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Abstract

Defining structure and detecting the emergence of complexity in nature are inherently subjective, though

essential, scientific activities. Despite the difficulties, these problems can be analyzed in terms of how

model-building observers infer from measurements the computational capabilities embedded in

nonlinear processes. An observer’s notion of what is ordered, what is random, and what is complex in

its environment depends directly on its computational resources: the amount of raw measurement data,

of memory, and of time available for estimation and inference. The discovery of structure in an

environment depends more critically and subtlely, though, on how those resources are organized. The

descriptive power of the observer’s chosen (or implicit) computational model class, for

example, can be an overwhelming determinant in finding regularity in data.

This paper presents an overview of an inductive framework — hierarchical -machine reconstruction —

in which the emergence of complexity is associated with the innovation of new computational model

classes. Complexity metrics for detecting structure and quantifying emergence, along with an analysis

of the constraints on the dynamics of innovation, are outlined. Illustrative examples are drawn from the

onset of unpredictability in nonlinear systems, finitary nondeterministic processes, and

cellular automata pattern recognition. They demonstrate how finite inference resources drive

the innovation of new structures and so lead to the emergence of complexity.
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Order is not sufficient. What is required, is something much more

complex. It is order entering upon novelty; so that the massiveness of

order does not degenerate into mere repetition; and so that the novelty

is always reflected upon a background of system.

A. N. Whitehead on “Ideal Opposites” in Process and Reality.[1]

How can complexity emerge from a structureless universe? Or, for that matter, how can it
emerge from a completely ordered universe? The following proposes a synthesis of tools from

dynamical systems, computation, and inductive inference to analyze these questions.

The central puzzle addressed is how we as scientists — or, for that matter, how adaptive

agents evolving in populations — ever “discover” anything new in our worlds, when it appears
that all we can describe is expressed in the language of our current understanding. This

dilemma is analyzed in terms of an open-ended modeling scheme, called hierarchical �-machine
reconstruction, that incorporates at its base inductive inference and quantitative measures of

computational capability and structure. The key step in the emergence of complexity is the
“innovation” of new model classes from old. This occurs when resource limits can no longer

support the large models — often patchworks of special cases — forced by a lower-level model
class. Along the way, complexity metrics for detecting structure and quantifying emergence,

together with an analysis of the constraints on the dynamics of innovation, are outlined.

The presentation is broken into four parts. Part I is introductory and attempts to define the

problems of discovery and emergence. It delineates several classes of emergent phenomena in
terms of observers and their internal models. It argues that computation theory is central to a

proper accounting of information processing in nonlinear systems and in how observers detect
structure. Part I is intended to be self-contained in the sense that the basic ideas of the entire

presentation are outlined. Part II reviews computation theory — formal languages, automata,
and computational hierarchies — and a method to infer computational structure in nonlinear

processes. Part III, the longest, builds on that background to show formally, and by analyzing
examples, how innovation and the emergence of complexity occur in hierarchical processes.

Part IV is a summary and a look forward.

PART I
INNOVATION, INDUCTION, AND EMERGENCE

1 Emergent?

Some of the most engaging and perplexing natural phenomena are those in which highly-

structured collective behavior emerges over time from the interaction of simple subsystems.
Flocks of birds flying in lockstep formation and schools of fish swimming in coherent array

abruptly turn together with no leader guiding the group.[2] Ants form complex societies whose
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survival derives from specialized laborers, unguided by a central director.[3] Optimal pricing
of goods in an economy appears to arise from agents obeying the local rules of commerce.[4]

Even in less manifestly complicated systems emergent global information processing plays a key
role. The human perception of color in a small region of a scene, for example, can depend on

the color composition of the entire scene, not just on the spectral response of spatially-localized
retinal detectors.[5,6] Similarly, the perception of shape can be enhanced by global topological

properties, such as whether or not curves are opened or closed.[7]

How does global coordination emerge in these processes? Are common mechanisms guiding
the emergence across these diverse phenomena? What languages do contemporary science and

mathematics provide to unambiguously describe the different kinds of organization that emerge

in such systems?

Emergence is generally understood to be a process that leads to the appearance of structure
not directly described by the defining constraints and instantaneous forces that control a system.

Over time “something new” appears at scales not directly specified by the equations of motion.
An emergent feature also cannot be explicitly represented in the initial and boundary conditions.

In short, a feature emerges when the underlying system puts some effort into its creation.

These observations form an intuitive definition of emergence. For it to be useful, however,

one must specify what the “something” is and how it is “new”. Otherwise, the notion has little
or no content, since almost any time-dependent system would exhibit emergent features.

1.1 Pattern!

One recent and initially baffling example of emergence is deterministic chaos. In this, de-

terministic equations of motion lead over time to apparently unpredictable behavior. When
confronted with chaos, one question immediately demands an answer — Where in the determin-

ism did the randomness come from? The answer is that the effective dynamic, which maps from
initial conditions to states at a later time, becomes so complicated that an observer can neither

measure the system accurately enough nor compute with sufficient power to predict the future
behavior when given an initial condition. The emergence of disorder here is the product of both

the complicated behavior of nonlinear dynamical systems and the limitations of the observer.[8]

Consider instead an example in which order arises from disorder. In a self-avoiding random

walk in two-dimensions the step-by-step behavior of a particle is specified directly in stochastic
equations of motion: at each time it moves one step in a random direction, except the one it

just came from. The result, after some period of time, is a path tracing out a self-similar set
of positions in the plane. A “fractal” structure emerges from the largely disordered step-by-step

motion.

Deterministic chaos and the self-avoiding random walk are two examples of the emergence
of “pattern”. The new feature in the first case is unpredictability; in the second, self-similarity.

The “newness” in each case is only heightened by the fact that the emergent feature stands in
direct opposition to the systems’ defining character: complete determinism underlies chaos and

near-complete stochasticity, the orderliness of self-similarity. But for whom has the emergence
occurred? More particularly, to whom are the emergent features “new”? The state of a chaotic

dynamical system always moves to a unique next state under the application of a deterministic
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function. Surely, the system state doesn’t know its behavior is unpredictable. For the random
walk, “fractalness” is not in the “eye” of the particle performing the local steps of the random

walk, by definition. The newness in both cases is in the eye of an observer: the observer whose
predictions fail or the analyst who notes that the feature of statistical self-similarity captures a

commonality across length scales.

Such comments are rather straightforward, even trivial from one point of view, in these
now-familiar cases. But there are many other phenomena that span a spectrum of novelty

from “obvious” to “purposeful” for which the distinctions are less clear. The emergence of
pattern is the primary theme, for example, in a wide range of phenomena that have come

to be labeled “pattern formation”. These include, to mention only a few, the convective
rolls of Bénard and Couette fluid flows, the more complicated flow structures observed in

weak turbulence,[9] the spiral waves and Turing patterns produced in oscillating chemical
reactions,[10–12] the statistical order parameters describing phase transitions, the divergent

correlations and long-lived fluctuations in critical phenomena,[13–15] and the forms appearing
in biological morphogenesis.[10,16,17]

Although the behavior in these systems is readily described as “coherent”, “self-organizing”,

and “emergent”, the patterns which appear are detected by the observers and analysts themselves.
The role of outside perception is evidenced by historical denials of patterns in the Belousov-

Zhabotinsky reaction, of coherent structures in highly turbulent fluid flows, and of the energy
recurrence in anharmonic oscillator chains reported by Fermi, Pasta, and Ulam. Those experi-

ments didn’t suddenly start behaving differently once these key structures were appreciated by

scientists. It is the observer or analyst who lends the teleological “self” to processes which
otherwise simply “organize” according to the underlying dynamical constraints. Indeed, the de-

tected patterns are often assumed implicitly by analysts via the statistics they select to confirm
the patterns’ existence in experimental data. The obvious consequence is that “structure” goes

unseen due to an observer’s biases. In some fortunate cases, such as convection rolls, spiral
waves, or solitons, the functional representations of “patterns” are shown to be consistent with

mathematical models of the phenomena. But these models themselves rest on a host of theoret-
ical assumptions. It is rarely, if ever, the case that the appropriate notion of pattern is extracted

from the phenomenon itself using minimally-biased discovery procedures. Briefly stated, in the
realm of pattern formation “patterns” are guessed and then verified.

1.2 Intrinsic Emergence

For these reasons, pattern formation is insufficient to capture the essential aspect of the
emergence of coordinated behavior and global information processing in, for example, flocking

birds, schooling fish, ant colonies, financial markets, and in color and shape perception. At some
basic level, though, pattern formation must play a role. The problem is that the “newness” in the

emergence of pattern is always referred outside the system to some observer that anticipates the
structures via a fixed palette of possible regularities. By way of analogy with a communication

channel, the observer is a receiver that already has the codebook in hand. Any signal sent down
the channel that is not already decodable using it is essentially noise, a pattern unrecognized

by the observer.
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When a new state of matter emerges from a phase transition, for example, initially no
one knows the governing “order parameter”. This is a recurrent conundrum in condensed

matter physics, since the order parameter is the foundation for analysis and, even, further
experimentation. After an indeterminant amount of creative thought and mathematical invention,

one is sometimes found and then verified as appropriately capturing measurable statistics. The
physicists’ codebook is extended in just this way.

