptotagmin PH EF Lipase cPKC (a.p.y)
Rab-BD + C1 Kinase
rabphilin PH EF Lipase G-protein nPKC (8.e.6,n)
HR1(2x) C1_Kinase
PLC-f
boc2 PH_ SH2 SH2 SH3 PH yeast PKC
C9 EGF Kinase
perforin

. Lipase
EEIC 1 SCHS9 kinase
GTPase
Regulation plant PLD
SH2 SH3 SH2 PH GRD PSD
rasGAP PSD2
p85-BD Kinase PI3K
Unknown
GAP1/R-RasGAP/GAP1/P48P PI3K (a,B) WW WW WW  hect
Kinase PI3K

RSPS/NEDD-4

PI3K (VPS34)
Kinase PI3K

PI3K (68D)

Fig. 5. Modular representation of functional domains in proteins containing C2 domains. Shown are schematic domain maps for
several different proteins containing C2 domains, grouped according to functional classes. C2 domains of type 1 topology are
represented by filled boxes that point to the left, whereas those of type II point to the right. Note that this schematic representation
intends to indicate the relative positions, not relative sizes of the domains and, hence, is not drawn to scale. Domains discussed in text
include: transmembrane segment (TMS), Rab-binding domain (Rab-BD), Src homology-2 and -3 domains (SH2 and SH3), pleckstrin
homology domain (PH), GAP-related domain (GRD), EF-hand Ca®* -binding domain (EF), G-protein interaction domain (G-protein),
phorbol-ester binding domain (C1), WW domains and hecr ubiquitin-ligase domain (hect). Domains not cited in text include: C9 and
EGF domains of perforin (Liu et al., 1995), DBL homology domain of BCR and ABR (Tan et al., 1993), conserved lipase domain of
PLD family (Hammond et al., 1995), conserved sequence of phosphatidylserine decarboxylases (PSD) (Trotter et al., 1995), kinase and
lipid-kinase unique (PI3K) domains of the catalytic subunits of PI3K (MacDougall et al., 1995), and HR1 domains of PRK and yeast

PKC (Palmer et al., 1995; Ponting and Parker, 1996).

Model for Ca®*-dependent membrane binding
by the C2 domain

The crystal structures of the synaptotagmin I and phosphoinositide-
specific phospholipase C-81 C2 domains provide few clues as to
how Ca®* induces phospholipid binding by the C2 domain. Two
extreme models can be proposed for the Ca®* triggering of phos-
pholipid binding by the C2 domain.

The first model proposes a ternary complex in which the bound
Ca®* is coordinated simultaneously by protein and phospholipid
residues. The inspiration for this model stems primarily from the
structures of secreted phospholipase A, (sPLA,) and annexin V,
which are not homologous to the C2 domain but nevertheless bind

2+

phospholipid in a Ca®* -dependent manner. In Ca?*-bound sPLA;
without lipid, coordination of Ca®* involves five protein oxygens
and two water molecules that are replaced by sn-3 phosphate and
sn-2 carbonyl oxygens upon complexation with lipid analogues
(Scott et al., 1990; Thunnissen et al., 1990). Comparisons of C2
domains with sPLA> must be made with caution, however, since
the latter enzyme uses Ca>" to hydrolyze lipid substrates, whereas
the C2 domain only binds lipid. An alternative scheme is illustrated
by a complex between a canonical Ca?* -bound annexin V domain
and the phospholipid analogue glycerophosphoserine (GPS), in
which two bound Ca®* ions bridge the domain to the phospholipid
headgroup (Swairjo et al., 1995). These Ca®*-binding sites, des-
ignated the high-affinity AB and low-affinity AB' sites, are rela-
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tively close in proximity. In the absence of lipid, Ca®* is coordinated
at the high-affinity AB site via three main chain carbonyl oxygens,
a bidendate residue side chain, and two water molecules, one of
which is replaced with an sn-3 phosphate oxygen upon complex-
ation with GPS. Ca®* is coordinated in the low-affinity AB’ site
via a main-chain carbonyl oxygen, a bidendate side chain, and a
carboxylate oxygen of the serine head group of GPS. By contrast,
binding of the phospholipid analogue glycerophosphoethanol-
amine, a lower affinity ligand than GPS, results in identical Ca®*
coordination except that the Ca®* at the AB’ site makes no contact
with the bound phospholipid, suggesting that the second Ca*>* may
contribute to lipid selectivity (Swairjo et al., 1995).

In the C2 domains of known structure, Ca2*-coordination is
likely to involve at least one water molecule (Sutton et al.,, 1995).
In principle, phospholipid could displace the coordinating solvent,
providing direct Ca%* coordination by the head group or phosphate
oxygens. Consistent with this ‘bridging Ca®*’ model is the obser-
vation that a sulfate ion, which might mimic a lipid phosphate
group, is bound in the C2 domain of synaptotagmin adjacent to the
bound Ca®* (Sutton et al., 1995).

