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Abstract. The Möbius inversion technique is applied to the Poisson summation formula.
This results in expressions for the remainder term in the Fourier coefficient asymptotic
expansion as an infinite series. Each element of this series is a remainder term in the
corresponding Euler-Maclaurin summation formula, and the series has specified con-
vergence properties.

These expressions may be used as the basis for the numerical evaluation of sets
of Fourier coefficients. The organization of such a calculation is described, and discussed
in the context of a broad comparison between this approach and various other standard
methods.

1. Introduction. The purpose of this paper and its sequel is to derive a class of
formulas suitable for the numerical evaluation of a set of Fourier coefficients

C{m)f = /   f(x) cos 2-Kmxdx ,       m = 1, 2, 3, • • ■
•'o

S(m)f = j    f(x) sin 2-Kmxdx ,        m = 1, 2, 3, ■ • ■ .
J o

In this paper we restrict ourselves to functions f(x) which (preferably together with
their first few derivatives) are continuous in the interval [0, 1]. In the sequel we
shall provide a generalization of these results to cover functions which have algebraic
or logarithmic singularities of a specified nature in the interval, and provide modifi-
cations for functions which are analytic in the interval but which have inconvenient
numerical properties due to nearby poles in the complex plane.

The approximations C{m)f and Sim)f derived here differ fundamentally from
other standard formulas, though they have some points in common. They seem
particularly suitable in a situation in which all the Fourier coefficients are required
to a uniform accuracy e, a subroutine for f(x) is available and (so far as Part I is
concerned) f(x) together with its first few derivatives are known to be continuous
in [0, 1]. The points of similarity include the property that the approximations
C(m>/ (or Sim)f), m = 1, 2, ■ • -, are based on the same set of function values or a
subset of this set. The principal difference is that there is no restriction to a particular
number of points for function evaluation per period. In fact, coefficients of the type
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102 J.   N.   LYNESS

cos 2-KJ/m do not appear in these formulas. The implementation has a degree of
flexibility. If the value of the integral J¿ f(x)dx is known, or approximate values of
derivatives/<?)(0) and/<5>(l) are known, this information may be incorporated in a
simple manner into the formulas with a consequent reduction in the number of
function values required.

The first half of this paper contains no approximation theory. In Section 2, the
Poisson summation formula is introduced. In Section 3 the asymptotic expansion
for the Fourier coefficient and the Euler-Maclaurin summation formula are derived.
In Section 5 the Möbius inversion technique is discussed. All these results are
classical, and are included here briefly to provide a proper background, and to
establish an appropriate notation. A brief discussion which illustrates the danger
of using the asymptotic expansion (without the remainder term) for numerical
calculation is included in Section 4. This provides a proper motivation for the
evidently new formulas derived in Section 6 by making use of the classical results
of Sections 2, 3, and 5. These resemble the asymptotic expansion, but provide the
remainder term in a completely different form. This involves an infinite series; the
terms of this series may be readily calculated and the ultimate rate of convergence
of the series is known.

In the second half of this paper, methods of applying this formula in actual
calculations are described. This involves the appropriate assignment of various
parameters occurring in the exact formula, together with the practical determina-
tion of the point at which to truncate the infinite series. In Sections 8 and 9 an
implementation of an essentially practical nature is described. In Section 10 some
theoretical properties of the approximation are described and a standard approxima-
tion error bound is derived. In Section 11a discussion of what the author considers
to be the essential features of the method is presented, in the form of a comparison
with a finite version of the Fast Fourier Transform and with the Filon-Luke
Formulas.

A suitable starting point for all the theory required in both this paper and its
sequel is to assume the well-known relations between fix) and its Fourier series
fix). In order to present this theory in a relatively straightforward manner we
restrict the functions fix) being considered to those to which the standard theorems
of finite Fourier analysis may be applied without having to state detailed restrictions
at every stage. Consequently we introduce the following overall restrictions :

(1.1) (i) fix) is absolutely integrable over the closed interval [0, 1],

(1.2) (ii)   fix) has at most a finite number of singularities in the interval [0, 1].

The theory presented in Section 2 requires no further restriction. However, at
the present time, this theory has been developed to the stage of providing a viable
method for the calculation of Fourier coefficients only in the case in which these
singularities are algebraic or logarithmic.

In the rest of this paper (Part I), we deal with a much smaller class of function.
Here/(a;) has to be continuous in the closed interval [0, 1] and, for the results to be
more than trivial identities, some of the derivatives of fix) have to be continuous
as well :

(1.3)    (iii) fix) G Cp[0, 1] ,       p^0.
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2. Finite Forms of the Poison Summation Formula. In this section we define
the trapezoidal rule and use the fundamental theorem about Fourier series to derive
a finite form of Poisson's summation formula. These results apply to functions
which satisfy the first two restrictions (1.1) and (1.2) mentioned in Section 1. In
Section 3 we confine our attention to continuous functions which satisfy restriction
(1.3) and derive the standard Fourier coefficient asymptotic expansion and the
Euler-Maclaurin summation formula.

The reader who is familiar with these formulas need only refer to these sections
in order to acquaint himself with the notation.

It is convenient to emphasize the linear nature of many of the quantities oc-
curring in this paper. This is done by using the terminology of linear operators
wherever possible, though most of the expressions required are classical and more
familiar in an expanded form. Consequently we denote the integral of fix) by

(2.0) If = / fix)dx

and we denote the Fourier coefficients of fix) by

(2.1) C{r)f =  i  fix) cos 2irrxdx ,       r = 1, 2, 3, • • •
J o

(2.2) Slr)f =  /   fix) sin 2-rrxdx ,        r = 1, 2, 3, • • • .
J o

We invoke the classical theorems from the theory of Fourier analysis to define the
Fourier series fix) oí fix). This is given formally by

(2.3) fix) = If + 2 £ CMf cos 2*rx + 2 £ Sir)f sin 2-rrx .
r=l r=l

As is well known the function Jix) defined as the sum of the series in (2.3) coincides
in general with the function/^). So long as fix) satisfies restrictions (1.1) and (1.2),
Jix) exists at all points other than possibly those at which fix) itself is undefined.
It is very well known that, if the limits in the following equations exist, then

(2.4) Jix) = a lim if ix + e) + fix - 0) ,        0 < x < 1
4!->0

and

(2.5) 7(0) = 7(D = § urn  (/{«O + fil - e)) .
s-*0+

We now introduce a condensed notation for the trapezoidal quadrature rule
approximations to the integral

(2.6) // = IJ = /    fix)dx .
J o

The conventional (end point) trapezoidal rule approximation is defined by

(2.7) A[M'1]/ = i{l/w + g/(i) + l/a)
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<  1.

We also require a general 'offset' trapezoidal rule. This is one which uses m equally
spaced function values, the spacing being 1/m with the first abscissa at the point

(2.8) tAm = (1 + a)/2m , \a\ < 1 .

General Offset Trapezoidal Rule \a\ ¿¿ 1.

(2.9) Rlm-]f = ~£ /(Í + ^~1) ,        t. = (1 + «)/2 ,

(The special case a = 1 is given by (2.7) above.) These rule sums exist only if fix)
is defined at each of the points required for function evaluation.

The classical Poisson summation formula relates an infinite series of function
values to an infinite series of Fourier transforms. It may be written in the form

(2.10) A  £ fijh) =   £  r fit) cos [2*rf/A]di.
3=—oo r=—co     —oo

Clearly the function fix) has to satisfy certain properties which ensure that the
various limiting processes required in this formula exist. In this paper we are con-
cerned with various finite forms of this formula, namely (2.13) to (2.16) below.
While these may be obtained directly from the classical Poisson summation formula
by inserting specially chosen functions fix), it is more in keeping with our underlying
approach to proceed directly from the trapezoidal rule sum (2.9) and the Fourier
series (2.3). Specifically we may substitute for the quantity 7(0' + ta — l)/m)
which occurs in (2.9), the Fourier series given by (2.3) and change the order of the
summation operators. This change is permissible since one of the sums is finite. The
summation over index j may be carried out analytically, making use of identities
such as

771

/o     \        S cos [2tt0' + ta — l)/m] = m cos 2irrta ,       r/m = integer
(2.11;        ,=i

= 0       ,       r/m 5¿ integer.

The result is as follows:
General Finite Form of Poisson Summation Formula.

(2.12) R[mMJ - IJ = 2 £ cos 2irrtaC(rm)f + 2 £ sin 2irrtaSirm)f.
r= 1 r= 1

Subsequently we make use of only four simple special cases of this formula; two
are obtained from (2.12) by setting a = 1 and a = 0 ; the third is a linear combination
of these; the fourth is a linear combination obtained from (2.12) with a = —\
and a = \. These are respectively:

(2.13) RlmA]J - IJ = 2 £ Clrm)f,
r=l

(2.14) R[mMJ - IJ = 2 £ (-l)rC(rm)f,
r=l

(2.15) R[mA]J - Ri2mA]J = 2 £ Ca2r~,)m)f ,
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(2.16) 4 (Ä[m'~I/2'7 - Rlrn¡U2]J) = 2 £ (-i)'-1^.-,^ .
2 r= 1

These are all simple variants of a finite form of the Poisson summation formula.
The formulas of this section are valid if fix) satisfies restrictions (1.1) and (1.2)

and if the rule sums are defined and so do not involve function evaluation at an
abscissa for which fix) is not defined. Thus (2.14) can be used with/(.r) = x~112.

3. The Fourier Coefficient and the Euler-Maclaurin Asymptotic Expansions.
The results of the previous section are valid for a wide class of functions fix), which
includes all those satisfying restrictions (1.1) and (1.2). We now specialize the theory
to functions fix) which are continuous in the closed interval [0, 1]. The various
formulas derived here require that fix) together with its first p derivatives should
be continuous in the closed interval [0,1]. We denote this condition by the statement

(3.1) fix) G HO, 1] .
The first result we require is an asymptotic expansion for the Fourier coefficient.

This may be obtained by integration by parts. Thus

(3.2) Í   f0x)e*Timxdx = ^(1) ~ /(0) - s4- I  f'ix)e2*imxdx .
v     '             J o 2Kim 2-Kim A

The integral on the right is of the same form as that on the left, but with fix)
replacing fix). Thus we may successively integrate by parts to form a finite series
whose rth term includes a factor 02-KÍm)~~r, together with a remainder term. Taking
the real and imaginary parts we find the following formulas.

The Fourier Coefficient Asymptotic Expansion.