In the emergence of coordinated behavior, though, there is a closure in which the patterns

that emerge are important within the system. That is, those patterns take on their “newness”
with respect to other structures in the underlying system. Since there is no external referent for

novelty or pattern, we can refer to this process as “intrinsic” emergence. Competitive agents in
an efficient capital market control their individual production-investment and stock-ownership

strategies based on the optimal pricing that has emerged from their collective behavior. It

is essential to the agents’ resource allocation decisions that, through the market’s collective
behavior, prices emerge that are accurate signals “fully reflecting” all available information.[4]

What is distinctive about intrinsic emergence is that the patterns formed confer additional

functionality which supports global information processing, such as the setting of optimal prices.
Recently, examples of this sort have fallen under the rubric of “emergent computation”.[18] The

approach here differs in that it is based on explicit methods of detecting computation embedded
in nonlinear processes. More to the point, the hypothesis in the following is that during intrinsic

emergence there is an increase in intrinsic computational capability, which can be capitalized
on and so lends additional functionality.

In summary, three notions will be distinguished:

1. The intuitive definition of emergence: “something new appears”;

2. Pattern formation: an observer identifies “organization” in a dynamical system; and

3. Intrinsic emergence: the system itself capitalizes on patterns that appear.

2 Evolutionary Processes

One arena that frames the question of intrinsic emergence in familiar terms is biological
evolution, which presumes to explain the appearance of highly organized systems from a

disorganized primordial soup. Unfortunately, biological evolution is a somewhat slippery
and difficult topic; not the least reason for which is the less-than-predictive role played by

evolutionary theory in explaining the present diversity of life forms. Due to this, it is much
easier to think about a restricted world whose structure and inhabitants are well-defined. Though

vastly simplified, this world is used to frame all of the later discussion, since it forces one to
be clear about the nature of observers.

The prototype universe I have in mind consists of an environment and a set of adaptive

observers or “agents”. (See Figure 1.) An agent is a stochastic dynamical system that attempts to
build and maintain a maximally-predictive internal model of its environment. The environment

for each agent is the collection of other agents. At any given time an agent’s sensorium is
a projection of the current environmental state. That is, the environmental state is hidden

from the agent by its sensory apparatus. Over time the sensory apparatus produces a series
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of measurements which guide the agent’s use of its available resources — the “substrates” of
Figure 1 — in the construction of an internal model. Based on the regularities captured by its

internal model, the agent then takes actions via effectors that ultimately change the environmental
state. The “better” its internal model, the more regularity in the environment the agent can take

advantage of. Presumably, that advantage increases the agent’s survivability. If the available
inference resources are limited, then the internal model may fail to capture useful environmental

states.

The basic problem facing an agent is the prediction of future sensory input based on
modelling the hidden environmental states and on selecting possible actions. The problem facing

the designer of such a prototype universe is how to know if the agents have adapted and how they
did so. This requires a quantitative theory of how agents process information and build models.
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Figure 1 Agent-centric view of the environment: The universe can be considered a deterministic dynamical system (DS). The
environment, as seen by any one agent, is a stochastic dynamical system (SDS) consisting of all the other agents. Its apparent
stochasticity results from several effects — some intrinsic and some due to an agent’s limited computational resources. Each
agent is itself a stochastic dynamical system, since it may sample, or be plagued by, the uncontrollable randomness in its
substrates and in environmental stimuli. The substrates represent the available resources that support and limit information
processing, model building, and decision making. The arrows indicate the flow of information into and out of the agent.

3 What’s in a Model?

In moving from the initial intuitive definition of emergence to the more concrete notion of
pattern formation and ending with intrinsic emergence, it became clear that the essential novelty

involved had to be referred to some evaluating entity. The relationship between novelty and its
evaluation can be made explicit by thinking always of some observer that builds a model of a

process from a series of measurements. At the level of the intuitive definition of emergence,
the observer is that which recognizes the “something” and evaluates its “newness”. In pattern

formation, the observer is the scientist that uses prior concepts — e.g. “spiral” or “vortex”
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— to detect structure in experimental data and so to verify or falsify their applicability to the
phenomenon at hand. Of the three, this case is probably the most familiarly appreciated in terms

of an “observer” and its internal “model” of a phenomenon. Intrinsic emergence is more subtle.
The closure of “newness” evaluation pushes the observer inside the system, just as the adaptive

agents are inside the prototype universe. This requires in turn that intrinsic emergence be defined
in terms of the “models” embedded in the observer. The observer in this view is a subprocess of

the entire system. In particular, the observer subprocess is one that has the requisite information
processing capability with which to take advantage of the emergent patterns.

“Model” is being used here in a sense that is somewhat more generous than found in daily
scientific practice. There it often refers to an explicit representation — an analog — of a

system under study. Here models will be seen in addition as existing implicitly in the dynamics
and behavior of a process. Rather than being able to point to (say) an agent’s model of its

environment, the designer of the prototype universe may have to excavate the “model”. To do
this one might infer that an agent’s responses are in co-relation with its environment, that an

agent has memory of the past, that the agent can make decisions, and so on. Thus, “model”
here is more “behavioral” than “cognitive”.

4 The Modeling Dilemma

The utility of this view of intrinsic emergence depends on answering a basic question: How

does an observer understand the structure of natural processes? This includes both the scientist
studying nature and an organism trying to predict aspects of its environment in order to survive.

The answer requires stepping back to the level of pattern formation.

A key modeling dichotomy that runs throughout all of science is that between order and

randomness. Imagine a scientist in the laboratory confronted after days of hard work with
the results of a recent experiment — summarized prosaically as a simple numerical recording

of instrument responses. The question arises, What fraction of the particular numerical value
of each datum confirms or denies the hypothesis being tested and how much is essentially

irrelevant information, just “noise” or “error”?

A fundamental point is that any act of modeling makes a distinction between data that is

accounted for — the ordered part — and data that is not described — the apparently random part.
This distinction might be a null one: for example, for either completely predictable or ideally

random (unstructured) sources the data is explained by one descriptive extreme or the other.
Nature is seldom so simple. It appears that natural processes are an amalgam of randomness

and order. It is the organization of the interplay between order and randomness that makes
nature “complex”. A complex process then differs from a “complicated” process, a large system

consisting of very many components, subsystems, degrees of freedom, and so on. A complicated

system — such as an ideal gas — needn’t be complex, in the sense used here. The ideal gas
has no structure. Its microscopic dynamics are accounted for by randomness.

Experimental data are often described by a whole range of candidate models that are

statistically and structurally consistent with the given data set. One important variation over this
range of possible “explanations” is where each candidate draws the randomness-order distinction.

That is, the models vary in the regularity captured and in the apparent error each induces.
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It turns out that a balance between order and randomness can be reached and used to define
a “best” model for a given data set. The balance is given by minimizing the model’s size

while minimizing the amount of apparent randomness. The first part is a version of Occam’s
dictum: causes should not be multiplied beyond necessity. The second part is a basic tenet

of science: obtain the best prediction of nature. Neither component of this balance can be
minimized alone, otherwise absurd “best” models would be selected. Minimizing the model size

alone leads to huge error, since the smallest (null) model captures no regularities; minimizing
the error alone produces a huge model, which is simply the data itself and manifestly not a

useful encapsulation of what happened in the laboratory. So both model size and the induced
error must be minimized together in selecting a “best” model. Typically, the sum of the model

size and the error is minimized.[19–23]

From the viewpoint of scientific methodology the key element missing in this story of what

to do with data is how to measure structure or regularity. Just how structure is measured
determines where the order-randomness dichotomy is drawn. This particular problem can be

solved in principle: we take the size of the candidate model as the measure of structure. Then
the size of the “best” model is a measure of the data’s intrinsic structure. If we believe the data

is a faithful representation of the raw behavior of the underlying process, this then translates

into a measure of structure in the natural phenomenon originally studied.

Not surprisingly, this does not really solve the problem of quantifying structure. In fact,
it simply elevates it to a higher level of abstraction. Measuring structure as the length of the

description of the “best” model assumes one has chosen a language in which to describe models.
The catch is that this representation choice builds in its own biases. In a given language some

regularities can be compactly described, in others the same regularities can be quite baroquely

expressed. Change the language and the same regularities could require more or less description.
And so, lacking prior God-given knowledge of the appropriate language for nature, a measure

of structure in terms of the description length would seem to be arbitrary.

And so we are left with a deep puzzle, one that precedes measuring structure: How
is structure discovered in the first place? If the scientist knows beforehand the appropriate

representation for an experiment’s possible behaviors, then the amount of that kind of structure

can be extracted from the data as outlined above. In this case, the prior knowledge about the
structure is verified by the data if a compact, predictive model results. But what if it is not

verified? What if the hypothesized structure is simply not appropriate? The “best” model could
be huge or, worse, appear upon closer and closer analysis to diverge in size. The latter situation

is clearly not tolerable. At the very least, an infinite model is impractical to manipulate. These
situations indicate that the behavior is so new as to not fit (finitely) into current understanding.

