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`	 THE CALCULATION Or ANTENNA RADIATION PATTER NS

BY A VECTOR THEORY USING DIGITAL COMPUTERS

Richard F. Schmidt
Advanced Development Division

ABSTRACT

This document reviews the Kirchhoff -Huygens -Fresnel theory of diffrac-
tion, including Kottler boundary correction, and discusses the reduction of this
formulation for the special case of metallic reflectors with unbounded conduc-
tivity. The formal transition from the Ncalar to the vector case is given in de-
tail. Radial, and transverse field components are identified, the entry of the
near-field terms is discussed, and the physical quantities (sheet current, charge
distribution, etc.) associated with the mathematical development are presented
through a simple dimensional analysis. The analytic aspects of the problem are
considered, and the points of departure from conventional analysis to numerical
methods and digital computation are outlined.
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GLOSSARY OF NOTATION

Symbol	 Meaning

Q	vector operator del

r, R	radial distances, subscripted

(rx, y, x, t) scalar wave with space and time dependence

n	normal to surface or line

S, s	surface, subscripted

V, v	volume, subscripted

P,	 an infinitesimal value

t	time

f	frequency

w	angular frequency

X) y, z	Cartesian coordinates

k	wave number

C	 velocity of light

E, H	electric and magnetic field vectors, subscripted

tr electrical conductivity, subscripted

magnetic permeability, subscripted

inductive capacity, subscripted

D, B	dielectric displacement and magnetic flwx density

77	surface charge density

K	sheet current, subscripted
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GLOSSARY OF NOTATION (Continued)

A

1

j

i i, etc.

i f	
k

1 r

Meaning

contour

differential length, a vector

fundamental qm:ntities: mass, length, time, and volume change
density

current density

delta, an increment indication

a constant equal to V -1 in complex variable theory

a scalar field., generic symbol

corresponds to, goes over to, or approaches (as required by
context)

given that

implies that

dyads or second order tensors when vector dot or cross product
operation is omitted

unit vectors in the x, y, z Cartesian coordinate directions
respectively

a unit vector in i;he radial direction, spherical coordinate system

Symbol

C

di

M, L,T,Q

viii
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THE CALCULATION OF ANTENNA RADIATION PATTERNS

33Y A VECTOR THEORY USING DIGITAL COMPUTERS

INTRODUCTION

This document is the first In a su`a, ics of docitments describing 
the 

develop-
ment of a general purpose, modular computer program for the calculation of
antenna radiation patterns. The program represents an outgrowth of several in-
vostigations of moaopulse antennas and the inertialoss displacement of monopulse
antenna patterns in space, carried out during the period 1966-1967. 

In 
the course

of these investigations it was found that reliable volumetric radiation pattern III-

formation was frequently unavailable and that direct measurement was both
time-consuming and costly, Range and component imperfections added to the
measurement problem. A transfer function was desired to bridge the gap be-
tween prime-feed and secondary radiation patterns.

Examination of the several approaches available for calculating antenna
radiation patterns showed that the current distribution method (Ref, 1, p. 144)
appeared to offer the best compromise between the extremes of complete rigor
and the approximations of the simple geometrical optics approach. The current
distribution method provides a vector solution to the problem. It leads to the
satisfactory solution of real physical problems where the size of the scattering
body is large compared to the operating wave length. The current distribution
method supplies information on the amplitude, phase, and polarization of radia-
tion patterns, It also yields radial as well as transve):se field components and
the electric and magnetic field integrals contain near-field terms proportional

I
to — , permitting field computations in that region. Mutual coupling on the seat-

r 2
tering surface and reaction on the prime radiator are not included.

This document contains some material which is not readily available in pub-
lished texts. Its main purpose is to review the vector theory principles required
in the subsequent computations, including the current distribution method and the
Kirchho ff-Huygens -Pre snel theory, using a common notation and convention
system. It provides several frequently omitted steps in the development of the
theory, and details the arguments which lead from a scalar to a vector formula-
tion. The purpose of this first document is to provide a theoretical foundation
for the analytical details and computational methods to be described in subsequent
documents.

