
Theory Comput Syst (2010) 47: 878–919

DOI 10.1007/s00224-010-9273-8

The Cache-Oblivious Gaussian Elimination Paradigm:

Theoretical Framework, Parallelization

and Experimental Evaluation

Rezaul Alam Chowdhury · Vijaya Ramachandran

Published online: 8 June 2010

© Springer Science+Business Media, LLC 2010

Abstract We consider triply-nested loops of the type that occur in the standard

Gaussian elimination algorithm, which we denote by GEP (or the Gaussian Elimina-

tion Paradigm). We present two related cache-oblivious methods I-GEP and C-GEP,

both of which reduce the number of cache misses incurred (or I/Os performed) by the

computation over that performed by standard GEP by a factor of
√

M , where M is the

size of the cache. Cache-oblivious I-GEP computes in-place and solves most of the

known applications of GEP including Gaussian elimination and LU-decomposition

without pivoting and Floyd-Warshall all-pairs shortest paths. Cache-oblivious C-GEP

uses a modest amount of additional space, but is completely general and applies to

any code in GEP form. Both I-GEP and C-GEP produce system-independent cache-

efficient code, and are potentially applicable to being used by optimizing compilers

for loop transformation.

We present parallel I-GEP and C-GEP that achieve good speed-up and match the

sequential caching performance cache-obliviously for both shared and distributed

caches for sufficiently large inputs.

We present extensive experimental results for both in-core and out-of-core perfor-

mance of our algorithms. We consider both sequential and parallel implementations,

and compare them with finely-tuned cache-aware BLAS code for matrix multipli-

cation and Gaussian elimination without pivoting. Our results indicate that cache-

oblivious GEP offers an attractive trade-off between efficiency and portability.

This work was supported in part by NSF Grant CCF-0514876 and NSF CISE Research Infrastructure

Grant EIA-0303609. This journal submission incorporates results on the cache-oblivious paradigm

that were presented in preliminary form in [8] and [9].

R.A. Chowdhury (�) · V. Ramachandran

Department of Computer Sciences, University of Texas, Austin, TX 78712, USA

e-mail: shaikat@cs.utexas.edu

V. Ramachandran

e-mail: vlr@cs.utexas.edu

mailto:shaikat@cs.utexas.edu
mailto:vlr@cs.utexas.edu

Theory Comput Syst (2010) 47: 878–919 879

Keywords Cache-oblivious · Gaussian elimination · All-pairs shortest path · Matrix

multiplication · Parallel · Tiling

1 Introduction

Memory in modern computers is typically organized in a hierarchy with registers in

the lowest level followed by several levels of caches (L1, L2 and possibly L3), RAM,

and disk. The access time and size of each level increases with its depth, and block

transfers are used between adjacent levels to amortize the access time cost.

The two-level I/O model [2] is a simple abstraction of the memory hierarchy that

consists of a cache (or internal memory) of size M , and an arbitrarily large main

memory (or external memory) partitioned into blocks of size B . An algorithm is said

to have caused a cache-miss (or page fault) if it references a block that does not reside

in the cache and must be fetched from the main memory. The cache complexity (or

I/O complexity) of an algorithm is the number of block transfers or I/O operations

it causes, which is equivalent to the number of cache misses it incurs. Algorithms

designed for this model often crucially depend on the knowledge of M and B , and

thus do not adapt well when these parameters change.

The ideal-cache model [16] is an extension of the two-level I/O model which

assumes that an optimal cache replacement policy is used, and requires that the algo-

rithm remains oblivious of cache parameters M and B . A cache-oblivious algorithm

is flexible and portable, and simultaneously adapts to all levels of a multi-level mem-

ory hierarchy. The assumption of an optimal cache replacement policy can be reason-

ably approximated by a standard cache replacement method such as LRU. A well-

designed cache-oblivious algorithm typically has the feature that whenever a block

is brought into internal memory it contains as much useful data as possible (‘spatial

locality’), and also that as much useful work as possible is performed on this data

before it is written back to external memory (‘temporal locality’).

In this paper we introduce a cache-oblivious framework, which we call GEP or

the Gaussian Elimination Paradigm. This framework applies to problems that can be

solved using a construct similar to the computation in Gaussian elimination without

pivoting. Traditional algorithms that use this construct fully exploit the spatial locality

of data but they fail to exploit the temporal locality, and they run in O(n3) time, use

O(n2) space and incur O(n3

B
) cache-misses. We present two versions of our cache-

oblivious framework:

• In-place cache-oblivious I-GEP, which executes generalized versions of sev-

eral important special cases of GEP including Gaussian elimination and LU-

decomposition without pivoting, Floyd-Warshall all-pairs shortest paths and matrix

multiplication. This framework takes full advantage of both spatial and temporal

locality of data to incur only O(n3

B
√

M
) cache-misses while still running in O(n3)

time and without using any extra space.

• Cache-oblivious C-GEP, which executes GEP in its full generality with the same

time and cache-bounds as I-GEP while using O(n2) space.

880 Theory Comput Syst (2010) 47: 878–919

We present a parallel version of I-GEP (as well as C-GEP), and we analyze the

parallel running time as well as the caching performance under both distributed and

shared caches. In both cases our parallel algorithm is cache-oblivious and matches

the sequential cache-complexity while achieving good speed-up.

We present extensive experimental results. Our experimental results show the fol-

lowing:

• Both I-GEP and C-GEP significantly outperform GEP especially in out-of-core

computations, although improvements in computation time are already realized

during in-core computations.

• A pthreads implementation of parallel I-GEP on an 8-core CMP gives good

speed-up.

• Experimental results comparing performance of I-GEP with that of highly opti-

mized cache-aware BLAS routines for square matrix multiplication and Gaussian

elimination without pivoting show that our implementation of I-GEP runs mod-

erately slower than native BLAS; however, I-GEP incurs fewer number of cache

misses. It should also be noted that I-GEP is much simpler to code, easily supports

multithreading and is portable across machines.

One potential application of the I-GEP and C-GEP framework is in compiler opti-

mizations for the memory hierarchy. ‘Tiling’ is a powerful loop transformation tech-

nique employed by optimizing compilers that improves temporal locality in nested

loops. However, this technique is cache-aware, and thus does not produce machine-

independent code nor does it adapt simultaneously to multiple levels of the mem-

ory hierarchy. In contrast, the cache-oblivious GEP framework produces I/O-efficient

portable code for a form of triply nested loops that occurs frequently in practice.

1.1 The Gaussian Elimination Paradigm (GEP)

Let c[1 . . . n,1 . . . n] be an n × n matrix with entries chosen from an arbitrary set S ,

and let f : S × S × S × S → S be an arbitrary function. The algorithm G given

in Fig. 1 modifies c by applying a given set of updates of the form c[i, j] ←
f (c[i, j], c[i, k], c[k, j], c[k, k]), where i, j, k ∈ [1, n]. By 〈i, j, k〉 we denote an up-

date of the form c[i, j] ← f (c[i, j], c[i, k], c[k, j], c[k, k]), and we let �G denote

the set of such updates that the algorithm needs to perform.

In view of the structural similarity between the construct in G and the computa-

tion in Gaussian elimination without pivoting, we refer to this computation as the

Fig. 1 GEP: Triply nested for loops typifying code fragment with structural similarity to the computation

in Gaussian elimination without pivoting

Theory Comput Syst (2010) 47: 878–919 881

Gaussian Elimination Paradigm or GEP. Many practical problems fall in this cate-

gory, for example:

• LU decomposition and Gaussian elimination without pivoting with �G = {〈i, j, k〉 :
(1 ≤ k ≤ n − 2) ∧ (k < i < n) ∧ (k < j ≤ n)} and f (x,u, v,w) = x − u

w
× v.

• Floyd-Warshall all-pairs shortest paths with �G = {〈i, j, k〉 : 1 ≤ i, j, k ≤ n} and

f (x,u, v, ·) = min {x,u + v}.
Some other problems including matrix multiplication can be solved using GEP

through structural transformation.

The running time of G is O(n3) provided both the test 〈i, j, k〉 ∈ �G and the

update 〈i, j, k〉 in line 4 can be performed in constant time. The cache complexity

is O(n3

B
) provided the cache misses incurred in line 4, if any, are only for accessing

c[i, j], c[i, k], c[k, j] and c[k, k]; i.e., neither the evaluation of 〈i, j, k〉 ∈ �G nor the

evaluation of f incurs any additional cache misses.

In the rest of the paper we assume, without loss of generality, that n = 2q for some

integer q ≥ 0.

1.2 Organization of the Paper

In Sect. 2, we present and analyze an O(n3

B
√

M
) I/O in-place cache-oblivious al-

gorithm, called I-GEP, which solves several important special cases of GEP. We

prove some theorems relating the computation in I-GEP to the computation in GEP.

In Sect. 3, we describe generalized versions of three major applications of I-GEP

(Gaussian elimination without pivoting, matrix multiplication and Floyd-Warshall’s

APSP). Succinct proofs of correctness of these I-GEP implementations can be ob-

tained using results from Sect. 2.

In Sect. 4, we present cache-oblivious C-GEP, which solves G in its full generality

with the same time and I/O bounds as I-GEP, but uses n2 + n extra space (recall that

n2 is the size of the input/output matrix c). In Sect. 5 we present parallel I-GEP (and

C-GEP) and analyze its performance on both distributed and shared caches.

We consider the potential application of the GEP framework in compiler optimiza-

tions in Sect. 6. In Sect. 7 we present all of our experimental results: in Sect. 7.1 we

present results comparing C-GEP, I-GEP and GEP for Floyd-Warshall, in Sect. 7.2

results comparing I-GEP to BLAS routines, and in Sect. 7.3 experimental results on

parallel I-GEP using pthreads. Finally, we present some concluding remarks in

Sect. 8.

1.3 Related Work

Known cache-oblivious algorithms for Gaussian elimination for solving systems of

linear equations are based on LU decomposition. In [6, 33] cache-oblivious algo-

rithms performing O(n3

B
√

M
) I/O operations are given for LU decomposition with-

out pivoting; the algorithm in [30] performs LU decomposition with partial pivoting

within the same I/O bound. These algorithms use matrix multiplication and solution

of triangular linear systems as subroutines. Our algorithm for Gaussian elimination

without pivoting (see Sect. 3.1) is not based on LU decomposition, i.e., it does not

882 Theory Comput Syst (2010) 47: 878–919

call subroutines for multiplying matrices or solving triangular linear systems, and is

thus arguably simpler than existing algorithms.

Cache-oblivious multiplication of rectangular matrices is presented in [16]. The

matrix multiplication algorithm for square matrices that we obtain with I-GEP is

essentially the same as the one in [16].

A cache-oblivious algorithm for Floyd-Warshall’s APSP algorithm is given in [27]

(see also [13]). The algorithm runs in O(n3) time and incurs O(n3

B
√

M
) cache misses.

Our I-GEP implementation of Floyd-Warshall’s APSP (see Sect. 3.3) produces ex-

actly the same algorithm.

The main attraction of the Gaussian Elimination Paradigm is that it unifies all

problems mentioned above and possibly many others under the same framework, and

presents a single I/O-efficient cache-oblivious solution for all of them.

2 Cache-Oblivious I-GEP

In this section we introduce and analyze I-GEP, a recursive function F given in Fig. 2

that is cache-oblivious, computes in-place, and is a provably correct implementation

of GEP in Fig. 1 for several important special cases of f and �G including Floyd-

Warshall’s APSP, Gaussian elimination without pivoting and matrix multiplication.

We call this implementation I-GEP to denote an initial attempt at a general cache-

oblivious version of GEP as well as an in-place implementation, in contrast to the

other implementation (C-GEP) which we give in Sect. 4 that solves GEP in its full

generality but uses a modest amount of additional space.

The inputs to F are a square submatrix X of c[1 . . . n,1 . . . n], and two indices

k1 and k2. The top-left cell of X corresponds to c[i1, j1], and the bottom-right cell

corresponds to c[i2, j2]. These indices satisfy the following constraints, where, the

notation [u,v] is used to represent the closed integer range {x ∈ Z|u ≤ x ≤ v} in the

standard interval notation:

Fig. 2 Cache-oblivious I-GEP. For several special cases of f and �G in Fig. 1, we show that F performs

the same computation as G (see Sect. 3), though there are some cases of f and �G where the computations

return different results

Theory Comput Syst (2010) 47: 878–919 883

Fig. 3 Processing order of

quadrants of X by F :

(a) forward pass, (b) backward

pass

Input Conditions 2.1 If X ≡ c[i1 . . . i2, j1 . . . j2], k1 and k2 are the inputs to F in

Fig. 2, then

(a) i2 − i1 = j2 − j1 = k2 − k1 = 2q − 1 for some integer q ≥ 0;

(b) [i1, i2] �= [k1, k2] ⇒ [i1, i2]∩[k1, k2] = ∅ and [j1, j2] �= [k1, k2] ⇒ [j1, j2]∩
[k1, k2] = ∅.

Let U ≡ c[i1 . . . i2, k1 . . . k2] and V ≡ c[k1 . . . k2, j1 . . . j2]. Then for every entry

c[i, j] ∈ X, c[i, k] can be found in U and c[k, j] can be found in V . Input condition

(a) requires that X, U and V must all be square matrices of the same size. Input con-

dition (b) requires that (X ≡ U)∨ (X ∩U = ∅), i.e., either U overlaps X completely,

or does not intersect X at all. Similar constraints are imposed on V , too.

