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Calculated flow properties are compared with measurements obtained in two- 

dimensional isothermal wakes with and without recirculation. The equations of 

continuity and momentum were solved numerically together with equations 

which formed a turbulence model. Calculations were made using three turbulence 

models : the first comprised transport equations for turbulence kinetic energy 

and the rate of turbulence dissipation; the second and third comprised equations 

for the rate of turbulence dissipation and two forms of Reynolds-stress equations 

characterized by different redistribution terms. The results show that, for wakes 

without recirculation, the particular turbulence model is less important than the 

boundary condition assumed in the plane of the trailing edge of the body; 

though the Reynolds-stress models do, of course, provide a better representation 

of the individual normal stresses. In  the case of wakes with recirculation, both 

the length of the recirculation region and the rate of spread of the downstream 

wake are underestimated. The second discrepancy is particularly evident and 

appears to stem from the form of the dissipation equation. A suggestion for 

improving the modelling of this equation is provided together with necessary 

justification. 

1. Introduction 

The efforts described in this paper stem from early attempts to calculate the 

flow properties downstream of turbulent blunt-body stabilized flames and the 

observation that, although the measurements and calculations were in disagree- 

ment, it  was impossible to decide which was incorrect. As a consequence, it was 

decided to examine the data available for isothermal wakes, with and without 

recirculating flow, and to attempt to determine the source of the disagreement: 

it was presumed that available measurements in isothermal flows were sufficiently 

more reliable than those in combusting flow to allow the assessment. The early 

calculations were performed with a two-equation turbulence model incorporating 

an isotropic-viscosity assumption. This formulation assumed that the aniso- 

tropy of the Reynolds stresses is determined locally and that the principal axes 

of stress and strain are coincident. Theoretical arguments and experimental 

evidence show that the fist assumption becomes progressively worse as the 

flow departs from homogeneity and the second is not appropriate to any real 

flow. As a result, the present calculations are based on a five-equation model 

incorporating separate transport equations for each of the non-zero Reynolds 
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stresses. They are compared with values obtained from a two-equation model to 

demonstrate the extent to which the inappropriate isotropic-viscosity assump- 

tion influences the results. 

A survey of experimental information in the literature relating to near-wake 

flows, with and without recirculation, showed that available data were in 

short supply. The papers by Chevray (1968) and Chevray & Kovasznay (1969) 

reported velocity and velocity correlation measurements obtained in the wakes 

downstream of an ellipsoid and a thin flat plate respectively: in both cases, the 

region of recirculation immediately downstream of the body was negligibly 

small but the axial velocity gradients were of the same order of magnitude as the 

radial gradients. Carmody ( 1964) reported similar measurements downstream 

of a disk. In  this case the region of recirculating flow was extensive and covered 

by the measurements. The recent measurements of DurZo & Whitelaw (1974) 

and Duriio (1975, private communication) are also helpful in this connexion 

since they relate to the wake downstream of an annular jet: they were obtained 

using a laser-Doppler anemometer, rather than the hot wires of previous authors, 

and this helps to remove any bias which might result from the consideration of 
hot-wire data alone. The calculation procedure solves differential equations in 

elliptic form. It requires, therefore, boundary conditions for each equation on the 

whole perimeter of the solution domain. As will be shown, the data reported in 

the above papers do not provide complete information on these boundary con- 

ditions, and consequently their influence must be quantified. 