Kirchhoff I s scalar theory is first reviewed and a vector analogue is written.
The analogue is manipulated by means of vector identities until a convenient
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form Is obWned for calculating the scattered fields. Xottler's correction term

for open (finite) surfaces, to derived from boundary conditions, and several In-

tegrals of the general formulation are set to zero after an examination of the

boundary conditions established by the assumption of perfectly conducting sur-

faces. Transverse and radial components of the final version of 040 scattered

field equations are identified. The origin of Induction terms (fields proportional

to 

1 

2 ) 
is discussed. Physical quantities such as shoot current, and charge  dis-

r

tribution are associated with each of the Integrals comprising the general solu-

tion. V inally, a brief discussion of analysis and numerical/computational

methods Is presented,

Subsequent documents will present details relating to the source polariza-

tion vector, field Interaction at a boundary, feed rotation matrices,  feed displace-

ment vectors, surface normals , differential areas, and radii of curvature. Com-

posite surfaces and distortod surfaces will also be considered, together with

dual reflector systems. The function of various subroutines In a modular -type

computer program will be discussed, and direct as weV numerical integration

techniques will be presented. Examples of radiation patterns obtained with IBM

7094 and IBM 360 Mod 91 computers and SC 4020 plotters will be appended in

these latter reports.

KIRCHHOFF  IS DIFFRACTION THEORY

The integral theorem attributed to Kirchhoff is a straightforward mathe-

matical description of the physical process described earlier  by the Huygens-

Fresnel principle. A detailed discussion can be found in the literature. The

derivation of the scalar Kirchhoff integral theorem involves several assumptions

and the limitations of the theory, which become evident In the derivation, are

worth noting at the outset as these cause some difficulty hater in the application

of the vector formulation to real physical problems.

A monochromatic scalar wave (0) is assumed to originate from. a region

containing sources as shown in Figure 1.

In a vacuum, the space dependent part of ^ satisfies the time-independent

scalar Helmholtz equation.

(V' + k2) ^. = 0

where

2
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W (x, v ^ Z, t) ^' M* (X, Y, Z ) t ' tit on surfaco S ^ S 1 
+ S 2 + S3

4

Ro

R

SOURCES (Q) R2

ORIGIN OF COORDINATES (0)

NORMAL (n',

INFINITESIMAL RADIUS k)

VOLUME (V)

SURFACES (S I , S 21 S 31 S')

S 2 ^1
P (x', Y ', Z')

.n ^r
n	

I

P (x, Y ^ Z)

(..000001

S2

/S3

S 2 IS CLOSED AT INFINITY

Flgwe 1. Diffracting Systeml

V2	
^)	

* 2
r 2	r )(r

when tp = q{ (r) alone,

k ua/e wave number

&) = angular frequency of radiation

e _ velocity of light

It is assumed that q hat continuous first- and second-order partial derivatives
inside and on surface S. If 0' is any other function which satisfies the sane con-
tinuity requirements, Gret? a's Tbk̂ orem2 holds and

L V2 ^	̀ V2 ^) d v- 
	d s = 0

Z	 an
^ s

l itef. 2, p. 375 and Ref. 3, P. 280.

2Ref. 4, p. 82, and Ref. 5, p. 22.
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if (v2 + k 2 ) " = 0 also. Numerous functions satisfy the wave equation, but

eikre-ikc

r , or -^- , conforms to the physics of the problem and satisfies

the radiation condition.

4,ikr
If 0'. =	r , then. ^' is not analytic clue to the singularity at r = 0, and

the continuity conditions for Green's Theorem are violated. The situation is
corrected by surrounding the singularity with an infinitesimally small 4.phere S'

	

of radius s for which n " r. Instead of	0, § + §, = 0 because of the
singularity.

The Kirchhoff Integral Theo •t ii follows immediately.

	

'^	e 1 kr	eikr ;^,]

	

r	r	r
d s'

Ss'

s' as c "' 0

B ike	 1	eikr a,lj

1^	
E	E	a^ 6 2 d

Q Solid Angle

+ OdQ47T^ (x' ,y', a' ^

Q Solid Angle

1 [0 a ei kreikr

x '+ Y `^ Z '^	4,T 
S	

a n	r	-	r	an dS

Y
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It is noteworthy that the theorem was derived without any explicit reference

to frequency or to the curvature of S. The description of the bound:.. `^s S i and S2

was indefinite. In particular, the physical aspects of the boundaries ;;are not

discussed. It is possible to construct a vector analogue directly from the Kirch-

hoff Integral Theorem above, however, it is instructive to follow the historical

developments in optics to obtain a better insight into the physics of the problem

before making this step.