The base case of F occurs when k1 = k2, and the function updates c[i1, j1] to

f (c[i1, j1], c[i1, k1], c[k1, j1], c[k1, k1]). Otherwise it splits X into four quadrants

(X11,X12,X21 and X22), and recursively updates the entries in each quadrant in two

passes: forward (line 6) and backward (line 7). The processing order of the quadrants

are shown in Fig. 3. The initial function call is F(c,1, n).

Some Basic Properties of GEP We note the following properties of G, which are

easily verified by inspection:

• Given �G, G applies each 〈i, j, k〉 ∈ �G on c exactly once, and in a specific order;

• Given any two distinct updates 〈i1, j1, k1〉 ∈ �G and 〈i2, j2, k2〉 ∈ �G, the update

〈i1, j1, k1〉 will be applied before 〈i2, j2, k2〉 if k1 < k2, or if k1 = k2 and i1 < i2,

or if k1 = k2 and i1 = i2 but j1 < j2.

Properties of I-GEP We prove two theorems that reveal several important proper-

ties of F. Theorem 2.2 states that F and G are equivalent in terms of the updates

applied, i.e., both of them apply exactly the same updates on the input matrix ex-

actly the same number of times. The theorem also states that both F and G apply the

updates applicable to any fixed entry in the input matrix in exactly the same order.

However, it does not say anything about the total order of the updates. Theorem 2.2

identifies the exact states of c[i, k], c[k, j] and c[k, k] (in terms of the updates applied

on them) immediately before c[i, j] is updated to f (c[i, j], c[i, k], c[k, j], c[k, k]).
One implication of this theorem is that the total order of the updates as applied by F

and G can be different.

884 Theory Comput Syst (2010) 47: 878–919

Recall that in Sect. 1.1 we defined �G to be the set of all updates 〈i, j, k〉 per-

formed by the original GEP algorithm G in Fig. 1. Analogously, for the transformed

cache-oblivious algorithm F, let �F be the set of all updates 〈i, j, k〉 performed by

F(c,1, n).

We assume that each instruction executed by F receives a unique time stamp,

which is implemented by initializing a global variable t to 0 before the algorithm

starts execution, and incrementing it by 1 each time an instruction is executed (we

consider only sequential algorithms until Sect. 5). By the quadruple 〈i, j, k, t〉 we de-

note an update 〈i, j, k〉 that was applied at time t . Let �F be the set of all updates

〈i, j, k, t〉 performed by F(c,1, n).

The following theorem states that F applies each update performed by G exactly

once, and no other updates; it also identifies a partial order on the updates performed

by F.

Theorem 2.2 Let �G, �F and �F be the sets as defined above. Then

(a) �F = �G, i.e., both F and G perform the same set of updates;

(b) 〈i, j, k, t1〉 ∈ �F ∧ 〈i, j, k, t2〉 ∈ �F ⇒ t1 = t2, i.e., function F performs each

update 〈i, j, k〉 at most once; and

(c) 〈i, j, k′
1, t1〉 ∈ �F ∧ 〈i, j, k′

2, t2〉 ∈ �F ∧ k′
2 > k′

1 ⇒ t2 > t1, i.e., function F

updates each c[i, j] in increasing order of k values.

Proof (a) 〈i, j, k〉 ∈ �F ⇒ 〈i, j, k〉 ∈ �G holds by the check in line 1 of Fig. 2. The

reverse direction can be proved by induction on q , where 2q × 2q is the size of the

matrix X input to F.

Let �F(X,k1,k2) denote the set of updates performed by F when called with pa-

rameters X, k1 and k2. Then �F = �F(c,1,n) by definition. Also let TX,[k1,k2] =
{〈i, j, k〉|c[i, j] ∈ X∧k ∈ [k1, k2]}, i.e., the set of all updates 〈i, j, k〉 with k ∈ [k1, k2]
that are applicable on X.

We will prove that 〈i, j, k〉 ∈ �G ∩ TX,[k1,k2] ⇒ 〈i, j, k〉 ∈ �F(X,k1,k2). If q = 0,

then X has only one entry, and clearly the proposition holds (base case). Now suppose

the proposition holds for some value p (≥ 0) of q (inductive hypothesis) and consider

q = p + 1. Function F recursively calls itself on each quadrant of X for k ∈ [k1, km]
in line 6, and for k ∈ [km + 1, k2] in line 7, where km = ⌊ k1+k2

2
⌋. Thus the recursive

calls cover all entries of TX,[k1,k2], and also �F(X,k1,k2) is the union of all updates

performed by them. Hence by inductive hypothesis 〈i, j, k〉 ∈ �G ∩ TX,[k1,k2] ⇒
〈i, j, k〉 ∈ �F(X,k1,k2). Since the initial call to F is made with X = c[1 . . . n,1 . . . n]
and [k1, k2] = [1, n], we have �G ⊆ TX,[k1,k2] in that case, and therefore, 〈i, j, k〉 ∈
�G ⇒ 〈i, j, k〉 ∈ �F .

(b) Suppose t1 �= t2. Observe that all recursive calls in lines 6 and 7 of F are made

on mutually disjoint 3 dimensional subranges of [i1, i2]× [j1, j2]× [k1, k2], and also

that all updates to the input matrix c are performed when F is called with an input

submatrix X consisting of a single cell of c, and each such call applies only one

update to that cell (in line 3). Therefore, at some level of recursion 〈i, j, k, t1〉 and

〈i, j, k, t2〉 must have ended up in the subranges of two different recursive calls, i.e.,

the first three components (i, j, k) of 〈i, j, k, t1〉 and 〈i, j, k, t2〉 cannot be exactly the

same, which is a contradiction. Hence t1 = t2.

Theory Comput Syst (2010) 47: 878–919 885

(c) Observe that for all recursive calls in line 6, k ∈ [k1, km], and for those in line 7,

k ∈ [km + 1, k2], where k1 ≤ km ≤ k2. Hence at some level of recursion 〈i, j, k′
1, t1〉

will end up in a recursive call in line 6, and 〈i, j, k′
2, t2〉 will end up in a recursive call

in line 7. Since all updates due to the recursive calls in line 6 will be made before any

of those due to the recursive calls in line 7, it follows that t2 > t1. �

We now introduce some terminology as well as two functions π and δ which will

be used later in this section to identify the exact states of c[i, k], c[k, j] and c[k, k] at

the time when F is about to apply 〈i, j, k〉 on c[i, j].

Definition 2.3 Let n = 2q for some integer q > 0.

(a) An aligned subinterval for n is an interval [a, b] with 1 ≤ a ≤ b ≤ n such that

b−a +1 = 2r for some nonnegative integer r ≤ q and a = c ·2r +1 for some integer

c ≥ 0. The width of the aligned subinterval is 2r .

(b) An aligned subsquare for n is a pair of aligned subintervals ([a, b], [a′, b′])
with b − a + 1 = b′ − a′ + 1.

The following observation can be proved by (reverse) induction on r , starting

with q , where n = 2q .

Observation 2.4 Consider the call F(c,1, n). Every recursive call is on an aligned

subsquare of c, and every aligned subsquare of c of width 2r for r ≤ q is invoked

in exactly n/2r recursive calls on disjoint aligned subintervals [k1, k2] of length 2r

each.

Definition 2.5 Let x, y, and z be integers, 1 ≤ x, y, z ≤ n.

(a) For x �= z or y �= z, we define δ(x, y, z) to be b for the largest aligned subsquare

([a, b], [a, b]) that contains (z, z), but not (x, y). If x = y = z we define δ(x, y, z) to

be z − 1.

We will refer to the ([a, b], [a, b]) subsquare as the aligned subsquare S(x, y, z)

for z with respect to (x, y); analogously, S′(x, y, z) is the largest aligned subsquare

([c, d], [c′, d ′]) that contains (x, y) but not (z, z).

(b) For x �= z, the aligned subinterval for z with respect to x, I (x, z), is the largest

aligned subinterval [a, b] that contains z but not x; similarly the aligned subinterval

for x with respect to z, I (z, x), is the largest aligned subinterval [a′, b′] that contains

x but not z;

We define π(x, z) to be the largest index b in the aligned subinterval I (x, z) if

x �= z, and π(x, z) = z − 1 if x = z.

Figures 4 and 5 illustrate the definitions of π and δ respectively. For complete-

ness, more formal definitions of δ and π are given in the appendix. The following

observation summarizes some simple properties that follow from Definition 2.5.

Observation 2.6

(a) If x �= z or y �= z then δ(x, y, z) ≥ z, and if x �= z then π(x, z) ≥ z; I (x, z) and

I (z, x) have the same length while S(x, y, z) and S′(x, y, z) have the same size; and

886 Theory Comput Syst (2010) 47: 878–919

Fig. 4 Evaluating π(x, z) and π(z, x) for x > z: Given x, z ∈ [1,2q] such that x > z, we start with an

initial sequence of 2q consecutive integers in [1,2q], and keep splitting the segment containing both x and

z at midpoint until x and z fall into different segments. The largest integer in z’s segment gives the value

of π(x, z), and that in x’s segment gives the value of π(z, x)

Fig. 5 Evaluating δ(x, y, z): Given x, y, z ∈ [1,2q] (where q ∈ Z
+), such that x �= z ∨ y �= z, we start

with an initial square P [1 . . .2q ,1 . . .2q], and keep splitting the square (initially the entire square P)

containing both P [x, y] and P [z, z] into subsquares (quadrants) until P [x, y] and P [z, z] fall into different

subsquares. The largest coordinate in P [z, z]’s subsquare at that point gives the value of δ(x, y, z)

S(x, y, z) is always centered along the main diagonal while S′(x, y, z) in general

will not occur along the main diagonal.

(b) If x = y = z then δ(x, y, z) = z − 1, and if x = z then π(x, z) = z − 1.

Part (a) in the following lemma will be used to pin down the state of c[k, k] at

the time when update 〈i, j, k〉 is about to be applied, and parts (b) and (c) can be

Theory Comput Syst (2010) 47: 878–919 887

used to pin down the states at that time of c[i, k] and c[k, j], respectively. As with

Observation 2.4, this lemma can be proved by backward induction on q . As before

the initial call is to F(c,1, n).

Lemma 2.7 Let i, j, k be integers, 1 ≤ i, j, k ≤ n, with not all i, j, k having the same

value.

(a) There is a recursive call F(X, k1, k2) with k ∈ [k1, k2] in which the aligned sub-

squares S(i, j, k) and S′(i, j, k) will both occur as (different) subsquares of X being

called in steps 6 and 7 of the I-GEP pseudocode. The aligned subsquare S(i, j, k)

will occur only as either X11 or X22 while S′(i, j, k) can occur as any one of the four

subsquares except that it is not the same as S(i, j, k).

If S(i, j, k) occurs as X11 then k ∈ [k1, km] and δ(i, j, k) = km; if S(i, j, k) occurs

as X22 then k ∈ [km + 1, k2] and δ(i, j, k) = k2.

(b) If j �= k, let T (i, j, k) be the largest aligned subsquare that contains (i, k) but

not (i, j) and let T ′(i, j, k) be the largest aligned subsquare that contains (i, j) but

not (i, k). There is a recursive call F(X, k′
1, k

′
2) with k ∈ [k′

1, k
′
2] in which the aligned

subsquares T (i, j, k) and T ′(i, j, k) will both occur as (different) subsquares of X

being called in steps 6 and 7 of the I-GEP pseudocode. The set {T (i, j, k), T ′(i, j, k)}

is either {X11, X12} or {X21, X22}, and π(j, k) = k′, where k′ is the largest integer

such that (i, k′) belongs to T (i, j, k).

(c) If i �= k, let R(i, j, k) be the largest aligned subsquare that contains (k, j) but

not (i, j) and let R′(i, j, k) be the largest aligned subsquare that contains (i, j) but

not (k, j). There is a recursive call F(X, k′′
1 , k′′

2) with k ∈ [k′′
1 , k′′

2] in which the aligned

subsquares R(i, j, k) and R′(i, j, k) will both occur as (different) subsquares of X

being called in steps 6 and 7 of the I-GEP pseudocode. The set {R(i, j, k), R′(i, j, k)}

is either {X11, X21} or {X12, X22}, and π(i, k) = k′′, where k′′ is the largest integer

such that (k′′, j) belongs to R(i, j, k).

Let ck(i, j) denote the value of c[i, j] after all updates 〈i, j, k′〉 ∈ �G with k′ ≤ k

have been performed by F, and no other updates have been performed on it. We now

present the second main theorem of this section.

Theorem 2.8 Let δ and π be as defined in Definition 2.5. Then immediately be-

fore function F performs the update 〈i, j, k〉 (i.e., before it executes c[i, j] ←
f (c[i, j], c[i, k], c[k, j], c[k, k])), the following hold:

• c[i, j] = ck−1(i, j),

• c[i, k] = cπ(j,k)(i, k),

• c[k, j] = cπ(i,k)(k, j),

• c[k, k] = cδ(i,j,k)(k, k).