Then what do we do?

This is the problem of “innovation”. How can an observer ever break out of inadequate

model classes and discover appropriate ones? How can incorrect assumptions be changed? How
is anything new ever discovered, if it must always be expressed in the current language?

If the problem of innovation can be solved, then, as the preceding development indicated,

there is a framework which specifies how to be quantitative in detecting and measuring structure.
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5 A Computational View of Nature

Contemporary physics does not have the tools to address the problems of innovation, the
discovery of patterns, or even the practice of modeling itself, since there are no physical principles

that define and dictate how to measure natural structure. It is no surprise, though, that physics

does have the tools for detecting and measuring complete order — equilibria and fixed point or
periodic behavior — and ideal randomness — via temperature and thermodynamic entropy or,

in dynamical contexts, via the Shannon entropy rate and Kolmogorov complexity. What is still
needed, though, is a definition of structure and way to detect and to measure it. This would then

allow us to analyze, model, and predict complex systems at the emergent scales.

One recent approach is to adapt and extend ideas from the theory of discrete computation,

which has developed measures of information-processing structure, to inferring complexity in
dynamical systems.[24] Computation theory defines the notion of a “machine” — a device

for encoding the structures in discrete processes. It has been argued that, due to the inherent
limitations of scientific instruments, all an observer can know of a process in nature is a discrete-

time, discrete-space series of measurements. Fortunately, this is precisely the kind of thing —
strings of discrete symbols, a “formal” language — that computation theory analyzes for structure.

How does this apply to nature? Given a discrete series of measurements from a process, a
machine can be constructed that is the best description or predictor of this discrete time series.

The structure of this machine can be said to be the best approximation to the original process’s
information-processing structure, using the model size and apparent error minimization method

discussed above. Once we have reconstructed the machine, we can say that we understand the
structure of the process.

But what kind of structure is it? Has machine reconstruction discovered patterns in the
data? Computation theory answers such questions in terms of the different classes of machines

it distinguishes. There are machine classes with finite memory, those with infinite one-way
stack memory, those with first-in first-out queue memory, those with counter registers, and

those with infinite random access memory, among others. When applied to the study of nature,
these machine classes reveal important distinctions among natural processes. In particular, the

computationally distinct classes correspond to different types of pattern or regularity.

Given this framework, one talks about the structure of the original process in terms of

the complexity of the reconstructed machine. This is a more useful notion of complexity than
measures of randomness, such as the Kolmogorov complexity, since it indicates the degree to

which information is processed in the system, which accords more closely to our intuitions
about what complexity should mean. Perhaps more importantly, the reconstructed machine

describes how the information is processed. That is, the architecture of the machines themselves
represents the organization of the information processing, that is, the intrinsic computation. The

reconstructed machine is a model of the mechanisms by which the natural process manipulates
information.
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6 Computational Mechanics:
Beyond Statistics, Toward Structure

That completes the general discussion of the problem of emergence and the motivations
behind a computational approach to it. A number of concrete steps remain to implement and test

the utility of this proposal. In particular, a key step concerns how a machine can be reconstructed
from a series of discrete measurements of a process. Such a reconstruction is a way that an

observer can model its environment. In the context of biological evolution, for example, it is
clear that to survive agents must detect regularities in their environment. The degree to which an

agent can model its environment in this way depends on its own computational resources and on
what machine class or language it implicitly is restricted to or explicitly chooses when making

a model. The second key step concerns how an agent can jump out of its original assumptions
about the model class and, by induction, can leap to a new model class which is a much better

way of understanding its environment. This is a formalization of what is colloquially called

“innovation”.

The overall goal, then, concerns how to detect structures in the environment — how to form
an “internal model” — and also how to come up with true innovations to that internal model.

There are applications of this approach to time series analysis and other areas, but the main
goal is not engineering but scientific: to understand how structure in nature can be detected

and measured and, for that matter, discovered in the first place as wholly new innovations in
one’s assumed representation.

What is new in this approach? Computation theorists generally have not applied the existing

structure metrics to natural processes. They have mostly limited their research to analyzing
scaling properties of computational problems; in particular, to how difficulty scales in certain

information processing tasks. A second aspect computation theory has dealt with little, if at all,
is measuring structure in stochastic processes. Stochastic processes, though, are seen throughout

nature and must be addressed at the most basic level of a theory of modeling nature. The
domain of computation theory — pure discreteness, uncorrupted by noise — is thus only a

partial solution. Indeed, the order-randomness dichotomy indicates that the interpretation of any
experimental data has an intrinsic probabilistic component which is induced by the observer’s

choice of representation. As a consequence probabilistic computation must be included in any

structural description of nature. A third aspect computation theory has considered very little is
measuring structure in processes that are extended in space. A fourth aspect it has not dealt

with traditionally is measuring structure in continuous-state processes. If computation theory
is to form the foundation of a physics of structure, it must be extended in at least these three

ways. These extensions have engaged a number of workers in dynamical systems recently, but
there is much still to do.[24–30]

7 Agenda

The remainder of the discussion focuses on temporal information processing and the first two
extensions — probabilistic and spatial computation — assuming that the observer is looking at a

series of measurements of a continuous-state system whose states an instrument has discretized.
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The phrase “calculi of emergence” in the title emphasizes the tools required to address the
problems which intrinsic emergence raises. The tools are (i) dynamical systems theory with

its emphasis on the role of time and on the geometric structures underlying the increase in
complexity during a system’s time evolution, (ii) the notions of mechanism and structure inherent

in computation theory, and (iii) inductive inference as a statistical framework in which to detect
and innovate new representations. The proposed synthesis of these tools develops as follows.

First, Part II defines a complexity metric that is a measure of structure in the way discussed

above. This is called “statistical complexity”, and it measures the structure of the minimal

machine reconstructed from observations of a given process in terms of the machine’s size.
Second, Part II describes an algorithm — �-machine reconstruction — for reconstructing the

machine, given an assumed model class. Third, Part III presents an algorithm for innovation
— called hierarchical �-machine reconstruction — in which an agent can inductively jump to a

new model class by detecting regularities in a series of increasingly-accurate models. Fourth,
the remainder of Part III analyzes several examples in which these general ideas are put into

practice to determine the intrinsic computation in continuous-state dynamical systems, recurrent
hidden Markov models, and cellular automata. Finally, Part IV concludes with a summary of

the implications of this approach for detecting and understanding the emergence of structure in
evolving populations of adaptive agents.

PART II
MECHANISM AND COMPUTATION

Probably the most highly developed appreciation of hierarchical structure is found in the
theory of discrete computation, which includes automata theory and the theory of formal

languages.[31–33] The many diverse types of discrete computation, and the mechanisms that

implement them, will be taken in the following as a framework whose spirit is to be emulated
and extended. The main objects of attention in discrete computation are strings, or words, �

consisting of symbols � from a finite alphabet: � � ������ � � � ����� �� � �� �� � � � � � � .
Sets of words are called formal languages; for example, � ��� ��� � � � � �� . One of the

main questions in computation theory is how difficult it is to “recognize” a language — that
is, to classify any given string as to whether or not it is a member of the set. “Difficulty” is

made concrete by associating with a language different types of machines, or automata, that can
perform the classification task. The automata themselves are distinguished by how they utilize

various resources, such as memory or logic operations or even the available time, to complete
the classification task. The amount and type of these resources determine the “complexity”

of a language and form the basis of a computational hierarchy — a road map that delineates
successively more “powerful” recognition mechanisms. Particular discrete computation problems

often reduce to analyzing the descriptive capability of an automaton, or of a class of like-
structured automata, in terms of the languages it can recognize. This duality, between languages

as sets and automata as functions which recognize sets, runs throughout computation theory.
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Although discrete computation theory provides a suggestive framework for investigating
hierarchical structure in nature, a number of its basic elements are antithetical to scientific

practice. Typically, the languages are countable and consist of arbitrary length, but finite words.
This restriction clashes with basic notions from ergodic theory, such as stationarity, and from

physics, such as the concept of a process that has been running for a long time, that is, a system
in equilibrium. Fortunately, many of these deficiencies can be removed, with the result that the

concepts of complexity and structure in computation theory can be usefully carried over to the
empirical sciences to describe how a process’s behavioral complexity is related to the structure

of its underlying mechanism. This type of description will be one of the main points of review
in the following. Examples later on will show explicitly how nonlinear dynamical systems have

various computational elements embedded in them.

But what does it mean for a physical device to perform a computation? How do its dynamics
and the underlying device physics support information processing? Answers to these questions

need to distinguish two notions of computation. The first, and probably more familiar, is the
notion of “useful” computation. The input to a computation is given by the device’s initial

physical configuration. Performing the computation corresponds to the temporal sequence of
changes in the device’s internal state. The result of the computation is read off finally in

the state to which the device relaxed. Ultimately, the devices with computational utility are
those we have constructed to implement input-output mappings of interest to us. In this type of

computation an outside observer must interpret the end product as useful: it involves a semantics

of utility. One of the more interesting facets of useful computation is that there are universal
computers that can emulate any discrete computational process. Thus, in principle, only one

type of device needs to be constructed to perform any discrete computation.