The Huygens-Fresnel principle (1818) included periodicity in both s pace and

time, and represented the first significant explanation of diffraction phenomena.

Heuristic arguments were invoked in the original derivations based upon this

principle which was, in fact, detached from physical reality. Kirchhoff I s Integral

Theorem (1882), as derived above, embodies the basic ideas of the Huygens-

Fresnel principle and actually reduces to the latter for many special cases. The

Kirchhoff Integral Theorem is superior since it is more inclusive and simpler.

Many texts on optics now proceed with the derivation of the so called Fre2nel-

Kirchhoff diffraction formula,

_iA 	ik(r+s)

2X ff rs
Icos (n, r) - cos (n, s) ] ds ,

Wliere A is a constant, r is the distance from a source to an aperture point, s

is the distance from aperture point to observer and ds is on the aperture alone.

The physical picture is that of Figure 1. Good discussions on the limitations

and assumptions of the diffraction formula can be found in the literature, and

these are binding on the Kirchhoff Integral Theorem and its vector analogue.

They are worth reviewing.

In the derivation of the Kirchhoff diffraction formula, S 2 is usually taken to

be a planar, opaque screen extending to infinity. If the problem is one in optics,

S 1 is large in terms of the operating wavelength. Kirchhoff originally assumed

that

(1) = 0 and 
an	

0 ors the interior of S2;

(2) the field at S 1 is identical v ^ ith the incident field, and is unaffected by

the presence of the opaque boundary.

Fundamental analytic errors are involved in this procedure! If 0 = an = 0

over S2 , then there is a discon:.inuity about the contour C, which is the boundary

between S1 and S 2 , and Green's Theorem is violated. The electromagnetic field

5



i

cannot be represented by a single scalar wave function, but is characterized by
a set of such functions which gives the components of the electric and magnetic
fields, E and H. Finally, Maxwell's equations should be satisfied, but the solu-
tion is defective in_ Hthis respect also, at this stage of the development, since the
field equation for E cannot be obtained from the curl of the expression for ,
and conversely. The computation of ^ behind S 2 , by Kirchhofff I s methods, can
lead to non-zero values if the wavelength is sufficiently large. This is contrary
to the initial assumption. In spite of these difficulties, the classical Kirchhoff
theory leads to satisfactory solutions for many diffraction problems.'

The success of the Kirchhoff approach in physical optics problems is due to
the fact that the size and radius of curvature of the aperture S i is large in terms
of wavelengths, polarization is usually ignored, only power density is recorded
(on film, usually), phase is ignored, and most of the diffracted radiation is thrown

forward so that the assumption = an = 0 is largely satisfied. The adaptation

of the theory to radio-frequencies must, therefore, be made with discretion and
the original assumptions of the theory should be reviewed upon application to
physical problems.

VECTOR EXTENSION OF THE KIRCHHOFF INTEGRAL THEOREM

The formal vector extension of the Kirchhoff Tutegral Theorem is obtained
directly from the scalar theorem

I

1a eikr

4, f 0 B n r
(elkr)-!r 2 n 

dS0 ( XI, Y" Z I ) =

1 eikr

G r 47r r

Let

Then

1 Ref. 6, pp. 461-464
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I

q(x''Y',z')	Gan-03n dS	[Gn' 0--^,n^ VGA dS
s s

which is still a scalar formulation. If 0. E ,

E(x°, Y', z°) -
	

[G(n • V)E - E(n - V)G] dS
s

which is the vector formulation' for the electric field. E is a complex vector,
representing the illumination of the aperture whose diffraction pattern is to be
calculated.

The vector transformations which lead to the field equations 2 are straight-
forward, with the exception of a single dyad operation. A detailed derivation is
included in Appendix A as the manipulations are somewhat tedious. The result
is:

E(X', Y°, z°) - -	[iwp. (n x H)G + (n x E) xVG + (n • E) VGa dS ,
S

(closed)

for the electric field and by similar process, or from the principle of duality

H(x°, y°, z°) - +	[icv E: (n x E)G - (n x H,) x VG - (n H) V G I dS

(closed)

for the magnetic field.