The contributions of this paper are described in the following sections entitled, 

respectively, ‘Equations and turbulence models ’, ‘Solution algorithm ’, ‘ Pre- 

dictions ’ and ‘Discussion ’. The paper closes with a summary of the more im- 

portant conclusions. The section on equations and turbulence models is necessary 

to present and explain the models used for the present calculations: the basis 

for the turbulence models is not new but they have not all previously been pre- 

sented or explained in the form appropriate to recirculating flow and elliptic 

equations. The boundary conditions and wall functions are also presented and 

discussed in this section. Because of the use of a Reynolds-stress closure within 

the framework of a numerical scheme for the solution of elliptic equations, the 

algorithm of the numerical procedure of Patankar & Spalding (1973) had to be 

modified significantly; these modifications are described in the section on the 

solution algorithm. The results of the calculations are presented in the last 

major section and are compared with the results of the four experimental investi- 

gations referred to earlier. Thus the ability of the various turbulence models to 

represent near-wake flows with and without recirculation is established and the 

sensitivity to unknown boundary conditions quantified. 
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2. Equations and turbulence models 

Three sets of equations were solved to obtain the results presented in 0 4. They 

are quoted here in terms of Cartesian tensors and expanded in the appendix in 

Cartesian and cylindrical-polar co-ordinates. The continuity and momentum 

equations are common to each set, i.e. 

a(pui)/axi = o (1) 

and a ( p q  q + p w  +psi,)/axi = 0. (2) 

The equations which make up the three turbulence models are as follows. 

(I) Two-equation model: 

a 
axi axi rk axi 

a ( p eff ak ) + P - p s ,  -(pL$k) =- -- (3) 

The Reynolds-stress models used differ only in the redistribution term. Their 

common form is 

-aq - a q  
p. = -pui'uI--pu.u -. 

a j  ax, 3 ax, 

The redistribution terms R €or the two models are as follows. 

(11) Reynolds-stress model, first redistribution term: 
- 

Rij = -pC$,e(ui~j/k - $Sij) - C$2(Gj - gP Sij). 

(111) Reynolds-stress model, second redistribution term: 

Rij - pC,, e(zc,uijk - Qt3ij)  - B,(P,j - gPSij) 

- ~ ~ p k ( a q / a x ~  + av,/axi) - B ~ ( G ~ ~  - gpsij), 
where Q~~ = -p-, aqjaxj - p v l  aqjaxi, 

&=id C $2 +8) ,  B2 = &(3oc$2-2), B3 = &(8C$2-2). 

The common part of the redistribution terms was proposed by Rotta (1951). 

The second parts were proposed by Naot, Shavit & Wolfshtein (1970) and by 

Launder, Reece & Rodi (1975) respectively. The constants used are given in 

table I.  
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Number 
of 

Model Cp a, 0, Cel C,, C$l C$a C, C, constants 

5 I 0.09 1.0 1.3 1.45 1.9 - - - - 
rr - - - 1.45 1.9 2.6 0.4 0.25 0-15 6 

rrr - - - 1.45 1.9 1.5 0-4 0.26 0.15 6 

TABLE 1 

The co-ordinate systems, either Cartesian or cylindrical polar, were orientated 

such that the plane or axis of symmetry was given by x2 = 0 and that a/ax3 = 0. 

The boundary conditions appropriate to these equations and the present 

calculations were 

all quantities specified function of x2 on x1 = 0, 

a/axl of all quantities = 0 as z1 -+ a, 

?I2 = F2 = 0, a/ax2 of all other quantities = 0 on x2 = 0, 

u1u2 = 0, all other quantities take free-stream values except U,, whose 
- 

gradient is known from the continuity equation, as x2 -+ 00. 

Where possible, experimental boundary conditions were used for the boundary 

x1 = 0 but, as will be seen, they were not always available. 

In  the near-wall region, the following functions were added to the equations 

and boundary conditions and precluded the need for fhe-grid calculations in that 

region : 

diffusion = 0 for all Reynolds stresses. 

7w is the wall shear stress and p the laminar viscosity. The subscript P refers to 

the grid node next to the wall and K and E are the wall-law constants, with 

values of 0.4 and 8-8. 