(3.3)

(3.4)

= f fixC(m)f=  I   fix) cos 2irmxdx
J 0

l(p-„m (_lr_l(/(2g_1)(1)^/(2g-,)(0))

"      h Olrrmf +Lp    U

Sm f =  I    fix) sin 2-Kmxdx
.4   (1

[(p-2)/2]   /•_. N(7_l, »(2,)/, s   _    f^iÇ)))

(2,rm)2a+1
, (_ir -(/-'(I) - y -'((j)) (m,2- ^     Zïï+T ' + l%    J ■

The most convenient forms of the remainder terms <7p(m)/and Sp{m)f differ according
as p is even or odd. For example

(3.5) Of f = ^~4TP I' fv) A) (cos 2rrmx - 1 )dx .
(2irm)    J o

These expansions are valid only if the process of integration by parts is also valid.
A sufficient condition is that/(x) G C"[0, ]]. In this case the remainder terms satisfy

(3.6) Cp(m\f~ 0(mrp) ;        Sp'm) ~ 0(m~v) ,        m-* » .

In Section 4 we discuss several examples of the Fourier coefficient asymptotic
expansion.
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These asymptotic expansions may be used to derive another set of asymptotic
expansions. These are variants of the classical Euler-Maclaurin summation formula.
The Poisson summation formula (2.12) expresses the error functional Elm'a]J =
Ä[m,al7 — IJ in terms of an infinite series involving the Fourier coefficients Clrm)f
and Sirm)f. We may substitute for these their expressions given by the finite sums
on the right-hand sides of (3.3) and (3.4). The resulting formula may be simplified
by introducing the Bernoulli functions

cos 2-KrxlS2qKx) = -¿{-I)"AW- Z,
(3.7)

B29(*) = 2(-iy+1(2<?)!i:- t
r-l    (2tit)

B2q+iix) = 2i-iy+\2q+ 1)\ Z-^S .
r-i (27rr)

This leads to the following formula.
General Euler-Maclaurin Asymptotic Expansion.

(3g) Eima]f=Rlm,a]f_If

= gB,M /'-"(i) - /(g-1}(Q) + EMft
3=i     </' m9

where the remainder term is

EplmMf = 2 £ cos2-KrtaCPmr)f + 2 £ sin 2ArrtaSp(mr) f

(3.9)
= _l r fd»(x\ Bvit«) - Bpjt« -mx) dx

mpJo p!

Since the Bernoulli functions are bounded in the interval [0, 1] it follows that

Ep{mMf~O0m-v),       m^oo.

In the subsequent theory, we shall be interested in four special cases of this formula.
These four cases are Eqs. (3.15) to (3.18) below. It is convenient to express the
Bernoulli functions in terms of the Riemann zeta function and some of its variants.
Following Abramowitz and Stegun [1], we define

rfe)-i + ¿ + ¿ + ¿+-,    3>i>

(3.10)
"(9) = l-| + |-¿+--->        ï*l>

M?)  =  l + ^ + i + i+..., g>l,

*(«)-i-¿ + ¿-£+-.    ïfci-
Clearly

(3.11) niq) = (1 - 21-*)Uq) ;        Hq) = (1 ~ ^"Mq)
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These functions are related to the Bernoulli functions in the following way :

(3.12)

(3.13)

(3.14)

B2qjl) = 2j-iy-1ti2g) . BjAA) = 2(-l)M2g)
2q\                 (2V)2«         ' 2g!                 (2x)2*

h jB2AD + B2q0%)) _2i-iy-\j2q)
2g! k2k)2*

B2q-ij\)   _        B2q-ijj)   _2j-iyß02q - 1)
02q - 1)\ -        i2q - 1)\ ' (2k)2'-1

We now write down the particular cases of the Euler-Maclaurin asymptotic
expansion which correspond to the operators introduced in Eqs. (2.13) to (2.16).
In doing so we replace the Bernoulli functions in (3.8) by equivalent forms expressed
in terms of the Riemann zeta function and its variants given above

(3.15)

(3.16)

ÄIm,17 - // =     Z
'21 2j-iy-1Si2q)

■ÍÍ (2Km)2q

• (/(23_1)(1) - /(23_0(0)) +Ep{m'1]f

i-°i/_//=t(P£21 SOzIlV?!)
<2=i (2.rm)23

• (/(29_1)(1) - /<2?_1)(0)) + Ep[m'0]f

A^m.iw      [Cp^/212(-l)g-xX(29)

h (2irm)23
R[m,i]f_R[2m.i]f=     ^2

(3.17)
• (/(24-x)(l) - /(23-X)(0)) + [EplmA]f - Ep[2mA]f]

i /^[tt.,-1/2] t. _ R[m,i/2)A-\ _     y^  2(— l)"ßi2q — 1)
(3.18)    2 3=1 (2irm)23_1

• (/(23~2)(1) - /(23~2) (0)) + \ [Ep[m-1/2]f - Ep[mA/2]f].

The first of these is the classical Euler-Maclaurin summation formula. It is interest-
ing to note the close similarity between this formula (3.15) and the cosine Fourier
coefficient asymptotic expansion (3.3). The difference is the factor 2f(2g), which
occurs in each term in (3.15) but is absent in (3.3). For large values of q, f (2q) ~ 1.
The subsequent theory exploits this similarity and the corresponding similarity
between the other expansions (3.16) to (3.18) and either (3.3) or (3.4).

4. Examples of the Fourier Coefficient Asymptotic Expansion. In Section 3 we
derived two sets of asymptotic expansions. These expressed the Fourier coefficients
and the error functional as a finite series, together with a remainder term. All of
these expansions have a very similar structure. In this section we discuss in more
detail one of these, the cosine Fourier coefficient expansion (3.3). However, this
discussion applies with only minor modification to any of these expansions.

In a problem in which there is no difficulty associated with the calculation of
derivatives, it would be very convenient if Eq. (3.3) could be used to evaluate the
cosine Fourier coefficient. This would involve in practice truncating this series at a
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108 J.   N.   LYNESS

point at which the remainder term Cp(m)f is thought to be smaller in magnitude
than e, the required accuracy. The main problem in such a calculation would be
that of estimating the magnitude of the remainder term C„(m)/.

If/(a) happened to be a function for which lim^«, Cplm)f = 0, then the series
in (3.3) may converge. The numerical summation of this series could then be
attempted with some sort of confidence. But it is well known that in general this
is not the case. The infinite series obtained from (3.3) by allowing p to become
infinite is an asymptotic expansion which is generally divergent.

The remaining sections in this paper are devoted principally to obtaining a
representation for the remainder terms Cj,(m)/ and Sp(m)f which may be evaluated
in a relatively straightforward manner. Thus it is appropriate to discuss at this
stage briefly the general pattern of behavior of this expansion and its remainder
term in certain simple cases. This discussion will indicate the importance of the
remainder term and show how dangerous it may be to make any assumption about
its size which is not rigorously justified.

As a preliminary we consider the information already available. This is that
Cp(m)f is of order O0m-p). While this is of considerable use in further analytic in-
vestigations, it is of very doubtful value in direct numerical application. Essentially
we may assume the following. If we retain the first p/2 terms, and require some
accuracy «, there is some value of m, say mo, for which the remainder term |Cp(m)/|
< e for all m > m0. Unfortunately, the value of m0 as a function of e is not known
a priori. To determine ra0 in any particular instance requires an analytical investiga-
tion based on the particular properties of fix).

The simplest example is the polynomial. If fix) is a polynomial in x of degree d,
the expansion terminates, leaving an expression for the cosine (sine) Fourier
coefficient as an even (odd) polynomial in 1/m of degree d or less.

Another simple class of functions consists of entire functions of order 1. Thus
if fix) = eax it is simple to show that if 2-irm > \ a \, the series converges geometrically ;
on the other hand if 2irm < \a\, the series diverges geometrically. This behavior is
typical of all entire functions of order 1.

However, the series may converge to an incorrect result. If fix) G CK[0, 1] and
is periodic with period 1, we find that

(4.1) /<3)(1) - /(3,(0) = 0    allg.

Each term in the series is zero. This can happen even if the Fourier coefficient is not
zero. Thus if

(4.2) fix) = e°°s 2*x

the information given by the finite series is that

Cim)f = /   fix) cos2Armxdx = Cgf
(4.3)

= -ÍF^Tp f /(2P>(X) (cos 2irmx - Vdx ■
02-Km)    J o

Here the cosine Fourier coefficient is equal in value to the remainder term. Neither
is zero. While perhaps the user might notice and suspect a series all of whose terms
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are zero, a dangerous situation arises in the case of a function such as

(4.4) fix) = ecos 2TX + eax ,        |a| < 2™ .

The use of the series here would produce a series which converged to the Fourier
coefficient of eax. A different function, which shares this property of periodic func-
tions, is the 'smudge' function

(45) /(*) = e-1/xe-ini-x)gix) ,       0 < x < 1 ,

fiO) = fil) = 0 ,
where gix) G C°°[0, 1].

The examples mentioned above are mainly examples in which the series con-
verges (to a correct or incorrect result) or in which the divergent nature of the
expansion is at once apparent.

If fix) is an analytic function having a singularity in the complex plane at a
finite distance from the origin, or is an entire function of order greater than 1, the
series is almost invariably divergent for any value of m. (The exceptions to this
statement arise if fix) is periodic with period 1 and C°°[0, 1], or if some symmetry
property has the consequence that the significant part of/(3)(0) and of /(9)(1)> al-
though very large in magnitude, eliminate each other when taken in the combination
/(g)(1) _ /(5)(o) for all q odd (or even).) Thus with

(4-6) fix) = ^

the nonzero terms in the series are

K* = i-iy-1j2q-l)\ /t       _l\
m2q (2x771)'

For large m, the series consists first of terms successively decreasing in magnitude.
However, when terms T2q' where 2q' > 2wm are reached, the terms in the series
successively increase in magnitude. The series diverges for all m. The function fix)
given by (4.6) can be shown to have an nth derivative of constant sign in the
interval [0, 1]. This information can be used to show that the series is semicon-
vergent, i.e., the value of C2p(m)f is smaller in magnitude than the final included
term T2p and of the same sign as T2p.

But in general one cannot expect fix) to have the property that its high-order
derivatives have constant sign in the interval [0, 1]. It may be very dangerous in-
deed to assume that such series have 'approximate' properties of this nature. An
example (which is not pathological) is given by

(4.8) /(*) = 1/ix2 - x + 0.26) .
This function has simple poles at z = § ± yo~í. The individual terms in the expansion
have a straightforward analytic expression. In Table 1, the values of T2q and of the
partial sums

(4.9) £    = T2 + T4 + • • • + T2q
247

are listed for m = 6 and q = 1(1)20. Inspection of the table shows that the terms

(4'7) 723~ (2.m)23 \1_223/
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become very small (about 10~8) and then increase. A plausible conclusion from this
table is that

(4.10) /: fix) cos 12wxdx ¡ä -0.02

The true value of this integral is +0.701.
In conclusion then, the use of this expansion for numerical computation can be

very unreliable and deceptive unless some bound on the remainder term is available.
Even then, the true value of the remainder term may be so large that the numerical
result is not meaningful. In Section 6 an expression for the remainder term is de-
rived, in the form of a convergent series. Thus a meaningful calculation based on
the series described in this section may be carried out, if the additional work in-
volved in calculating the value of the remainder term is included in the calculation.