DISCONTINUOUS SURFACE DISTRIBUTIONS

The application of Green's Theorem in the derivation of the scalar Kirchhoff
Integral Theorem makes it necessary that the illumination ^ be continuous and
have continuous first- and second-order partial derivatives. All of the derivations

'Ref. 6, p. 464 and Ref. 3, p. 283

2 Ref. 6, p. 469, equations (29) and (31)

.



CD

a1 = 0

up to this point of the development have tacitly assumed that this was so, and
that the integration was over a closed surface as in Figure 1. The formal vector
extension must now be modified since f and N will be discontinuous at the edge
of reflecting surfaces. Kottler has given a contour distribution consistent with
the reruirements of the problem .1 A discontinuity in the tangential components

of E and H in passing from a physical surface to a void implies an abrupt change
in the surface current density. This can be accounted for, according to Kottler,
by an accumulation of charge on the contour.

Boundary conditions at the surface are2;

(1) ti . (B2 - B 1 ) ^- 0

(2) n , (52 .. 51 ) = -7 (reserving co for angular frequency)

(3) n x (E2 - E 1 )	0

(4) n x (F1 2 - H 1 ) - R.

The subscripts identify the opposite sides of a boundary as shown in Figure 2.

K

Figure 2. Corr+our of Edge of Reflecting Surface

The figure shows region A as a void, and region S as a perfectly conducting

surface, however, the dual of this could be assumed and would lead to the same

'Ref. 6, p. 468

2 Ref. 6, p. 35 ?7 (surface charge density) and K (sheet current) can exist only when one cr (con-

ductivity) is unbounded.
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basic arguments. Following Kottler, 1 the discontinuity in the sheet current
equals the line charge accumulation on the contour.

F, - (KA - KS ) = iWV

The gA and K S are obtainable via boundary relationships;

KA	n x (H2 - H i ) - n x (Hi - Hl ) - 0

and

KS - n x ( H2 - H 1 ) - n x (0 - 2Hi ) - -2n x Hi

Then

4-1 2 , (KA - K S ) - n 2 , ( 2n x Hi ) - 2Hi	ri2x n - 2 H • dl l -- H1 • diI

where

F2 x n - d 17

is in the direction of dl .

Since the physical phenomena involves line charges, the radial vector VG is

H1•ail
annexed directly to v =	, recalling the previous results for surface

icv

1
charge distributions. A ^ factor E is also required for the development of an

electric field in the present system of units. The total effect is obtained from a
line integral along Contour C. The complete Kottler field correction terms are

+	given in Stratton 2 as

Ref. 7, p. 484

2 Ref. 6, p. 468

I
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E (XI, y1, Z') 4 x. 
T76 fc V

G I'l l • dl

and

H 0X I , y 1 , Z I) °	' f VG E,	d^
C

The latter integral is obtained by similar process or directly by the principle
of duality,

CALCULATION OF THE SCATTERED FIELD

The results of the vector extension of Kirchhoff Is Integral Theorem are now
recalled and joined to the Kottler contour integrals for discontinuous surface
distributions. The surface integrals are taken over an open surface (S r) and the
hypothetical illuminating fields E and H are given subscripts (1) to emphasize
the fact that the incident fields Ei and Hi have interacted with the metallic sur-
face. Further notational changes are now introduced so that engineering forms
will be available and comparison with available examples on applications will
be facilitated. Using

e-jkr
r

the field equations satisfying Maxwell's equations

VxE+aB = 0

and

an
J° xH- at

become:
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E, (XI , Y	
4n fc

^i

(Kottler)

1,/

477 f [ j WA (n x H 1 ) 41 + (n x E, ) x VO + (n - E 1 ) Vthl dS ,

i

(Kirebhof f )

N (x', Y', z")	
-^ 

4,1,E	vo E	 (fl
C

(Kottier)

1
47r	

(i we (n X E^) -' (ri x xl } xv	{n	1 ) ©,^ dS
$,

06QC
(Kirchhoff)

If the seattered field is to be calculated for metallic surfaces with unbounded
conductivity, then boundary conditions can be examined for the surface integrals
and some simplification results. From the preceding discussion the fields behind
the physical surface vanish (E2 = H 2 Ct 0). Also, ^1 = 2 = 1, µi = ^i2. 