These three turbulence models have been examined, in boundary-layer form 

and in the context of free flows, by Launder et al. (1972) and further related 

explanations and discussion have been provided by Launder et al. (1975) and by 

Launder & Spalding (1972). Only the two-equation model has, to date, been 

applied to recirculating flows and then without a detailed assessment of its 

abilities (e.g. Khalil & Whitelaw 1974). It is known that the two-equation closure, 

incorporating an isotropic-viscosity hypothesis, is unable to represent the proper- 

ties of some boundary-layer flows, e.g. asymmetric channel flow, swirling flows 

and the flow in a square duct, and the same deficiencies may be expected in 
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FIGURE 1. Finite-difference grid. 

recirculating flows. The Reynolds-stress closure is probably as complete a set of 

equations as can be formulated and solved without resorting to guess work: it is 

particularly appropriate to recirculating flows because the Reynolds stresses are 

not related to local quantities but calculated from appropriate conservation 

equations. 

Of course, the dissipation, diffusion and redistribution terms in (3)-(6) are not 

calculated in their exact form and imprecisions undoubtedly arise from these 

sources. This point will be discussed further in $4. 

3. Solution algorithm 

Equations (1) and (2) and any one of the turbulence models together with 

boundary conditions and auxiliary relations form a closed set of equations. 

Equations (2)-(6) may be written in the common form 

where x = (x,y,z), U = (U, V ,  W )  while r = 1 for Cartesian co-ordinates and 

r = y for cylindrical-polar co-ordinates. Equations of this form were solved by 

finite-difference means as described below. 

Figure 1 shows part of a finite-difference grid where the values of # are assumed 

known at the nodes P, N ,  S, E and W .  Equation (7) may be integrated over the 

indicated control volume to give 

(8) 
The following finite-difference approximations may be made: 
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’t 
FIGURE 2. Juxtaposition of grid nodes. 

with A, = D,+ +C,+, A,  = D,, -C,- etc.;? substituting (9)-(11) into ( 8 )  gives 

h4AN +A,  + A ,  + A,) = A N $ N  +A,#, +A,$, + A,#, + W + ) Z P  vol. (12) 

If the pressure is known, then (12), written for each variable at each grid node, 

yields a closed set of algebraic equations. However, there is no guarantee that 

the resultant velocity field would satisfy the continuity relation (1). The two 

problems of determining the pressure and satisfying continuity are overcome 

by adjusting the pressure field so as to satisfy continuity. The details of this 

aspect of the procedure have been reported elsewhere (Patankar & Spalding 

1973) but it should be noted that it requires a specific juxtaposition of the velocity 

and pressure nodes; see figure 2. All other equations are normally solved at the 

pressure nodes. 

A significant modification of the numerical scheme of Patankar & Spalding 

(1973) was found necessary in the solution of the Reynolds-stress equations. In  
the case of model I the term a(p”izcj)/axi may be expressed as a diffusion term, 

i.e. rl: = ry = pefi in (7). With the solution of the Reynolds-stress equations, 

the strong link between the stress and rate of strain is not retained within the 

same equation and, to provide numerical stability, it  was found necessary to 

locate the shear-stress nodes in the manner indicated in figure 2. This arrange- 

ment helps to  preserve the link referred to  above. Thus a small increase in =, 
from its correct value results in increases in Up and V, and decreases in Us and Vw; 
as a consequence, aU/ay and aV/ax increase at the GP node. The effect of these 

increased velocity gradients is to decrease, through the source term in the uiuj 

equation, the value of ZZ, towards its correct value. 

- 

t The finite-difference coefficients me modified amording to a hybrid scheme (Gosman 
et al. 1968, p. 229). 
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In  the procedure described above, and unlike some alternative schemes, there 

are no special 'difficulties associated with axes of symmetry provided that the 

kite-difference approximations (9)-( 11) are altered to take account of the 

information that, in a region close to an axis, the shear stress is proportional to 

distance from the axis. In  the present scheme, (9) was replaced by 

and corresponding alterations made to (10) and (11). 