In contrast, the second notion — “intrinsic” computation — focuses on how structures in

a device’s state space support and constrain information processing. It addresses the question
of how computational elements are embedded in a process. It does not ask if the information

produced is useful. In this it divorces the semantics of utility from computation. Instead, the
analysis of a device’s intrinsic computation attempts to detect and quantify basic information

processing elements — such as memory, information transmission and creation, and logical

operations.[34]

1 Road Maps to Innovation

With this general picture of computation the notion of a computational hierarchy can be

introduced. Figure 2 graphically illustrates a hierarchy of discrete-state devices in terms of their
computational capability. Each circle there denotes a class of languages. The abbreviations

inside indicate the class’s name and also, in some cases, the name of the grammar and/or
automaton type. Moving from the bottom to the top one finds successively more powerful

grammars and automata and harder-to-recognize languages. The interrelationships between the
classes is denoted with a line: if class � is below and connected to � , then � recognizes

all of the languages that � does and more. The hierarchy itself is only a partial ordering
of descriptive capability. Some classes are not strictly comparable. The solid lines indicate

inclusion: a language lower in the diagram can be recognized by devices at higher levels, but
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there are languages at higher levels not recognizable at lower levels. The least powerful models,
at the hierarchy’s bottom, are those with finite memory — the finite automata (DFA/NFA).

At the top are the universal Turing machines (UTM) which have infinite random-access tape
memories. In between, roughly speaking, there are two broad classes of language: context-

sensitive languages that can be recognized by machines whose infinite memories are organized
in a stack, and context-sensitive languages recognized by machines whose memory accesses are

limited by a linear function of the initial input’s length. What is remarkable about this hierarchy
is the wealth of intervening model classes and the accumulated understanding of their relative

language classification powers. Figure 2 includes more detail than is necessary for the following
discussion, but it does demonstrate some of the diversity of computational mechanisms that have

been studied.[31]
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Figure 2 The discrete computation hierarchy. Adjective legend: 1 = one way input tape, 2 = two way input tape, D =
deterministic, N = nondeterministic, I = indexed, RI = restricted I, n = nested, NE = nonerasing, CF = context free, CS = context
sensitive, R = recursive, RE = R enumerable, and U = universal. Object legend: G = grammar, A = automata, FA = finite A,
PDA = pushdown A, SA = stack A, LBA = linear bounded A, RPA = Reading PDA, TM = Turing machine, LS = Lindenmayer
system, 0L = CF LS, 1L = CS LS, and RS = R set. (After [31,35–39].)

Figure 2 includes the formal grammar models of Chomsky and others, the associated finite
and stack automata, and the arbitrary-access tape machines of Turing. Hierarchical structure

should not be thought of as being limited to just these, however. Even staying within the
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domain of discrete symbol manipulation, there are the (Lindenmayer) parallel-rewrite[40] and
queue-based[41,42] computational models. There are also the arithmetic and analytic hierarchies

of recursive function theory.[43] The list of discrete computation hierarchies seems large because
it is and needs to be to capture the distinct types of symbolic information processing mechanisms.

Although the discrete computation hierarchy of Figure 2 can be used to describe information
processing in some dynamical systems, it is far from adequate and requires significant extensions.

Several sections in Part III discuss three different extensions that are more appropriate to
computation in dynamical systems. The first is a new hierarchy for stochastic finitary processes.

The second is a new hierarchy for discrete spatial systems. And the third is the �-machine
hierarchy of causal inference. A fourth and equally important hierarchy, which will not be

discussed in the following, classifies different types of continuous computation.[26,30] The
benefit of pursuing these extensions is found in what their global organization of classes indicates

about how different representations or modeling assumptions affect an observer’s ability to build

models. What a natural scientist takes from the earliest hierarchy — the Chomsky portion of
Figure 2 — is the spirit in which it was constructed and not so much its details. On the one

hand, there is much in the Chomsky hierarchy that is deeply inappropriate to general scientific
modeling. The spatial and stochastic hierarchies introduced later give an idea of those directions

in which one can go to invent computational hierarchies that explicitly address model classes
which are germane to the sciences. On the other hand, there is a good deal still to be gleaned

from the Chomsky hierarchy. The recent proposal to use context-free grammars to describe
nonlocal nucleotide correlations associated with protein folding is one example of this.[44]

2 Complexity Randomness

The main goal here is to detect and measure structure in nature. A computational road
map only gives a qualitative view of computational capability and so, within the reconstruction

framework, a qualitative view of various types of possible natural structure. But empirical
science requires quantitative methods. How can one begin to be quantitative about computation

and therefore structure?

Generally, the metrics for computational capability are given in terms of “complexity”. The

complexity ���� of an object � is taken to be the size of its minimal representation ������ �
when expressed in a chosen vocabulary : ���� � ������ � . � can be thought of as a

series of measurements of the environment. That is, the agent views the environment as a process
which has generated a data stream �. Its success in modeling the environment is determined in

large part by the apparent complexity ����. But different vocabularies, such as one based on
using finite automata versus one based on pushdown stack automata, typically assign different

complexities to the same object. This is just the modeling dilemma discussed in Part I.

Probably the earliest attempt at quantifying information processing is due to Shannon

and then later to Chaitin, Kolmogorov, and Solomonoff. This led to what can be called
a “deterministic” complexity, where “deterministic” means that no outside, e.g. stochastic,

information source is used in describing an object. The next subsection reviews this notion; the
subsequent one introduces a relatively new type called “statistical complexity” and compares

the two.
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2.1 Deterministic Complexity

In the mid-1960s it was noted that if the vocabulary was taken to be programs for uni-

versal Turing machines, then a certain generality obtained to the notion of complexity. The

Kolmogorov-Chaitin complexity ���� of an object � is the number of bits in the smallest pro-
gram that outputs � when run on a universal deterministic Turing machine (UTM).[45–47] The

main deficiency that results from the choice of a universal machine is that ���� is not com-
putable in general. Fortunately, there are a number of process classes for which some aspects

of the deterministic complexity are well understood. If the object in question is a string �� of
� discrete symbols produced by an information source, such as a Markov chain, with Shannon

entropy rate ��,[48] then the growth rate of the Kolmogorov-Chaitin complexity is

� ��

� ���
�� (1)

The growth rate �� is independent of the particular choice of universal machine. In the modeling

framework it can be interpreted as the error rate at which an agent predicts successive symbols
in ��.

Not surprisingly, for chaotic dynamical systems with continuous state variables and for the
physical systems they describe, we have

� ���
���

���

��� (2)

where the continuous variables are coarse-grained at resolution � into discrete “measurement”

symbols �� �� �� �� � � � � ��� � and � is the state space dimension.[49] Thus, there are
aspects of deterministic complexity that relate directly to physical processes. This line of

investigation has led to a deeper (algorithmic) understanding of randomness in physical systems.

In short, ���� is a measure of randomness of the object � and, by implication, of randomness
in the process which produced it.[50]

2.2 Statistical Complexity

Roughly speaking, the Kolmogorov-Chaitin complexity ���� requires accounting for all
of the bits, including the random ones, in the object �. The main consequence is that ����,
considered as a number, is dominated by the production of randomness and so obscures important
kinds of structure in � and in the underlying process. In contrast, the statistical complexity �����
discounts the computational effort the UTM expends in simulating random bits in �. One of
the defining properties of statistical complexity is that an ideal random object � has ����� � �.

Also, like ����, for simple periodic processes, such as � � ������� � � � �, ����� � �. Thus,
the statistical complexity is low for both (simple) periodic and ideal random processes. If ��

denotes the first � symbols of �, then the relationship between the complexities is simply

� �� �� �� � ��� (3)

This approximation ignores important issues of how averaging should be performed; but, as

stated, it gives the essential idea.
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One interpretation of the statistical complexity is that it is the minimum amount of historical
information required to make optimal forecasts of bits in � at the error rate ��. Thus, �� is

not a measure of randomness. It is a measure of structure above and beyond that describable
as ideal randomness. In this, it is complementary to the Kolmogorov-Chaitin complexity and

to Shannon’s entropy rate.

Various complexity metrics have been introduced in order to capture the properties of
statistical complexity. The “logical depth” of �, one of the first proposals, is the run time of the

UTM that uses the minimal representation �������.[51] Introduced as a practical alternative to
the uncomputable logical depth, the “excess entropy” measures how an agent learns to predict

successive bits of �.[52] It describes how estimates of the Shannon entropy rate converge to the

true value ��. The excess entropy has been recoined twice, first as the “stored information” and
then as the “effective measure complexity”.[53,54] Statistical complexity itself was introduced in

Ref. [24]. Since it makes an explicit connection with computation and with inductive inference,
�� will be the primary tool used here for quantifying structure.