Proof We prove each of the four claims one by one.

c[i, j]: By Theorem 2.2, for any given i, j ∈ [1, n] the value of c[i, j] is updated

in increasing value of k, hence at the time when update 〈i, j, k〉 is about to be applied,

the state of c[i, j] must equal ck−1(i, j).

c[k, k]: Assume that either k �= i or k �= j , and consider the state of c[k, k] when

update 〈i, j, k〉 is about to be applied. Let S(i, j, k) and S′(i, j, k) be as specified in

888 Theory Comput Syst (2010) 47: 878–919

Definition 2.5, and consider the recursive call F(X, k1, k2) with k ∈ [k1, k2] in which

S(i, j, k) and S′(i, j, k) are both called during the execution of lines 6 and 7 of the

I-GEP code (this call exists as noted in Lemma 2.7). Also, as noted in Lemma 2.7, the

aligned subsquare S(i, j, k) (which contains position (k, k) but not (i, j)) will occur

either as X11 or X22.

If S(i, j, k) occurs as X11 when it is invoked in the pseudocode, then by

Lemma 2.7 we also know that k ∈ [k1, km], and S′(i, j, k) will be invoked as X12,X21

or X22 in the same recursive call. Thus, c[k, k] will have been updated by all

〈i, j, k′〉 ∈ �G for which (k′, k′) ∈ S(i, j, k), before update 〈i, j, k〉 is applied to

c[i, j] in the forward pass. By Definition 2.5 the largest integer k′ for which (k′, k′)
belongs to S(i, j, k) is δ(i, j, k). Hence the value of c[k, k] that is used in update

〈i, j, k〉 is cδ(i,j,k)(k, k).

Similarly, if S(i, j, k) occurs as X22 when it is invoked in the pseudocode, then

k ∈ [km + 1, k2], and S′(i, j, k) will be invoked as X11,X12 or X21 in the same re-

cursive call. Since the value of k is in the higher half of [k1, k2], the update 〈i, j, k〉
will be performed in the backward pass in line 7, and hence c[k, k] will have been

updated by all 〈i, j, k′〉 ∈ �G with k′ ≤ k2. As above, by Definition 2.5, δ(i, j, k) is

the largest value of k′ for which (k′, k′) belongs to S(i, j, k), which is k2, hence the

value of c[k, k] that is used in update 〈i, j, k〉 is cδ(i,j,k)(k, k).

Finally, if i = j = k, we have c[k, k] = ck−1(i, j) = cδ(i,j,k)(k, k) by definition of

δ(i, j, k).

c[i, k] and c[k, j]: Similar to the proof for c[k, k] but using parts (b) and (c) of

Lemma 2.7. �

Cache Complexity Let Q(n) be an upper bound on the number of cache-misses

incurred by F for an input of size n × n. The following recurrence follows from the

observation that when the input is small enough to fit into the cache the only cache-

misses incurred by F are those for reading in the initial input matrices to the cache

and for writing out the final output to the main memory, otherwise the total number

of cache-misses is simply the sum of the cache-misses incurred by the recursive calls:

Q(n) ≤
{

O
(

n + n2

B

)

if n2 ≤ γM ,

8Q
(

n
2

)

otherwise,
(1)

where γ is the largest constant sufficiently small that four
√

γM ×
√

γM submatrices

fit in the cache. The solution to the recurrence is Q(n) = O(n3

M
+ n3

B
√

M
) = O(n3

B
√

M
)

(assuming a tall cache, i.e., M = �(B2)).

Since I-GEP can be used for multiplying matrices, it follows from the I/O lower

bound of matrix multiplication [22] that the cache complexity of I-GEP is, in fact,

tight for any algorithm that performs �(n3) operations in order to implement the

general version of the GEP computation as defined in Sect. 1.1.

Time and Space Complexities Since I-GEP is in-place, its space complexity is de-

termined by the size of its input matrices which is clearly �(n2). Time complexity of

I-GEP is given by the following recurrence relation, where T (n) denotes the running

Theory Comput Syst (2010) 47: 878–919 889

time of I-GEP on an input of size n × n.

T (n) ≤
{

O(1) if n ≤ 1,

8T
(

n
2

)

+ O(1) otherwise.
(2)

Solving, we get T (n) = O(n3).

Static Pruning of I-GEP In line 1 of Fig. 2, function F(X, k1, k2) performs dynamic

pruning of its recursion tree by computing the set of all updates 〈i, j, k〉 ∈ �G with

k ∈ [k1, k2] that are applicable on the input submatrix X. However, sometimes it is

possible to perform some static pruning during the transformation of G to F, i.e.,

recursive calls for processing of some quadrants of X in lines 6 and/or 7 of F can

be eliminated completely from the code. In Appendix B we describe how this static

pruning of F can be performed.

3 Applications of Cache-Oblivious I-GEP

In this section we consider I-GEP for three major GEP instances. Though the C-GEP

implementation given in Sect. 4 works for all instances of f and �G, it uses ex-

tra space, and is slightly more complicated than I-GEP. Our experimental results in

Sect. 7 also show that I-GEP performs slightly better than both variants of C-GEP.

Hence an I-GEP implementation is preferable to a C-GEP implementation if it can

be proved to work correctly for a given GEP instance.

We consider the following applications of I-GEP in this section.

• A class of applications that includes Gaussian elimination without pivoting, where

we restrict �G but allow f to be unrestricted.

• A class of applications where we do not impose any restrictions on �G, but restrict

f to receive all its inputs except the first one (i.e., except c[i, j]) from matrices

that remain unmodified throughout the computation. An important problem in this

class is matrix multiplication.

• Path computations over closed semirings which includes Floyd-Warshall’s APSP

algorithm [15] and Warshall’s algorithm for finding transitive closures [31]. For

this class of problems we specify both f and �G.

3.1 Gaussian Elimination Without Pivoting

Gaussian elimination without pivoting is used in the solution of systems of linear

equations and LU decomposition of symmetric positive-definite or diagonally domi-

nant real matrices [12]. We represent a system of n − 1 equations in n − 1 unknowns

(x1, x2, . . . , xn−1) using an n × n matrix c, where the ith (1 ≤ i < n) row represents

the equation ai,1x1 + ai,2x2 + · · · + ai,n−1xn−1 = bi . The method proceeds in two

phases. In the first phase, an upper triangular matrix is constructed from c by succes-

sive elimination of variables from the equations. This phase requires O(n3) time and

O(n3

B
) I/Os. In the second phase, the values of the unknowns are determined from this

890 Theory Comput Syst (2010) 47: 878–919

Fig. 6 A general form of the first phase of Gaussian elimination without pivoting

matrix by back substitution. It is straight-forward to implement this second phase in

O(n2) time and O(n2

B
) I/Os, so we will concentrate on the first phase.

The first phase is an instantiation of the GEP code in Fig. 1. In Fig. 6 we give a

computation that is a general form of the computation in the first phase of Gaussian

elimination without pivoting in the sense that the update function f in Fig. 6 is ar-

bitrary. The if condition in line 4 ensures that i > k and j > k hold for every up-

date 〈i, j, k〉 applied on c, i.e., �G = {〈i, j, k〉 : (1 ≤ k ≤ n − 2) ∧ (k < i < n) ∧
(k < j ≤ n)}.

The correctness of the I-GEP implementation of the code in Fig. 6 can be proved

by induction on k using Theorem 2.8 and by observing that each c[i, j] (1 ≤ i, j ≤ n)

settles down (i.e., is never modified again) before it is ever used on the right hand side

of an update.

As described in Appendix B, we can apply static pruning on the resulting I-GEP

implementation to remove unnecessary recursive calls from the pseudocode.

A similar method solves LU decomposition without pivoting within the same

bounds. Both algorithms are in-place. Our algorithm for Gaussian elimination is ar-

guably simpler than existing algorithms since it does not use LU decomposition as an

intermediate step, and thus does not invoke subroutines for multiplying matrices or

solving triangular linear systems, as is the case with other cache-oblivious algorithms

for this problem [6, 30, 33].

3.2 Matrix Multiplication

We consider the problem of computing C = A × B , where A, B and C are n × n

matrices. Though standard matrix multiplication does not fall into GEP, it does after

the small structural modification shown in Fig. 7(a) (index k is in the outermost loop

in the modified algorithm, while in the standard algorithm it is in the innermost loop);

correctness of this transformed code is straight-forward.

The algorithm in Fig. 7(b) generalizes the computation in step 4 of Fig. 7(a) to

update c[i, j] to a new value that is an arbitrary function of c[i, j], a[i, k], b[k, j] and

d[k, k], where matrix c is disjoint from matrices a, b, and d .

The correctness of the I-GEP implementation of the code in Fig. 7(b) follows from

Theorem 2.2 and from the observation that matrices a, b and d remain unchanged

throughout the computation.

Theory Comput Syst (2010) 47: 878–919 891

Fig. 7 (a) Modified matrix multiplication algorithm, (b) a more general form of the algorithm in Fig. 7(a)

Fig. 8 Computation of path costs over a closed semiring (S,⊕,⊙,0,1): (a) initialization of c, (b) com-

putation of path costs

3.3 Path Computations over a Closed Semiring

An algebraic structure known as a closed semiring [3] serves as a general framework

for solving path problems in directed graphs. In [3], an algorithm is given for finding

the set of all paths between each pair of vertices in a directed graph. Both Floyd-

Warshall’s algorithm for finding all-pairs shortest paths [15] and Warshall’s algorithm

for finding transitive closures [31] are instantiations of this algorithm.

Consider a directed graph G = (V ,E), where V = {v1, v2, . . . , vn}, and each edge

(vi, vj) is labeled by an element l(vi, vj) of some closed semiring (S,⊕,⊙,0,1). If

(vi, vj) /∈ E, l(vi, vj) is assumed to have a value 0. The path-cost of a path is defined

as the product (⊙) of the labels of the edges in the path, taken in order. The path-cost

of a zero length path is 1. For each pair vi, vj ∈ V , c[i, j] is defined to be the sum of

the path-costs of all paths going from vi to vj . By convention, the sum over an empty

set of paths is 0. Even if there are infinitely many paths between vi and vj (due to

presence of cycles), c[i, j] will still be well-defined due to the properties of a closed

semiring.

The algorithm given in Fig. 8(b), which is an instance of GEP, computes c[i, j]
for all pairs of vertices vi, vj ∈ V . This algorithm performs O(n3) operations

and uses O(n2) space. Floyd-Warshall’s APSP is a specialization of the algorithm

in Fig. 8(b) in that it performs computations over a particular closed semiring

(ℜ,min,+,+∞,0).

Correctness of I-GEP Implementation of Fig. 8(b) Recall that c0(i, j) is the initial

value of c[i, j] received by the I-GEP function F in Fig. 2, and ck(i, j) (1 ≤ i, j ≤ n)

denotes the value of c[i, j] after all updates 〈i, j, k′〉 ∈ �G with k′ ≤ k, and no other

updates have been performed on it by F.

For i, j ∈ [1, n] and k ∈ [0, n], let P k
i,j denote the set of all paths from vi to vj

with no intermediate vertex higher than vk , and let Qk
i,j be the set of all paths from

vi to vj that have contributed to the computation of ck(i, j).

892 Theory Comput Syst (2010) 47: 878–919

The correctness of the I-GEP implementation of the code in Fig. 8(b) follows from

the following lemma.

Lemma 3.1 For all i, j, k ∈ [1, n], Qk
i,j ⊇ P k

i,j .

Proof The proof is by induction on k. The proposition holds trivially for k = 0, since

for all i, j ∈ [1, n], c0(i, j) is just the cost of edge (vi, vj), and P 0
i,j contains only the

edge (vi, vj) (observe that because of the initialization in Fig. 8(a), we can assume

that (vi, vj) always exists with the cost of this edge being 1 if i = j , and l(vi, vj)

otherwise).

Now suppose the proposition holds for all k ∈ [0, k′], where k′ ∈ [0, n − 1]. We

will prove that it holds for k = k′ + 1 and thus for all k ∈ [0, k′ + 1].
For any i, j ∈ [1, n], consider the update 〈i, j, k′ + 1〉, i.e., c[i, j] = c[i, j] ⊕

(c[i, k′ + 1] ⊙ c[k′ + 1, j]). We know from Theorem 2.2 that immediately be-

fore this update c[i, j] = ck′(i, j), and immediately after this update c[i, j] =
ck′+1(i, j). We also know from Theorem 2.8 that immediately before this update

c[i, k′ + 1] = cπ(j,k′+1)(i, k
′ + 1) and c[k′ + 1, j] = cπ(i,k′+1)(k

′ + 1, j) hold. Since

π(j, k′ + 1) ≥ k′ and π(i, k′ + 1) ≥ k′ follow from the definition of π , we have

Q
π(j,k′+1)

i,k′+1
⊇ Qk′

i,k′+1
and Q

π(i,k′+1)

k′+1,j
⊇ Qk′

k′+1,j
. From inductive hypothesis we know

that Qk′
i,j ⊇ P k′

i,j , Qk′
i,k′+1

⊇ P k′
i,k′+1

and Qk′
k′+1,j

⊇ P k′
k′+1,j

. Hence, the addition of

c[i, k′ + 1] ⊙ c[k′ + 1, j] to c[i, j] ensures that all paths that first go from vi to

vk′+1 and then from vk′+1 to vj such that neither subpath has an intermediate ver-

tex higher than vk′ are also considered in the computation of ck′+1(i, j). Therefore,

Qk′+1
i,j ⊇ P k′+1

i,j . Thus, the proposition holds for all i, j ∈ [1, n] and all k ∈ [0, k′ + 1].
Now proceeding up to k′ = n − 1, we conclude that Qk

i,j ⊇ P k
i,j holds for all

i, j ∈ [1, n] and all k ∈ [0, n]. �

Since for i, j ∈ [1, n], P n
i,j contains all paths from vi to vj , we have Qn

i,j ⊆ P n
i,j ,

which when combined with Qn
i,j ⊇ P n

i,j obtained from Lemma 3.1, results in

Qn
i,j = P n

i,j .