Table 1

qth term: T2q = K2q/02« qth partial sum: £ 2q

1
2
3
A
5
6
7
8
9

10
11
12
13
14
15
16
17
IS
19
20

-2.081713996537 - 002
6.240287755500 - 004

-4.405942671467 - 005
5.406335388194 - 006

-9.689934463007 - 007
2.189459081506 - 007

-4.886759442277 - 008
-1.259169531957 - 009
2.215382693859 - 008

-3.699575480714 - 008
5.432548918994 - 008

-7.975547956536 - 008
1.182895543519 - 007

-1.688494712958 - 007
1.911763558659 - 007
4.555025903741 - 008

-1.615341149154 - 006
9.184600203531 - 006

-4.237003493705 - 005
1.809352162352 - 004

-2.081713996537 - 002
-2.019311118929 - 002
-2.023717061616 - 002
-2.023176428105 - 002
-2.023273327446 - 002
-2.023251432867 - 002
-2.023256319633 - 002
-2.023256445536 - 002
-2.023254230153 - 002
-2.023257929715 - 002
-2.023252497194 - 002
-2.023260472750 - 002
-2.023248643789 - 002
-2.023265528725 - 002
-2.023246411118 - 002
-2.023241856077 - 002
-2 023403390252 - 002
-2.022484930232 - 002
-2.026721933740 - 002
-2.008628412092 - 002

The elements and partial sums in the asymptotic expansion of the sixth cosine
Fourier coefficient oifOx) = l/(a;2 — x + 0.26).

5. The M"bius Inversion Technique. One of the standard topics in the theory
of numbers is the theory of Möbius inversion. This is concerned with the inversion
of an infinite set of equations. We suppose that the set of numbers G0m), m = 1,2,
3, ■ • •, is related to the set of numbers F(m), m = 1, 2, 3, • • • by the set of equations

(5.1)    G(m) = aiFOm) + a2F(2m) + aJF(Zm) + • • ■ ,       m = 1,2,3, ■■■ ,
where «i 9e 0 and the coefficients a, are independent of m. Under certain conditions,
the series (5.1) may be inverted and one may derive a set of equations

(5.2)    F im) = biGim) + b2G02m) + bsGi3m) + m = 1,2,3,
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where the set of coefficients b, depend only on the set a¿. A theorem which gives
sufficient conditions for such an inversion to be justified is the following:

Möbius Inversion Theorem. Given a set of numbers cii, a2, • • • (ai -^ 0) a second
set bi, b2, • • ■ may be determined recursively using

(5.3) ai&i = 1;        £ aTbd/r = 0 ,       d = 2, 3, 4, • • • .
r\d

If the set of Eqs. (5.1) is valid, the set (5.2) is also valid under the sufficient con-
dition

00 co

(5.4) Y. Z \akbiFiklm)\ < oo ,       m = 1, 2, 3, • • • .
1=1    k=l

Several alternate sets of sufficient conditions are known. The necessary conditions
do not appear to be known.

One of the first applications of the technique defined by Eq. (5.3) is to find the
set bi which corresponds to the set ai = a2 — a3 = • • • = 1. This leads to the
Möbius numbers p.,- (Möbius function pij)), defined by

Mi = 1 ,

,.   s pj = 0    if j has a square factor other than 1 ,

Pi = (— l)r   if j is the product of r distinct prime numbers

(not including 1) .

(The first ten Möbius numbers are +1, — 1, — 1, 0, — 1, +1, —1, 0, 0, +1.) If we
refer back to the special cases of the Poisson summation formula given in Eqs.
(2.13) to (2.16) we see that each consists of a set of equations of precisely the form
of (5.1). Each may be inverted using the Möbius inversion technique. A minor
variant of this inversion is carried out in Section 6. For the moment we simply
determine the appropriate coefficients. We list here the values of &,■ corresponding to
four different sets of a¡. These turn out to be Möbius numbers or simple functions
of them.

Theorem 5.6. The solutions of Eq. (5.3) for the four following specified sets of a¡
are the corresponding sets b¡ defined as follows :

(5.6)    (1)    a,- = 1 ;       b¡ = p.¡,

(5 7)    (2)    üj = 1        (J0dd^ ' hi = v' = ßj ^ °dd^ '
= — 1    ij even) ; b, = v,- = 2n~1rik        (j = 2nk; k odd) ,

(5.8)    (3)
a,- = 1        (j odd) ; b,- = p.,- ij odd) ,

= 0        0" even) ; b, = 0 (J even) ,

a,- =1        ij = Ak + 1) ;       h = Pi (J = Ak + 1) ,
(5.9)    (4)    oy=-l    0 = 4fc + 3);       b, = -m ij = Ak + 3, ,

ai — 0        0 even) ; b¡ = 0 0 even) .
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The proof of (1) above may be found in any standard textbook on Number
Theory. (See for example Hardy and Wright [9].) The results (3), (4), and (2) are
successively more complicated consequences of (1).

In Section 6 we shall use some results which require the inversion of the formula
for the Riemann zeta function

(5.10) r(s) = £\,     q> i
s=l S

and the variants given in Section 3. These results constitute a standard application
of the above theory and are derived in the following manner. Definition (5.10) may
be written in the form

(5.11) ^=ê-V9,       »1=1,2,3,....
m «=i (ms)

This may be identified with (5.1) by setting

(5 G im) = ïiq)/mq ;       Firn) = 1/m3,

di = a2 = a3 = ■ • • = 1 .

Equation (5.2) then follows formally, the values of b¡ being given by (5.6) above.

(5.13) \=£f^q,       »-1,2,....m       «-i (ms)

This is in fact the form in which we require this identity. The standard form is

(514> W) - 5 ? ■
The validity of (5.13) and so of (5.14) is established by showing that condition (5.4)
is satisfied. Here we have

£ £ \a,})iFiklm)\ = £ £ \pi/iklm)q[
(5.15)

< —q (f(g))2 < * ,      q>l,
m

the first inequality being obtained by replacing \p¡\ by its upper bound 1.
We require in Section 6 the result corresponding to (5.13) for the variants of the

Riemann zeta function. These are
00       / _ sj\S—1 00 A 00 /_ 4 4J-1

(5.16)    viq) = Z Mr— ;        Hq) = £ ..        1V, ;        ßiq) = Z ¿   L\.t*=i      sq s=i (2s — 1) »-i (2s — 1)

and the inverted formulas are

(5 17)   J_ = y y"7?(g) = y    Pz*-Mq)     = -y (~i)'~V^-^(g) a > i
mq      ¿Í ims)"      =i ((2s - l)m)q      7=i    ((2s - l)m)3     '

These may all be established formally following the procedure by which (5.13)
was established. However, condition (5.4) is not satisfied for the first expression
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(involving the coefficients vs) for q :S 2 and a separate proof is required for 1 <
q ^ 2.

6. Formulas for Fourier Coefficients. The variants of the Poisson summation
formula (2.13) to (2.16) express the error function Rim'1]f — If or sums of function
values such as ñ[m"/ — RVm-ï]f as series whose elements are Fourier coefficients.
We are interested in obtaining formulas of the opposite nature, formulas which
express Fourier coefficients in terms of sums of function values.

The fundamental idea on which the following theory is based is that the Poisson
summation formula is a formula to which the Möbius inversion technique may be
applied. This appears to have been previously unnoticed, except by Goldberg and
Varga [7]. The inverted formula obtained in this way is (6.10) below which by itself
is only useful if fix) happens to be periodic and C°°[0, 1]. But the principle, which
uses the Möbius inversion formula to obtain formulas for Fourier coefficients in
terms of function values, is very useful and credit for this idea belongs to Goldberg
and Varga.

Instead of proceeding directly to invert the Poisson summation formula, it is
more convenient to invert the corresponding formulas (3.9) which express the re-
mainder term in the Euler-Maclaurin expansion in terms of remainder terms for the
Fourier coefficient asymptotic expansion. The four special cases of (3.9) we use are:

(6.1) Ep[mAA = 2 £ Cpirm)f ;       Ep[mMf = 2 £ i-l)rCplm)f ,
r=l r=l

(6.2) EplmA]f - Ep[2mA]f = 2 £ Cpa2r-1)m)f,
r=l

(6.3) ±- iEplm--1,2]f - Ep[mA,2]f) = 2 £ i-l)r-%air-1)m)f.
2 r-l

Each of these is of precisely the form (5.1), namely

(6.4) GOm) = siiF(m) + a2F(2m) + a3F(3m) + • • • ,

and each may be inverted to give a formula of the form (5.2),

(6.5) F im) = biGOm) + b2G02m) + 63(7(3m) + • • • .

The set of numbers a¿ are different in each of the four cases and coincide with the
four sets listed in relations (5.6) to (5.9) of Theorem 5.6 in Section 5. This theorem
provides the appropriate values of the set of numbers 6¿. Substituting into (6.5)
we obtain four formulas, namely

2CpMf= £ßsEplms-1]f= - £vsEp[m^f
(6.6) S=I s=1

= £ p2s-i[EA2^-1]f - E™2'-»'1^ ;       p ^ 2 ,
s=l

(6.7) 2s™f = £ (-irV2S-i[è(#;(2s-l)m,-l/21/ - EPH2s-i)m-i,2]f)] ;   p ^ i.
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The validity of these inversions follows for most of the stated values of p from the
Möbius inversion theorem (5.3). Since

Ep[m'a]f~Oimrp)    and    |m.| S 1,    W < *

the sufficient condition (5.4) is satisfied when p > 2 since then

£ £ [aátFiklm)] <—Jip)ttP - 1)
i=i k=i m

in all four cases. The first and third equation of (6.6) may be validated for p > 1
using this same condition (5.4). However, the second equation, that involving the
coefficient ve, requires a separate proof for the case 1 < p g 2. This proof is straight-
forward, but tedious. Equation (6.7) is in fact valid for p 2: 1, but for p ^ 2, the
proof is extremely sophisticated. This rather special case depends on Eq. (6.17)
below; there is a brief discussion following that equation.