2.3 Complexity Metrics

These two extremes of complexity metric bring us back to the question — What needs to be

modified in computation theory to make it useful as a theory of structures found in nature? That
is, how can it be applied to, say, physical and biological phenomena? As already noted, there are

several explicit differences between the needs of the empirical sciences and formal definitions
of discrete computation theory. In addition to the technical issues of finite length words and

the like, there are three crucial extensions to computation theory: the inclusion of probability,
inductive inference, and spatial extent. Each of these extensions has received some attention in

theoretical computer science, coding theory, and mathematical statistics.[23,55] Each plays a

prominent role in one of the examples to come later.

More immediately the extension to probabilistic computation gives a unified comparison of
the deterministic and statistical complexities and so indicates a partial answer to these questions.

Recall that the vocabulary underlying � consists of minimal programs that run on a deterministic
UTM. We can think of �� similarly in terms of a Turing machine that can guess. Figure 3

shows a probabilistic generalization — the Bernoulli-Turing machine (BTM) — to the basic
Turing machine model of the discrete computation hierarchy.[56] The equivalent of the road

map shown in Figure 2 is a “stochastic” computation hierarchy, which will be the subject of
a later section.

With the Bernoulli-Turing machine in mind, the deterministic and statistical complexities
can be formally contrasted. For the Kolmogorov-Chaitin complexity we have

���� � ������ ���� (4)

and for the statistical complexity we have

����� � ������ ���� (5)

The difference between the two over processes that range from simple periodic to ideal random is

illustrated in Figure 4. As shown in Figure 4(a), the deterministic complexity is a monotonically
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Figure 3 The Bernoulli-Turing Machine (BTM) is a deterministic Turing machine augmented by contact to an information
source — a heat bath denoted as a boiling water pot. Like a Turing machine, it is a transducer that maps input tapes (0+1)* to
output tapes (0+1)*. The input (output) tape cells are read (written) sequentially and once only. Any intermediate processing
and storage is provided by the working tape which allows bidirectional access to its contents. The BTM defines the most general
model of discrete stochastic sequential computation.

increasing function of the degree of ideal randomness in a process. It is governed by a process’s

Shannon entropy rate ��. The statistical complexity, in contrast, is zero at both extremes
and maximized in the middle. (See Figure 4(b).) The “complex” processes at intermediate

degrees of randomness are combinations of ordered and stochastic computational elements. The
larger the number of such irreducible components composing a process, the more “complex”

the process. The interdependence of randomness as measured by Shannon entropy rate and
statistical complexity is a surprisingly universal phenomenon. A later section analyzes two

families of dynamical systems using the complexity-entropy diagram of Figure 4(b) to describe
their information processing capabilities.

It is notable, in this context, that current physical theory does not provide a measure of

structure like statistical complexity. Instead one finds metrics for disorder, such as temperature
and thermodynamic entropy. In a sense, physics has incorporated elements from the Kolmogorov-

Chaitin framework, but does not include the elements of computation theory or of statistical
complexity. There are, though, some rough physical measures of structure. These are seen in

the use of group theory in crystallography and quantum mechanics. Group theoretic properties,
though, only concern periodic, reversible processes or operations. Unlike ergodic theory and

dynamical systems theory, contemporary physical theory is mute when it comes to quantitatively
distinguishing, for example, the various kinds of chaotic and stochastic systems. This is what

the statistical complexity is intended to provide.

The statistical complexity is a relative, not an absolute, measure of structure. It is relative to

a source of ideal randomness — relative to a Random Oracle, in the parlance of computational
complexity theory. A scientist might object to the use of statistical complexity, therefore, by

arguing that it is important in a physical setting to account for all of the mechanisms involved
in producing information. This is a fair enough comment. It acknowledges the study of

randomness and it is compatible with the original spirit of Kolmogorov’s program to investigate
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the algorithmic basis of probability. Deterministic chaos, though, has shown us that there
are many sources of effective randomness in nature. One can simply use a chaotic system

or appeal to the “heat bath” as an effective Random Oracle. In physics and most empirical
sciences explicit accounting for random bits is neither necessary nor desirable. Ultimately, there

is no contradiction between the deterministic and statistical views. Within each one simply is
interested in answers to different questions.
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Figure 4 (a) Deterministic complexity — relative to (say) a deterministic universal Turing machine — is a measure of the degree
of unpredictability of an information source. It indicates the degree of randomness which can be measured with the Shannon
entropy rate ��. (b) Statistical complexity is based on the notion that randomness is statistically simple: an ideal random process
has zero statistical complexity. At the other end of the spectrum, simple periodic processes have low statistical complexity.
Complex processes arise between these extremes and are an amalgam of predictable and stochastic mechanisms. (After [56].)

The explication of the discrete computation hierarchy of Figure 2 and the two notions of

deterministic and statistical complexity begins to suggest how different types of structure can

be investigated. In addition to the probabilistic extension to computation theory that shed some
light on the distinction between ���� and �����, another important generalization is to spatially-

extended systems — those that generate “patterns” — will be the subject of later discussion. But
before considering this or any other extension, the intervening sections review how complexity

and randomness can be inferred from a measurement time series by an observer. The result of
this will be the inductive hierarchy of �-machines, which will capture the intrinsic computational

structure in a process. This inductive hierarchy stands in contrast to the engineering-oriented
hierarchy of Figure 2.

3 -Machine Reconstruction

How can an agent detect structure — in particular, computation — in its measurements

of the environment? To answer this, let us continue with the restriction to discrete-valued time

series; that is, the agent reads off a series of discrete measurements from its sensory apparatus. If
one is interested in describing continuum-state systems, then this move should be seen as purely

pragmatic: an instrument will have some finite accuracy, generically denoted �, and individual
measurements, denoted �, will range over an alphabet � �� �� �� � � � � ��� � . It is



18 J. P. Crutchfield

understood that the measurements � are only indirect indicators of the hidden environmental
states.

The goal for the agent is to detect the “hidden” states � � ��� ��� � � � � ���� in its sensory

data stream that can help it predict the environment. The states so detected will be called “causal”
states. For discrete time series a causal state is defined to be the set of subsequences that render

the future conditionally independent of the past. Thus, the agent identifies a state at different
times in a data stream as being in identical conditions of knowledge about the future.[24] (See

Figure 5 for a schematic illustration that ignores probabilistic aspects.)

t

5 835629

5 362951

1 4 1 5 9 2 6

t11

t9

t13

Figure 5 Within a single data stream, morph-equivalence induces conditionally-independent states. When the templates of future
possibilities — that is, the allowed future subsequences and their past-conditioned probabilities — have the same structure, then
the process is in the same causal state. At �� and at ���, the process is in the same causal state since the future morphs have the
same shape; at ��� it is in a different causal state. The figure only illustrates the nonprobabilistic aspects of morph-equivalence.
(After [57].)

The notion of causal state can be defined as follows. Consider two parts of a data stream
� � � � � �

����������� � � �. The one-sided forward sequence �
�

� � �������������� � � � and one-

sided reverse sequence ��� � � � � �������������� are obtained from � by splitting it at time � into
the forward- and reverse-time semi-infinite subsequences. They represent the information about

the future and past, respectively. Consider the joint distribution of possible forward sequences
�
� and reverse sequences �

� over all times �:

����� � ������ ��� � ����� �
�������� (6)

The conditional distribution ����� �� is to be understood as a function over all possible forward
sequences �

� that can follow the particular sequence � wherever � occurs in �.

Then the same causal state � � is associated with all those times �� ��

��� � ��� � ��� � � � � �� � such that past-conditioned future distributions are the same. That
is,

� �� if and only if ����� �
�

� � � ����� �
�

�� � (7)

Here “ ” denotes the equivalence relation induced by equivalent future morphs. If the process

generating the data stream is ergodic, then there are several comments that serve to clarify how
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this relation defines causal states. First, the particular sequences ��� and ���� are typically distinct.
If � ��, Eq. (7) means that upon having seen different histories one can be, nonetheless, in the

same state of knowledge or ignorance about what will happen in the future. Second, ��� and
�
�

�� , when considered as particular symbol sequences, can each occur in � many times other than

� and ��, respectively. Finally, the conditional distributions ����� �
�

� � and ����� �
�

�� � typically
are functions over a nonempty range of “follower” sequences ��.

This gives a formal definition to the set � of causal states as equivalence classes of future
predictability: is the underlying equivalence relation that partitions temporal shifts of the

data stream into equivalence classes. In the following the states will be taken simply as the
labels for those classes. This does more than simplify the discussion. As integers ranging

over �� �� �� � � � � � � , the states convey all of the information required to render the
future conditionally independent of the past. For a given state � the set of future sequences

�
�

� � � � that can be observed from it is called its “future morph”. (Recall Fig. 5.) The
set of sequences that lead to � is called its “past morph”.