Since this procedure differed significantly from that employed for equations 

other than those for the Reynolds stress, tests were carried out to ensure that, for 

any grid size below some limit, the solutions were the same. Figure 3 shows calcu- 

lated values of the mean axial velocity and the corresponding normal stress 

along the centre-line of a wake similar to that of Carmody. The results show that 

the numerical accuracy is reasonable even with a 14 x 14 grid. The calculated 

values of Reynolds stresses at  other locations in the field showed similar accuracy. 

The finite-difference eqwtions were solved iteratively by a Fortran program 

on a CDC 6600 digital computer. The storage and time requirements of the 

program were 16 000 + 20 words per grid node and 0.0025 sliteration per grid 

node respectively. 

For a 20 x 20 grid this resulted in a storage requirement of 24 000 words and 

a time for each iteration of 1 s. The measure of convergence used was the maxi- 

mum of the mass sources required a t  each node to satisfy the continuity equation: 

for a converged solution this is zero. The maximum mass source was plotted 

against the number of iterations for a 10 x 10grid on figure 3. The performance 

of the procedure was virtually the same as that based on the isotropic-viscosity 

hypothesis except that the time required to obtain a converged solution increased 

by about 50 yo. This increase in time is due to the fact that the procedure solves 

for eight dependent variables rather than for five. 

4. Predictions 

The calculated values of the various dependent variables are presented 

together with the experimental data referred to in the introduction. It should 

be remembered, however, that both the calculated and measured values are 

subject to possible errors. 

The measurements of Chevruy (1968) included values of the mean axial and 

radial velocities and all the non-zero Reynolds stresses at various locations 

downstream of his ellipsoid. The inlet values of each dependent variable except 

dissipation were, therefore, available from experiment and the dissipation was 

assumed to be equal to the production of turbulent kinetic energy. 

The calculated profiles of UlU, are shown on figure 4 and those of UVlU& on 

figure 5. The figures show the results of calculations obtained with each of the 



The calculation of near-wuke $ow$ 17 

$ 0.6 :::m 
R 

0.4 

0.2 
(4 0 0  

0 .0.2 0.4 0.6 0.8 

0 0.2 0.4 0.6 0.8 

0.6 :::fl 
0.4 

0 0.2 0-4 0.6 0.8 

0 0.2 0.4 0.6 0.8 

Y P  

W U ~ E  4. Flow of Chevray (1968). U / u E V S .  y / R .  0, measurements; - - - -, model I ;  --, 
model 11; -, model 111; --- , model I11 with inlet velocity V doubled; - - -, model 

I11 with inlet E decreased by 20 yo. 

(4 ( b )  (4 (4 (el 
"1R 0.5 2.0 6.0 12.0 18.0 

three turbulence models and demonstrate the effect of a 20% decrease in the 

initial values of e and of doubling the initial values of V. The experimental data 

are indicated on the figures for comparison purposes, 

It can be seen from figure 4 that each of the three models results in values of 

the mean velocity which are sensibly identical except in the vicinity of the sym- 

metry axis, where small differences occur. In  general, the non-dimensional 

2 F L M  73 
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calculated velocity values are lower than the measurements : the comparison 

suggests that the mixing is too low in the vicinity of the symmetry axis and that 

this suppresses the development of the wake. However, the calculated shear 

stress is greater than the measured values, thus refuting this supposition and 

suggesting instead that the measurements do not satisfy the axial momentum 

equation. This discrepancy could stem from the measured values of V used as 

inlet conditions in the calculation : i t  is undoubtedly possible that these values 

are subject to errors, which could be as large as a factor of two. For this reason, 
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FIGURE 7. Flow of Chevray & Kovasznay (1969): =/UE ws. y. Notation as in figure 6. (a) 
z = 5cm. ( 6 )  z = 20cm. (c) z = 50cm. 

the calculations-were repeated with initial V values which were twice the 

measured values. As can be seen, the U profiles at downstream locations became 

larger than the measured values. 