The second extreme class of model, which is also consistent
with the current limited data, proposes that Ca** binding induces
a conformational change in the C2 domain in order to expose
functional groups responsible for membrane binding. These func-
tional groups may include hydrophobic residues designed to insert
into the interior of the bilayer or charged side chains able to bind
specific phospholipid head groups (Newton, 1995a). In the visual
signaling protein recoverin, for example, Ca>* binding to multiple
EF-hand motifs exposes a sequestered myristoyl group, thereby
targeting the protein to membranes (Tanaka et al., 1995). Certain
features of this mechanism are observed in annexin V, in which
Ca®* binding exposes a buried tryptophan residue that is believed
to insert into the hydrophobic region of the bilayer (Concha et al.,
1993; Swairjo et al., 1995). The existence of a Ca®*-induced con-
formational change in the C2 domain has been proposed based on
the decreased protease sensitivity of synaptotagmin upon Ca’*-
induced binding to membranes (Davletov and Siidhof, 1994). In
the C2 domain of ¢PLA;, a Ca®*-triggered conformational change
has been detected directly by intrinsic fluorescence (Nalefski and
Falke, unpublished results). Finally, the binding of Sm3* to
phosphoinositide-specific phospholipase C-51 is proposed to ‘open
the jaws’ of the domain, creating a gap large enough to bind a
phospholipid head group (Grobler et al., 1996). Overall, although
some progress has been made, little is known about the molecular
mechanism of C2 domain binding to membranes.

Function of C2 domains in signalling proteins

Much has been learned in recent years about the functional role of
the C2 domain in different signalling pathways, although key as-
pects remain unsolved. Currently, most, if not all, proteins that
contain C2 domains are thought to interact with cellular mem-
branes, and, in several instances, the C2 domain has been shown to
be directly involved in membrane binding. This muiti-talented do-
main can also, however, mediate protein—protein interactions and
small molecule binding, as well as the binding of Ca2” in itself.
Proteins known to contain the C2 domain comprise, at present,
four functional classes, as summarized in Figure 5: Ca®*-sensors
in regulated vesicular transport (the synaptotagmins, rabphilin,
DOC2, perforin, and UNC-13), lipid-modifying enzymes (cPLA,,
PLC, PLD, PI3K, and PSD2), protein kinases regulated by Ca®*
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and/or phospholipid (PKC, PKC-like kinases, and SCH9 kinase),
and GTPase-activating proteins (ras-GAP, GAP1™, R-RasGAP/
GAP1'™BP BCR, ABR, and BUD?2). The functions of other C2-
containing proteins (e.g., RSPS/NEDD-4) are not yet known.

Regulated vesicle transport

Synaptotagmin

Synaptotagmins are members of a family of ubiquitous integral
membrane proteins (Li et al., 1995b) containing an intravesicular
N-terminus lacking a signal sequence, a single transmembrane
segment (TMS), a linker sequence and two C-terminal cytosolic
C2 domains of type I topology (Fig. 3). Four synaptotagmins (I, II,
I, and V) are expressed in neural tissue, whereas the remaining
four (IV, V1, VII, and VIII) are expressed in other tissues as well
(Ullrich et al., 1994; Li et al.,, 1995b). Synaptotagmins are in-
volved in membrane fusion events (reviewed by Jahn and Siidhof,
1994; Bajjalieh and Scheller, 1995; Kelly, 1995; Siidhof, 1995),
although it is still unclear whether these proteins mediate fusion
directly or regulate other factor(s) responsible for fusion. The im-
portance of synaptotagmin is highlighted by observations that fruit
flies, nematodes, and mice lacking synaptotagmin alleles display
effects on behavior and synaptic function that range from subtle to
severe (DiAntonio et al., 1993; Littleton et al., 1993; Nonet et al.,
1993; Geppert et al., 1994b).