Note that a state and its morphs are the contexts in which an individual measurement takes
on semantic content. Each measurement is anticipated or “understood” by the agent vis á vis the

agent’s internal model and, in particular, the structure of the states. This type of measurement
semantics is discussed elsewhere.[34]

Once the causal states are found, the temporal evolution of the process — its symbolic
dynamic — is given by a mapping � � � � from states to states; that is, ���� 	 ���. The

pair 
 	 ��� � � is referred to as an �-machine; where � simply reminds us that what we have
reconstructed (i) is an approximation of the process’s computational structure and (ii) depends on

the measuring instrument’s characteristics, such as its resolution. The procedure that begins with
a data stream and estimates the number of states and their transition structure and probabilities

is referred to as �-machine reconstruction.[24]

What do these reconstructed machines represent? First, by the definition of future-equivalent

states, the machines give the minimal information dependency between the morphs. It is in this
respect that they represent the causal structure of the morphs considered as events. The machines

capture the information flow within the given data stream. If state � follows state � then, as far
as the observer is concerned, � is a cause of � and � is one effect of �. Second, �-machine

reconstruction produces minimal models up to the given prediction error level. The effective error
level is determined by the available inference resources. Minimality guarantees that there are no

other events (morphs) that intervene, at the given error level, to render � and � independent.

In this case, we say that information flows from � to �. The amount of information that flows
is the negative logarithm of the connecting transition probability: ��� ����. Finally, time

is the natural ordering captured by �-machines.

4 Measuring Predictability and Structure

With the modeling methodology laid out, several statistics can be defined that capture how

information is generated and processed by the environment as seen by an agent. A useful
coordinate-independent measure of information production has already been introduced — the

Shannon entropy rate ��.[48] If the agent knows the distribution ����� over infinite measurement
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sequences �, then the entropy rate is defined as

�� � ���
���

� �� ��

�
(8)

in which �� �� is the marginal distribution, obtained from �����, over the set of length �

sequences �� and � is the average of the self-information, ���� �� �
� , over �� �� . In

simple terms, �� measures the rate at which the environment appears to produce information.

Its units are bits per symbol. The higher the entropy rate, the more information produced, and
the more unpredictable the environment appears to be.

Typically, the agent does not know ����� and so the definition in Eq. (8) is not directly

applicable. Assuming that the agent has observed a “typical” data stream � and that the process
is ergodic, the entropy becomes

�� 	 ��������� �
�

� �� (9)

where ������� �
�

� � is the conditional distribution of the next symbol ���� given the semi-infinite

past ��� and � averages the conditional distribution over ������. Using the agent’s current set
� of inferred causal states and finding the one to which �

�

� leads, the agent can estimate the

entropy in a much simpler way using

�� 	 ������ ��� (10)

in which ���� �� is the conditional distribution of the next symbol � given the current state
� �.

Thinking about quantifying unpredictability in this way suggests there are other, perhaps

more immediate, measures of the environment’s structure. The topological complexity �� of a
process is simply given in terms of the minimal number of causal states in the agent’s model

�� 	 ���� � (11)

It is an upper bound on the amount of information needed to specify which state the environment

is in. There is also a probabilistic version of the “counting” topological complexity. It is
formulated as follows. The � � transition probability matrix � determines the asymptotic

causal state probabilities as its left eigenvector

��� 	 �� (12)

in which �� is the causal states’ asymptotic probability distribution:
���

�� 	 
. From this we

have an informational quantity for the machine’s size

�� 	 ����� (13)

This is the statistical complexity. If, as provided by machine reconstruction, the machine is
minimal, then �� is the amount of memory (in bits) required for the agent to predict the

environment at the given level “	” of accuracy.[24]
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Let’s step back a bit. This section reviewed how an agent can build a model from a time
series of measurements of its environment. If one considers model building to be a dynamic

process, then during model construction and refinement there are two quantities, entropy rate and
statistical complexity, that allow one to monitor the effectiveness and size, respectively, of the

agent’s model. Since the absolute difference between the environment’s actual entropy rate and
that of the agent’s internal model determines the agent’s rate of incorrect predictions, the closer

the model’s entropy is to that of the environment, the higher the agent’s chance for survival.
This survivability comes at a cost determined by the resources the agent must devote to making

the predictions. This, in turn, is measured as the model’s statistical complexity.

PART III
TOWARD A MATHEMATICAL THEORY OF INNOVATION

1 Reconstructing Language Hierarchies

Complexity, entropy, and �-machine reconstruction itself concern incremental adaptation

for an agent: the agent’s “development” or its “interim” evolution when survival is viewed as
an optimization and the environmental statistics are quasi-stationary. In contrast, innovation

is associated with a change in model class. One would expect this change to correspond to
an increase in computational sophistication of the model class, but it need not be. Roughly,

innovation is the computational equivalent of speciation — recall that the partial ordering of a
computational hierarchy indicates that there is no single way “up” in general. In concrete terms,

innovation is the improvement in an agent’s notion of environmental (causal) state. However it is
instantiated in physical and biological processes, innovation seems to be an active process given

the demonstrated robustness and creativity of life in the face of adversity. Innovation, in the
narrow sense used here, should be distinguished from the passive, random forces of evolutionary

change implied by mutation and recombination.

The computational picture of innovation, shown schematically in Table 1, leads to an enlarged

view of the evolutionary dynamic. This can be described from the agent’s view in terms of
hierarchical �-machine reconstruction as follows.[28,58]

1. Start at the lowest level of the computational hierarchy by building stochastic finite automata

via �-machine reconstruction. There are, in fact, transitions over three levels implicit in the

previous introduction of �-machine reconstruction; these are shown explicitly as levels 0
through 2 in Table 1. These go from the data stream (Level 0) to trees (Level 1) and then

to stochastic finite automata (Level 2).

2. At any given level, if the approximations continue increasing in size as more data and

resources are used in improving the model’s accuracy, then “innovate” a new class when
the current representation hits the limits of the agent’s computational resources.
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The innovation step is the evolutionary dynamic that moves from less to more capable model
classes by looking for similarities between state-groups within the lower level models. This

is how the agent’s notion of causal state changes: from states to state-groups. The effective
dynamic is one of increasing abstraction. The process is open-ended, though a possible first

four levels are shown in Table 1.

Level
Model

Class
Machine

Model Size,

if class is appropriate

Equivalence

Relation

... ... ... ...

3
String

Production

1\A
0\\A

0\A

1\\A

A 1 0 1 1 1

� � � � � � �

Finitary-

Recursive
Conditional

Independence

2
Finite

Automata
1

0 1

1

0

� � � � �
Conditional

Independence

1 Tree

0

0

0

0

1

1 1

1 1 1

�
Block

Independence

0
Data

Stream
1 1 10

� Measurement

Table 1 A causal time-series modeling hierarchy. Each level is defined in terms of its model class. The models themselves
consist of states (circles or squares) and transitions (labeled arrows). Each model has a unique start state denoted by an inscribed
circle. The data stream itself is the lowest level. From it a tree of depth � is constructed by grouping sequential measurements
into recurring subsequences. The next level models, finite automata (FA) with states � and transitions �, are reconstructed
from the tree by grouping tree nodes. The last level shown, string production machines (PM), are built by grouping FA states
and inferring production rules � that manipulate strings in register �.

Consider a data stream � of � measurements. If the source is periodic, then Level 0, the
data itself, gives a representation that depends on �. In the limit � Level 0 produces

an infinite representation. Level 0, of course, is the most accurate model of the data, though it
is largely unhelpful and barely worth the label “model”. In contrast, a depth � tree will give

a finite representation, though, of a data stream with period �, even if the data stream is
infinite in length. This tree has paths of length � given by the source’s period. Each of these

paths corresponds to a distinct phase of the repeating pattern in �.
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If � is nonperiodic, then the tree model class will no longer be finite and independent of �.
Indeed, if the source has positive entropy (�� � �) then the tree’s size will grow exponentially,

��� , as � is increased to account for subsequences in � of increasing length �.

If the source has, roughly speaking, correlations that decay fast enough over time, then

the next level of (stochastic) finite automata, will give a finite representation. The number of
states � indicates the amount of memory in the source and so the typical time over which

correlations can exist between the measurements in �. But it could very well be, and examples
will show this shortly, that Level 2 does not give a finite representation. Then yet another level

(Level 3) will be required.

The next section gives a more precise statement of this picture. And later sections will go

through several examples in detail to illustrate the dynamic of increasing abstraction. But briefly

the idea is to move up the hierarchy in search of a representation that gives a finite model of
the environment with optimal prediction of the environment’s behavior.

2 At Each Level in a Hierarchy

To be more precise about the innovation step, let’s review the common aspects across the
levels in the hierarchy of Table 1; and, for that matter, in the computational hierarchy of Figure

2. At each level in a hierarchy there are a number of elements that can be identified, such as
the following.

1. Symmetries reflecting the agent’s assumptions about the environment’s structure. These
determine the semantic content of the model class , which is defined by equivalence

relations corresponding to each symmetry.

2. Models �, in some class , consisting of states and transitions observed via measurements.

3. Languages being the ensembles of finitely representable behaviors.

4. Reconstruction being the procedure for producing estimated models. Formally, reconstruc-

tion of model � is denoted as � � �� . That is, reconstruction factors out a
symmetry from a data stream �.

5. Complexity of a process being the size of the minimal reconstructed model � with respect

to the given class : ��� � � ���� .