These equations, expressed in a different form, are suitable for calculating
Fourier coefficients. Each remainder term occurring in these equations was originally
defined (in (3.3), (3.4), and (3.15) to (3.18)) as the difference between some func-
tional such as C{m)f and the first p terms of its asymptotic expansion. Thus the next
step is to substitute for these remainder terms into (6.6) and (6.7). It is convenient
to describe this in detail for only one of these equations. The corresponding results
for the others are given towards the end of this section. The first equation in (6.6) is

(6.8) 2Cplm)f=£psEp[ms'1]f.
s=l

We may substitute for these remainder terms using (3.3) and (3.15). This gives

i-iy-'if^ii) - /'"-"(o»
' o " .,=1 (2irm) "

/l 71f(x) cos 2-Kmxdx = 2 £
0 7= I

(6.9) +£pÏR{n'1]f-If- £
s=i      L ,,=i.,=1

->>to„\l      _1)(1) -

(27r7ns)23
(-D3-12ir(2g)(/(23-1)(i) - z'23-»)!

This formula is of interest because it provides a remainder term, in the form of an
infinite series, for the truncated asymptotic series for the Fourier coefficient. It
appears that (6.9) may be generalized. The special case with n = 0 may be written

(6.10)
ri oo

2 /   f(x) cos 2-Kmxdx = £ p,[R["",'u f - If]
•7  41 o_l

We may add to each side of this equation different multiples of (5.13) with different
values of q, and in view of the absolute convergence of all the series involved, we
may combine these to give

(6.11)    2 f f(x) cos 2irmxdx = £ %3 + £ pi Rlm^f - If - £ %^1 ,
J o <j-i m «-i    L q=i    (ms)     A

where K2, Ka,, • • -, K2n are arbitrary. Equation (6.9) is merely a special case of this
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more general relation, obtained by setting K2q = K2q, where

(6.12) K2q - 2(-l)3-1(/(23-1)(l) - /(23-1)(0))/(2tt)23.

In one sense this is an optimum choice as it makes the term in square brackets a
term of order 0(s~2(n+1)), ensuring the maximum ultimate rate of convergence for
the series.

This equation and the others like it given below ((6.13), (6.14), and (6.15)) have
several outstanding features which make them eminently suitable as a basis for
numerical computation of the Fourier coefficients. Their possible use in this manner
is described in considerable detail in the remaining sections of this paper. However,
it is pertinent at this point to draw the reader's attention to certain aspects of these
formulas.

The most interesting feature is that Eq. (6.9) is quite independent of round-off
errors in the calculation of the elements /(23~n(l) — /(24_1)(0). Since it is simply a
special case of (6.11) in which the K2q are arbitrary, Eq. (6.9) is true quite inde-
pendently of the values which are assigned to these elements. The penalty for using
incorrect values may be that the series converges more slowly, but it converges in
such a way as to give a correct result for the Fourier coefficient.

A second feature is that the same set of numerical quantities E¡A]f, s = L 2,
3, • • •, s, is required for all the different Fourier coefficients. Here s is the value of s
for which E¡A]f is s° small and is evidently steadily decreasing in such a manner
that the computer is prepared to disregard E^nfIor s > s. The calculation of the
first Fourier coefficient (m = 1) requires all these (except those for which ps = 0).
The second coefficient requires alternate members of the set, and so on. The Fourier
coefficients with m > s do not need any of these values. They are computed from
the first p terms of the standard asymptotic expansion only, and with confidence in
spite of the fact that the approximations to the derivatives being used need not be
accurate.

The third feature of Eq. (6.9) or of (6.11) is that, although they are exact equa-
tions, they are of interest only if a numerical calculation is envisioned. The im-
mediate reaction of a competent mathematician faced with Eq. (6.11) is to cancel
out all the terms involving K2q and to reduce it, correctly, to the simpler form (6.10).
If the sum over index s were to be evaluated analytically, this would be an obvious
first stage. The importance of (6.9) is that, with these additional terms present on
the right-hand side, the series converges at a rapid rate. And, aside from one or two
special circumstances, the only reason for making a series more complicated in order
to ensure more rapid convergence is that one intends to use it in a numerical
calculation.

In the case that/(a;) happens to be a C°°[0, 1] function and periodic with period 1,
it follows that

/(3)(1) = /(3)(0)

and K2q = 0. In this case (6.9) reduces to the much simpler form (6.10) and in this
case the convergence of the right-hand side of (6.10) is relatively rapid, each term
being Ois~p) for any value of p. In the general case though, the convergence of the
right-hand side of (6.10) is too slow for comfort, being 0(s-2), and in practice it is
necessary to use a formula such as (6.9) or (6.11) to obtain a formula suitable for
computation.
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The above remarks apply equally to the variants of (6.9), (6.10), and (6.11) given
below. We conclude this section by deriving these variants from the remaining
equations in (6.6) and (6.7). Following a directly analogous procedure, we find

(6.13)
2 f fix) cos 2-Kmxdx =£\-£ Jfi*-«'/ - If - £ vjf^\ ,

J o «»i m s=i   L q=i   (ms)     A

71  ^   0

(6.14)

and

(6.15)

2q
/l nfix) cos 2wmxdx = £

0 9=1 ,,*

+     £    pÏR[msA]f - Rl2msMf - £ X-^%] ,       n^O
8=1; s odd       L q=l      (ms)        -I

2 f f(x) sin 2Kmxdx = ¿%? +     ¿     (-1)(-1)/2M8
■* 0 9=1 m 8—1; s odd

X [-J- (ß["—I/21/ - ßl--1«/) - ¿ ^(2g - l^W] ,        „ s> o ,
L 2 9_j       (ms) q J

where the numbers Kq (q = 1, 3, • • -, 2ti — 1) are arbitrary. The choice of K2q
which gives forms for the remainder term in the cosine Fourier coefficient is given
by (6.12). The analogous choice for the sine Fourier coefficient is K2q+i = K2q+i
where

(6.16) 7^+1 = 2(-l)"-1(/c29)(l) - /(23)(0))/(27r)23+1.

The proof of Eq. (6.15) in the case in which Ki is arbitrary and not given by
(6.16) requires the validity of the inversion

This follows in an elementary manner for q > 1 from the Möbius inversion formula.
To establish this for q = 1 the author has found it necessary to follow the method
given in Landau [II, pp. 157-159] in which the corresponding result

(6.18) £ ^ = lim ~ = 0ri *      »-i f (q)
is derived.

This case iKi arbitrary) is of little interest from a numerical point of view since
in applications the value of/(l) — /(0) would normally be available.

7. Implementation (General Remarks). In the preceding sections, no use of
approximation theory has been made. The formulas derived in the previous section
are all exact. Their immediate use is precluded since each includes an infinite sum
over index s. They differ from the simpler asymptotic series of Section 3 in one
respect only. The 'infinite tail' of the asymptotic expansion (which normally
diverges) has been replaced by a convergent infinite sum, the sth term in the sum
having order 0(s~2n~2).
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In this section and in subsequent sections we discuss the implementation of a
calculation based on one of these formulas. In many important respects the same
treatment may be applied to each of these formulas. It is convenient to describe in
detail only one, namely (6.11). Any significant differences between different mem-
bers of the set of formulas will be mentioned in passing.

While there may be many different ways of implementing these formulas, we
shall confine our attention to a specific type of problem. We shall assume that we
have available, in the form of a subroutine or an analytic expression, the function
f(x). We wish to calculate approximations to a set of cosine Fourier coefficients

=  Í fix(7.1) Cim'f=       fix) cos 2-Kmxdx ,        m = 1, 2, 3, • • -, W,.
J 0

We require each approximation to have an error smaller in magnitude than a given
tolerance e. We wish to calculate all the cosine Fourier coefficients which are greater
in magnitude than e. Thus the value of m in (7.1) depends on « and may be de-
termined in the course of the calculation.

The exact formula (6.11), on which we shall base an approximate formula (7.4)
below, may be written in the following form:

(7.2) 2C(m)f = 2 f fix) cos 2Kmxdx = ^-2+^i+...+%+¿ ßM:+A f,

where

m m s=i

ni\ Pís-1]f      Pts'1]f      Tf     ïi2)K2      f(4)g4 Çj2n)K2n(7.3) E2n+2f = R       f — If--2-;-■ ■ •-Yn- ■s s s

Here the numbers K2q are arbitrary. The particular choice K2q = K2q where

(7.4) K2q = 2(-l)3-1(/(23-1)(l) - /(25-1)(0))/(27r)23

leads to the identification of E2A\f with E¡Alf and in this case the sth term of the
sum is 0(s~2n~2). In general, when K2 ^ K2, this sth term is 0(s~2) and the ultimate
rate of convergence of this series is slower. (This is discussed in some detail in
Section 9.)

The approximation to (7.2) which we shall consider has the following form:

(7.5) 2CimA = ̂  + Z\ + ■ ■ ■ + ^fn +   £ pMZff.
mm m        >s</»

This differs from the exact result (7.2) in that all terms E['^J with s greater than s
have been removed from the right-hand side of (7.2) to form the right-hand side
of (7.5).

This set of approximations is specified once the following information is avail-
able:

(7.6) (i) The value of n.

(7.7) (ii) The values of //, K2, llh ■■■, K2n.

(7.8) (iii) The value of s.
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The general discussion falls into three parts. In Section 8 we take the view that we
want to construct a method of procedure using which the values of s and n are de-
termined in the course of the calculation. In Section 9 we discuss standard practical
procedures for determining the values of If and the parameter K2q and their rele-
vance in this particular problem. In Section 10 we discuss theoretical properties of
the approximation (7.5).

8. Determination of n and s. Before dealing with the practical aspect of this
calculation we derive first a simple theorem which relates s to e, the required
tolerance.

Theorem 8.1. In terms of definitions (7.2), (7.3), and (7.5), if s is an integer for
which

(8.1) £   \El¿$f\ <2e,
s-s+l

then the set of approximation errors satisfy

(8.2) \Cim)f~ C(m)f\ < e.
The proof is direct: we take the difference between (7.2) and (7.5). Using

standard manipulation of inequalities, we find

\-> £,[7718,1]  j.-X"    ¿-I    P*tiîn+2   J
iÇÎTTl)   /■   _     /->(77l)   7.1     _

(8.3)
2

Here we have used the inequality \p,\ ^ 1, redefined the summation index, intro-
duced nonnegative terms into the sum and applied (8.1).

Condition (8.1) is a sufficient, but not a necessary condition. Since E^\f ~
Ois~~p) where p ^ 2, there always exists a value of s satisfying (8.1). If any particular
value of s satisfies (8.1), so does any greater integer.