The C2 domains present in synaptotagmins are perhaps the best
studied biochemically to date. Isolated first (N-terminal) C2 do-
mains from the synaptotagmin L, II, ITI, V, and VII isoforms have
been shown to bind phosphatidylserine vesicles in vitro at low
levels (3-6 uM) of Ca%* (Davletov and Siidhof, 1993; Ullrich
et al., 1994; Li et al., 1995a, 1995b). Not surprisingly, these C2
domains all contain the full complement of Ca*-coordinating
residues implicated by the crystal structure of the C2 domain in
synaptotagmin . The first C2 domains of the IV and VIII isoforms,
by contrast, lack at least one of these Ca?*-coordinating residues
and fail to bind phospholipid vesicles in vitro (Ullrich et al., 1994;
Li et al., 1995b). However, the currently implicated Ca®* -coordi-
nating residues are not sufficient for Ca>*-mediated membrane
binding. For example, the first C2 domain of synaptotagmin VI
possesses the full complement of potential Ca2* -coordinating res-
idues but fails to bind membranes even in the presence of Ca®*
(Ullrich et al., 1994; Li et ai., 1995b). Moreover, the second C2
domains of synaptotagmins I and II, which also contain all five
potential coordinating residues, bind membranes whether or not
Ca?" is present (Damer and Creutz, 1994; Fukuda et al., 1994;
MacDougall et al., 1995). However, since fragments of synapto-
tagmin [ containing both C2 domains bind phospholipid vesicles in
a Ca®*-dependent manner (Li et al., 1995), Ca* regulation by the
first C2 domain may dominate the Ca®* -independent binding dis-
played by the second C2 domain or recombinant versions of the
isolated latter domain may be non-native. Together, these experi-
ments demonstrate that Ca* -regulated phospholipid binding is a
specialized function of different synaptotagmin isoforms.

Membrane binding by synaptotagmins exhibits phospholipid spec-
ificity: these C2 domains bind to synthetic vesicles containing
phosphatidylserine or phosphatidylinositol, but not phosphatidyl-
choline or phosphatidylethanolamine (Davletov and Siidhof, 1993;
Chapman and Jahn, 1994). Membrane binding also requires a di-
valent, rather than monovalent cation, where the order of prefer-
ence is Ca** > Sr®* > Ba®* (Davletov and Siidhof, 1993; Li
et al., 1995a). The relative affinities of Mg2*, Na™, and K* cannot
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be determined, since they all fail to promote phospholipid binding.
Sr?* and Ba®* (but not Mg?*) also induce the decreased protease
sensitivity of synaptotagmin observed for Ca* in the presence of
phospholipid (Davletov and Siidhof, 1994).

The C2 domain can also drive protein—protein interactions, and
some synaptotagmin C2 domains have been demonstrated to bind,
either constitutively or in a Ca®* -regulated fashion, to other intra-
cellular proteins. First, the second C2 domains of most synapto-
tagmin isoforms bind in a Ca®*-independent manner with high
affinity (dissociation constant of 0.1 to 1.0 nM) to clathrin-AP2
(Zhang et al., 1994; Li et al., 1995b), a protein complex involved
in coated pit assembly. Second, synaptotagmin has been shown to
interact with syntaxin (Chapman et al., 1995; Li et al., 1995b), a
plasma membrane protein critical in the exocytosis of synaptic
vesicles (Bennett et al., 1992). The first synaptotagmin C2 do-
mains of isoforms I, II, III, V, and VII (and by deduction the
second C2 domain of synaptotagmin VI) bind in a Ca* -dependent
manner to syntaxin (Li et al., 1995b; Kee and Scheller, 1996;
Sugita et al., 1996). Point mutations in the Ca’* -binding site of the
first synaptotagmin C2 domain that eliminate Ca?* -dependent phos-
pholipid binding also destroy syntaxin binding, suggesting that the
same residues may be important for both (Li et al., 1995b). Third,
the second C2 domain of synaptotagmin associates with itself in a
Ca?*-dependent manner (Chapman et al., 1996; Sugita et al., 1996).
Finally, the full-length protein has been reported to bind to intra-
cellular receptors for protein kinase C (see below) (Mochly-Rosen
et al., 1992). Thus, C2 domains of synaptotagmins can act as
intracellular protein receptors.

Finally, inositol polyphosphates have been observed to bind in
low ionic strength buffers to the second C2 domains of synapto-
tagmin isoforms I, II, and IV, but not III (Fukuda et al., 1994, 1995;
Niinobe et al., 1994). Indeed, synaptotagmin II had previously
been identified independently as an inositol polyphosphate-binding
protein (Niinobe et al., 1994). The inositol polyphosphate-binding
site, which does not require Ca®*, has been mapped to a cluster of
basic residues corresponding to residues located on the exterior
surface of strand B4 and loop B3-B4 in the first C2 domain of
synaptotagmin (Fukuda et al., 1995). It follows that synaptotagmin
may be, in part, a sensor for cytoplasmic inositol polyphosphate.