The comparison between measured and calculated values of the non- 

dimensional shear stress, shown in figure 5, again shows that all models result 

in similar trends to the measurements. In  the upstream region the shear stress 

predicted by model I is far less than that predicted by the Reynolds-stress models. 

This reflects the fact that model I takes no account of the convection of the 

individual stresses. Once again, the influence of the initial V profile is large and 

2-2 
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does not allow any quantitative assessment of the ability of the three models 

to predict shear stress. 

The measurements of Chevruy & Kovasznay (1969) were obtained downstream 

of a thin flat plate, and consequently the uncertainty in the V velocity at the 

trailing edge (assumed zero) and hence its influence can be expected to be 

significantly less than in the data of Chevray (1968). The reported data are for the 

mean axial velocity, u2, v2 and zlv and i t  can be anticipated that the precision of 

measurements in this later investigation will not be less than in the former. The 

inlet values of &were taken from the data of Klebanoff (1954) while, again, the 

- -  
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dissipation was equated to the production of turbulent kinetic energy. Figure 6 

allows a comparison between measured and calculated values of the mean axial 

velocity, shear-stress values being shown on figure 7 and normal stresses on 

figure 8. 

As was the case with the flow configurations of Chevray, the three models 

result in calculated values of the mean velocity which are virtually identical. 

On this occasion, however, the agreement between measurements and calcula- 

tions is excellent. The predictions of shear stress are adequate and, once again, 

do not allow any model to be identified as a clear improvement over any other: 

this is made particularly clear by the differences which result from a 20% 

increase in the assumed initial values of E .  The agreement between the measure- 

ments and calculations in figures 6 and 7 is certainly sufficiently good to provide 

confidence in the initial values used for the calculations. The differences between 

the measured values of 3 a n d 2  and those calculated with each of the models is, 

therefore, particularly significant. It can readily be seen that model I11 provides 

calculated values which are in good agreement with experiment; model I1 is 
slightly less satisfactory and model I is inadequate. The influence of the assumed 

initial e profile does not alter this conclusion. 

The measurements of Carmody (1964) are also extensive and are particularly 

relevant to blunt-body stabilized flames in that they were performed downstream 

of a disk (or radius R) in a free stream (with velocity UE). The separated nature 

of this flow provides a greater test of the present turbulence models than the 

flows of Chevray and Chevray & Kovasznay but it should be remembered that it 

also presents a more formidable measurement problem. Figures 9 and 10 give 

comparisons between measured and calculated mean values: figure 9 is concerned 

with the growth rate and centre-line velocity and figure 10 with velocity profiles 

at  downstream locations. Figure 11 presents shear-stress profiles and figure 12 

normal-stress profiles. 

The inlet value of the axial velocity was taken from the data. The radial 

velocity quoted by the author was evaluated from the continuity equation and 

consequently is subject to a large error. The values used were obtained by solving 

for the flow upstream of the disk, assuming it to be inviscid and using the measured 

axial velocity as a boundary condition. The validity of this approach was con- 

firmed by the observation that, at the inlet, the dynamic head calculated from the 

measured axial velocity and pressure and the predicted radial velocity was nearly 

constant. The inlet values of the normal stresses were set a t  0-002U%, while the 

dissipation was set through the length scale with EIR = 0-03. These nominal 

free-stream values may be expected not to influence the calculations very much 

as a great deal of turbulence is produced in the region immediately downstream 

of the disk. 

The results displayed on figure 9 show that, with the inlet conditions stated 

above, none of the models results in values of the half-width or of the centre-line 

velocity which are in close agreement with the measurements. The differences 

resulting from the three models and from doubling the inlet value of the dissipa- 

tion are small compared with those resulting from an 80 % decrease in the values 

of the radial inlet velocity or from an augmentation of the turbulence close to 
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the baffle tip. The decreased velocity corresponds to that suggested by Carmody 

while augmenting the turbulence close to the baffle tip by setting 

($)*/u, = (v2>*/uE = (w")*/u, = 0.14 and = 0.4 for 1.0 < Y/R < 2.0 

(i.e. 0 < U/U, < 0.95) is intended to simulate a thick shear layer in that region. 