6. Predictability being estimated with reference to the distinguishable states as in Eq. (10).

It is crucial that reconstructed models � be minimal. This is so that � contains no

more structure than and no additional properties beyond those in the environment. The simplest
example of this is to note that there are many multiple-state representations of an ideal random

binary string. But if the size of representation is to have any meaning, such as the amount
of memory, only the single state process can be allowed as the model from which complexity

is computed.

3 The -Machine Hierarchy

At this level of analysis — namely, discussing the structure of a hierarchy of model classes

— the relativity of information, entropy, and complexity becomes clear. They all depend on



24 J. P. Crutchfield

the agent’s assumed representation. Indeed, the representation’s properties determine what their
values can mean to the agent.

�-machine reconstruction was introduced above as a way for the agent to detect causal

states. Although causal states as formulated here can be related to notions of state employed in
other fields, it should be clear now that there is an inductive hierarchy delineated by different

notions of state. Once this is appreciated, the full definition of an �-machine can be given. An
�-machine is that

minimal model at the

least computationally powerful level yielding a

finite description.

The definition builds in an adaptive notion that the agent initially might not have the correct

model class. How does it find a better representation? Moving up the inductive hierarchy can
be associated with the innovation of new notions of causal state and so new representations

of the environment’s behavior. In formal terms, an �-machine is reconstructed at some level
in the computational hierarchy when hierarchical reconstruction — considered as an operator

on representations — falls onto a fixed point. One can envision a procedure, analogous to
the schematic view in Table 1, that implements this incremental movement up the hierarchy

as follows.

1. At the lowest level, the data stream is its own, rather degenerate and uninformative, model:

�� � �. Initially set the hierarchy level indicator to one step higher: � � �.

2. Reconstruct the level � model �� from the lower level model by factoring out the regularities

— equivalence classes — in the state transition structure of the lower level model ����:
�� � ����� , where denotes the equivalence relation defining the level � causal-state

equivalence classes. Literally, one looks for regularities in groups of states in ����. The
groups revealing regularity in ���� become the causal states of ��; the transitions between

the ����-state groups become the transitions in ��.

3. Test the parsimony of the �-level class’s descriptive capability by estimating successively

more accurate models. As before, the degree of approximation is generally denoted �, with
� � being the limit of increasingly accurate models.

4. If the model complexity diverges, ��
���

, then set � � � � and go back to 2 and

move up another level.

5. If �� �
���

, then the procedure has found the first level that is the least computationally

powerful and that gives a finite description. An �-machine has been reconstructed. Quit.

The essential idea in moving up the hierarchy is that the symmetries assumed by the agent are

broken by the data when reconstruction leads to an infinite model at some level of representation.
The process of going from step 4 back to step 2 — i.e. of jumping up the hierarchy to a new

model class — is what has been referred to as “innovation”. The key step in innovating a new
model class is the discovery of new equivalence relations. A large part of this, though, is simply

a reapplication of �-machine reconstruction: discovering new structure is done by grouping
lower-level states into equivalence classes of the same future morph. These equivalence classes

then become the notion of causal state at the new higher level. A series of increasingly-accurate
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lower level models are, in this sense, a data stream — ������������
�
� �����

�
� �����

�
� � � � �

— for reconstruction at the next higher level ��. A section to follow shortly will show that,

for example, at the onset of chaos hierarchical �-machine reconstruction goes across four levels
— data, trees, finite automata, and stack automata — before finding a finite representation. The

details in Table 1 were selected in anticipation of those results.

There is an additional element beyond the grouping of states according to their transition

(morph) structure, though. This will be seen shortly in the section on hidden Markov models
as the innovation of a resettable counter register,[59] at the onset of chaos as the innovation of

string productions,[56] and in discrete spatial processes as the innovation of regular domains,
domain walls, and particles.[60] It is also seen in the innovation of local state machines to

break away from cellular automata look-up table representations; an example of this can be

found elsewhere.[29] In each case it is quite straightforward to find the additional structural
element riding on top of the higher-level causal states. But since, as far as is known, no one

has delineated an exhaustive and ordered spectrum of basic computational elements, innovation
must contain a component, albeit small, of undetermined discovery.

The meta-reconstruction algorithm results in a hierarchy of computation classes — the �-
machine hierarchy. Unlike the generative hierarchy of Chomsky,[31] this is a causal hierarchy

for inductive inference. It takes into account the possibility, for example, that causal recognition
might be distinct from the complexity of the generating process.

4 The Threshold of Innovation

When should innovation occur? A basic premise here is that an agent can only call upon

finite resources. The answer then is straightforward. Innovation should occur as the agent’s
modeling capacity, denoted � , is approached by the complexity of the agent’s internal model

�. That is, the threshold of innovation is reached when � � . To be more explicit about
what is happening, one can use a diagnostic for innovating a new model class. Let � �

���� denote

the complexity of one model ����� in the increasing-accuracy series. Then the innovation rate

� at the given level is defined

� � ���
���

��
�
����

�	
� �
(14)

The innovation rate monitors the increase in model size. If � � � the model size at level �

diverges and the agent will have to innovate a new model class at the first accuracy threshold
�� where � �

���
�� � � . Failure to do so is tantamount to precluding the use of an enhanced

notion of environmental state to represent new forms of regularity. The ultimate result of failing
to innovate is that some deterministic aspect of the environment will appear forever random.

The consequence may be, nonetheless, a perfectly appropriate balance of evolutionary forces;
there is a reason why houseflies and humans coexist in the same environment.

It turns out that � has a simpler interpretation. First, note that from Eq. (14), it can be
rewritten

� � ���
���

��
�
������ ��

�
���� (15)
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Expanding this, one finds

� � ���
���

��������

�������

�� ����
��

���
(16)

where ���� is the sets of states in �����. Thus, is the information gain in going from one

model to a more accurate one. Under �-machine reconstruction the states �� �
�

�
of the more

accurate model come from the “splitting” of states �� ���� in the less accurate model.

One might be tempted to define a single number � for hierarchical complexity, such as

� � �� 	� 
�� � (17)

where � is the (integer) level above the raw data stream at which an �-machine is reconstructed and
	
� � � ��

�


�� �� is the fractional complexity at that level. Although in some circumstances
this could be useful, it is ultimately doomed, since there is no linear order of computational

capability. The hierarchies are only partial orderings.

Casting innovation in this formal light emphasizes one important consequence: When

confronted with hierarchical processes, finite computational resources fuel the drive toward higher
complexity — toward agents with internal models of increasing computational power.

5 Examples of Hierarchical Learning

The preceding sections laid out an abstract framework for computation, dynamics, and
innovation. The intention was to show how the different calculi of emergence are related

and how together they address the problem of inadequate representations both qualitatively and

quantitatively. The discussion was couched in terms of an agent that learns models of an
environment via a data stream of sensory measurements.

The following sections take a more concrete approach and demonstrate how several of these

general ideas are put into practice. In a sense, the following examples put us in the position of
the agents above. The examples analyze the intrinsic computation in a wide range of processes:

continuous-state dynamical systems, hidden Markov models, and cellular automata. The intention
here is not only to be explicit, but to also broaden the notion of computation that has been used

up to this point.

5.1 The cost of chaos

The following three subsections review how intrinsic discrete computation is embedded
in two well-known continuous-state dynamical systems. The connection between discrete

computation and the continuous states is made via symbolic dynamics. In this approach a
continuous-state orbit is observed through an instrument that produces very coarse, in fact binary,

measurements. To detect the intrinsic computation the resulting binary data stream is fed into
�-machine reconstruction to produce a minimal computational model. The resulting �-machine

describes the intrinsic computational capability of the observed process — dynamical system plus
instrument. Due to the choice of a particular type of instrument, the �-machine also describes

the computational capability of the hidden dynamical system.
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Intrinsic computation in the period-doubling cascade

The first dynamical system to be analyzed for computational structure is the logistic map
and, in particular, its period-doubling route to chaos. The data stream used for reconstructing

models is derived from a trajectory of the logistic map when it is started with an initial condition
on its attractor. This makes the observed process stationary. The trajectory is generated by

iterating the map

���� � ����� (18)

with the logistic function ���� � ���� ��, with nonlinearity parameter � ��� �� and
initial condition �� ��� ��. Note that the map’s maximum occurs at �� � �

�
. The orbit

� � �������� � � � is converted to a discrete sequence by observing it via the binary partition

� �� ��� ��� � � �� �� ���� �� � � � (19)

This partition is “generating” which means that sufficiently long binary sequences come from
arbitrarily small intervals of initial conditions. Due to this, the information processing in the

logistic map can be studied using the “coarse” measuring instrument .

Many investigations of the logistic map concentrate on how its time-asymptotic behavior,
its attractor, changes with the nonlinearity parameter �. Here, however, the interest is in how its

various information processing capabilities are related to one another. The two basic measures
of this that can be directly taken from the reconstructed �-machines were introduced above.