In a practical implementation, the determination of n and s and the methods
used to determine If and K2q are related to each other. For descriptive purposes
it is convenient to suppose for the moment that a value of n has been assigned and
the required numbers //, K2q (g = 1, 2, ■ • -, n) are already available. In this case
one may proceed as follows. We calculate successively the values E^\f, s = 1, 2,
3, •••. These values are given by (7.3) and each calculation requires the rule sum
evaluation A1"'11/. This calculation is to be terminated at a point when we have
just calculated E¡Alf, s = s and we have reason to believe that criterion (8.1) is
satisfied. It is necessary in practice to replace (8.1) by a practical convergence
criterion. There are many ways of constructing such a criterion, but none are fool-
proof. A simple form might have four parts

(8.4) P.C. 1. Round-off error check,

(8.5) P.C. 2. Physical limit check,

(8.6) P.C. 3. [Eililfl < 2e,
(8.7) P.C. 4. \El2n+]2f\s = s — 2, s — 1, s seem to form a suitable sequence .
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P.C. 1 and P.C. 2 are normal guards which will terminate the calculation altogether
if the round-off level is clearly higher than e or if some physical limit set in the code
is about to be exceeded. P.C. 3 is a simple criterion, which clearly must be satisfied
before P.C. 4 can be considered. P.C. 4 may be as complicated as the user wishes.
It should guard against a condition in which the sequence is converging very slowly,
or the possibility of a single value of E^'llf being very small. We do not go into any
detail about these practical convergence criteria here.

Thus the calculation of these elements is terminated with the sth term. S
satisfies some practical convergence criterion P.C. 4 and hopefully it satisfies con-
dition (8.1).

At this stage the set of numbers

(8.8) Ël£l\f,       8=1,2, ..., 5,
are available. For the calculation of C{m)f using (7.5) only a subset of this set is
required, namely the set

(8.9) Êl2:+21]f,       msáS,   M8^0.

In fact if m > s, the set (8.9) is empty and the sum in (7.5) may be replaced by
zero. The theorem assures us that, so long as s in fact satisfies (8.1), then the
calculated approximation C(m)f differs from the true value C{m)f by less than e for
all m.

The 'cost' of this calculation includes the following principal items

(8.10) (i) Evaluation of If,

(8.11) (ii) Assignment of K2, K4, • • •, K2n,

(8.12) (iii) Evaluation of R^^f,       s = 1, 2, 3, • • -, S.

It is important to note that the same set of function values is used for all the
Fourier coefficients, though all are not used explicitly in the evaluation of each
coefficient. For example, in the cases where m > s, no function values appear in the
formula. But they were required previously in order to show that m > s by es-
tablishing the value of s. Also, function values may have been used to determine the
values of K2q.

The description given above is restricted to a simplified situation in which the
value of ti is assigned and the values of K2q (g = 1,2, ■ • •, 71) are immediately avail-
able. As described above the values of È^\f actually encountered are used to
determine the value of s.

In a realistic situation, the use of an appropriate value of n is very important.
The value of s depends on n as well as on e and may be quite different for different
values of n. Thus one may 'cut costs' under item (ii) by using a small value of n to
find that this involves a large s and an increase in cost under item (iii).

To illustrate this dependence we have treated the example

(8.13) fix) = 1/ix2 - X + (5/8)2) .
The values of If and K2q have simple analytic expressions and these have been used
to calculate E^f for 2n = 0, 2, 4, 6, 8, 10, s = 1, 2, 3, ■ - -, 10. These numbers
are set out in Table 2. The round-off level in the table is about 10-10.
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Let us suppose that we wanted a uniform accuracy in the result of 5.10~7 and
that the practical convergence criterion included as part P.C. 3 (8.6) the require-
ment

(8.14) \E?4\f\ < 5.10-7.
If we had assigned n = 0, we would have proceeded to calculate the elements in
the first column of Table 2 until one element satisfied (8.14) with n = 0. This
sequence converges as s~2 and reaches the desired level at about s = 1473. If we had
assigned 2n = 2, we would require the value of K2 to calculate the elements in the
second column of Table 2, but we satisfy (8.14) with s = 24. With 2n = 4, 6, 8, 10
we find (8.14) is satisfied with s = 9, 8, 8, 8, respectively. In retrospect therefore, in
this calculation an appropriate value of 2tz is 4 or 6. To use a smaller value involves
an excessive number of function evaluations, while to use a larger value involves
the calculation of further values of K2q with no saving in the number of function
evaluations.

In an automatic code, this information is not available at the start. Thus the
code has to be arranged in such a way that it determines both n and s on the basis
of the values of E¡"A]f actually encountered. The initial aim of such a routine is to
find a pair of values n, s which satisfy P.C. 3 (8.6). After this it may retain this value
of n and proceed to attempt to satisfy the entire convergence criterion, increasing
the value of s if necessary.

This first stage has a superficial resemblance to a minimization routine in two
variables q, s, the function treated being \E¡A]f\- Only unit steps in positive
directions q and s are allowed in the search and at any moment, the list -Ê,.j§■1,/
(s = 1, 2, • • -, s) is available. If the next step involves increasing s, one additional
entry in the list should be made. If the next step involves increasing q the entire list
is updated by the addition of the terms f (2q)K2q*/s2Q. The routine should expect
relatively smooth behavior of this discrete function in the direction of increasing
s, but not in the direction of increasing q. Also there might be an adjustment built
in by which the search routine assessed the cost of a step in the s direction against
the cost of a step in the q direction. In straightforward cases all that is really needed
is an upper bound on q.

While a poorly constructed code can lead to unnecessary work, a high level in
sophistication for this part of the code is not necessary. Any terminal value q = n,
s = s gives results of suitable accuracy so long as the fourth part of the practical
convergence criterion P.C. 4 (8.7) is adequate. All that this first stage should be
capable of doing is to choose a value of n which is not totally unreasonable. In the
example illustrated in Table 2, it should be able to increase n beyond 2n = 2 and
should not increase n beyond 2ti = 8.

Finally, using these particular values of n and s, the calculation of any cosine
Fourier coefficient is effected by direct substitution into (7.5). The values of
E2'A_2]f required have just been calculated while the values of K2q (q = 2,A, ■ ■ ■, n)
were calculated or assigned as a by-product in that calculation.

If it is known beforehand that/(x) is periodic having period 1, the calculation is
much simpler since K2q = 0 and the appropriate value of n is zero. However, the
procedure described above may be used. If the function is periodic, it should appear
that the values of K2q are all small ; good progress in the minimization is occurring
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by increasing §, while no progress is being made by increasing q. The routine should
therefore adjust to a periodic function automatically.

The approximation C{im)f given by (7.5) is based on the exact expression (6.11)
for Cim)f. All that is necessary to obtain (7.5) from (6.11) is to replace the infinite
sum over index s by a finite sum, the restriction being s ^ s/m. Two further ap-
proximations for Cim)f and an approximation Sim)f for Sim)f maybe based on Eqs.
(6.13), (6.14), and (6.15), respectively, by restricting the sum in an identical manner.
We list here the resulting formulas :

(8.1o)    2C     /=—¿H-¡+-.-H-2n-~   2-,  v*E2n+2 f,
mm m        ¡¡¿s/m

(8.16)  2c(m7 -£\ + £\+...+£* +     E    p.iE&Pf - ËïlrAf),
mm m        *é~sim (8 odd)

o et"1) f      Ki   .   K-z   . ,   Jv271—1
Zii       f   =  A/ H-3+"""l-2^ï(8.17) m      m m

+  _ E    (-d(-1)/2m.4 ÄrI,!V - E[2:iill2if),
8^8 ¡m (8 odd) ^

where the terms in the sum are

/fi1fiN       ©[..o]-.      pn.oii      rr     ^(2)^2     q(4)-J?4 yj2n)K2n(8.18) Ü2«+2j = /c      f — If-a-¡-• • •-\-n      ,s s s

(8.19) ËUlf - Ë£tff = Ä1"11/ - R[2S'1] - ^P-X-i?#2-" ,
s s

J_  /©[8,-1/2]  , ©[s,l/2]  7.4.   _     1     /p[s,-l/2], p[8,l/2]j.s ßjl)Rl^ (E2n+i    f — h2n+i  f) = — (R f — R        f)-
(8.20) ¿ ¿ S

_ ß(3)Ks _ _ ß(2n - l)7C2n-i
s3 '" s2""1

With minor modifications, the discussion of Sections 7 and 8 applies to any of
these formulas. The quantity E^\f is simply replaced by one of the quantities
on the right of Eqs. (8.18), (8.19) or (8.20). Theorem 8.1 is valid, except that in the
case of (8.15) the numbers vs satisfy

(8.21) \v,\ g s,        s > 1
in place of \p,\ g 1. Thus (8.1) is replaced by

(8.22) £  s\Ël2nA2f\ < 2e.
•-ï+i

This in turn leads to a slightly more stringent practical convergence criterion
P.C. 3, P.C. 4. The author has not come across any case in practice in which (8.15)
seems to be preferable to (7.5).

The final two formulas (8.16) and (8.17) do not involve //, but involve slightly
more sophisticated summation operators. These are alternating sums and can be
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expressed in various forms. For example

Ä[..U/ _ RWMf = i (Ä[..ll/ _ ^[8,0]^

(8.23) = (1/2*) [* /(O) - /(l/2s) + fil/s) - /(3/2s)

+ •■• +*/(l)].
This is sometimes called an alternating trapezoidal sum and uses the same function
values as a trapezoidal rule, but with alternating signs. Similarly

(8.24) h (R[S,~1/2]f - RleAmf) - (l/2s)[/(l/4s) - /(3/4s)

+ /(5/4s)-/((4s- l)/4s)]
is known also as the alternating midpoint sum.

These formulas have a slightly different 'cost structure' from that listed in
(8.10), (8.11), (8.12). Item (i) does not appear. Item (iii) is about twice as expensive;
to obtain the same accuracy roughly the same value of s is involved, but Rli-1]f has
to be replaced by one of the operators (8.23) or (8.24), which involve about twice the
number of function values. In the calculation of S^f this additional expense is
unavoidable. In the calculation of C(m)/ if the value of If is known, the use of (7.5)
in place of (8.16) leads to a much shorter calculation.

In formula (8.17), (8.20) the parameter Ki is arbitrary. However, it should
invariably be replaced by Ki since this involves only function values:

(8.25) Ki = -2(/(l) - /(0))/(2t) .