As can be seen from figure 9, the decrease in V (from a maximum of 0.74 UE) and 

the increase in turbulence intensity have large influences on the predicted growth 

rates and centre-line velocity distribution. The poor agreement between the 
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measurements and the predictions with V decreased confkms that the present 

estimate is more reliable. The predictions with the higher turbulence intensity 

at the inlet give a spreading rate dg4/dx increased from 0.025 to 0.05. However, 

these values must be compared with the experimenta1 value of 0.1 and the 

difference cannot reasonably be attributed to uncertainties in the boundary 

conditions. The two Reynolds-stress models fare better than model I in the 

recirculation zone but, bearing in mind experimental difficulties in this region 

and the sizeable discrepancies downstream, no model may be distinguished as 

being better than the others. 

The shear-stress results in figure 10 demonstrate differences between the results 

of the three models but, once again, the influences of V and turbulence initial 

conditions are larger than those of the models. Clearly the augmented initial 

turbulence intensity and model I11 lead to results which are in remarkably good 
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agreement with experiment, particularly in the downstream region where the 

measurements are more accurate. 

The normal-stress results in figure 11 allow the same tentative conclusion as 

figure 10. In  addition, however, the measurements reveal inexplicable behaviour 

in the upstream region and must be considered suspect. Also, models I1 and I11 
will always be more successful for the calculation of normal stresses since they 

are not made equal in plane shear flow as with model I. 
The measurements of DurEo & Whitetaw (1974) pertain to an annular jet, the 

inner radius of the jet being 0.72 times the outer radius R. Close to the outlet of the 

jet a region of reversed flow occurred in the vicinity of the centre-line, thus initiat- 

ing a wake which decayed further downstream. The outer region of the flow 

resembled a decaying jet, and for x/R > 100, where the wake had vanished, the 

measurements show self-preserving jet profiles. Upstream of the nozzle there 

was a contraction to ensure that the turbulence intensity at the exit was small. 

Figure 13 shows measurements and predictions of the centre-line velocity and 

the velocity profde a t  x/R = 0.6. The predictions of the centre-line velocity are 

virtually the same for each turbulence model and show similar discrepancies to 

those encountered with Carmody’s data. The length of the recirculation zone is 

again underpredicted. The almost constant predicted value of U,,/l&, further 

downstream is due to a balance between the decay of the wake (tending to 

increase the velocity) and the spreading of the flow (tending to  decrease the 

velocity). Further measurements by Duriio (1975, private communication) show 

that the wake decays more quickly than is predicted, thus accounting for the 

different shapes of the two curves. 

The predicted velocity profiles are again virtually the same for each of the 

turbulence models and show a significant discrepancy with the measurements. 

5. Discussion 

The previous section shows that significant discrepancies exist between 

measurements and predictions and may be attributed both to inaccurate 

measurements, leading to erroneous boundary conditions, and to deficiencies 

in the turbulence models. 

An approach which would overcome the first problem would be to increase the 

size of the solution domain so that known boundary conditions could be applied 

upstream of the body. This approach is, in principle, advantageous but may 

present difficulties in practice. The correct representation of the boundary-layer 

flows around the solid body requires a finite-difference grid with a comparatively 

larger number of nodes. This is expensive in terms of computer time and may 

still not produce calculated values of flow properties at the downstream plane 

of the solid body which are more precise than the measurements available at 

present. The present calculations quantify the precision with which the flow 

around the solid body must be calculated. 

Two particular defects which result from the turbulence models are evident in 

the prediction of the recirculating flow. The length of the region of recirculation 

is underpredicted as is the rate at which the wake decays. The same defects have 
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been observed by Vasili6 (1975, private communication), who used model I to 

predict the two-dimensional flow over a thin obstruction mounted normal to 

a plane surface. 

