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Starting from the discovery by Rumer that the eigen-
functions corresponding to different distributions of valence
bonds in a molecule can be represented by plane diagrams
which provide information regarding their mutual linear

independence, a very simple graphical method is developed
for calculating the coefficients of the integrals occurring
in the matrix elements involved in Slater’s treatment of
the electronic structure of molecules.

N his valuable paper! on Molecular Energy
Levels and Valence Bonds Slater developed a
method for formulating approximate eigenfunc-
tions for molecules and for constructing the cor-
responding secular equation. This method has
been successfully applied by a number of in-
vestigators in the discussion of general valence
theory and of the structure of individual simple
molecules, its application to more complex mole-
cules having been retarded in part by the labori-
ous nature of the calculation of the coefficients of
the various exchange integrals in the matrix ele-
ments. It is shown in the following paragraphs
that these coefficients can be easily calculated by
a simple procedure involving the use of plane
diagrams similar to those introduced by Rumer?®
in his recent discussion of the linear independence
of electronic structures.

SINGLET STATES WITH SPIN DEGENERACY ONLY

For a system involving N electrons, Slater
constructed the function

= p(—1)F"P"A(1)B(2)- - -E(N),
N (N!)*Z (—1) (1)B(2) (N)

which is completely antisymmetric in the elec-
trons (satisfying Pauli’s principle). Here 4,
B - . E are one-electron spin-orbit functions, and
the symbol P” represents the N! permutations of
the functions 4---E among the electrons, the
coefficient being — 1 for odd, +1 for even permu-
tations. For two such functions ¥ and ¥’ the
matrix element corresponding to a dynamical
quantity Fis

(1/N!)f{ZP"(— 1DFP"A(1)- - E(N)} F{Zp (= 1)"P'A'(1) - - E'(N) }dv,

which reduces to

[a@-- @ FEa-

with P’ = P”P, in case that F is completely sym-
. metric in the electrons. This may be written as

Y r(—1)P(AB---E/F/PA'B'. .. E'),

in which each parenthesis (4---E/F/PA’---E’)

represents one integral in the above sum. If F

does not involve spin interactions, the integral
tJ. C. Slater, Phys. Rev. 38, 1109 (1931).

2G. Rumer, Nachr. d. Ges. d. Wiss. zu Gottingen,
M. P. Klasse, p. 337 (1932).

1)?PA’(1)---E'(N)}dy,

(A---E/F/A’---E’) vanishes unless the spin of
4 is the same as that of 4/, B as B’, and so on,
in which case it reduces to (ab---¢/F/a’b’---¢),
with a- - -¢’ the orbital parts of 4---E'.

For four electrons, for example, with only spin
degeneracy (the number of occupied orbits
equalling the number of electrons), Slater gave
the function 3(¥1— ¥ — ¥+ ¥1v) as represent-
ing the structure in which orbits ¢ and & are
bonded together, and also ¢ and d. Here ¥1- - - ¥1v

280

Downloaded 15 Dec 2005 to 131.215.225.171. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



LEWIS ELECTRONIC STRUCTURES OF MOLECULES

are functions of the type given above with the
following distributions of spins among the orbits:

a b c d
I - + - +
II + - - +
II1 - -+ + -
v + - + —

The energy matrix element for this function is

(abed/H/abed)+ (abcd/H /bacd) + (abed /H /abdc)
—%(abcd/H/cbad) — (abcd/H/dbca)
—%(abcd/H/acbd) — % (abcd/H/adcb) +higher

exchange integrals.

With the single exchange integrals negative, as
they usually are for orbits on separate atoms, this
leads to attraction between @ and b and between
¢ and d, and repulsion between other pairs.

Similarly a function can be formulated repre-
senting ¢ —d and b — ¢ bonds, and one representing
a—c¢ and b—d bonds. These three functions,
corresponding to three separate electronic struc-
tures of the Lewis type, are, however, not linearly
independent; any one can be represented as a
combination (sum or difference) of the other
two. This linear dependence of structures con-
tinues as the number of bonds increases; for »
single bonds between 2z atoms (2#)!/2%n!
structures can be drawn, of which only (2#)!/
n!(n+41)! are independent. In the paper men-
tioned above, Rumer made the very interesting
and important observation that if the orbits are
formally arranged in a ring or other concave
curve, and straight lines are drawn between
orbits bonded together, the structures repre-
sented by diagrams in which no lines intersect
are independent. This observation forms the
starting point for the following treatment.