9. Calculation of Parameter K2q. In the implementation described in the
previous section, the numbers K2q (g = 1,2, • • •, n) have been treated as parameters.
In fact, the exact formulas such as (7.2), (7.3) are identities in the set of numbers
R2q and are valid whatever choice is made. The choice K2q = K2q where K2q is
given by

(9.1) K2q = 2(-l)3-1(/C23-1,(l) - /(23-1)(0))/(2x)23

is suggested because this choice leads to a faster ultimate rate of convergence of the
sequence Ë^\f. Specifically, if we define AK2q by

(9.2) K2q = K2q + AK2q
then we have

(9.3) 4^2/~0(s-(2"+2))    as s -«,

but using (7.3)

fQA\ P^U-      f(2)A^2     f(4)Aif4 f(2ra)AK2n        ,.,„(y.4j        Ji2n+2f —-1 ¡ •••-\- u2n+2f ,
s s s

so that, unless K2 — K2 giving AK2 = 0, we have

(9.5) Ë[AA2f ~ Ois~2)    as s -» oo .

In the example of the previous section, we have seen the effect of choosing K2 = K4
=r   . . .  = K2n = 0. This is the same as choosing n = 0 and is done at the cost
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of introducing a high value of s and consequently a large number of function
evaluations.

If the function/^) is known in analytic form, the derivatives may in principle be
calculated analytically. Depending on the structure of the function and the time
available, it may be too tedious to do this after perhaps some low-order derivative
has been expressed analytically. Hopefully, automatic algebraic manipulators may
become more readily available and remove the necessity for the rest of this section.

The subsequent discussion is restricted to the cases in which analytic differentia-
tion is not a viable alternative, and some numerical expedient based on function
values fix/) has to be used.

Before commencing such a calculation, or including the facility for such a
calculation in an automatic code, one must give some attention to the accuracy
required for these derivatives. The general situation here is one of balancing the cost
of calculating K2q accurately against the cost of calculating a possibly large number
of the rule sum approximations Rl,-1]f. In fact, the discussion in the previous section
about the choice of n represents an extreme case of precisely this sort of balance.
There the choice presented was between extremes. Either K2q = 0 or K2q = K2q.
Here it is more delicate. With increasing effort we may attempt to make K2q suc-
cessively closer to K2q. At what point should we be content with the accuracy at-
tained? The reason we calculate K2q at all is to try to arrange that s, the value of
s for which

(9.6) ÏÈiiïlfl < 2e ,
is as small as possible. A glance at (9.4) indicates that we would like the effect of
the terms f 02q) AK2q/s2q to have died out by the time the value s = s is reached.
But in general the value of s is not known at this stage. However, if some estimate
is available, the accuracy required might be chosen so as to satisfy

(9-7) ^^<i,       S=l,2,...,n
s n

or some similar criterion. If we define

(9.8) F{x) = fix + 1) - fix)
this requirement becomes

(9.9) 1*^(0), <!*£.,        q=l,2,..,n.
While this should not be treated as a precise relationship, it is qualitatively il-
luminating. For example if we are willing to go as far as s = 6 (a total of 13 function
evaluations for the rule sums) we find that the accuracy requirement for F'(0)
may be relaxed by a factor of about 900 for the calculation of F'"(0). (However,
one should bear in mind that it is the absolute accuracy which is under consideration
here. The actual values of |F(2',_1>(0)| may increase with increasing q, leaving a much
smaller factor in any calculation based on relative accuracy criteria.) If subsequently
the estimate s = 6 turns out to be too high, the use of these inaccurate derivatives
may force the actual value of s up to 6. On the other hand, if subsequently the
estimate s = 6 turns out to be too low, we have used over-accurate approximations
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for the derivatives. In neither case need the calculation be abandoned or modified.
We now mention briefly three numerical methods which might be employed to

calculate the derivatives. The first two could be applied directly to the function

(9.10) Fix) = fix+1)- fix)
to evaluate the set F(s)(0), q = 1, 2, • • -, 2ti. (The even-ordered derivatives are
required if the sine Fourier coefficients are also being calculated.) Whether or not
the calculation is arranged to calculate F(3)(0), or to calculate /<5)(1) and/(î)(0)
separately, any accuracy check at intermediate stages should be based on the value
of F(5)(0). For example, if fix) is nearly periodic, F(,)(0) may be small while /(9>(1)
and/(9)(0) are nearly equal larger numbers.

Method 1. Finite-difference approximations. Standard formulas and codes exist
for the evaluation of derivatives in terms of tabular points. These are rarely used
because of the undue amplification of round-off error in the final result. In this
calculation, the use of inaccurate approximations for the derivatives is corrected
at a later stage in the calculation. Essentially a formula of the type

(9.11) F(3)(0) ~   E aq„FiJh)
j=-N

may be used, the approximation being exact apart from round-off error if Fix) is a
polynomial of degree 2N or less. These techniques are described in Milne-Thompson
[15], Bickley [2], Kopal [10], and Ballester and Pereyra [16].

Method 2. Interpolation for derivatives in the complex plane. A different approach,
which is convenient for obtaining approximations to a set of 'normalized' Taylor
coefficients rsfMixo)/s\ with a uniform accuracy «t.c, is described in Lyness [13].
This requires that /(z) is analytic within a region in the complex plane which in-
cludes the circle \z — xo\ ú r and is based on complex function evaluations/(z,) at
points on the circle \z — xo\ = r. The formula used for these approximations is

(9.12) r'/C'),0Co) ~ ¿ £ e-2riis/Nfixo + re2*iilN) ,       s = 0,1,2, ■ ■ ■ ,N - 1,
S. 1\   j=i

and on the basis of the same set of N complex function values this formula provides
approximations of polynomial degree N — 1 to fixo) and its first N — 1 derivatives
at Xo- So long as /(z) is a real function of z when z is real and x0 is real, only about
A7/2 separate complex function evaluations are required since advantage may be
taken of conjugate pairs, i.e., fixo + re'6) = [fixo + re"iB)]".

While a particular formula is specified once r and N are provided, an automatic
code may be constructed (see [13]) in which r and eT.c. are provided and the routine
attempts to determine N in such a way that the error AfMixo) in the result satisfies

(9.13) rs\AfAxo)\ <ercj        s = 0,l,2,3, ••• .

The routine then returns a set of normalized Taylor coefficients together with an
error estimate which may be larger than eT.c. if round-off error has necessitated
this but which is generally smaller than eT.c..

An automatic routine of this type requires input parameters r and eT.c.. In view
of (9.9) and (9.13) we should choose these to satisfy the set of inequalities
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(914) *.<,.(%-ni       (2.TS)23 j,...,
(y-i4j r2«-i <2r(2g)ne'        g      *' A       'n'

It appears that if this inequality is satisfied for q = 1 and q = n it is automatically
satisfied for 5 = 2, 3, • • -, n — 1. If n = 1 any choice satisfying

(s9.IO) r     <  2f(2)  e

is satisfactory. For other values of n, an approximate solution of the equations
obtained from (9.14) for q = 1 and q = n by replacing the inequality by an equality
is

(9.16) r~22t"e3 ;       ét.c.-^ se        (n = 6) .

Method 3. Global polynomial approximation based on trapezoidal rule approxi-
mations. There is a technique, described in Lyness and Moler [14], which is de-
signed to calculate precisely the quantities required. This is based on treating the
Euler-Maclaurin formula in the same way as we treated the Poisson summation
formula in Section 6. This leads to what is essentially a modification of Romberg
integration. This technique makes use of precisely the rule sums which are being
calculated in any case, and at first sight it seems that the derivatives may be
calculated at an insignificant additional cost.

To illustrate the theory we consider Eq. (3.17), which may be written in the
form

(9.17)        ßI-1I/-Ä[,-1]/=   P£    H2q]K2q + Ep[m'1]f-Ep[2m-l]f.
(j=i m q

If we set p = 2N + 2 and write this equation down for N distinct values of m,
say mi, m2, • • •, m^, and disregard the remainder terms, the resulting N equations
may be considered to be a set of linear equations in the unknowns K2q, q — 1,2,
• • •, N. In fact, should fix) be a polynomial of degree 2N + 1 or less, these equations

would be exact since in that case the remainder terms are precisely zero.
This set of equations has an associated matrix of the Vandermonde type which

may be inverted analytically. However, there exists (see [14]) a generalization of the
Neville-Romberg algorithm. Using this, the calculation may be undertaken in a
manner which is a slight generalization of Romberg integration. That is, a solution
for K2, Ki, • • •, K2n based on mesh ratios mh m2, • • ■, m^ may be up-dated after
the calculation of fí[m11/ — Ri2m-1]f, m = m^+i, by extending a generalized T-table.

If Eq. (3.15) is used instead of (3.17), the procedure includes a standard Rom-
berg integration as a subset of the calculation.

This method fits very neatly into the general theory. In earlier versions of an
automatic code this method was used and its defects were discovered experi-
mentally. Like the other methods described above, it provides an approximation
for/<5)(l) — /(s)(0) of polynomial degree 2N + 1. However, this method relies on
global polynomial approximation (over the whole interval [0, 1]) rather than local
polynomial approximation in the neighbourhood of an end point. Thus to provide
accurate approximations the function fix) should approximate a polynomial over
the entire interval. Otherwise, grossly inaccurate approximations are obtained.
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A second extremely annoying feature of this method is that it may interact with
the rest of the calculation. This is illustrated below by a simple example, in which
Eq. (7.5) is being used.

We suppose that 2n = 8 and that the derivatives and the integral are calculated,
using mesh ratios mi, m2, m3, m4, m5. In this case we have calculated approximations
If and K2q, q = 1, 2, 3, 4, which satisfy the equations

*■*■«/ -If=£ S®& ,       i=l, 2, 3, 4, 5 .
«=i     mi

These may be written

ËiV'A = 0 ,       i = 1, 2, 3, 4, 5 .
Thus when we come to calculate the set of values

ËÏUlf,       s = 1, 2, 3, • • • , 2ti + 2 = 10
we should find the five members of this set for which s = mi, m2, m3, m4, and m5 to
be identically zero (rounding errors apart). That is to say we have managed to
choose approximations to the derivatives in a manner specifically designed to upset
the convergence criterion.

Once this situation is noted, it is quite easy to take care to see that it is not taken
as an indication of convergence. However, the interaction may not be as specific
as this extreme example indicates ; the apparent gain (obtaining derivative approxi-
mations at no additional cost) may be completely offset by having to use a much
more carefully constructed practical convergence criterion and consequently
additional function evaluations.

10. The Approximation Error C(m)/ — C(m>/. In the previous two sections, the
emphasis of the discussion is on how to apply the approximation formula to obtain
results of specified numerical accuracy. In this section we look at the resulting
approximation and derive some simple theoretical properties of the error functional
C(m)/ — C(m)/ The approximation C(m)f is specified once the following information
is available:

(i) The values of parameters n and s.
(ii) The values of parameters K2q (g = 1, 2, • • -, n).