Rabphilin-3A

Rabphilin-3A is a 78-kDa cytosolic protein originally purified
from bovine brain based on its ability to bind Rab3A, a small
ras-related membrane-bound GTPase known to play a role in neuro-
transmitter release (Geppert et al., 1994a; von Mollard et al., 1994).
Rabphilin-3A has been cloned from both brain (Shirataki et al., 1993)
and adrenal chromaffin cells (Chung et al., 1995). Rabphilin-3A
contains two copies of type I topology C2 domains (Fig. 3), which
contain the full complement of Ca®*-coordinating residues, lo-
cated near its C-terminus. Bacterially expressed fragments con-
taining only C2 domains bind phosphatidylserine vesicles in the
presence of low micromolar Ca?* (Yamaguchi et al., 1993). Al-
though membrane binding depends on the concentration of phos-
phatidylserine in the vesicles, some Ca®*-dependent binding to
pure phosphatidylcholine vesicles is observed (Yamaguchi et al.,
1993). Finer mapping has shown that Ca%*-dependent phospho-
lipid binding arises from the first, but not second, C2 domain
(Fukuda et al., 1994). In contrast to synaptotagmins, neither C2
domain of rabphilin-3A is capable of binding inositol polyphos-
phates (Fukuda et al., 1994). An N-terminal fragment of rabphilin-3A
lacking the C2 domains binds to the GTP-bound form of Rab3A in
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the absence of Ca®*, mapping this function of the protein to the
N-terminal region (Yamaguchi et al., 1993). In addition, GTP-
Rab3A and other unidentified receptors have been shown to recruit
rabphilin to synaptic vesicles (Shirataki et al., 1994; Stahl et al.,
1996).

DoC2

DOC2 is a 44-kDa cytosolic brain protein, highly concentrated
in synaptic vesicles, which contains two C2 domains of type I
topology (Fig. 3) and resembles rabphilin-3A except that the
N-terminal Rab3A-binding domain is replaced by 80 residues of
unique sequence (Orita et al., 1995). Bacterially expressed DOC2
binds to phosphatidylserine vesicles, or less tightly to phosphati-
dylcholine vesicles, as the Ca>* concentration is increased. Max-
imal phospholipid binding is achieved at low micromolar Ca®*
levels, which, together with its expression pattern and subcellular
localization, suggests a role for DOC2 in neurotransmitter release.
The C2 domains of DOC2 contain all of the putative Ca2*-
coordinating residues present in synaptotagmin I.

Perforin

Perforin is a 70-kDa protein found in secretory granules of
cytotoxic T cells that binds and inserts into cellular membranes to
form pores that result in lysis of target cells (Lichtenheld et al.,
1988; Liu et al., 1995). The C2 domain of perforin, recently iden-
tified by sequence alignment (Ponting and Parker, 1996), contains
all of the predicted Ca®* -coordinating residues implicated by the
synaptotagmin 1 structure and is predicted to form the type II
topology (Fig. 3). Because perforin reversibly binds phosphoryl-
choline in a Ca?*-dependent manner in vitro (Tschopp et al., 1989),
its C2 domain might play a role in directing cytolytic granules to
target cells.

UNC-13

UNC-13 is a brain-specific protein present in three mammalian
isoforms (I, II, and IIT) (Brose et al., 1995). UNC-13 was origi-
nally cloned from C. elegans, where mutations resulted in unco-
ordinated movements (Maruyama and Brenner, 1991). Although
the biochemical function of the UNC-13 is not known in detail, it
appears to play a role in synaptic transmission. Interestingly, two
of the three C2 domains in UNC-13I (a and b) are predicted to
utilize the type II topology, whereas a third (c) uses the type I
topology (Fig. 3). UNC-13II, which might represent the mamma-
lian homologue of the identified nematode protein, appears to lack
the N-terminal C2 domain present in UNC-131. Although the exact
role of the C2 domain in UNC-13 is not known, “middle” C2
domain fragments (corresponding to the C2b domain of UNC-13I)
from all three UNC-13 isoforms fused to glutathione S-transferase
failed to bind phospholipid vesicles in response to Ca®* in vitro
even though these C2 domains contain all five putative Ca’*-
coordinating acidic side chains (Brose et al., 1995). Importantly,
however, these recombinant C2 domain fragments (residues 590—
728 from UNC-13], residues 857-1095 of UNC-13II and 150-388
of UNC-13I1I) all appear to lack the proposed strand 88 of type II
C2 domains (Fig. 3). It is possible that the failure to observe Ca’*
regulated membrane binding in vitro by these fragments is due to
improper folding or failure to form a complete binding interface.
Similar constructs lacking the B8 strand of the cPLA, C2 domain
appear to fold improperly and fail to display Ca* -dependent phos-
pholipid binding in vitro (Nalefski et al., manuscript in prep.).
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Modification of lipids

Cytosolic phospholipase A;