4 C-GEP: Extension of I-GEP to Full Generality

In this section we present a completely general cache-oblivious framework for GEP

that matches the time and cache complexity of I-GEP. In order to express mathe-

matical expressions with conditionals in compact form, in this section we will use

Iverson’s convention [23, 24] for denoting values of Boolean expressions. In this

convention we use |E | to denote the value of a Boolean expression E , where |E | = 1

if E is true and |E | = 0 if E is false.

4.1 A Closer Look at I-GEP

Recall that ck(i, j) denotes the value of c[i, j] after all updates 〈i, j, k′〉 ∈ �G with

k′ ≤ k, and no other updates have been applied on c[i, j] by F, where i, j ∈ [1, n]

Theory Comput Syst (2010) 47: 878–919 893

Table 1 States of c[i, j],
c[i, k], c[k, j] and c[k, k]
immediately before applying

〈i, j, k〉 ∈ �G

Cell G F

c[i, j] ĉk−1(i, j) ck−1(i, j)

c[i, k] ĉk−|j≤k|(i, k) cπ(j,k)(i, k)

c[k, j] ĉk−|i≤k|(k, j) cπ(i,k)(k, j)

c[k, k] ĉk−|(i<k)∨(i=k∧j≤k)|(k, k) cδ(i,j,k)(k, k)

and k ∈ [0, n]. Let ĉk(i, j) be the corresponding value for G, i.e., let ĉk(i, j) be the

value of c[i, j] immediately after the kth iteration of the outer for loop in G, where

i, j ∈ [1, n] and k ∈ [0, n].
In Table 1, we tabulate the exact states of c[i, j], c[i, k], c[k, j] and c[k, k] imme-

diately before G or F applies an update 〈i, j, k〉 ∈ �G. Entries in the 2nd column are

determined by inspecting the code in Fig. 1, while those in the 3rd column follows

from Theorem 2.8.

It follows from Definition 2.5 that for i, j < k, π(j, k) �= k−|j ≤ k|, π(i, k) �= k−
|i ≤ k| and δ(i, j, k) �= k − |(i < k) ∨ (i = k ∧ j ≤ k)|. Therefore, though both G and

F start with the same input matrix, at certain points in the computation F and G would

supply different input values to f while applying the same update 〈i, j, k〉 ∈ �G, and

consequently f could return different output values. Whether the final output matrix

returned by the two algorithms are the same depends on f , �G and the input values.

As an example (see Fig. 9), consider a 2 × 2 input matrix c, and let �G =
{〈i, j, k〉|1 ≤ i, j, k ≤ 2}. Then G will compute the entries in the following order:

ĉ1(1,1), ĉ1(1,2), ĉ1(2,1), ĉ1(2,2), ĉ2(1,1), ĉ2(1,2), ĉ2(2,1), ĉ2(2,2); on the other

hand, F will compute in the following order: c1(1,1), c1(1,2), c1(2,1), c1(2,2),

c2(2,2), c2(2,1), c2(1,2), c2(1,1). Since both G and F use the same input ma-

trix, the first 5 values computed by F will be correct, i.e., c1(1,1) = ĉ1(1,1),

c1(1,2) = ĉ1(1,2), c1(2,1) = ĉ1(2,1), c1(2,2) = ĉ1(2,2) and c2(2,2) = ĉ2(2,2).

However, the next value, i.e., the final value of c[2,1], computed by F is not neces-

sarily correct, since F sets c2(2,1) ← f (c1(2,1), c2(2,2), c1(2,1), c2(2,2)), while

G sets ĉ2(2,1) ← f (ĉ1(2,1), ĉ1(2,2), ĉ1(2,1), ĉ1(2,2)). For example, if initially

c[1,1] = c[1,2] = c[2,1] = 0 and c[2,2] = 1, and f (x, y, z,w) = x + w, then F

will output c[2,1] = 8, while G will output ĉ[2,1] = 2.

4.2 C-GEP Using 4n2 Additional Space

We first define a quantity τij , which plays a crucial role in the extension of I-GEP to

the completely general C-GEP.

Definition 4.1 For 1 ≤ i, j, l ≤ n, we define τij (l) to be the largest integer l′ ≤ l such

that 〈i, j, l′〉 ∈ �G provided such an update exists, and 0 otherwise. More formally,

for all i, j, l ∈ [1, n], τij (l) = maxl′{l′ | l′ ≤ l ∧ 〈i, j, l′〉 ∈ �G ∪ {〈i, j,0〉}}.

The significance of τ of can be explained as follows. We know from Theorem 2.2

that both F and G apply the updates 〈i, j, k〉 in increasing order of k values. Hence, at

any point of time during the execution of F (or G) if c[i, j] is in state cl(i, j) (ĉl(i, j),

894 Theory Comput Syst (2010) 47: 878–919

Fig. 9 An instance of GEP for which GEP (function G in Fig. 1) and I-GEP (function F in

Fig. 2) compute different output values for the same input matrix. The input is a 2 × 2 matrix c,

�G = {〈i, j, k〉|1 ≤ i, j, k ≤ 2}, and f (x, y, z,w) = x + w. The figure shows step-by-step execution of

both G and F on the same input matrix, and the steps in which the two functions produce different output

values are drawn with thick lines

resp.), where l �= 0, then 〈i, j, τij (l)〉 is the update that has left c[i, j] in this state.

We also note the difference between π (defined in Definition 2.5) and τ : we know

from Theorem 2.8 that immediately before applying 〈i, j, k〉 function F finds c[i, k]
in state cπ(j,k)(i, k), and from the definition of τ we know that 〈i, k, τik(π(j, k))〉 is

the update that has left c[i, k] in this state. A similar observation holds for δ defined

in Definition 2.5.

We extend I-GEP to full generality by modifying F in Fig. 2 so that it performs

updates according to the second column of Table 1 instead of the third column. As

described below, we achieve this by saving suitable intermediate values of the entries

of c in auxiliary matrices as F generates them. Note that for all i, j, k ∈ [1, n], F com-

putes ck−|j≤k|(i, k), ck−|i≤k|(k, j) and ck−|(i<k)∨(i=k∧j≤k)|(k, k) before it computes

ck(i, j) since we know from Observation 2.6 that π(j, k) ≥ k − |j ≤ k|, π(i, k) ≥
k −|i ≤ k| and δ(i, j, k) ≥ k −|(i < k)∨ (i = k ∧ j ≤ k)| for all i, j, k ∈ [1, n]. How-

ever, these values could be overwritten before F needs to use them. In particular, we

may lose certain key values as summarized in the observation below which follows

from Theorem 2.2 and the definition of τ .

Observation 4.2 Immediately before F applies the update 〈i, j, k〉 ∈ �G:

(a) if τik(π(j, k)) > k − |j ≤ k| then c[i, k] may not necessarily contain

ck−|j≤k|(i, k);

Theory Comput Syst (2010) 47: 878–919 895

(b) if τkj (π(i, k)) > k − |i ≤ k| then c[k, j] may not necessarily contain

ck−|i≤k|(i, k); and

(c) if τkk(δ(i, j, k)) > k − |(i < k) ∨ (i = k ∧ j ≤ k)| then c[k, k] may not neces-

sarily contain ck−|(i<k)∨(i=k∧j≤k)|(k, k).

If the condition in Observation 4.2(a) holds, we must save ck−|j≤k|(i, k) as soon

as it is generated so that it can be used later by 〈i, j, k〉. However, ck−|j≤k|(i, k) is not

necessarily generated by 〈i, k, k − |j ≤ k|〉 since this update may not exist in �G in

the first place. If τij (k − |j ≤ k|) �= 0, then 〈i, k, τij (k − |j ≤ k|)〉 is the update that

generates ck−|j≤k|(i, k), and we must save this value after applying this update and

before some other update modifies it. If τij (k − |j ≤ k|) = 0, then ck−|j≤k|(i, k) =
c0(i, k), i.e., update 〈i, j, k〉 can use the initial value of c[i, k]. A similar argument

applies to c[k, j] and c[k, k] as well.

Now in order to identify the intermediate values of each c[i, j] that must be saved,

consider the accesses made to c[i, j] when executing the original GEP code in Fig. 1.

Observation 4.3 The GEP code in Fig. 1 accesses each c[i, j]:
(a) as c[i, j] at most once in each iteration of the outer for loop for applying

updates 〈i, j, k〉 ∈ �G;

(b) as c[i, k] only in the j th iteration of the outer for loop, for applying updates

〈i, j ′, j 〉 ∈ �G for all j ′ ∈ [1, n];
(c) as c[k, j] only in the ith iteration of the outer for loop, for applying updates

〈i′, j, i〉 ∈ �G for all i′ ∈ [1, n]; and

(d) if i = j , as c[k, k] in the ith iteration of the outer for loop for applying updates

〈i′, j ′, i〉 ∈ �G for all i′, j ′ ∈ [1, n].

The updates in Observation 4.3(a) do not need to be stored separately, since we

know from Theorem 2.2 that both GEP and I-GEP apply the updates on a fixed c[i, j]
in exactly the same order.

Now consider the accesses to c[i, j] in parts (b), (c) and (d) of Observation 4.3.

By inspecting the code in Fig. 1 (see also the second column of Table 1), we ob-

serve that immediately before G applies the update 〈i, j ′, j 〉 in Observation 4.3(b),

c[i, j] = ĉj−1(i, j) = ĉτij (j−1)(i, j) if j ′ ≤ j , and c[i, j] = ĉj (i, j) = ĉτij (j)(i, j)

otherwise. Similarly, immediately before applying the update 〈i′, j, i〉 in Observa-

tion 4.3(c), c[i, j] = ĉi−1(i, j) = ĉτij (i−1)(i, j) if i′ ≤ i, and c[i, j] = ĉi(i, j) =
ĉτij (i)(i, j) otherwise. When G is about to apply an update 〈i′, j ′, i〉 from Obser-

vation 4.3(d), c[i, j] = ĉi−1(i, j) = ĉτij (i−1)(i, j) if i′ < i ∨ (i′ = i ∧ j ′ ≤ j), and

c[i, j] = ĉi(i, j) = ĉτij (i)(i, j) otherwise.

Therefore, F must be modified to save the value of c[i, j] immediately after apply-

ing the update 〈i, j, k〉 ∈ �G for k ∈ {τij (i − 1), τij (i), τij (j − 1), τij (j)}. Observe

that since there are exactly n2 possible (i, j) pairs, we need to save at most 4n2 inter-

mediate values.

The modified version of F, which we call H, is shown in Fig. 10. Function H

uses four n × n matrices u0, u1, v0 and v1 for saving appropriate intermediate values

computed for the entries of c as discussed above, which it uses for future updates.

After it reaches the base case (i.e., i1 = i2, j1 = j2 and k1 = k2) and computes the

896 Theory Comput Syst (2010) 47: 878–919

Fig. 10 C-GEP: A cache-oblivious implementation of GEP (i.e., G in Fig. 1) that works for all f and �G

value of c[i, j] (assuming i = i1 = i2, j = j1 = j2 and k = k1 = k2), it saves c[i, j]
to u|1−l|[i, j] provided k = τij (j − l), and to v|1−l|[i, j] provided k = τij (i − l),

where l ∈ {0,1}. Moreover, during the computation of c[i, j] in the base case, instead

of using the current values of c[i, k], c[k, j] and c[k, k] directly from matrix c, it

extracts them from u|j>k|[i, k], v|i>k|[k, j] and u|(i>k)∨(i=k∧j>k)|[k, k], respectively.

We assume that each of the tests comparing k to τij (·) can be performed in constant

time without incurring any additional cache misses.

Cache Complexity and Running Time The number of cache misses incurred by H

can be described using the same recurrence relation (1) that was used to describe the

cache misses incurred by F in Sect. 2, and hence the cache complexity remains the

same, i.e., O(n3

B
√

M
). Function H also has the same O(n3) running time as F, since it

only incurs a constant overhead per update applied.

Correctness Since Theorems 2.2 and 2.8 in Sect. 2 were proved based on the struc-

tural properties of F and not on the actual form of the updates, they continue to hold

for H.

The correctness of H, i.e., that it correctly implements column 2 of Table 1 and

thus G, follows directly from the following lemma, which can be proved by induc-

tion on k using Theorems 2.2 and 2.8, and by observing that H saves all required

intermediate values in lines 5–8.

Lemma 4.4 Immediately before H performs the update 〈i, j, k〉, the following hold:

c[i, j] = ĉk−1(i, j), u|j>k|[i, k] = ĉk−|j≤k|(i, k), v|i>k|[k, j] = ĉk−|i≤k|(k, j) and

u|(i>k)∨(i=k∧j>k)|[k, k]) = ĉk−|(i<k)∨(i=k∧j≤k)|(k, k).