The principal results in this section involve K^ only through AK2q = K2q — K2q,
where K2q is given by (7.4).

We now discuss the polynomial degree of the approximation C{m)f. Ii fix) hap-
pens to be a polynomial of degree 2n + 1 both the Fourier coefficient asymptotic
expansion (3.3) and the Euler-Maclaurin asymptotic expansion (3.15) are finite
series having n terms. The remainder terms satisfy

(10.1) CSUf = 0 ,       ElAl\f = 0
since both integral representations (3.5) and (3.9) involve an integrand with factor
/(2n+2)(.j.) an(j this is zero. This introduces considerable simplifications into many
of the formulas we have derived. Thus we may write in place of the exact result
(7.2), (7.3) the simpler formula

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



128 J.   N.   LYNESS

(10.2) 2C(m7=¿%.
3=1 m

Also, since

(10.3) ËÏUlf =-£ íM^-í-S + ElXlf
■2-1 S

we may express (7.5) in the form

(10.4) 2c('")/ = £ %* - z M8 ¿ ^r^g2-3.
42=i m        s¿s/m     <2=i     (ms)

It follows from (10.2) and (10.4) that

(10.5) 2(CW/ - C^f) = E % -   Z  M8 f ^^ •
■2=1 m sSï/7»     <2=i    (ms)

If the quantities AK2q (g = 1,2, • • ■, n) are also zero then the right-hand side of
(10.5) is zero and the approximation C(m)/is exact. Naturally, &K2q is zero if exact
values K2q = K2q have been used. Also áK2q is zero for the functions under con-
sideration (polynomials of degree 2?i + 1) if the derivatives/(25-1)(l) — /(23_1)(0)
which occur in K2q have been approximated using a method which is exact if fix) is a
polynomial of degree 2n + 1. Specifically, all three methods given in the previous
section have this property so long as the parameters N, 2N — 1, N in Methods 1, 2,
and 3, respectively, exceed 2n. We state this result as a theorem.

Theorem 10.6. The approximation C(m)/ given by (7.5) is exact for polynomial
functions fix) of degree 2n + 1 so long as AK2q = K2q — K2q (g = 1, 2, • • -, n)
is zero for such functions.

We now consider the trigonometric degree of the approximation. If fOx) is a
trigonometric polynomial of degree s, it has the form

(10.7) fix) — Ao + X -¿r cos 2?rra; + ^Br sin 2.rra .
7=1 7=1

Two results follow readily. These are:

(10.8) #3 = 0,        gèl,

(10.9) RUMf = // = A,,       s>s.
Consequently, if we set K2q = K2q in the exact result (7.2), (7.3) we find

(10.10) 2C(m>/ =   Z  PsiRlmsA]f - If)
sg s /m

while the approximation (7.5) has the form

(io.li) 2c«/= ¿^%+ e pÍR[m'-i]f-if- £ay^q2q).
3=1 m sa«/™    \ 3=1     (ms)      /

These are clearly identical so long as AK2q = 0 (g = 1, 2,  ■ • -, n). This happens
automatically if Methods 1 and 2 for the derivatives have been applied to

(10.12) Fix) = fix + 1) - f(x)
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since all function evaluations of Fix) are zero; but it generally does not happen if
Method 3 is used, nor if separate applications of the same method have been used
to approximate/(3)(1) and/(3)(0).

Theorem 10.13. The approximation C(m)/ given by (7.5) is exact for trigonometric
polynomials fix) of degree s ((10.7) above) so long as AK2q (g = 1, 2, • • -, n) is zero
for such functions (or if n = 0).

We now derive an approximation error bound of a conventional nature. This
bound is similar to standard error bounds for quadrature rules of specified degree
in that it contains a term with a factor

(10.14) M2n+2 = max | /(2"+2) (¡c) | .

It also contains terms having coefficients AK2q, since unless these are zero, the re-
sult is not of polynomial degree 2ti + 1.

We deal with the simpler case in which m > s first. In this case, the calculated
value C(m)/ is simply

(10.15) 2C(m)/=E%,       m>s
3=i m

while the exact value may be expressed in terms of its asymptotic expansion (3.3) or

(10.16) 2Cim)f =£^f+ 2Ci:Uf ■
3=i m

The approximation error is therefore
"   AIT

(10.17) 2(C(""/ - C(m)f) = E ^7 - 2CÍ&/,       m > s .
3=i m

Applying the intermediate value theorem to expression (3.5) for the remainder
term, we find

(10.18) |C'">/ - C™f\ è}£ ^ + fl)M™,       rn>s.z  «=i   m (2irm)

If we express AK2q in terms of AF(2s_1)(0) as in (9.8) this gives

(10.19) \t»*f - C™f\ g; £ |Af9(2g~"f ' + -¿gfefe ,       m>s.
3=1     (2irm) (/¿Km)

This depends on s in the sense that it is valid only if m > s.
We now proceed to the more complicated case, that in which m ií s. Here we

shall obtain a bound of the same general structure. The difference is that factor
(2irm)2ä occurring in the denominator will be replaced by (2tt(s + l))2s_1 and certain
different multiplying constants occur as coefficients in each term. The bound is
rather pessimistic since certain sums and integrals are bounded in magnitude by
sums and integrals of the corresponding absolute quantities in a conventional
manner.

We proceed, as in the derivation of Theorem 8.1, to take the difference between
(7(777)/ given by (7.2), (7.3) and C(m)/ given by (7.5). Taking into account relation
(9.4), we find
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„[77,8,1] ,      v> Çj2q)AK2q\
&2n+2 f — 2-1     T^T^-/(10.20) 2iCim)f-CMf) = -   E  M.U-

s>.,/77»     \ 3=i     (ms)

This is of course an exact relation. In fact, in the case m > s, Eq. (10.17) above may
be derived from it by Möbius inversion. We proceed to calculate separate bounds
for each of the n + 1 terms on the right-hand side of (10.20). Some of the details
of this calculation are given in the Appendix. In particular, we use the inequality

(10.21) E ps/ims)2q
s>1/m

< m 5: 1 ,    s^l,    gel
4   (g + I)23"1 '

whose proof involves placing a bound on the generalized zeta function f (s, a). Using
this we see that the magnitude of the gth term in the sum over q in (10.20) is
bounded by

(10.22)    Çi2q)\AKti\ Ms

«>s/7» (ms) 2'/
<

7 f(2g)|AÍC23| 7 r(2g)lAF(23-1)(0)[
4t   (2t(5 + I))23"14   is + I)23"1

The first term on the right of (10.20) (and the only term which occurs if AK2q = 0)
may be bounded if we use the integral representation (3.9) for the error functional.
Thus

(10.23)
\E£+if\ =

<

1
271+2

271+2

1/:rn+"ix)

M \B
271+2

271+2 j

02n + 2)\

B2n+2 — B2n+2jl — sx)
02n + 2)!

2M2n+2ÇQ2n + 2)
02Ks)2n+2

dx

Here M2n+2 is an upper bound on |/(2n+2)(z)| given by (10.14) and we have used the
fact that the kernel function in the integrand is of definite sign and also the identity
(3.12). A calculation similar to that which led to (10.22) yields

(10.24)
¿_i v-sE2n+2 f

S> .s /771
<     Zw     1-^271+2

s=s+l

I.,!,,,   „ 2i¥2„+2-r(27i + 2)
E     \E2n+2f\   <

1
In    s 2,1+2 ^—4     7 2n+2(2tt) *-«+! k

< M2n+2Ç02n + 2)
4tt     (2t(5+1)) 271+1

Introducing inequalities (10.22) and (10.24) into (10.20) we find the approximation
error bound to be

(10.25)    \C{m)f~ C(m)f\ < E 7r(2g)     |AF^-IJ(0)|     ,    7   ^(2ti + 2)M2n+2
3-1 ^      (27r(s+l)) 23-1 +

8^r   (2tt(s+ 1)) 271+1

The factor 7f (2g)/8x lies between 1/2 and 1/4. This bound is valid for all m. It is
natural to compare it with the bound (10.19), which is valid for m > s only. That
bound is clearly less extravagant. The inequality (10.25) is independent of m, while
that in (10.19) depends on s implicitly through the condition m > s. A rough overall
bound which retains the essential features of both is obtained by replacing s + 1 in
(10.25) by the quantity max (m, s + 1) wherever it occurs. In this way the overall
accuracy is reflected in the bound. There is a roughly constant accuracy for m i%
s + 1. For higher values of m the accuracy increases with m.
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11. Discussion. The methods described in this paper for the calculation of
Fourier coefficients all stem from one of Eqs. (6.11), (6.13), (6.14), and (6.15). These
equations are fundamentally variant forms of the result of Möbius inversion of the
Poisson summation formula. It is convenient to refer to these methods collectively
as "The Calculation of Fourier Coefficients by Möbius Inversion of the Poisson
Summation Formula" which will be abbreviated by the initial letters MIPS.

In recent years there have been many different methods suggested in the
literature. In the interests of brevity we consider only the two which are possibly
most familiar. These are

1. Finite Version of the Fast Fourier Transform (FFT).

(li.i) C(m)f=R[2s,1]<t>m

where

(11.2) 4>mix) = fix) cos2Kmx .
2. Filon-Luke Formulas (FLF). These are of the form

(11.3) Clm)f= aidARl2s-1]i>m

(11.4) C<m7 = ß0ßARu'n4>m + t(íU#1s'V
where 4>m0x) is defined above, and

(11.5) 6m = 2Km/2s

(11.6) aid) = (sin 2-3/20)2

(11.7) ßie) = 2[0(1 + cos 6) - 2 sin 6 cos 8]/63

(11.8) y id) = 4[sin 8 - 6 cos d]/d3.

Formula (11.4) is known as Filon's Rule (Filon [5]). A set of formulas of which (11.3)
and (11.4) are the first two members has been derived by Luke [12].

The Fast Fourier Transform (FFT) method is designed for a particular set of
circumstances. In general, an infinite integral is being approximated by a finite
integral. Thus any polynomial approximation is not really appropriate since the
functions involved do not approximate polynomials globally. Then in the calcula-
tion of a set C<m)f (m = 1, 2, • • -, 2s), the user is not interested in individual
accuracy, but rather in the properties of this set of numbers as a whole (Gentleman
and Sande [6]). Usually the general situation is one in which function values fix/)
at regularly spaced intervals may be obtained at virtually no cost. The principal
cost is the organization of the calculation of the set of quantities C(m)f, m = 1, 2,
■ • -,2s from the two sets/(//2s), j = 1, 2, • • -, 2s, and cos 02-kj/2s), j — 1, 2, • • -,
s/2. A great amount of ingenuity has been expended on this particular data handling
problem (Cooley and Tukey [3]).