1,
71 = 0, a 2

 - co in the constitutive equations 1 D = r E p E , B = ArµO H, J' _ o-E .

Then, for this special case, the general equations can be simplified since

nx(E2 - E 1 ) - -nxEl = 0

and

( 112 H2 - µ 2 H 1 ) = - µ ln H1 = 0

Surface integrals (1), G^ and O can be set to zero. An examination of the line

integral 5) shows that E1 . dl refers to the tangential component of the total

I Ref. 6, p. 10
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field In medium (1). The third boundary condition, n x (E 2 - Ei )	0 states that
the tangential electric fields are continuous at the boundary. Since E, = 0, the
tangential electric field in medium (1) must vanish.. That is E, V 0, but n x El -. 0

d 1 = 0. By this argument integral . must also vanish.and Ex 

An examination of the operator (V) provides additional insight to the computa-
tional aspects of the problem. Since

- Jkr

r

is a function of (r) alone, take

	

-a0 „2
- 

^)	l i -
	

r l r
Vq,

Then

Vq -

for the near-field case and

pC
e-) r1

r 
l 

_ - jk+ r 01r

©O .. - jkO lr

for the far-field case, Vector _dpi is a local radial vector on dS. The radial
and transverse components of E(x', y', z') and H (x', y', z') can be identified
prior to calculation for the far-field case since the Cartesian components of all
the 1 r vectors are equal when the field point is taken at infinity, or at very large
distances.

For the distant E (xi, yl, z') field, integrals 0 and g) must be radial vectors
due to the fact that the direction of Vii is a unique' radial vector. In general, in-
tegral (a) will contain transverse vector components J,, 1^,) and a radial (1r)
component. As the point of the observer (the point at which the pattern is

'Ref. 1, P. 147

2 Ref. 4, P. 97; Ref. 8, Fable TI

12



calculated) moves toward infinity the 
I 

terms become negligibly small
r

with respect to the terms that diminish as r 	Thj summation of the radial

comlaonents, proportional to r for integrals	, (, and	can be expected to

v apish also, leaving only transverse electric fields in the limit as r - oo .

For the H (x', y', z') field, only integral (;?D contributes to the solution, It is
Imoun that the cross-product of two vectors is a vector which is orthogonal to
the given vectors. The direction of vector dqi is a unique radial vector for the
far-field case, and (Nx ii)x Vq,is, therefore, orthogonal to l r , or transverse,
Only transverse magnetic fields remain in the limit as r - w

	

The general formulation, therefore, reduces to;

- fE(x't Y' ^ z') 	 Jj F	
V^/H 1 (IT 4n	[jwlk (r x H 1 )q + (n . KI )Vgjl dS

u^

(Kottler)	(K,irchhof f)

1
	H (x', Y', z')	- 47r`	

(n x H 1 ) xV i dS
'' 1

(Kirchhoff)

which is applicable to near- and far-field problems for perfectly conducting
surfaces.

ANALYSIS AND NUMERICAL METHODS

The application of the field equations for E (x', y', z') and li (x', y', z' ) to a
variety of antenna configurations presents several problems. These will be dis-
cussed in detail in succeeding documents, and only the general approach will be
outlined here. If the reflectors which are to be considered can be described by
a parametric or other suitable representation, then the normals to the surface (n)
and the differential areas (dS) can frequently be _derived in a straightforward
manner. The illuminating fields at the surface (Et , Hi ) are calculated next. A

it
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polarization vector is needed for the source, and sic degrees of freedom (three
due to translation, three due to rotation) can be visualized for the placement and
orientation of that source. Space divergence from source to surface (proportional

to is included.

The incident fields are allowed to interact with the surface according to the
boundary conditions, local norinal (rid, etc. and R, and M_, are established for the
evaluation of the integrals for f (w, y', zi ). Conventional analysis (vector analy-
sis, complex algebra, differential geometry) appears adequate up to this point,
but the evaluation of the integrals for arbitrary antenna configurations is directed
toward numerical methods,

`.i'he difficulties associated with the integration phase of the problem are
already evident.'