In  order to understand the more serious defect, the underprediction of the 

spreading rate, i t  is necessary to consider the nature of round-wake flows, a useful 

discussion of which is given by Rodi (1972). Round wakes are potentially 

‘approximately self-similar ’, that is, as u@/uE + 1, appropriately normalized 

mean quantities and the spreading parameter S = UEl(UE - Uq) dygldx may 

become independent of x. Rodi (1972) considered nine sets of experimental data 
and concluded that round wakes do become self-similar. However, unlike all 

commonly encountered free shear flows, the profiles of mean quantities, and in 

particular the spreading parameter, are strongly dependent upon the way in 

which the flow is initiated. Of particular interest here are the values of S for 

the flows measured by Chevray (1968) and Carmody (1964), which are S = 0-106 

and S = 0-8 respectively. The non-uniqueness of self-similar round wakes may 

be attributed to the fact that they are weak-shear flows, that is the effect of local 

velocity gradients upon the Reynolds stresses is up to an order of magnitude less 

than the effect of dissipation. The consequences of these observations for the 

turbulence models are twofold. First, unless the flow around the recirculation 

zone is predicted accurately the downstream predictions are unlikely to be 

correct, and second, the dissipation equation will govern the spreadingrate almost 

entirely. 
Although the discrepancies in the predictions of the recirculation zones are not 

as great nor as well substantiated as those in the spreading rate, the above 

arguments indicate that great precision is required in the recirculation zone if 

the wake is to be correctly represented. In  the recirculation region the Reynolds- 

stress models offer the potential advantages over a two-equation model that the 

differential transport of Reynolds stresses is permitted and that the need for an 

effective-viscosity hypothesis is obviated. The effect of allowing for the differen- 

tial transport of the Reynolds stresses is difficult to assess. Certainly, the gross 

features of the flows considered here are not dependent on this transport in 

contrast to asymmetric channel flow or annular pipe flow for example. However, 

the results demonstrate that the Reynolds-stress closures are necessary to 

represent the different magnitudes of the stresses and that they result in slightly 

better predictions of the mean velocity. This advantage might also be obtained 

with an effective-viscosity closure if the transport of Reynolds stresses was 

assumed proportional to their magnitudes. Unlike the isotropic formulation, the 

effective-viscosity hypothesis deduced from the Reynolds-stress equation with 

the above assumption (Pope 1975) can provide a realistic modelling of all the 

Reynolds stresses and, in addition, makes C, a function of the rate of strain and 

rotation. 
The form of the dissipation equation is common to the three models, and since 

it is based on unproven assumptions, may be a source of error both in the near 

and far wake. It was developed and tested in two-dimensional near-equilibrium 

boundary-layer flows and free shear flows where only one velocity gradient was 

significant. Thus it is not surprising that the net source term was modelled as 
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a linear function of the only non-zero independent invariant of the velocity- 

gradient tensor. Since, in general, there are five independent invariants there is 

clearly scope for improvement. Bradshaw (1973) and Priddin (1975, private 

communication) have also criticized the form of the dissipation equation, 

particularly in relation to flows with streamline curvature, which will also be 

poorly represented by the present source term. In  the present context, the 

rotation invariant Q = (aq/axj - aq./axi)2 is of particular interest: in a two- 

dimensional shear flow without streamline curvature it is equal to the rate-of- 

strain invariant S 2 (aq/ax, + 8UJaxi)2. Thus the dimensionless parameter 

(Q - S)/(  Q + X), which is unity for solid-body rotation, zero for parallel shear 

flow and - 1 for plane strain, may be introduced into the dissipation equation 

without altering its performance in parallel shear flows. While the inclusion of 

this parameter may improve the prediction of the near wake, it will have no 

direct influence downstream. As was mentioned above, however, the spreading 

rate of the far wake will be largely determined by the dissipation equation. Thus 

a more general relation than the linearity assumed between the rate-of-strain 

invariant and the net source of dissipation may serve to improve the predictions 

throughout the flow. 