The 85-kDa cytosolic phospholipase A, (cPLA,) liberates arach-
idonic acid from the sn-2 position of glycerophospholipids to ini-
tiate production of leukotrienes and prostaglandins, potent mediators
of inflammation (reviewed by Clark et al., 1995). Several experi-
ments have demonstrated that the activation of cPLA, in vivo arises,
at least in part, from Ca**-induced binding of its single C2 domain
to substrate-containing membranes during a cytoplasmic Ca?* flux.
First, the isolated C2 domain binds reversibly to membranes in
vitro upon addition of low micromolar Ca?* (Nalefski et al., 1994).
An engineered cPLA, lacking its C2 domain (cPLA,[AC2]) fails
to bind to membranes in a Ca®* -dependent manner even though it
hydrolyzes soluble lysophospholipids at native rates (Nalefski
et al., 1994). Additionally, cPLA,(AC2) fails to display the same
subcellular membrane association as the wild-type enzyme (see
below) upon cell activation (Schievella et al., 1995). These and
other experiments (reviewed by Clark et al., 1995) have led to a
two-domain model for ¢cPLA, in which the N-terminal Ca®*-
dependent regulatory C2 domain, residing within residues 1-138,
reversibly presents the enzyme to its membrane substrate in the
presence of low micromolar Ca%*, whereas the C-terminal Ca®*-
independent catalytic domain, beyond residue 138, possesses phos-
pholipase activity.

The C2 domain of cPLA,, unlike those of synaptotagmin,
DOC?2 and rabphilin-3A, displays a strong preference for Ca?*-
stimulated binding to neutral phospholipid vesicles containing
phosphatidylcholine or phosphatidylethanolamine rather than acidic
phospholipids (Nalefski et al., manuscript in prep.). Thus, the
phospholipid specificity of the C2 domain can be varied for
different signaling pathways. The divalent cation specificity of
the cPLA, C2 domain, however, shows the same order of pref-
erence as the synaptotagmin domains: Ca?* > Sr?* > Ba?";
low millimolar Mg?* does not promote liposome binding (Nalef-
ski et al., manuscript in prep.). Moreover, the Ca’* levels re-
quired for membrane binding in vitro are similar for the C2
domains of cPLA,, synaptotagmin and rabphilin-3A (i.e., low
micromolar), suggesting that Ca®* affinity and specificity are
carefully optimized for physiological Ca?* signals. The ¢PLA,
C2 domain, of type II topology (Fig. 3), contains four of the
five acidic side chains implicated in Ca?*-coordination by the
synaptotagmin I structure, whereas the fifth is a conservative
substitution to Asn.

Although it appears that the C2 domain is responsible for lo-
calizing cPLA; to its membrane substrate upon appearance of
Ca?*, it is not yet known whether additional interactions, such as
C2 domain binding to a receptor protein, could also play a role in
targeting. Specific interactions between cPLA; and such a receptor
might explain why, upon activation of cells with mitogenic stimuli
that elicite the release of arachidonic acid, cPLA; is localized
almost exclusively to the endoplasmic reticulum and nuclear en-
velope (Peters-Golden and McNish, 1993; Glover et al., 1995;
Schievella et al., 1995), where some of the downstream enzymes
of the arachidonic acid pathway, such as 5-lipoxygenase and cy-
clooxygenase, are found (Peters-Golden and McNish, 1993; Regier
et al., 1993; Brock et al., 1994). Recombinant cPLA; lacking the
C2 domain fails to display this behavior (Schievella et al., 1995).
Alternatively, it is possible that accumulated cPLA, substrate or
product helps to trap the enzyme on the appropriate membrane
(Ghomashchi et al., 1992).
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Phosphoinositide-specific phospholipase C

Phosphoinositide-specific phospholipase C (PLC) liberates ino-
sitol (1,4,5)trisphosphate (IP;) and diacylglycerol (DAG) in re-
sponse to mitogenic signals that raise intracellular Ca2* levels
(reviewed by Berridge and Irvine, 1989; Berridge, 1993). Thus,
PLC provides a major branch point in the generation of second
messengers: IP; is an important mediator of Ca®* channels, whereas
DAG activates several PKC isozymes. Three mammalian PI-PLC
classes (8, v, and ) have been identified (reviewed by Rhee et al.,
1989; Kriz et al., 1990), and each contains multiple isoforms com-
posed of modules of EF-hands, pleckstrin homology (PH) do-
mains, X and Y catalytic boxes, and C2 domains (Fig. 5). Thus,
this family is likely to be regulated by (a) Ca* binding to its C2
or EF-hand domains, (b) binding of phosphatidylinositol(4,5)bis-
phosphate (PIP,) and IP; to the PH domain, and (¢) membranes
containing the appropriate ligands (Rhee and Choi, 1992; Yagi-
sawa et al., 1994; Ferguson et al., 1995; Lemmon et al., 1996). The
different classes may possess additional regulators; for instance,
the Src homology-2 (SH2) domains of the PLC-v isozymes bind to
phosphotyrosine on activated receptors, directing PLC-y to the
membrane (reviewed by Pawson and Gish, 1992). Regulation of
PLC-B might involve membrane-anchored Ga proteins, which are
thought to dock C-terminal to the C2 domain (Park et al., 1992;
Wu et al., 1993). In addition, G protein By subunits have been
demonstrated to regulate PLC- isozymes (Camps et al., 1992;
Katz et al., 1992; Carozzi et al., 1993); this interaction is mediated
via a domain distinct from that which interacts with Ga (Schnabel
et al., 1993). Determination of the structure of the PLC-561 has led
to the “tether and fix” model of PLC membrane binding and ac-
tivation, in which the PH domain is proposed to “tether” the pro-
tein to the membrane, whereas the C2 domain “fixes” the catalytic
domain in the appropriate orientation (Essen et al., 1996). Mutants
of PLC-68 lacking the C2 domain retain IP; binding but fail to
hydrolyze membrane substrates (Ellis et al., 1993; Yagisawa et al.,
1994).