SUMAIABY

This document provides a theoretical basis for the diffraction-pattern. cal-
culations performed by the Anteiula Systems Branch, Advanced Development
Division of the Goddard Space Flight Center. The vector Kirchhoff theory, with
Kottler correction for finite (open) surfaces, was presented without reference to
particular geometric forms or antenna configurations. Subsequent reports will
present detailed derivations of subroutines for n, dS, etc. When using ellipsoidal,

paraboloidal., spheroidal, hyperboloidal, conical and other surfaces. Composite
and distorted surfaces will be considered, together with dual reflector systems.
The relation, of the various subroutines to a modular-type computer program will
be discussed in these reports. Direct and numerical integration techniques will
be presented. Examples of radiation patterns obtained with the IBM 7094 and
]ABM 360 Mod. 91 computers will be appended in the form of a series of plots
from an SC-4020,
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APPENDIX A

VECTOR TRANSFORMATIONS YOR THE KIRCHHOFF INTEGRAL

E (x, y', z') = (G (iT • V) E - i ( iT • V) G] dS

(iT • V) G9 = G (F • V) K + T (iT • V) G

[ I = (iT - V) GE - 2E (TT • \7 ) G

Using

x (iix E)

iT x (E x V G) = ( iT • VG) K - (F • E) VG

VG x (F xi)	(VG	F - (VG • —n)

Then

GE - iT x x7G) - (n—	VG + VG x (F x E—) - (VG • E) —n

Using

Vx (GE)	G7xf + VG xi.

16



Using

c

V - (OA) = Op . + VO - A

V . (GE) = GV - E * VG • E ,

and

GV • E = 0

in the absence of free charge.

Then

[ J	(n • V) GE + nx(V x(GE)) -n (V . (GE))

-rix:(G(VxE)) -(n - E)VG*VVGx(nxE) .

Using the integral, relationship. (Ref. 6, Appendix II)

(1)J (V - A) dv = f A • n dS
5

(2) fv (V x A) dv =	(n x A) dS
 is

(3)
	fv

V	
J

0 dv =	On dS
 s

and making the correspondences

(1)	(VGE) ,	(2). A - V x (GE) ,	(3) 0 V • (GE)

obtain Jackson's (Ref. 3, p. 284) result

17'



z

(1) (DGE) • n dS = fV D (DGE) dv

(2) nx (D x (GE) dS = f D x (V x GF) dv
8 V

(3) J	
(D • (GE)) dS - f ®(D (GE) ) dv

S V

Apparently Jackson uses (n • V) GE ^ n • (DGE) where the latter is a dyadic	'
form (second-order tensor). Relationships in Morse and Feshbach (Ref, 11, p. 65)
and Coburn (Ref. 12, p. 46, p, 113) show that this is admissible. In general, the
distributive rule of vector multiplication holds so thst

aF
A	aF

n (DF) - i (ii) 
ax 

n x + i (ij) ax 
nx + iik 

aF'x nx

ax

	

A	AA Z Fx AA 'aFY	 1^	̂^ BFZ

	

+ j( ji ) a;, ny + j(jj) fy n y + j(j k) ay "y

+ k • (k.i) 
Fx 

n z + k • (kj) —F— n. + k • (kk) a z nza	 z2z

and

n (DF) = (n D)

Then

fS 

[(—n D) GE + nx (D x(GE)) -n ( D ' ( GE)) ] dS =

f
[D2 (GE) + ,D x D x (GE) - 17(V • ( GE))] dv0

V

since

DXVXV = D(D.V)-D2V.

18
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The vector extension may be rearranged to read as follows:

	

E(X" Y 1 , ZI)
C 

Rx (G (V x E)) + ( F	VG + ( N X E) x VG] dS,

S(closed)

The texts of Stratton and Jackson use G - 
e+ikr

r and the time varying term e-iwt

consistently. Silver uses G r and e+jcot. The present development follows

the former so that'

'6B( t)	-aHe-iwt

	

17 x E = - -6 t	-14	Tt-

	

k 2 = Oj2 I'L E ,	C = ( I.Lo 60 )- 1/ 2 .