The Filon-Luke formulas (FLF), and the methods based on Möbius inversion
(MIPS) described here are more appropriate in a rather different set of circum-
stances. Here a general function, rather than one derived from approximating an
infinite interval by a finite interval, is being considered. The intention is to obtain
accurate individual approximations. And the cost of function evaluations is the
significant cost.
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The possible user should obviously decide to what extent his particular problem
conforms to either of these two significantly different situations.

We give under several headings below what we consider to be the significant
properties of the three methods. Together with the remarks made above, a possible
user should check this list to see which method seems to be most appropriate in his
case. The list also brings out some major theoretical differences.

1. Each of the rules may, if necessary, be expressed in the form

£<•»./ = Y W^fixi) ,       m = 1, 2, 3, ••• .
3

That is, in terms of a single set of function values, a set of Fourier coefficients may
be calculated by assigning different weights to each function value for each different
Fourier coefficient.

2. Unless fix) and some of its early derivatives are continuous, none of these
methods is particularly efficient. However, each is 'robust' in the sense that each
will ultimately give a sufficiently close approximation if enough function values are
used so long as fix) is continuous. Thus,

lim C(m)f = C(m)f ;       lim C(m)/ = C(m)/ ;        / G C[0, 1].
S—»QO s—»CO

3. Simplicity of Calculation. Both the FFT and the FLF require the set of
coefficients cos (2ir;'/2s). In each of these a calculation such as that carried out by
the Cooley-Tukey algorithm is necessary. The FLF require in addition the evalua-
tion of coefficients such as ßidm), yOdA and a subsequent calculation. On the other
hand, the MIPS calculation requires as data the values of ps (s = 1 • • • s) and the
Bernoulli numbers B2q (g = 1, 2, • • -, n) (or in the case of the sine Fourier co-
efficient, Euler numbers E2q-i (g = 1, 2, • ■ -, n)). The coefficients cos (27r7'/2s) do
not occur explicitly.

4. Flexibility and Error Criterion. In an actual calculation it is sometimes
necessary to subsequently improve the accuracy of the approximation. In fact, if
the intention of the user is to obtain an approximation of specified accuracy e, it
is difficult to use either the FFT or FLF methods unless approximations cor-
responding to different values of s are obtained and the accuracy estimated by
comparing these different numerical results. In either case, the only reasonable
option is to use values s = Si, S2, ■ ■ • where s¿ = 2s ¿_i. In this way all previously
calculated function values are used, but the cost of each step is approximately the
same as the cost of all the previous steps put together, and provides a considerable
increase in accuracy.

On the other hand, the accuracy of the MIPS approximation may be increased
by increasing the value of s by 1, as described in Section 8. This obtains a marginal
improvement at a marginal additional cost. Proceeding in this way one ultimately
uses an appropriate value of s automatically.

5. Additional Information. A property of the MIPS method not shared by
other methods is that information such as the value of If or the values of the
derivatives/(î>(0), /(s)(l) maY be incorporated in a simple manner into the formula.
This has the effect of reducing the number of function values required.

6. Polynomial and Trigonometric Degrees. It was shown in Section 10 that under
certain conditions the MIPS approximation has degrees 2tj + 1, § respectively. The
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corresponding degrees for the FFT are 0, 2s — m. The FLF are constructed to have
specific polynomial degrees. The first two members of this sequence (11.3) and (11.4)
have polynomial degrees 1 and 3 respectively. All have zero trigonometric degree.

The comparison of (11.1) and (11.3) is interesting in this context. They differ
only through the factor a(0m). Thus (11.1) is exact for trigonometric polynomials of
degree 2s — m, but not for the function/(x) = x, while (11.3) is exact for the func-
tion fix) = x, but not for the trigonometrical polynomials. On the other hand (11.1)
gives an absurd result for m > 2s, i.e., C(m+2,)f = C{m)f while (11.3) may give an
inaccurate result, but one of the correct order O0m~2).

7. Location of Abscissas. Both the FFT and the FLF require function values
fij/2s) located at equal intervals. This is particularly convenient if fix) is tabulated
at equal intervals and there is an integer number of such intervals in the interval
[0, 1]. It may also be convenient if the function values have to be derived using a
recurrence relation, as perhaps in the solution of a differential equation. The MIPS
method is not so convenient. The function values required are fij/k) forj = 0, 1,
• • -, k and k = 1, 2, •••,§. While in general many fewer function values may be
required, the particular location of the abscissas may introduce some complication
at an earlier stage of a large scale calculation.

In the cases in which a function subroutine is available, the actual location of
the abscissas is not important, and all methods are equally convenient in this
respect.

8. Number of Function Values per Period. It is stated in many books such as
Davis and Rabinowitz [4], Hamming [8] that a requirement for a meaningful
calculation is that the function values occur sufficiently densely so that each period
of the function fix) cos 2-Kmx includes more than one function value. This certainly
seems to be valid if either the FFT or the FLF are used. It is an interesting feature
of the MIPS method that there is no restriction of this type. In the example in
Section 8 the first 1000 Fourier coefficients are greater than e = 10~6. However,
these were calculated using only 33 function values together with the exact deriva-
tives and the value of the exact integral. If a formula based on (8.23) is used, 241
function values are required explicitly and a further 24 to obtain adequate deriva-
tives numerically. The integral If is not required. Based on 265 function values,
any of the integrals Cim)f, 1 < m < 1000 may be calculated in a meaningful manner.
The period 1/m of any particular integrand does not enter into the calculation at
the stage when function evaluations are being made and so does not affect their
location.

The author does not wish to give any value judgement on the respective merits
of the three methods discussed in this section. Several sets of numerical calculations
have confirmed that there are examples in which any of these might be considered
superior. In Part II various extensions of the MIPS method will be presented to
handle problems for which no standard method exists. These extensions introduce
more sophisticated coefficients, but otherwise have a close resemblance to the
methods described here.

Appendix 1. Incidental Constants Occurring in Formulas. The MIPS routines
require surprisingly few constants. The Riemann zeta function and its variants
occur only in the following combinations :
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2(-l)3~1f(2g) _  B,
(2tt)23 (2g)!'

2(-l)37?(2g) = 2-223   B2q
Í2k)2" 22q      (2g)I '

2(-l)3~1X(2g) = 223- 1 _B2a_
i2A2q 223     (2g)!'

2j-iy-1ßj2q- 1) 7^23-2
(2k)2"-1 423~l(2g - 2)! '

B2q and £23 are Bernoulli and Euler numbers (see Abramowitz and Stegun [1, p.
810]). The early values (those needed in all but the most extensive calculation) are:

B    /_,        n.l 11 15 691  ,rs2q (q ■ ■ ■ <o). 6 ,      30, 42,      30, 66,      2730 ,

E2qiq = 0 ■■■ 0):1, -1, 5, -61, 1385, -50521, 2702765 .
The other constants required are Möbius numbers (see (5.5)), and the value of 2ir.

Appendix 2. Bound on f(g, a), a > \, q > 1. The bound given here is useful for
large values of a. The function fix) = x~q is convex downwards if" Ox) > 0) for
x > 0. Consequently any midpoint trapezoidal rule approximation to the integral

/"J 0-1 ii
dx = ^^ 1̂-3

gives a lower bound to this integral. It follows that

^")'7'+<j+-ij-+-<iA^::
and by elementary manipulation

Appendix 3. Proof of Inequality (10.21). Here s, g and m are all positive integers.
Let a be the smallest integer greater than s/m. Then a 2: (s + l)/m and the follow-
ing set of inequalities are valid:

E  pAOms)2« > l        V        1   /s>    -     ft2?'   fl)
•^      23  z^  V*    ~~        23

m    8>¿/77i m

<-V,f(2g, (s+l)/m).
7/1

Applying the inequality in Appendix 2, we find

i r(2g' (' + 1)/M) < TFtW1 L(s+lK22g-D + W^Àrn] ■
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The quantity in square brackets is less than 7/4 when S, g, and m are all positive
integers. This establishes inequality (10.21).

Argonne National Laboratory
Argonne, Illinois 60439

1. M. Abramowitz & I. A. Stegun (Editors), Handbook of Mathematical Functions, with
Formulas, Graphs, and Mathematical Tables, Dover, New York, 1966. MR 34 #8606.

2. W. G. Bickley, "Formulae for numerical differentiation," Math. Gaz., v. 25, 1941, pp.
19-27. MR 2, 240.

3. J. W. Cooley & J. W. Tukey, "An algorithm for the machine calculation of complex
Fourier series," Math. Comp., v. 19, 1965, pp. 297-301. MR 31 #2843.

4. P. Davis & P. Rabinowitz, Numerical Integration, Blaisdell, Waltham, Mass., 1967.
MR 35 #2482.

5. L. N. G. Filon, "On a quadrature formula for trigonometric integrals," Proc. Roy. Soc.
Edinburgh, v. 49, 1929, pp. 38^7.

6. W. M. Gentleman & G. Sande, Fast Fourier Transforms for Fun and Profit, Proc. AFIPS
1966 Fall Joint Computer Conf., v. 29, 1966, pp. 563-578.

7. R. R. Goldberg & R. S. Varga, "Moebius inversion of Fourier transforms," Duke Math.
J., v. 23, 1956, pp. 553-559. MR 18, 304.

8. R. W. Hamming, Numerical Methods for Scientists and Engineers, McGraw-Hill, New York,
1962. MR 25 #735.

9. G. H. Hardy & E. M. Wright, An Introduction to the Theory of Numbers, Clarendon Press,
Oxford, 19.54. MR 16, 673.

10. Z. Kopal, Numerical Analysis, Wiley, New York, 1955. MR 17, 1007.
11. E. Landau, Vorlesungen über Zahlentheorie. Band II, Chelsea, New York, 1947.
12. Y. L. Luke, "On the computation of oscillatory integrals," Proc. Cambridge Philos. Soc,

v. 50, 19.54, pp. 269-277. MR 15, 992.
13. J. N. Lyness, "Quadrature methods based on complex function values," Math. Comp.,

v. 23, 1969, pp. 601-619.
14. J. N. Lyness & C. B. Moler, "Generalised Romberg methods for integrals of derivatives,"

Numer. Math. (To appear.)
15. L. M. Milne-Thompson, The Calculus of Finite Differences, Macmillan, London, 1933.
16. C. Ballester & V. Pereyra, "On the constructions of discrete approximations to linear

differential expressions," Math. Comp., v. 21, 1967, pp. 297-302.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use