Theory Comput Syst (2010) 47: 878–919 897

4.3 Reducing the Additional Space

We can reduce the amount of extra space used by H (see Fig. 10) by observing that

at any point during the execution of H we do not need to store more than n2 + n

intermediate values for future use. In fact, we will show that it is sufficient to use

four n
2

× n
2

matrices and two vectors of length n
2

each for storing intermediate values,

instead of using four n × n matrices.

Let U ≡ u0[1 . . . n,1 . . . n], U ≡ u1[1 . . . n,1 . . . n], V ≡ v0[1 . . . n,1 . . . n] and

V ≡ v1[1 . . . n,1 . . . n]. By U11, U12, U21 and U22 we denote the top-left, top-right,

bottom-left and bottom-right quadrants of U , respectively. We identify the quadrants

of U , V and V similarly. For i ∈ [1,2], let Di and Di denote the diagonal entries of

Uii and U ii , respectively.

Now consider the initial call to H, i.e., H(X, k1, k2) where X = c, k1 = 1 and

k2 = n. We show below that the forward pass in step 8 of this call can be imple-

mented using only n2 + n extra space. A similar argument applies to the backward

pass (step 9) as well.

The first recursive call H(X11, k1, k2) in step 8 will generate U11, U11, V11, V 11,

D1 and D1. The amount of extra space used by this recursive call is thus n2 + n.

The entries in U11 and V11, however, will not be used by any future updates, and

hence can be discarded. The second recursive call H(X12, k1, k2) will use U11, D1

and D1, and generate V12 and V 12 in the space freed by discarding U11 and V11.

Each update 〈i, j, k〉 applied by this recursive call retrieves u|j>k|[i, k] from U11,

v|i>k|[k, j] from V12 or V 12, and u|(i>k)∨(i=k∧j>k)|[k, k] from D1 or D1. Upon return

from H(X12, k1, k2) we can discard the entries in U11 and V12 since they will not be

required for any future updates. The next recursive call H(X12, k1, k2) will use V 11,

D1 and D1, and generate U21 and U21 in the space previously occupied by U11

and V12. Each update performed by this recursive call retrieves u|j>k|[i, k] from U21

or U21, v|i>k|[k, j] from V 11, and u|(i>k)∨(i=k∧j>k)|[k, k] from D1 or D1. The last

function call H(X22, k1, k2) in line 11 will use U21, V 12, D1 and D1 for updates, and

will not generate any intermediate values. Thus step 8 can be implemented using four

additional n
2

× n
2

matrices and two vectors of length n
2

each.

Therefore, H can be implemented to work with an arbitrary f and arbitrary �G at

the expense of only n2 + n extra space. The running time and the cache complexity

of this implementation remain O(n3) and O(n3

B
√

M
), respectively.

5 Parallel I-GEP and C-GEP

In this section we consider parallel implementations of I-GEP and C-GEP. We ob-

serve that the second and third calls to F in line 5 of the pseudocode for I-GEP given

in Fig. 2 can be executed in parallel while maintaining correctness and all properties

we have established for I-GEP; similarly the second and third calls to F in line 6

can be performed in parallel. A similar observation holds for lines 11 and 12 of H

(see Fig. 10). The resulting parallel code performs a sequence of 6 parallel calls (four

calling F or H once and two calling F or H twice), and hence with p processors its

parallel execution time is O(n3

p
+ nlog2 6).

898 Theory Comput Syst (2010) 47: 878–919

In Figs. 11–14 we present a better parallel implementation of I-GEP. This

implementation explicitly refers to the different types of functions invoked by

I-GEP based on the relative values of the i, j , and k intervals. We assume

that X ≡ c[i1 . . . i2, j1 . . . j2], U ≡ c[i1 . . . i2, k1 . . . k2], V ≡ c[k1 . . . k2, j1 . . . j2] and

Fig. 11 Cache-oblivious I-GEP reproduced from Fig. 2, but here F is assumed to be a template function

that can be instantiated to any of the 9 functions given in Fig. 13. The recursive calls in lines 6 and 7 are

replaced with appropriate instantiations of F which can be determined from Fig. 12

Fig. 12 Different instantiations of F (from Fig. 11), and the parallelism in each. Each row lists the instan-

tiations of the functions called in steps 3 and 4 of F when F is instantiated to the function in column 1.

Functions in columns 2–9 are executed by F in nondecreasing order of the sequence numbers given inside

the small boxes. Two functions with the same sequence number can be executed in parallel

Fig. 13 Function specific

pre-condition P(F) for F in

Fig. 2

Theory Comput Syst (2010) 47: 878–919 899

Fig. 14 Relative positions of U ≡ c[i1 . . . i2, k1 . . . k2] and V ≡ c[k1 . . . k2, j1 . . . j2] w.r.t. X ≡
c[i1 . . . i2, j1 . . . j2] assumed by different instantiations of F

W ≡ c[k1 . . . k2, k1 . . . k2], where [i1, i2], [j1, j2] and [k1, k2] are the ranges of i, j

and k values, respectively, supplied to F. Then for every entry c[i, j] ∈ X, c[i, k]
can be found in U , c[k, j] in V , and c[k, k] can be found in W . Note that only the

diagonal entries of W are used.

Input Condition 2.1(a) implies that X, U and V must all be square matrices of

the same dimensions. Input condition 2.1(b) requires that each of U and V either

overlaps X completely, or does not intersect X at all. These conditions on the in-

puts to F implies nine possible arrangements (i.e., relative positions) of X, U and V .

For different arrangements of these matrices we give a different name to F. Fig-

ure 14 identifies each of the nine names (A,B1,B2,C1,C2,D1,D2,D3 and D4) with

the corresponding arrangement of the matrices. Each of these nine functions will be

called an instantiation of F. Observe that the four types of functions (i.e., A,Bl,Cl

and Dl) differ in the amount and type of overlap the input matrices X, U and V have

among them. Function A assumes that all three matrices overlap, while function Dl

expects completely non-overlapping matrices. Function Bl assumes that only X and

V overlap, while Cl assumes overlap only between X and U . Intuitively, the less the

overlap among the input matrices the more flexibility the function has in ordering its

recursive calls, thus leading to better parallelism.

In Fig. 11 we reproduce F from Fig. 2, but replace the recursive calls in lines 6

and 7 of Fig. 2 with instantiations of F. By Fpq (p, q ∈ [1,2]), we denote the instanti-

ation of F that processes quadrant Xpq in the forward pass (line 3 of Fig. 11), and by

F′
pq (p, q ∈ [1,2]) we denote the same in the backward pass (line 4 of Fig. 11). For

each of the nine instantiations of the calling function F, Fig. 12 associates Fpq and

F′
pq (p, q ∈ [1,2]) with appropriate instantiations, and also identifies the recursive

900 Theory Comput Syst (2010) 47: 878–919

calls that can be executed in parallel. The initial call is to a function of type A, where

the input matrices X, U , V and W completely overlap.

We now analyze the parallel execution time for I-GEP on function A. Let TA(n) =
T∞ denote the parallel running time when A is invoked with an unbounded number

of processors on an n × n matrix. Let TB(n), TC(n) and TD(n) denote the same

for Bi,Ci and Di , respectively. We will assume for simplicity that TA(1) = TB(1) =
TC(1) = TD(1) = O(1). Hence we have the following recurrences:

TA(n) ≤ 2
(

TA

(n

2

)

+ max
{

TB

(n

2

)

, TC

(n

2

)}

+ TD

(n

2

))

+ O(1),

TB(n) ≤ 2
(

TB

(n

2

)

+ TD

(n

2

))

+ O(1),

TC(n) ≤ 2
(

TC

(n

2

)

+ TD

(n

2

))

+ O(1),

TD(n) ≤ 2TD

(n

2

)

+ O(1).

Solving these recurrences we obtain T∞ = O(n log2 n), and thus the following

theorem:

Theorem 5.1 When executed with p processors, multithreaded I-GEP performs T1 =
O(n3) work and terminates in

T1
p

+T∞ = O(n3

p
+ n log2 n) parallel steps on an n×n

input matrix.

A similar parallel algorithm with the same parallel time bound applies to C-GEP.

For specific applications of I-GEP, the actual recursive function calls may not take

the most general form analyzed above (see Appendix B). For instance, only a subset

of the calls are made for Gaussian elimination without pivoting. However, the parallel

time bound remains the same as in Theorem 5.1 for this problem as well as for all-

pairs shortest paths. On the other hand, for matrix multiplication, we can perform all

four recursive calls in each of steps 3 and 4 of Fig. 11 in parallel and hence the parallel

time bound is reduced to O(n3

p
+ n). Note that this matrix multiplication computation

does not assume associativity of addition.

We have implemented this multithreaded version of I-GEP for Floyd-Warshall’s

APSP, square matrix multiplication and Gaussian elimination without pivoting using

pthreads, and we report some experimental results in Sect. 7.3.

5.1 Cache Complexity

We first consider distributed caches, where each processor has its own private cache,

and then a shared cache, where all processors share the same cache.

Distributed Caches The following lemma is obtained by considering the schedule

that executes each subproblem of size n√
p

× n√
p

entirely on a single processor. Since

there are p3/2 such subproblems, and according to recurrence (1) the sequential exe-

cution of each of them on a processor with a private cache of size M and block size

B causes O(
(n/

√
p)3

B
√

M
+ (n/

√
p)2

B
) cache-misses, the lemma follows.

Theory Comput Syst (2010) 47: 878–919 901

Lemma 5.2 There exists a deterministic schedule that incurs only O(n3

B
√

M
+

√
p · n2

B
) cache misses when executing multithreaded I-GEP on a machine with p

processors, each with a private cache of size M and block size B .

Using results from [1, 18] (e.g., Theorem 2 and equation (4) of [18]) one can show

that I-GEP incurs O(n3

B
√

M
+ (p·n log2 n)

1/3
n2

B
+ p · n log2 n) cache misses w.h.p. under

the state-of-the-art general-purpose work-stealing Cilk scheduler [17] for distributed

caches. The bound in Lemma 5.2 is much better.

Shared Caches Here we consider the case when the p processors share a single

cache of size Mp . Part (a) of Lemma 5.3 below is obtained using a general result

for shared caches given in [5] for a PDF (parallel depth first search) schedule. Better

bounds are obtained in part (b) of Lemma 5.3 through the following hybrid depth-first

schedule.

Let G denote the computation DAG of I-GEP (i.e., function A), and let C(G)

denote a new DAG obtained from G by contracting each subDAG of G corresponding

to a recursive function call on an r × r submatrix to a supernode, where r is a power

of 2 such that
√

p ≤ r < 2
√

p. The subDAG in G corresponding to any supernode v

is denoted by S(v).

Now the hybrid scheduling scheme is applied on G as follows. The scheduler

executes the nodes (i.e., supernodes) of C(G) under 1DF-schedule (sequential depth-

first schedule) [5]. However, for each supernode v, the scheduler uses a PDF-schedule

with all p processors in order to execute the subDAG S(v) of G before moving to

the next supernode. This leads to the following.

Lemma 5.3 For p ≥ 1 let multithreaded I-GEP execute Tp parallel steps and incur

Qp cache misses with p processors and on a shared ideal cache of Mp blocks. Then

under the hybrid depth-first schedule,

(a) i. Qp ≤ Q1 if Mp ≥ M1 + �(p),

ii. If M1 = Mp then Qp = O(Q1) provided p = O(Mp).

(b) Tp = O(n3

p
+ n log2 n).

Proof (a.i) Since for each supernode v in C(G) the subDAG S(v) in G accesses at

most �(r2) locations of the input matrix, when executing S(v) under PDF-schedule

no more than �(r2) = �(p) nodes can become premature [5] simultaneously. Since

supernodes are executed one at a time, having Mp ≥ M1 + �(p) ensures that there

is always enough space in the shared cache to accommodate the premature nodes

without ever incurring any extra cache misses. Therefore, Qp ≤ Q1.

(a.ii) Suppose Mp = M1 = M . Since the hybrid schedule never creates more than

�(p) simultaneous premature nodes (see part (a)), we can set aside �(p) locations

in the shared cache for holding the premature nodes. The effective cache size thus

reduces to M − �(p), and assuming M − �(p) = �(M) ⇒ p = O(M), the number

of cache misses incurred by multithreaded I-GEP is Qp ≤ O(n3

B
√

M−�(p)
) = O(Q1).

(b) The number of parallel steps for PDF-schedule follows from the results in [5].

Therefore, we restrict our attention to the hybrid scheduler below.

902 Theory Comput Syst (2010) 47: 878–919

Table 2 Properties of supernodes in C(G): for a given supernode v, F (v) denotes the recursive function

represented by subDAG S(v) in G while n(F (v)) and s(F (v)) denote the number of supernodes in C(G)

representing F (v) and the number of parallel steps required to execute F (v), respectively

F (v) A Bi (i = 1,2) Ci (i = 1,2) Di (i ∈ [1,4])

n(F (v)) n
r (n

r)
2 − n

r (n
r)

2 − n
r (n

r)
3 − 2(n

r)2 + n
r

s(F (v)) O(r log2 r) O(r log r) O(r log r) O(r)

Observe that G has �(n3) nodes, and each subDAG in G corresponding to su-

pernodes in C(G) has �(r3) nodes. Therefore, C(G) has only �((n
r
)3) nodes.