Let us arrange the orbits in a ring, and then
draw arrows between pairs of orbits bonded
together, the head of each arrow representing

2n/2

((@2m) D}

in which « represents positive spin and 8 nega-

tive spin, P represents the (2#)! permutations of
the orbits and their associated spins among the
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positive spin and the tail negative spin. The
wave function for the corresponding structure is
then given, except for a normalizing factor 272,
by the sum of the functions corresponding to this
distribution of spins and to those obtained by
reversing the arrows, each function having the
coefficient (—1)%, in which R is the number of

reversals. Thus the ?:g structure would be rep-

resented by the vector-bond diagram 2, corre-
sponding to the function

A (G -(E0)-CH+ED)
2\\+~— + - -+ -+
It is verified at once that

><:=lf‘ﬁs

so that an intersecting pair of arrows can be re-
placed by the difference of two non-intersecting
pairs, the pair connecting head with head and
tail with tail having the positive sign. By succes-
sive applications of this treatment any structure
can be resolved into structures involving no in-
tersecting bonds.

Canonical sets of independent structures

Of the various complete sets of independent
structures which may be formulated, certain ones
may be called ““canonical’ because of the relative
simplicity of ‘the calculation of matrix elements
based on them. For a given order of the orbits in
a ring, the canonical set of independent struc-
tures comprises those with no intersecting bonds;
moreover, numbering the orbits in order about
the ring, the canonical vector-bond structures for
singlet states with spin degeneracy only have
arrows drawn from odd to even orbits (the func-
tions for the corresponding distributions of posi-
tive and negative spins thus occurring with the
positive sign). The eigenfunction for a structure
represented by a vector-bond diagram a—b
¢—d, etc., may be written

1 1
— 2r(— I)RR{————— 2 p(—1)"Pa(1)8(1)5(2)a(2)e(3)8(3)d(4)x(4) - - -}'

electrons, and R the 27 operations of interchang-
ing the spin functions « and 8 for orbits (such as
a and b) which are bonded together, that is, of
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reversing the arrows in the vector-bond diagram.
The factor (—1)% equals +1 for an even number
of reversals, —1 for an odd number.

The Coulomb coefficient

To find the coefficient of the Coulomb integral
for two structures, superimpose their vector-
bond patterns to form the superposition pattern
(Fig. 1). The Coulomb coefficient is 2-* times the
sum (—1)% for the different patterns in which
each orbit serves either as the head or as the tail
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Fia. 1. The vector-bond diagrams for three structures of
the canonical set of fourteen for » =4, and some of their
superposition patterns.

of two arrows which can be made ‘by reversing
the arrows, R being the number of reversals. The
superposition pattern consists of “‘islands,” or
closed polygons formed by an even number of ar-
rows. For each island there are only two satisfac-
tory orientations of the arrows, so that the
Coulomb coefficient may be written as (—1)"
2-—9_in which 7 is the number of islands and »
the number of reversals required for an initial
satisfactory orientation.

For canonical structures the sign is positive,
the Coulomb coefficient being 1/2*—% In drawing
the superposition pattern for canonical structures
the arrows may be replaced by lines.

Coeflicients of exchange integrals

Each of the N! permutations may be repre-
sented by a permutation diagram, made by
drawing an arrow from each orbit in Pab- - -e to
the orbit whose place in ab- - - ¢ it occupies. Thus
if Pab.---e=bd---e, an arrow is drawn from b
to a, from d to b, etc. A closed polygon of arrows
is called a cycle of the permutation.? A cycle may

3The theory of permutation groups is discussed in
standard treatises such as W. Burnside, The Theory of

LINUS PAULING

be called odd if it involves an even number of
arrows, otherwise even. The permutation is odd
if it contains an odd number of odd cycles; other-
wise it is even. The possible permutations are ob-
tained by drawing polygons of arrows in all
possible ways such that each orbit is reached by
no arrow or by the head of one and the tail of
another. The permutation arrows may intersect.