Then

E(X I
I Yy ZI	 f [ icop, (in x H-) G + (n x E) x VG +	E) VG] dS

S 

(closed)

which is part oLStratton's equation (29). 2

t

'Ref. 6, p. 23
2 Ref. 6, P. 469

19
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APPENDIX B

UNITS, DIMENSIONS, AND PHYSICAL QUANTITIES

The M.K.S., system of units (Ref. G, Appendix I) will be used. Units and
dimensions for the field equations are tabulated below.

Table l

Units and Dimensions

Quantity Symbol Dimensions M.K.S. Unit

Charge q Q Coulomb

Current I T-1 Q Ampere

Charge density p L"3Q Coulomb/cubic meter

Current density J L-2 T` 1 Q Ampere/square meter

Conductivity M_ 1 L" a T Q2 Mho/Meter

Electric potential ML2 T-2 
Q-1 Volt

Electric field intensity E MLT-2 q-1 Volt/meter

Dielectric displacement D L-2 Q Coulomb/square meter

Inductive capacity E M-1 L- 3 T2Q2 Farad/meter

Magnetic flux ML2 T- 1 Q- 1 Weber

Flux density g MT' 1 T 1 Weber/square meter

Magnetomotive force M.M. f . T-1 Q Ampere-turn

Magnetic field intensity H L-1 T-1 Q Ampere-turn/meter

Permeability
FL

MLQ-2 Henry/meter

t

4



_ The eight integrals of the complete formulation for E (x", y', z') and
H(x', y', z') are examined to verify that the dimensions are correct throughout.
Certain factors are then singled out and associated with physical quantities for
the case when al ^ 0, k2 = Co,

Integral D

47r	VH S	 CT)(ML3T-2Q12) (L-2 ) (L-1T-1 Q) (L) -' MLT-2Q-
C

H 1	dl
where	 (T) (L" I T-1 Q) (L) => Q	electric charge.

Integral )

- 
I	

jw^c (n x N1) ^id5	{T-1 ) (MLQ-2 ) (L-1
T

-1 Q) (L_ 1 ) (L2)	
MLT-2Q-1

$1

where (n xR,) ^ L-1 T- 1 Q r* electric sheet current g (Ref. 6, p. 37).

K is defined as

TAl Al 0

J
CO

0-2 -+ oa

Integral Q

1

47r f (n x L 1 ) x V^ffi
S1

(MLT -2 Q-1 ) (L-2 ) (L2 ) 
 
	MLT-2 Q-1

where (n Ad :=O- MLT - 2 Q-1 =:1, magnetic sheet current K m (Ref. 1, p. 68).

21



I111t11 e gral (:4)

-1	
(H(MLT-2Q-1)(L-2)(LI) ---> MLT-2Q-1

4w 
11

where ( 7 - E 1 )	MLT - 2 Q-1, but (FT • B) = e (F - E) ---> L- 2 Q --,> electric surface-

charge d2aLity 71 (Ref. 1, p. 67), and U-2 — CO -

Integral CC,

1	1	
(T)(M-IL-IQ2) (L-2) (MLT-2Q-1) (L) =:> L-'T-'Q

j COA ";T

wheree	(JL 1) (MLT - 2 Q -1) (L) =-> ML 2 T - I Q -1 => magnetic charge.

Integral 0^



Jw jW6(n x E j ) tPdS --> (T`1 ) (M-'L 
- 3 T2 Q2 ) (MLT - 2 Q- 1) 

(L- 1 ) (L 2 )
C I T- IQ

47T 
S

1

where (n xM LT - 2 
Q 
-1 --> magnetic sheet current K M as before.

Integral CD

- I
477 f 

(—n x	x VOdS --> ( 1;" T - 'Q) (L- 2) (1, 2 )
L-IT-'Q

S1

where (n— xfi,) :*L-I T -I Q ---> electric sheet current K as before,

Integral 80

f4,u	
HI) VOdS	 --'>n(L-'T-'Q) 

(L-2) (L2)L-1T-'Q

91

22
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where (iT-H I ) => L-1 r - 'Q, but (n , El )	i11) =;> (MLQ" 2 ) (L"i: "1Q) =>

MT" iQ` i =* magnetic fILix density..

23
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