For a given supernode v, let F (v) denote the recursive function represented by

subDAG S(v) in G. Let n(F (v)) and s(F (v)) denote the number of supernodes in

C(G) representing F (v) and the number of parallel steps required to execute F (v),

respectively. The values of n(F (v)) and s(F (v)) for F (v) ∈ {A,Bi,Ci,Di} are tab-

ulated in Table 2 (the calculations are not difficult and are omitted for brevity). There-

fore, the number of parallel steps required to execute all supernodes is

∑

F (v)∈{A,Bi ,Ci ,Di }
n
(

F (v)
)

× s
(

F (v)
)

= O

(

n3

r2
+ n2

r
log r + n log r

)

= O

(

n3

p
+ n log2 n

)

(since p ≤ n2).

Since C(G) has only �((n
r
)3) nodes, the number of steps required to execute C(G)

under 1DF-schedule is O((n
r
)3) = O(n3

p
√

p
). Therefore, the total number of parallel

steps required to execute multithreaded I-GEP under the hybrid depth-first schedule

is

O

(

n3

p
+ n3

p
√

p
+ n log2 n

)

= O

(

n3

p
+ n log2 n

)

= O

(

T1

p
+ T∞

)

since T1 = n3 and T∞ = O(n log2 n). �

When executing I-GEP under the state-of-the-art PDF-scheduler [5] for shared

caches, Qp ≤ Q1 provided Mp ≥ M1 + �(p · T∞(n)) = M1 + �(pn log2 n), which

is much weaker than the bound given above for the hybrid depth-first scheduler.

In a recent work [4] we have introduced the multicore-cache model that reflects the

reality that multicore processors have both per-processor private (L1) caches and a

large shared (L2) cache on chip, and presented an online scheduler for cache-efficient

execution of a broad class of parallel divide-and-conquer algorithms (that includes

I-GEP) on this model. The new scheduler is competitive with the standard sequen-

tial scheduler in the following sense. Given any dynamically unfolding computation

DAG from this class of algorithms, the cache complexity on the multicore-cache

model under our new scheduler is within a constant factor of the sequential cache

complexity for both L1 and L2, while the time complexity is within a constant factor

Theory Comput Syst (2010) 47: 878–919 903

of the sequential time complexity divided by the number of processors p. In a more

recent work [10] we have shown that for both shared and distributed caches the depth

of any GEP computation can be improved to O(n) while still matching its optimal

sequential cache complexity by choosing tile sizes that depend only on the number of

cores/processors and thus still remaining cache-oblivious. This is the maximum par-

allelism achievable when staying within the GEP framework. There is a well-known

purely parallel NC algorithm with lower depth for matrix multiplication (a specific

GEP problem), but that algorithm uses extra space.

Very recently [11] we have extended the 3-level multicore-cache model described

in [4] to the hierarchical multi-level caching model (HM) for multicores.1 The HM

model consists of a collection of cores sharing an arbitrarily large main memory

through a hierarchy of caches of finite but increasing sizes that are successively shared

by larger groups of cores. We have also introduced the notion of multicore-oblivious

(MO) algorithms for the HM model, i.e., algorithms that make no mention of the num-

ber of cores and the cache parameters. For improved performance, however, an MO

algorithm is allowed to provide advice or “hints” to the run-time scheduler through

a small set of instructions on how to schedule the parallel tasks it spawns. We have

shown that I-GEP can be solved multicore-obliviously on the HM model in time pro-

portional to its sequential time complexity divided by the number of cores, while still

remaining within a constant factor of its optimal sequential cache-complexity at each

level of the cache hierarchy.

6 Cache-Oblivious GEP and Compiler Optimization

‘Tiling’ is a powerful loop transformation technique employed by optimizing com-

pilers for improving temporal locality in nested loops [25]. This transformation par-

titions the iteration-space of nested loops into a series of small polyhedral areas of

a given tile size which are executed one after the other. Tiling a single loop replaces

it by a pair of loops, and if the tile size is T then the inner loop iterates T times,

and the outer loop has an increment equal to T (assuming that the original loop had

unit increments). This transformation can be applied to arbitrarily deep nested loops.

Figure 15(b) shows a tiled version of the triply nested loop shown in Fig. 15(a) that

occurs in matrix multiplication [25].

Cache performance of a tiled loop depends on the chosen tile size T . The choice

of T , in turn, crucially depends on (1) the type of the cache (direct mapped or set

associative), (2) cache size, (3) block transfer size (i.e., cache line size), and (4) the

loop bounds [25, 32]. Thus tiling is a highly system-dependent technique. Moreover,

since only a single tile size is chosen, tiling cannot be optimized for all levels of a

memory hierarchy simultaneously.

The I-GEP code in Fig. 2 and the C-GEP code given in Fig. 10 can be viewed as

cache-oblivious versions of tiling for the triply nested loops of the form as shown in

Fig. 1. The nested loop in Fig. 1 has an n × n × n iteration-space. Both I-GEP and

C-GEP are initially invoked on this n × n × n cube, and at each stage of recursion

1We briefly described the HM model in [10].

904 Theory Comput Syst (2010) 47: 878–919

Fig. 15 (a) Traditional matrix multiplication algorithm, (b) tiled version of the matrix multiplication

algorithm of part (a) [25]

they partition the input cube into 8 equal-sized subcubes, and recursively process each

subcube. Hence, at some stage of recursion, they are guaranteed to generate subcubes

of size T ′ × T ′ × T ′ such that T
2

< T ′ ≤ T , where T is the optimal tile size for any

given level of the memory hierarchy. Thus for each level of the memory hierarchy

both I-GEP and C-GEP cache-obliviously choose a tile size that is within a constant

factor of the optimal tile size for that level. We can, therefore, use I-GEP and C-GEP

as cache-oblivious loop transformations for the memory hierarchy.

C-GEP C-GEP is a legal transformation for any nested loop that conforms to

the GEP format given in Fig. 1. In order to apply this transformation the com-

piler must be able to evaluate τij (i − 1), τij (i), τij (j − 1) and τij (j) for all

i, j ∈ [1, n]. For most practical problems this is straight-forward; for example, when

�G = {〈i, j, k〉 | i, j, k ∈ [1, n]} which occurs in path computations over closed semi-

rings (see Sect. 3.3), or even if the computation is not over a closed semiring, we have

τij (l) = l for all i, j, l ∈ [1, n].

I-GEP Though C-GEP is always a legal transformation for GEP loops, I-GEP is

not. Due to the space overhead of C-GEP, I-GEP should be the transformation of

choice wherever it is applicable. Moreover, experimental results (see Sect. 7) suggest

that I-GEP outperforms C-GEP in both in-core and out-of-core computations.

We will now look at some general conditions under which I-GEP is a legal trans-

formation for a given GEP code. Consider the general GEP code in Fig. 1. Recall the

definition of π from Sect. 2, and the definition of τij from Sect. 4.2 (Definition 4.1).

The following lemma follows from Observations 4.2 and 4.3 in Sect. 4.2, and also

from the observation that I-GEP will correctly implement GEP if for each c[i, j] and

each update in �G that uses c[i, j] on the right hand side, c[i, j] retains the correct

value needed for that update until I-GEP applies the update.

Lemma 6.1 If τij (π(k, i)) ≤ i − |k ≤ i| for all 〈i, k, j〉 ∈ �G, and τij (π(k, j)) ≤
j − |k ≤ j | for all 〈k, j, i〉 ∈ �G, then I-GEP is a legal transformation for the GEP

code in Fig. 1.

7 Experimental Results

We ran our experiments on the three architectures listed in Table 3. Each machine

can perform at most two double precision floating point operations per clock cycle.

Theory Comput Syst (2010) 47: 878–919 905

Table 3 Machines used for experiments. All block sizes (B) are 64 bytes

Model Processors/

Cores

Speed Peak

GFLOPS

(per core)

L1 Cache L2 Cache RAM

Intel P4 Xeon 2 3.06 GHz 6.12 8 KB (4-way) 512 KB (8-way) 4 GB

AMD Opteron 250 2 2.4 GHz 4.8 64 KB (2-way) 1 MB (8-way) 4 GB

AMD Opteron 875 8

(4 dual-cores)

2.2 GHz 4.4 64 KB (2-way) 1 MB (16-way) 32 GB

The peak performance of each machine is thus measured in terms of GFLOPS (or

Giga FLoating point Operations Per Second) which is two times the clock speed of

the machine in GHz.

The Intel P4 Xeon machine is also equipped with a 73.5 GB Fujitsu MAP3735NC

hard disk (10K RPM, 4.5 ms avg. seek time, 64.1 to 107.86 MB/s data transfer

rate) [19]. Our out-of-core experiments were run on this machine. All machines run

Ubuntu Linux 5.10 “Breezy Badger”. Each machine was exclusively used for exper-

iments.

We used the Cachegrind profiler [29] for simulating cache effects. For in-core

computations all algorithms were implemented in C using a uniform programming

style and compiled using gcc 3.3.4 with optimization parameter -O3 and limited loop

unrolling.

We summarize our results below.

7.1 GEP, I-GEP and C-GEP for APSP

In this section we present experimental results comparing GEP, I-GEP and C-GEP

implementations of Floyd-Warshall’s APSP algorithm [15, 31] for both in-core and

out-of-core computations.

Out-of-Core Computation For out-of-core computations we implemented GEP,

I-GEP and C-GEP in C++, and compiled using g++ 3.3.4 compiler with optimiza-

tion level -O3 and STXXL software library version 0.9 [14] for external memory

accesses. The STXXL library maintains its own fully associative cache in RAM with

pages from the disk, and allows users set the size of the cache (M) and the block

transfer size (B) manually. We compiled STXXL with DIRECT-I/O turned on so that

the OS does not cache data from hard disk.

When the computation is out-of-core I/O wait times dominate computation times.

In Fig. 16(a) we keep n and B fixed and vary M . We observe that M has almost no

effect on the I/O wait time of GEP while that of both I-GEP and C-GEP decrease

as M increases. This result is consistent with theoretical predictions since the cache

complexity of GEP is independent of M and that of I-GEP and C-GEP vary inversely

with
√

M . In general, the I/O wait time of GEP is several hundred times more than

that of I-GEP and C-GEP; for example, when only half of the input matrix fits in

internal memory GEP waits 500 times more than I-GEP, and almost 180 times more

than both variants of C-GEP. In Fig. 16(b) we keep n and M fixed, and vary M/B

906 Theory Comput Syst (2010) 47: 878–919

F
ig

.
1
6

C
o
m

p
ar

is
o
n

o
f

o
u
t-

o
f-

co
re

p
er

fo
rm

an
ce

o
f

G
E

P,
I-

G
E

P
an

d
C

-G
E

P
o
n

In
te

l
P

en
ti

u
m

4
X

eo
n

w
it

h
a

fa
st

h
ar

d
d
is

k
(1

0
K

R
P

M
,
4
.5

m
s

av
g
.
se

ek
ti

m
e,

6
4

to
1
0
7

M
B

/s

tr
an

sf
er

ra
te

)

Theory Comput Syst (2010) 47: 878–919 907

(by varying B), and observe that in general, I/O wait times increase linearly with

the increase of M/B . The theoretical I/O complexities of all these algorithms vary

inversely with B , which explains the observed trend. However, when M/B is small,

the number of page faults increases which affects the cache performance of all algo-

rithms.

In-Core Computation In Fig. 17 we plot the performance of GEP and I-GEP on both

Intel Xeon and AMD Opteron 250. We optimized I-GEP as described in Sect. 7.2.

On Intel Xeon I-GEP runs around 5 times faster than GEP while on AMD Opteron it

runs around 4 times faster.

In Fig. 18 we plot the relative performance of I-GEP and C-GEP on Intel Xeon. As

expected, both versions of C-GEP run slower and incur more L2 misses than I-GEP,

since they perform more write operations. However, this overhead diminishes as n

becomes larger. The (n2 + n)-space variant of C-GEP performs slightly worse than

the 4n2-space variant which we believe is due to the fact that the (n2 + n)-space

C-GEP needs to perform more initializations and re-initializations of the temporary

matrices (i.e., u0, u1, v0 and v1) compared to the 4n2-space C-GEP.

7.2 Comparison of I-GEP and BLAS Routines

We compared the performance of our I-GEP code for square matrix multiplication

and Gaussian elimination without pivoting on double precision floats with algorithms

based on highly fine-tuned Basic Linear Algebra Subprograms (BLAS). We applied

the following major optimizations on our basic I-GEP routines before the compari-

son:

– In order to reduce the overhead of recursion we solve the problem directly using

a GEP-like iterative kernel as the input submatrix X received by the recursive

functions becomes very small. We call the size of X at which we switch to the

iterative kernel the base-size. On each machine the best value of base-size, i.e.,

for which the implementation ran the fastest, was determined empirically. On Intel

Xeon it is 128 × 128 and on AMD Opteron it is 64 × 64.

– We use SSE2 (“Streaming SIMD Extension 2”) instructions for increased through-

put.

– For Gaussian elimination without pivoting we use a standard technique for re-

ducing the number of division operations to o(n3) (i.e., by moving the division

operations out of the innermost loops).

– We use the bit-interleaved layout (e.g., see [7, 16]) for reduced TLB misses. More

specifically, we arrange the base case size blocks in the bit-interleaved layout with

data within the blocks arranged in row-major layout. We include the cost of con-

verting to and from this format in the time bounds.