To find the coefficient of a given exchange
integral in a matrix element, (I/F/PII), draw
the vector-bond diagram for structure 11, change
it as indicated by the permutation diagram for P,
and form the superposition pattern of I and PII.
The coefficient is then given, except for the factor
(—1)%, by the above rules for the Coulomb co-
efficient; that is, it is (—1)P(—1)72-&—9,

This procedure may be simplified considerably
for single exchange integrals in matrix elements
between structures of a canonical set. We first
form the superposition pattern of the two struc-
tures. If the permutation involves the interchange
of orbits in different islands, the number of
islands is decreased by one; if the orbits are an
odd number of bonds apart in the same island, it
is unchanged; if they are an even number apart,
it is increased by one. Hence (taking into con-
sideration the factors (—1)* and (—1)") it is seen
that the coefficient of a single exchange integral
for two canonical structures is 2=¢=9f(p), where
#n is the number of bonds, 7 is the number of
islands in the superposition pattern of the two
structures, p the number of bonds in the super-
position pattern along the path between the two
orbits which are interchanged, and f(#) a factor
with the values —% for p=0, +1 for p=1, 3,
5-++,and —2 for p=2, 4, 6---. It is not neces-
sary to use arrows in forming the superposition
pattern for canonical structures.

Similar rules may be formulated for more com-
plex permutations.

An example: Six electrons with only spin de-
generacy. Placing the six orbits in a ring in the
order abcdef, the five structures forming a canon-
ical set are those given in Fig. 2. It is seen that

S1Fldv=Q+ab+cd+ef —Lac—iad —Lae—iaf
—3bc—3bd —be—3bf —3ce—Lcf —Sde—Ldf
4o,

Groups, Second Edition, Cambridge University Press,
1911.
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F16. 2. The five canonical structures for n=3, and some of
their superposition patterns.

in which Q is the Coulomb integral (ab- - -f/ F/ab
-++f), ab the single exchange integral (ab---f/
F/ba---f), etc. As in this case, it is true in gen-
eral that in diagonal matrix elements the coeffi-
cient of bonding single exchange integrals is +1,
of nonbonding —2. From the superposition pat-
tern of I and II we obtain

S 1FIldv=%(Q+ab+bc+cd+de+ef +fa+ad
+be+cf — 2ac — 2bd — 2ce — 2df — 2ea — 2fb
40,

and similar expressions for the other matrix
elements can be quickly written.? The determina-
tion of the coefficients of each of the 720 integrals
would be, of course, quite a task, even by this
simple method, but any one of them is easily
found. Thus from Fig. 3 itisseen thatin S'I1FIldv
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FiG. 3. The permutation diagram for P abcdef =bcfdae, and
the superposition pattern for I PII.

4 A. Sherman and H. Eyring (J. Am. Chem. Soc. 54,
2661 (1932)) have published matrix elements for this
six-electron system, giving the Coulomb and single
exchange integrals. Their coefficients do not show the
regularities which our treatment leads to, since their
five functions do not form a canonical set.
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the coefficient of (abcdef/F/bcfdae) is —3%. The
complete matrix for the forty-two independent
structures given by ten electrons with only spin
degeneracy, retaining only Coulomb and single
exchange integrals, can be set up in a few hours.

EXTENSION TO MORE GENERAL SYSTEMS

The foregoing treatment can be extended to
states of arbitrary multiplicity by the artifice of
including in the system additional electrons and
phantom orbits. To represent IV electrons and N
orbits in states with resultant spin S (multiplicity
25+1), form a ring of the real and phantom
orbits; a canonical set of electronic structures is
then obtained by drawing in all possible ways
such that no bonds intersect a phantom bond be-
tween each of 2.5 phantom orbits and a real orbit
and a real bond between each pair of remaining
real orbits. Rules regarding reversal of bond ar-
rows (different numbers of arrow heads on phan-
tom orbits correspond to different Mg values)
and the calculation of exchange integral coeffi-
cients are easily formulated.

A canonical set of structures for a system with
more orbits than electrons is obtained by arrang-
ing all the orbits (including phantom orbits for
S$>0) in a ring and then drawing non-intersecting
bonds to a number determined by the number of
electrons and the multiplicity. If two electrons
occupy the same orbit, forming an unshared pair,
a loop is drawn with its ends at the orbit.

The bond diagrams provide an obvious simple
method of determining the allowed spectral terms
for equivalent electrons with Russell-Saunders
coupling, which may be convenient for the reason
that it separates states of different multiplicity at
the start.

The methods developed in this paper have been
applied in a discussion of the structure of aro-
matic substances, free radicals, etc., to be pub-
lished soon.
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