6. Conclusions 

The main conclusions which can be extracted from the text are as follows. 

(i) The elliptic form of the continuity equation and equations for two com- 

ponents of momentum and the rate of turbulence dissipation have been solved 

numerically together with equations for turbulence kinetic energy or the four 
Reynolds-stress equations: the solution algorithm can be arranged such that 

calculations with the five-equation turbulence model requires an increased 

computer run time of only 50 yo and little extra storage. 

(ii) For the round isothermal wake flows without recirculation considered, 

the turbulence model is less significant than the boundary condition assumed in 

the plane of the trailing edge of the solid body. The influence of the assumed V 
velocity profile is shown to be particularly large. 

(iii) The mean velocity profiles of the plane isothermal wake were predicted 

accurately with all three turbulence models. The normal-stress predictions show 

model I11 to have a slight advantage over model I1 while model I is unsatisfactory 

in this respect. 

(iv) For isothermal wake flows with recirculation, all models result in under- 

estimation of the length of the recirculation region and of the rate of spread of 

the downstream wake. The latter discrepancy is particularly serious and appears 

to stem from incorrect calculation of dissipation in the recirculation region. 

(v) For both wakes with and without recirculation, the Reynolds-stress 

closures provide reasonable predictions of the normal stress, but the advantages 

for the corresponding values of the mean velocity are small. 

(vi) An improvement to the dissipation equation, to remove the deficiency 

indicated in (iv), is suggested. It requires the incorporation of a term based on 

the rotation and rate-of-strain invariants. 
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Appendix 

The following conventions are introduced so that the equations in Cartesian 

and cylindrical-polar co-ordinates may be written in a common form: 

x = XI, y = x2, u = u,, v = u,, w = u,, 
1 for Cartesian co-ordinates, 

y for cylindrical co-ordinates. 
r = {  

Terms in curly brackets are to be included only in cylindrical co-ordinates. 

Continuity equation 
a i a  - ( p U )  +-- ( r p V )  = 0. 
ax r au 

Momentum equations 

a i a  a -  i a  aP - (pU2) + -- ( rpUV)  = -- (pu2) --- (rpzlv) -- 
ax r aY ax r aY ax 

Reynolds-stress models 
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-- - 

r2 I ' 
a i a  C,kW'(tP- w') 
- ( P U G )  +-- ( r p V 2 )  = D(Cs>) + e3 + R33 - Qps + { 2 p 7  
ax r aY 

a l a  
- (p U G )  + - - (rp V G )  = D(C,zCv) + P12 + R,, - 
ax aY 

a i a  E 
- ( ~ U E )  +-- (rp Ve) = D(C,s) + (CelP - C,,pe), 
ax 9- aY 

Model 11 

Rll = - C,,pek-'(G - 3k) - C,,(P,, - $P), 

R,, = - C,,pc;.k-l(> - 81%) - C,,(pZ, - gP), 

R33 = -C41p~k-1(W2-$k)-C,2(P33-$P), 

R12 = - C,,psk-liZ - C,, PI,. 
Hodel I I I  

Rll = - CdllpEk-l(S- gk) - B,(Pll- $P) 

R,, = - C,,pek-1(2 - gk)  - Bl(pZ, - gP) 

av 
aY 

- 2B2pk- + 2B3 

R33 = - C,,p~li-~(G - gk) - B1(P33 - 8P) 

- ( Z ~ , p l i ~ / r )  + 2~~ ({p?] + +P), 

au av 
R12 = - C,,p~k-~Uv - B, Plz - B2pk (% + z) 

+ B , p ( u 2 ~ + v 2 ~ + ~ v  -au - a v  - 
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