In Fig. 19 we show the performance of square matrix multiplication on AMD

Opteron 250 with GEP (an optimized version), I-GEP and Native BLAS, i.e., BLAS

generated for the native machine using the automated empirical optimization tool

ATLAS [28]. We report the results in ‘% peak’, e.g., an algorithm executing at ‘x%

of peak’ spends x% of its execution time performing floating point operations while

908 Theory Comput Syst (2010) 47: 878–919

F
ig

.
1
7

C
o
m

p
ar

is
o
n

o
f

I-
G

E
P

an
d

G
E

P
o
n

In
te

l
X

eo
n

an
d

A
M

D
O

p
te

ro
n

fo
r

co
m

p
u
ti

n
g

F
lo

y
d
-W

ar
sh

al
l’

s
al

l-
p
ai

rs
sh

o
rt

es
t

p
at

h
s.

B
o
th

m
ac

h
in

es
h
av

e
tw

o
p
ro

ce
ss

o
rs

,
b
u
t

o
n
ly

o
n
e

w
as

u
se

d

Theory Comput Syst (2010) 47: 878–919 909

F
ig

.
1
8

C
o
m

p
ar

is
o
n

o
f

in
-c

o
re

p
er

fo
rm

an
ce

o
f

I-
G

E
P

an
d

C
-G

E
P

o
n

In
te

l
P

en
ti

u
m

4
X

eo
n

910 Theory Comput Syst (2010) 47: 878–919

F
ig

.
1
9

C
o
m

p
ar

is
o
n

o
f

I-
G

E
P

an
d

n
at

iv
e

B
L

A
S

sq
u
ar

e
m

at
ri

x
m

u
lt

ip
li

ca
ti

o
n

ro
u
ti

n
es

o
n

a
2
.4

G
H

z
d
u
al

p
ro

ce
ss

o
r

A
M

D
O

p
te

ro
n

2
5
0

(o
n
ly

o
n
e

p
ro

ce
ss

o
r

w
as

u
se

d
)

Theory Comput Syst (2010) 47: 878–919 911

remaining time is spent in other overheads including recursion, loops, cache misses,

etc. From the plots in Fig. 19 we observe:

– Native BLAS executes at 78–83% of peak while I-GEP executes at 50–56% of

peak. Traditional GEP reaches only 9–13% of peak. The GotoBLAS [20] which is

usually the fastest BLAS available for most machines (not shown in the plots) runs

at 85–88% of peak.

– I-GEP incurs fewer L1 and L2 misses than native BLAS.

– I-GEP executes more instructions than native BLAS.

We obtained similar results on Intel P4 Xeon.

In Fig. 20 we plot the performance of Gaussian elimination without pivoting using

GEP, I-GEP and GotoBLAS [20] on both Intel Xeon and AMD Opteron 250. (Re-

call that GotoBLAS is the fastest BLAS available for most machines.) We used the

LU decomposition (without pivoting) routine available in FLAME [21] to implement

Gaussian elimination without pivoting using GotoBLAS. On both machines Goto-

BLAS executes at around 75–83% of peak while I-GEP runs at around 45–55% of

peak. Traditional GEP reaches only 7–9% of peak.

Recursive square matrix multiplication using an iterative base case similar to our

implementations is studied in [34]. The experimental results in [34] report perfor-

mance level of only about 35% of peak for Intel P4 Xeon which is significantly lower

than what we obtain for the same machine (50–58%). We conjecture that our im-

proved performance is partly due to our use of SSE2 instructions, especially since

[34] obtained performance levels of 60–75% for SUN UltraSPARC IIIi, IBM Power 5

and Intel Itanium 2 using FMA instructions. These latter results nicely complement

our results for Intel P4 Xeon and AMD Opteron and further suggest that reason-

able performance levels can be reached for square matrix multiplication on different

architectures using relatively simple code that does not directly depend on cache pa-

rameters.

Both our implementations and the ones in [34] experimentally determined the best

base-size since the overhead of recursion becomes excessive if the recursion extends

all the way down to size 1. In [34] this is viewed as not being purely cache-oblivious;

however we consider the fine-tuning of the base-size in recursive algorithms to be a

standard optimization during implementation.

7.3 Multithreaded I-GEP

We implemented multithreaded I-GEP using the standard pthreads library. We

varied the number of concurrent threads from 1 to 8 on a 4×dual-core AMD Opteron

875 (with private L1 and L2 caches for each core) and used I-GEP to perform matrix

multiplication, Gaussian elimination without pivoting and Floyd-Warshall’s APSP

on input 5000 × 5000 matrices. We used the default scheduling policy on Linux. In

Fig. 21 we plot the speed-up factors achieved by multithreaded I-GEP over its un-

threaded version as the number of concurrent threads is increased. For matrix multi-

plication and Gaussian elimination without pivoting we also plot the speed-up factors

achieved by multithreaded GotoBLAS.

912 Theory Comput Syst (2010) 47: 878–919

F
ig

.
2
0

C
o
m

p
ar

is
o
n

o
f

I-
G

E
P

an
d

G
o
to

B
L

A
S

o
n

In
te

l
X

eo
n

an
d

A
M

D
O

p
te

ro
n

fo
r

p
er

fo
rm

in
g

G
au

ss
ia

n
el

im
in

at
io

n
w

it
h
o
u
t

p
iv

o
ti

n
g
.

B
o
th

m
ac

h
in

es
h
av

e
tw

o
p
ro

ce
ss

o
rs

,

b
u
t

o
n
ly

o
n
e

w
as

u
se

d

Theory Comput Syst (2010) 47: 878–919 913

F
ig

.
2
1

P
er

fo
rm

an
ce

o
f

I-
G

E
P

o
n

a
4
×

d
u
al

-c
o
re

A
M

D
O

p
te

ro
n

8
7
5

fo
r

sq
u
ar

e
m

at
ri

x
m

u
lt

ip
li

ca
ti

o
n
,

G
au

ss
ia

n
el

im
in

at
io

n
w

/o
p
iv

o
ti

n
g

an
d

F
lo

y
d
-W

ar
sh

al
l’

s
al

l-
p
ai

rs

sh
o
rt

es
t

p
at

h
s

o
n

5
0
0
0

×
5
0
0
0

m
at

ri
ce

s
as

n
u
m

b
er

o
f

co
n
cu

rr
en

t
th

re
ad

s
is

v
ar

ie
d
.

F
o
r

m
at

ri
x

m
u
lt

ip
li

ca
ti

o
n

an
d

G
au

ss
ia

n
el

im
in

at
io

n
w

/o
p
iv

o
ti

n
g

w
e

co
m

p
ar

e
IG

E
P

s

p
er

fo
rm

an
ce

w
it

h
th

at
o
f

G
o
to

B
L

A
S

914 Theory Comput Syst (2010) 47: 878–919

For square matrix multiplication I-GEP speeds up by a factor of 6 when the num-

ber of concurrent threads increases from 1 to 8, while for Gaussian elimination with-

out pivoting and Floyd-Warshall’s APSP the speed-up factors are smaller, i.e., 5.33

and 5.73, respectively. As mentioned in Sect. 5, I-GEP for matrix multiplication has

more parallelism than I-GEP for Gaussian elimination without pivoting and Floyd-

Warshall’s APSP, which could explain the better speed-up factor for matrix multipli-

cation. We also observe from Fig. 21 that the I-GEP’s performance gain with each

additional thread drops when the number of threads exceeds 4. This happens because

the two cores in each Opteron 875 processor share one memory controller. Since there

are 4 processors, when the number of threads is at most 4, the scheduler can assign

each thread to a different processor so that each thread can utilize the full memory

controller throughput of the processor it is assigned to. However, when the number

of threads exceeds 4, both cores of one or more processors will have threads assigned

to them, and thus the memory controller of each such processor will be shared by at

least two threads. As a result performance gain drops when a memory controller can

not keep up with the combined memory bandwidth requirements of the threads it is

serving. This situation can be improved by assigning concurrent threads that share in-

put data to the same processor whenever two or more such threads must be executed

by the same processor.

GotoBLAS scales up better than our current implementation of multithreaded

I-GEP as the number of threads increases, and with 8 threads it reaches speed-up

factors of 7.6 and 6.75 for matrix multiplication (Fig. 21(a)) and Gaussian elimina-

tion without pivoting (Fig. 21(b)), respectively. Though in the first case GotoBLAS

scales up almost linearly up to 8 threads, in the second case its performance gain

drops more noticeably after 4 threads.

We consider it likely that the performance of multithreaded I-GEP can be im-

proved by using the scheduling policies described in Sect. 5 instead of the default

policy on Linux.

7.4 Summary of Experimental Results

We draw the following conclusions from our results:

– In our experiments I-GEP always outperformed both variants of C-GEP (see

Sect. 7.1). The 4n2-space variant of C-GEP almost always outperformed the

(n2 + n)-space variant, and it is also easier to implement. Therefore, if disk space

is not at a premium, the 4n2-space C-GEP should be used instead of the (n2 + n)-

space variant, and I-GEP is preferable to both variants of C-GEP whenever ap-

plicable.

– When the computation is in-core, I-GEP runs about 5–6 times faster than even

some reasonably optimized versions of GEP. It has been reported in [26] that I-GEP

runs slightly slower than GEP on Intel P4 Xeon for Floyd-Warshall’s APSP when

the prefetchers are turned on. We believe that we get dramatically better results

for I-GEP in part because unlike [26] we arrange the entries of each base-case

submatrix in a prefetcher-friendly layout, i.e., in row-major order (see Sect. 7.2).

Note that we include the cost of converting to and from this layout in the time

bounds we report.

Theory Comput Syst (2010) 47: 878–919 915

Fig. 22 Two simple variants of GEP (Fig. 1) obtained by rearranging the for loops

– BLAS routines run about 1.5 times faster than I-GEP. However, I-GEP is cache-

oblivious and is implemented in a high level language, while BLAS routines are

cache-aware and employ numerous low-level machine-specific optimizations in

assembly language. The cache-miss results in Sect. 7.2 indicate that the cache per-

formance of I-GEP is at least as good as that of native BLAS. Hence the perfor-

mance gain of native BLAS over I-GEP is most likely due to optimizations other

than cache-optimizations.

– Our I-GEP/C-GEP code for in-core computations can be used for out-of-core com-

putations without any changes, while BLAS is optimized for in-core computations

only.

– I-GEP/C-GEP can be parallelized very easily, and speeds up reasonably well as

the number of processors (i.e., concurrent threads) increases. However, current

systems offer very limited flexibility in scheduling tasks to processors, and we

believe that performance of multithreaded I-GEP can be improved further if better

scheduling policies are used.

8 Conclusion

We have presented a cache-oblivious framework for problems that can be solved us-

ing a construct similar to the computation in Gaussian elimination without pivoting

(i.e., using a GEP construct). We have proved that this framework can be used to

obtain efficient in-place cache-oblivious algorithms for several important classes of

practical problems. We have also shown that if we are allowed to use only n2 + n

extra space, where n2 is the size of the input matrix, we can obtain an efficient cache-

oblivious algorithm for any problem that can be solved using a GEP construct. In

addition to the practical problems solvable using this framework, it also has the po-

tential of being used by optimizing compilers for loop transformation [25]. However,

several important open questions still exist. For example, can we solve GEP in its full

generality without using any extra space, or at least using o(n2) space? Also can we

obtain general cache-oblivious frameworks for other variants of GEP (for example,

for those shown in Fig. 22).

Acknowledgements We would like to thank Matteo Frigo for his comments. We also thank David

Roche for his help in setting up STXXL.

916 Theory Comput Syst (2010) 47: 878–919

Appendix A: Formal Definitions of δ and π

In Sect. 2 we defined functions π and δ (see Definition 2.5) based on the notions

of aligned subintervals and aligned subsquares. In this section we define these two

functions more formally in closed form.

Recall from Definition 2.5(a) that for x, y, z ∈ [1, n], δ(x, y, z) is defined as fol-

lows.

• If x = y = z, then δ(x, y, z) = z − 1.

• If x �= z or y �= z, then δ(x, y, z) = b for the largest aligned subsquare ([a, b], [a, b])
of c[1 . . . n,1 . . . n] that contains (z, z), but not (x, y), and this subsquare is de-

noted by S(x, y, z). Now consider the initial function call F(X, k1, k2) on c with

X ≡ c, k1 = 1 and k2 = n, where n = 2q for some integer q ≥ 0. We know from

Lemma 2.7(a) that if S(x, y, z) is one of the quadrants of X then it must be either

X11 or X22, otherwise S(x, y, z) must be entirely contained in one of those two

quadrants. Hence, in order to locate S(x, y, z) in X and thus to calculate the value

of δ(x, y, z) we need to consider the following four cases:

(i) (z, z) ∈ X11 and (x, y) /∈ X11: X11 ≡ S(x, y, z) and δ(x, y, z) = 2q−1 by def-

inition.

(ii) (z, z) ∈ X22 and (x, y) /∈ X22: X22 ≡ S(x, y, z) and δ(x, y, z) = 2q by defini-

tion.

(iii) (z, z) ∈ X11 and (x, y) ∈ X11: S(x, y, z) ∈ X11, and compute δ(x, y, z) recur-

sively from X11.

(iv) (z, z) ∈ X22 and (x, y) ∈ X22: S(x, y, z) ∈ X22, and compute δ(x, y, z) recur-

sively from X22.