Isolated C2 domains of PLC, all of which are type II topology
(Fig. 3), have not been studied in detail. It is important to define
the phospholipid-specificities of the PLC C2 domains, since their
catalytic domains are exclusively phosphoinositide-specific at phys-
iological Ca®* levels (see Kriz et al., 1990; Rhee and Choi, 1992)
and the PLC PH domain forms a high affinity complex with PIP,
(Lemmon et al., 1996). Moreover, the PLC-8 and PLC-vy isoforms
lack the full complement of five Ca®*-coordinating acidic side
chains inferred by the synaptotagmin I structure. PLC-vy expressed
in COS cells fails to bind cellular membranes in vitro upon addi-
tion of Ca®* levels that cause binding of cPLA, and PKC-B1
(Clark et al., 1995). Clearly, much remains to be learned about the
complexities of PLC control.

Phosphatidylserine decarboxylase

Phosphatidylserine decarboxylase (PSD) catalyzes the decar-
boxylation of phosphatidylserine, generating phosphatidylethanol-
amine. The yeast PSD2 (Trotter et al., 1995), unlike previously
identified PSD, contains a C2 domain of type II topology (Fig. 3).
However, the activity of recombinant PSD2 protein is not Ca**
dependent in vitro and the primary structure of the C2 domain
lacks one of the five Ca* coordinating acidic residues inferred by
the synaptotagmin I structure. The role of the C2 domain in PSD2
has not been investigated, although it might promote a favorable
interaction between the catalytic domain and its membrane sub-
strate as in the case of PLC (Essen et al., 1996).
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Phosphatidylinositol 3-kinase

Phosphatidylinositol 3-kinase (PI3K) phosphorylates the 3'-OH
of the inositol ring of several phosphoinositides to generate 3-phos-
phorylated lipids, which have been proposed to act as second
messengers in cellular activation (reviewed by Stephens et al.,
1993; Parker, 1995). The prototypical mammatian PI3K consists of
an 85-kDa regulatory subunit and o or 8 isoforms of a 110-kDa
catalytic subunit, each of which has been cloned and sequenced
(Hiles et al., 1992; Hu et al., 1993). The 85-kDa regulatory subunit
contains SH2 domains that recognize specific phosphotyrosine res-
idues on activated receptor tyrosine kinases, directing the enzyme
to the membrane (reviewed by Pawson and Gish, 1992). A single
C2 domain was identified in the mammalian PI3K« catalytic sub-
unit by sequence alignment (Stephens et al., 1993); a possible C2
domain in the corresponding region of the B isoform is presented
in the present report. Potential C2 domains have also been iden-
tified in a different form of PI3K, termed VPS34P (Welters et al.,
1994), which has been cloned from several species. In yeast, VPS34P
has been shown to play a role in vesicular transport (Herman and
Emr, 1990), suggesting a similar role for the mammalian enzyme
(Volinia et al., 1995). Recently, a family of PI3K has been cloned
from Drosophila; two members are similar to the aforementioned
PI3K, whereas the third (PI3K_68D) represents a novel PI3K that
contains a C2 domain at its extreme C-terminus (MacDougall
et al.,, 1995). C2 domains have not been reported in the related
novel PI3Ky isolated recently (Stoyanov et al., 1995).

In general, C2 domains of PI3K exhibit low overall sequence
similarity to other C2 domains and also lack several of the putative
Ca?* -coordinating residues (Fig. 3). The bacterially expressed C2
domain of a Drosophila PI3K, PI3K_68D, failed to bind to phos-
pholipid vesicles in a Ca?>" -dependent manner (MacDougall et al.,
1995). However, like the second C2 domain of synaptotagmin,
the C2 domain of PI3K_68D bound phospholipids in a Ca®*-
independent fashion in vitro (MacDougall et al., 1995). Interest-
ingly, the C2 domains of PI3K a/B isoforms and VPS34P are
predicted to utilize the type II topology, whereas the C2 domain of
PI3K_68D utilizes the type I topology (Fig. 3). The role of the C2
domain in PI3Ka/8 and VPS34P remains unknown, although it
might promote a favorable orientation for the catalytic domain
with respect to the lipid surface, as proposed for PLC (Essen et al.,
1996).

Phospholipase D

A related group of phosphatidylcholine-specific phospholipase
D (PLD) proteins, which liberate choline and phosphatidic acid,
has recently been identified in several species (Hammond et al.,
1995). These proteins contain a highly conserved domain that might
represent a catalytic or cofactor-binding site (Hammond et al.,
1995). The plant PLD, cloned from several species including rice,
maize and castor bean (Wang et al., 1994), also contains a stretch
of sequence similarity at its extreme N-terminus similar to C2
domains (Ponting and Parker, 1996). A truncated version of PLD
lacking the N-terminal 30 residues extending into the proposed C2
domain is inactive, in contrast to the full-length polypeptide (Wang
et al., 1994). Since the truncated version can be isolated from
plants, it has been suggested that these N-terminal 30 residues
constitute a leader sequence (Wang et al., 1994); however, we
propose that these residues provide an essential element of the C2
domain, namely strand 81. The plant PLD C2 domain, of type II
topology (Fig. 3), lacks four of the five putative Ca>*-coordinating
residues.
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Protein phosphorylation

Protein kinase C

PKC is a family of related protein kinases, which includes at
least 11 different mammalian isoforms (a, 81, B2, v, 8, €, 6, 7,
{, p, and A[1}) (reviewed by Nishizuka, 1988, 1992; Dekker and
Parker, 1994) and three yeast enzymes (PKCI1, PCK1, and PCK2)
(Levin et al., 1990; Toda et al., 1993). Much is known about the
various functions and regulation of PKC in different cellular sig-
nalling pathways, as summarized by Nishizuka (1995); however,
the exact role of the C2 domain in PKC is just beginning to emerge
(recently reviewed by Newton, 1995a, 1995b). Some non-classical
PKC isoforms (£, A, and u) lack the C2 domain altogether. Inter-
estingly, of the isoforms that possess the C2 domain, the classical
isoforms (a, B, and -y) of PKC are predicted to utilize the type I
topology, whereas the non-classical mammalian isoforms (8, e, 6,
and 7) and the yeast PKC (PKCI, PCKI1, and PCK?2) use the type
II topology (Fig. 3). Moreover, the order of domains differs be-
tween the classical (CI, C2, C3-C4) and non-classical (C2, C1,
C3-C4) isoforms containing C2 domains (Fig. 5).

Recently the isolated C2 domain of PKC-f has been shown to
exhibit Ca**-induced binding to mixed vesicles containing phos-
phatidylserine and phosphatidylcholine (Shao et al., 1996). In all
classical, Ca2* -regulated PKC isoforms, the C2 domains appear to
provide the observed Ca2* -requirement for activation (Nishizuka,
1988) and possess all five Ca”*-coordinating acidic side chains
implicated by the synaptotagmin I structure. These C2 domains
may act as Ca’ " -activated, allosteric molecular switches to turn on
kinase activity, as pseudosubstrates for a PKC site that docks to a
receptor protein or, by analogy to the binding of synaptotagmin C2
domains to synataxin/clathrin-AP2, as protein receptors (Mochly-
Rosen, 1995; Ron and Mochly-Rosen, 1995). The C2 domains of
the novel Ca?*-independent isoforms lack at least two of the pu-
tative Ca®*-coordinating residues; in these proteins it has been
proposed that basic substitutions at one of the coordinating posi-
tions substitute for bound Ca®* (Newton, 1995a), thereby enabling
constitutive activation of the kinase domain, or docking to a mem-
brane or receptor protein. A putative PKC sequence motif respon-
sible for the phosphatidylserine-binding site is located in the C2
domain of classical isoforms (Igarashi et al., 1995).

Other protein kinases

Recently, sequence alignment (Ponting and Parker, 1996) en-
abled identification of C2 domains in three proteins cloned previ-
ously, the PKC-like lipid-dependent protein kinases from mammals
(PRK1 and PRK2) (Mukai and Ono, 1994; Palmer et al., 1995;
Palmer and Parker, 1995) and a cCAMP-dependent protein kinase
from yeast (SCH9 kinase) {Toda et al., 1988). These proteins ex-
hibit overall low sequence similarity to ‘conventional’ C2 do-
mains, are predicted to form the type II topology, and lack the full
complement of predicted Ca?* -coordinating residues (Fig. 3). The
role of the C2 domain in these proteins has not been tested but may
be similar to that in PKC,