Now for each integer u ∈ [1,2q], define u′ = u−1 which is a q-bit binary num-

ber u′
qu′

q−1 . . . u′
2u

′
1. Then it is easy to verify that the following recursive func-

tion ρ(x, y, z, q) captures the recursive method of computing δ(x, y, z) described

above, i.e., δ(x, y, z) = ρ(x, y, z, q) if x �= z or y �= z.

ρ(x, y, z, q) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

2q−1 if (x′
q = 1 ∨ y′

q = 1) ∧ z′
q = 0,

2q if (x′
q = 0 ∨ y′

q = 0) ∧ z′
q = 1,

ρ(x, y, z, q − 1) if x′
q = y′

q = z′
q = 0,

2q−1ρ(x − 2q−1, y − 2q−1,

z − 2q−1, q − 1) if x′
q = y′

q = z′
q = 1.

We can derive a closed form for ρ(x, y, z, q) from its recursive definition given

above. Let ⊡, ⊞, and ⊠ denote the bitwise AND, OR and XOR operators, respec-

tively, and define

(a) α(x, y, z) = 2⌊log2 {((x−1)⊠(z−1))⊞((y−1)⊠(z−1))}⌋,

(b) u = 2r − 1 − u (bitwise NOT), and

(c) β(x, y, z) = (x − 1 ⊞ y − 1) ⊡ (z − 1).

Theory Comput Syst (2010) 47: 878–919 917

Then

ρ(x, y, z, q) =
⌊

z − 1

2α(x, y, z)

⌋

· 2α(x, y, z) + α(x, y, z) + α(x, y, z) ⊡ β(x, y, z).

(A.1)

Now we can formally define function δ : [1,2q] × [1,2q] × [1,2q] → [0,2q] as

follows.

δ(x, y, z) =
{

z − 1 if x = y = z,

ρ(x, y, z, q) otherwise (i.e., x �= z ∨ y �= z).

The explicit (nonrecursive) definition of δ is the following, based on (A.1).

δ(x, y, z) =

⎧

⎨

⎩

z − 1 if x = y = z,

⌊ z−1
2α(x,y,z)

⌋ · 2α(x, y, z)

+ α(x, y, z) + α(x, y, z) ⊡ β(x, y, z) otherwise.

From Definition 2.5(b), we have that function π : [1,2q]× [1,2q] → [0,2q] is the

specialization of δ to one dimension, hence we obtain:

π(x, z) = δ(x, x, z) =
{

z − 1 if x = z,

ρ(x, x, z, q) otherwise (i.e., x �= z).

Using the closed form for ρ, we can write π in a closed form as follows:

π(x, z) =

⎧

⎪

⎨

⎪

⎩

z − 1 if x = z,

⌊ z−1
2α′(x,z)

⌋ · 2α′(x, z) + α′(x, z)

+ x − 1 ⊡ (z − 1) ⊡ α′(x, z) otherwise,

where α′(x, z) = α(x, x, z) = 2⌊log2 {((x−1)⊠(z−1)⌋.

Appendix B: Static Pruning of I-GEP

In Sect. 2, the test in line 1 of Fig. 2 enables function F to decide during runtime

whether the current recursive call is necessary or not, and thus avoid taking unneces-

sary branches in its recursion tree. However, if the update set �G is available offline

(which is usually the case), we can eliminate some of these unnecessary branchings

from the code during the transformation of G to F, and thus save on some overhead.

We can perform this type of static pruning of F as follows.

Recall that X ≡ c[i1 . . . i2, j1 . . . j2] is the input submatrix, and [k1, k2] is the

range of k-values supplied to F, and they satisfy the input conditions 2.1. Let

U ≡ c[i1 . . . i2, k1 . . . k2] and V ≡ c[k1 . . . k2, j1 . . . j2]. Input conditions 2.1 imply

nine possible arrangements (i.e., relative positions) of X, U and V . For each of these

arrangement we give a different name (A,B1,B2,C1,C2,D1,D2,D3 or D4) to F (see

Fig. 14) which we call an instantiation of F. Given an instantiation F′ of F, Fig. 13

expresses the corresponding arrangement of X, U and V as a relationship P(F ′)

918 Theory Comput Syst (2010) 47: 878–919

among the indices i1, i2, j1, j2, k1 and k2. Figure 11 reproduces F from Fig. 2, but

replaces the recursive calls in lines 6 and 7 of Fig. 2 with instantiations of F (in lines

3 and 4 of Fig. 11). A given computation need not necessarily make all recursive calls

in lines 3 and 4. Whether a specific recursive call to a function F′ (say) will be made

or not depends on P(F ′) (see Fig. 13) and the GEP instance at hand. For example, if

i ≥ k holds for every update 〈i, j, k〉 ∈ �G, then we do not make any recursive call to

function C2 since the indices in the updates can never satisfy P(C2). The I-GEP im-

plementation of the code for Gaussian elimination without pivoting can employ static

pruning very effectively, in which case, we can eliminate all recursive calls except for

those to A,B1,C1 and D1.

References

1. Acar, U.A., Blelloch, G.E., Blumofe, R.D.: The data locality of work stealing. In: Proceedings of the

12th Annual ACM Symposium on Parallel Algorithms and Architectures, pp. 1–12. ACM, New York

(2000)

2. Aggarwal, A., Vitter, J.: The input/output complexity of sorting and related problems. Commun. ACM

31(9), 1116–1127 (1988)

3. Aho, A., Hopcroft, J., Ullman, J.: The Design and Analysis of Computer Algorithms. Addison-Wesley,

Reading (1974)

4. Blelloch, G., Chowdhury, R., Gibbons, P., Ramachandran, V., Chen, S., Kozuch, M.: Provably good

multicore cache performance for divide-and-conquer algorithms. In: Proceedings of the 19th Annual

ACM-SIAM Symposium on Discrete Algorithms, San Francisco, California, pp. 501–510 (2008)

5. Blelloch, G., Gibbons, P.: Effectively sharing a cache among threads. In: Proceedings of the 16th

ACM Symposium on Parallelism in Algorithms and Architectures, Barcelona, Spain, pp. 235–244

(2004)

6. Blumofe, R., Frigo, M., Joerg, C., Leiserson, C., Randall, K.: An analysis of DAG-consistent distrib-

uted shared-memory algorithms. In: Proceedings of the 8th ACM Symposium on Parallel Algorithms

and Architectures, pp. 297–308 (1996)

7. Chatterjee, S., Lebeck, A., Patnala, P., Thotethodi, M.: Recursive array layouts and fast parallel matrix

multiplication. In: Proceedings of the 11th ACM Symposium on Parallel Algorithms and Architec-

tures, pp. 222–231 (1999)

8. Chowdhury, R., Ramachandran, V.: Cache-oblivious dynamic programming. In: Proceedings of the

17th ACM-SIAM Symposium on Discrete Algorithms, Miami, Florida, pp. 591–600 (2006)

9. Chowdhury, R., Ramachandran, V.: The cache-oblivious Gaussian Elimination Paradigm: Theoretical

framework, parallelization and experimental evaluation. In: Proceedings of the 19th ACM Symposium

on Parallelism in Algorithms and Architectures, San Diego, California, pp. 71–80 (2007)

10. Chowdhury, R., Ramachandran, V.: Cache-efficient dynamic programming algorithms for multicores.

In: Proceedings of the 20th ACM Symposium on Parallelism in Algorithms and Architectures, Mu-

nich, Germany, pp. 207–216 (2008)

11. Chowdhury, R., Silvestri, F., Blakeley, B., Ramachandran, V.: Oblivious algorithms for multicores

and network of processors. In: Proceedings of the 24th IEEE International Parallel and Distributed

Processing Symposium, Atlanta, Georgia, April 2010

12. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms, 2nd edn. MIT Press,

Cambridge (2001)

13. D’Alberto, P., Nicolau, A.: R-Kleene: a high-performance divide-and-conquer algorithm for the all-

pair shortest path for densely connected networks. Algorithmica 47(2), 203–213 (2007)

14. Dementiev, R., Kettner, L., Sanders, P.: STXXL: Standard template library for XXL data sets. In:

Proceedings of the 13th Annual European Symposium on Algorithms. LNCS, vol. 1004, pp. 640–

651. Springer, Berlin (2005)

15. Floyd, R.: Algorithm 97 (SHORTEST PATH). Commun. ACM 5(6), 345 (1962)

16. Frigo, M., Leiserson, C., Prokop, H., Ramachandran, S.: Cache-oblivious algorithms. In: Proceedings

of the 40th Annual Symposium on Foundations of Computer Science, pp. 285–297 (1999)

Theory Comput Syst (2010) 47: 878–919 919

17. Frigo, M., Leiserson, C., Randall, K.: The implementation of the Cilk-5 multithreaded language. In:

Proceedings of the ACM SIGPLAN Conference on Programming Language Design and Implementa-

tion, Montreal, Canada, pp. 212–223 (1998)

18. Frigo, M., Strumpen, V.: The cache complexity of multithreaded cache oblivious algorithms. In: Pro-

ceedings of the 18th ACM Symposium on Parallelism in Algorithms and Architectures, Cambridge,

Massachusetts, pp. 271–280 (2006)

19. Fujitsu MAP3147NC/NP MAP3735NC/NP MAP3367NC/NP disk drives product/maintenance man-

ual

20. Goto, K.: GotoBLAS (2005). http://www.tacc.utexas.edu/resources/software

21. Gunnels, J., Gustavson, F., Henry, G., van de Geijn, R.: FLAME: Formal linear algebra methods

environment. ACM Trans. Math. Softw. 27(4), 422–455 (2001)

22. Hong, J., Kung, H.: I/O complexity: the red-blue pebble game. In: Proceedings of the 13th Annual

ACM Symposium on Theory of Computing, pp. 326–333 (1981)

23. Iversion, K.: A Programming Language. Wiley, New York (1962)

24. Knuth, D.: Two notes on notation. Am. Math. Mon. 99, 403–422 (1992)

25. Muchnick, S.: Advanced Compiler Design & Implementation. Morgan Kaufmann, San Mateo (1997)

26. Pan, S., Cherng, C., Dick, K., Ladner, R.: Algorithms to take advantage of hardware prefetching. In:

Proceedings of the 9th Workshop on Algorithm Engineering and Experiments, pp. 91–98 (2007)

27. Park, J., Penner, M., Prasanna, V.: Optimizing graph algorithms for improved cache performance.

IEEE Trans. Parallel Distrib. Syst. 15(9), 769–782 (2004)

28. Powell, D., Allison, L., Dix, T.: Automated empirical optimization of software and the ATLAS project.

Parallel Comput. 27(1–2), 3–35 (2001). http://math-atlas.sourceforge.net

29. Seward, J., Nethercote, N.: Valgrind (debugging and profiling tool for x86-Linux programs). http://

valgrind.kde.org/index.html

30. Toledo, S.: Locality of reference in LU decomposition with partial pivoting. SIAM J. Matrix Anal.

Appl. 18(4), 1065–1081 (1997)

31. Warshall, S.: A theorem on boolean matrices. J. ACM 9(1), 11–12 (1962)

32. Wolf, M., Lam, M.: A data locality optimizing algorithm. In: Proceedings of the ACM SIGPLAN

1991 Conference on Programming Language Design and Implementation, pp. 30–44 (1991)

33. Womble, D., Greenberg, D., Wheat, S., Riesen, R.: Beyond core: Making parallel computer I/O prac-

tical. In: Proceedings of the 1993 DAGS/PC Symposium, pp. 56–63 (1993)

34. Yotov, K., Roeder, T., Pingali, K., Gunnels, J., Gustavson, F.: An experimental comparison of cache-

oblivious and cache-aware programs. In: Proceedings of the 19th ACM Symposium on Parallelism in

Algorithms and Architectures, San Diego, California, pp. 93–104 (2007)

http://www.tacc.utexas.edu/resources/software
http://math-atlas.sourceforge.net
http://valgrind.kde.org/index.html
http://valgrind.kde.org/index.html

	The Cache-Oblivious Gaussian Elimination Paradigm: Theoretical Framework, Parallelization and Experimental Evaluation
	Abstract
	Introduction
	The Gaussian Elimination Paradigm (GEP)
	Organization of the Paper
	Related Work

	Cache-Oblivious I-GEP
	Some Basic Properties of GEP
	Properties of I-GEP
	Cache Complexity
	Time and Space Complexities
	Static Pruning of I-GEP

	Applications of Cache-Oblivious I-GEP
	Gaussian Elimination Without Pivoting
	Matrix Multiplication
	Path Computations over a Closed Semiring
	Correctness of I-GEP Implementation of Fig. 8(b)

	C-GEP: Extension of I-GEP to Full Generality
	A Closer Look at I-GEP
	C-GEP Using 4n2 Additional Space
	Cache Complexity and Running Time
	Correctness

	Reducing the Additional Space

	Parallel I-GEP and C-GEP
	Cache Complexity
	Distributed Caches
	Shared Caches

	Cache-Oblivious GEP and Compiler Optimization
	C-GEP
	I-GEP

	Experimental Results
	GEP, I-GEP and C-GEP for APSP
	Out-of-Core Computation
	In-Core Computation

	Comparison of I-GEP and BLAS Routines
	Multithreaded I-GEP
	Summary of Experimental Results

	Conclusion
	Acknowledgements
	Appendix A: Formal Definitions of delta and pi
	Appendix B: Static Pruning of I-GEP
	References