Regulation of GTPases

GTPase-activating proteins

The GTPase-activating proteins (GAPs) are a heterogenous
class of proteins related by the presence of the GAP-related do-
main (GRD) (reviewed by Boguski and McCormick, 1993). C2
domains, of the type II topology (Fig. 3), have been identified
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in several GAPs including p120-rasGAP, GAP1™, R-Ras-GAP/
GAP1'P*B? BCR, ABR, and BUD2, although none contains a full
set of the five putative Ca®*-coordinating acidic residues. Inter-
estingly, the GRD domain and the C2 domain present in the BCR
gene product (Heisterkamp et al., 1985) are deleted during forma-
tion of the BCR-ABL oncoprotein by translocation in the Phila-
delphia chromosome, reviewed by Daley and Ben-Neriah (1991).
Drosophila containing mutant homologues of GAP1™ display ab-
errant eye development (Gaul et al., 1992).

The role of the C2 domain has been tested for p120-rasGAP;
bacterially expressed proteins containing a portion of the C2 do-
mains from p120-rasGAP attached to glutathione S-transferase bind
phosphatidylserine or phosphatidylinositol, but not phosphatidyl-
choline, vesicles in the presence of low micromolar Ca®* in vitro
(Gawler et al., 1995b). Ca®*-dependent membrane binding was ob-
served using constructs that encoded a truncated C2 domain con-
taining only a portion of the loop between 1 and 2 and strands
B2 through B4 (Gawler et al., 1995a, 1995b). Attachment of a por-
tion of the p120-rasGAP C2 domain to a transformation-defective
v-src (lacking its own N-terminal myristylation sequence) restored
transformation ability and particulate localization in vivo (Gawler
et al., 1995b). In vitro, however, recombinant p120-rasGAP, which
lacks four of the five putative Ca®* -coordinating acidic side chains,
failed to bind cellular membranes in response to Ca>* levels that
cause binding of cPLA; and PKC-B1 (Clark et al., 1995). Thus,
membrane binding by this protein may involve its distinct PH
domain, which in other proteins binds inositol polyphosphates (Lem-
mon et al., 1996). Alternatively, a polybasic stretch of Lys or Arg
residues may provide inositol polyphosphate binding, as proposed
for the second C2 domain of GAP1™4BP (Cullen et al., 1995).
Clearly, the exact role of the C2 domain in GAPs must be inves-
tigated further. As proposed for phosphoinositide-specific PLC (Es-
sen et al., 1996), GAPs may initially be “tethered” to the membrane
via PH or SH2 domains present in several GAPs (see Fig. 5), while
their C2 domains may “fix” the GAP to the membrane. Such an
arrangement could orient the GRD catalytic domain favorably with
respect to the ras-like GTPases, which are anchored in the mem-
brane via post-translational modifications.

Unknown functions

RSP5/NEDD-4

RSP5 is a yeast protein of unknown biochemical function that
suppresses mutations in the yeast transcription factor SPT3 (Eisen-
mann et al., 1992). It contains an N-terminal C2 domain of type II
topology (Fig. 3), three WW domains (Hofmann and Bucher, 1995;
Bork and Sudol, 1996) and a C-terminal Aect domain, which has
been shown to act as a ubiquitin-ligase in vitro (Huibregste et al.,
1995). A mammalian homologue of RSP5, termed NEDD-4, has
been isolated as a cDNA differentially expressed during neural
development (Kumar et al., 1992) and independently as a receptor
for proline-rich regions of the amiloride-sensitive epithelial so-
dium channel (ENaC) (Staub et al.,, 1996). A model has been
proposed in which NEDD-4 suppresses ENaC activity by ubiquitin-
mediated receptor degradation upon binding of its C2 domain to
channel membranes and docking of its WW domains to proline-
rich sequences in the ENaC (Staub et al., 1996). Regulation of the
epithelian sodium channel by intracellular Ca®* (reviewed by Garty,
1994) and the experiments described above raise the intriguing
possibility that C2 domains may participate in hormonal modula-
tion of sodium transport.
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Future Directions

Although much has been learned regarding the structure and func-
tion of the C2 motif, several fundamental questions remain un-
answered. The stoichiometry of Ca?* binding and the identities of
coordinating residues have only been partly defined, and very little
is known about the mechanism of Ca?* -triggered membrane bind-
ing. Ligands for many of the C2 domains have not yet been iden-
tified. Isolated C2 domains will be used to answer many of these
questions, but eventually it will be important to study C2 domains
in their native, full-length proteins of origin where interesting in-
teractions with other domains may be present. Such full-length
systems will also be required to determine the functional basis of
the two topologies observed for the C2 domain. In short, the C2
motif will continue to provide tantalizing problems for the forsee-
able future.
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