The first was the statistical complexity ��, which is the size of the reconstructed �-machine
or, equivalently, the effective amount of memory in the logistic map. The second measure of

information processing is the entropy rate ��, which is the rate in bits per time step at which

information is produced. The net result of using just the complexity and entropy rate is that
the original equations of motion and the nonlinearity parameter are simply forgotten. All that is

of interest is how the complexity �� of the data stream depends on the rate �� of information
production.

The complexity-entropy plot of Figure 6(a) summarizes this relationship by showing the

results of reconstructing �-machines from data streams produced at different parameter values.
For each data set produced, an �-machine is reconstructed and its statistical complexity �� and

entropy rate �� are estimated. In order to show the full range of behavior, from periodic to

chaotic, the latter is estimated as ����� � 	���
� where 	��� is the Shannon information
of length � sequences. Figure 6(a) is simply a scatter plot of the estimated complexity-entropy

pairs, in emulation of Figure 4(b).

There are a number of important features exhibited by the complexity-entropy diagram.
(Details are given in Refs. [24] and [56].) The first is that the extreme values of entropy lead

to zero complexity. That is, the simplest periodic process at 	���
� � � and the most random
one at 	���
� � � are statistically simple. They both have zero complexity since they are

described by �-machines with a single state. Between the extremes the processes are noticeably
more complex with an apparent peak about a critical entropy value denoted 	�. Below this

entropy, it turns out, all of the data streams come from parameters at which the logistic map
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Figure 6 (a) Statistical complexity �� versus specific entropy ������ for the period-doubling route to chaos. Triangles denote
estimated ���� ������� at 193 values of the logistic map nonlinearity parameter. �-machines were reconstructed using a
subsequence length of � � ��. The heavy solid lines overlaying some of this empirical data are the analytical curves derived
for �� versus �������. (After [24].) (b) At one of the critical parameter values of the period-doubling cascade in the logistic
map the number ��� of inferred states grows without bound. Here � � �� � ���������	�
������ � � � and the sequence length
ranges up to � � �� where ��� � ��� states are found. It can be shown, and can be inferred from the figure, that the per
symbol density of states �������� does not have a limiting value as � � �. (After [56].)

is periodic — including parameters within the “periodic windows” found in the map’s chaotic

regime. The data sets with ������ � �� are produced at chaotic parameter values.

A theory was developed in Ref. [56] to explain the emergence of high computational
capability between the ordered and disordered regimes. For processes with ������ � �� the

entropy and complexity are equivalent

�	 � � (20)

This is shown as a solid straight line on the left portion of Figure 6(a). For processes with

������ � �� the dependence of complexity on entropy is more interesting. In fact, the

solution is given in terms of the dependence of the entropy on the topological complexity. The
result, a lower bound, is that

���� � �� � ��� ��
���

��� (21)

The curved solid line in Figure 6(a) shows the relevant portion of Eq. (21).

Comparing the periodic and chaotic analyses — i.e. Eqs. (20) and (21) — provides a
detailed picture of the complexity-entropy phase transition. The critical entropy �� at each

sequence length � is given

����� � � ���� � ��� �� ��� (22)
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where � ���� � ���� � ���� ���� � is the complexity on the high entropy side at ��, �

������	� is the solution of � ���
�
� � 
 ��� � �, and � � 	 ��

�

� ������� is a
constant. From Eq. (20) it follows immediately that the complexity � �� on the low-entropy side

of the transition is itself �� �. The difference is a finite constant — the latent complexity
of the transition � � � �� � � ��������� bits. The latent complexity is independent of

the sequence length.

This analysis of the interdependence of complexity and entropy is nonasymptotic in the
sense that it applies at each sequence length �. If, as done for Figure 6(a), this length is fixed

at � � ��, the preceding results predict the transition’s location. The critical entropy there, for
example, is �� ��������. But for any � the overall behavior is universal. All behaviors

with specific entropy densities ������ � �� are periodic. All behaviors with higher entropy
densities are chaotic. The functional forms in Eqs. (20) and (21) are general lower bounds.

The statistical complexity is maximized at the border between the predictable and unpredictable

“thermodynamic phases”. It is important to emphasize that the complexity-entropy diagram
makes no explicit reference to the system’s nonlinearity parameter. The diagram was defined

this way in order to show those properties which depend only on the intrinsic information
production and intrinsic computational structure.

1

2

3

6

8

4

5

7

9

10

15

13

35

12

31 27 23

21

24

32

26

30

34

3825

11

17

16 19

28

36

14 18 20 22

2942 40 37 3346 44

45 43 41 39

1

0

0

0

0

0 0

0

0

0
0

00

0

0

0

00

0

0

1

1

1

1

1

1

1

1

1
1

1

1 1

1
1 1

1

1

1

1

1

1

1

11111

11111

6

8

4

5

7

13

12 23

24

25

11

14

1

0

0

0

0

10

1
1

1

1

11

1
0

1
1

11 1010

10
11

10111010

10111010

10

1010

1
0
1
0

1
0
1
1

1011

10111011

26

10
11

10
11

0

1

2

1

3

...

...

(a) (b)

Figure 7 (a) Approximation of the critical �-machine at the period-doubling onset of chaos. (After [24].) (b) The dedecorated
version of the machine in (a). Here the deterministic state chains have been replaced by their equivalent strings. (After [56].)

Up to this point the overall interplay between complexity and entropy for the period-doubling
cascade has been reviewed. But what happens at the phase transition; i.e. at the critical entropy

density ��? One parameter value, out of the many possible, corresponding to ������ � ��

is the first period-doubling onset of chaos at � � �� 	����������������� � � �. Figure 7(a)

shows the 47 state 	-machine reconstructed with window size � � �� at this parameter setting.
An improved approximation can be attempted by increasing the window length � to take into

account structure in longer subsequences. Figure 6(b) shows the result of doing just this: at
the onset of period-doubling chaos the number � of states for the reconstructed 	-machines

grows without bound.
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The consequence is that the data stream produced at the onset of chaos leads to an infinite
machine. This is consonant with the view introduced by Feigenbaum that this onset of chaos can

be viewed as a phase transition at which the correlation length diverges.[61] The computational
analog of the latter is that the process intrinsically has an infinite memory capacity. But there

is more that the computational analysis yields. As will now be shown, for example, the infinite
memory is organized in a particular way such that the logistic map is not a universal Turing

machine, but instead is equivalent to a less powerful stack automaton.

The “explicit state” representation of Figure 7(a) does not directly indicate what type of
information processing is occurring at the phase transition. Nor does the unbounded growth of

machine size shown in Figure 6(b) give much help. A simple transformation of the 47 state

machine in 7(a) goes some distance in uncovering what is happening. Replacing the unbranched
“chains” in the machine with the corresponding sequences produces the “dedecorated” critical

machine of Figure 7(b). In this representation is it evident that the branching states are quite
regularly organized. Beyond the discovery of this higher-order regularity, there is an additional

element that consists of manipulating the intervening strings between the branching states.
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Figure 8 (a) The finite version of Figure 7(b)’s infinite critical �-machine. This is a string production machine that, when
making a transition from the square states, updates two string registers with the productions A � BB and B � BA. B’ is the
contents of B with the last bit flipped. (b) Another finite representation of the period-doubling critical �-machine — a one-way
nondeterministic nested stack automaton (1NnSA in Figure 2) — that produces symbols one at a time. (After [56].)

By following in detail the increasing-accuracy modeling experiment shown in Figure 6(b),
one can ask how the machines in a series of successively-improved models grow in size. The

result, as disclosed by the dedecorated machine, is that only the branching states and “string
productions” are needed to describe the regularity in the growth of the machines. This in turn

leads to the innovation, shown in Figure 8(a), of a finite machine with two kinds of states (the
new type is denoted with squares) and two registers A and B that hold binary strings. Simple

inspection of the dedecorated machine shows that the string manipulations can be described by
appending a copy of A’s contents onto B and replacing the contents of A with two copies of B’s

contents. These string productions are denoted A BB and B BA. At the outset, register
A contains “0” and B contains “1”.

One problem with the string production machine of Figure 8(a) is that the length of strings

in the registers grows exponentially fast, which contrasts sharply with the sequential production
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of symbols by the logistic map. Figure 8(b) gives an alternative, but equivalent, serial machine
that produces a single symbol at a time. It is called a one-way nondeterministic nested stack

automaton and was denoted 1NnSA in Figure 2. The memory in this machine is organized
not as string registers, but as a pushdown stack. The latter is a type of memory whose only

accessible element is on the top. In fact, the automaton shown has a slightly more sophisticated
stack that allows the finite control to begin a new “nested” stack within the existing one. The

only restriction is that the automaton cannot move on to higher levels in the outer stack(s) until
it is finished with its most recently created stack.

The net effect of these constructions is that a finite representation has been discovered from

an infinite one. One of the main benefits of this, aside from producing a manageable description

and the attendant analytical results it facilitates, is that the type of information processing in the
critical “state” of the logistic map has been made transparent.

Intrinsic computation in frequency-locking route to chaos

The second route to chaos of interest, which also has received extensive study, is that through
quasiperiodicity. In the simplest terms, this route to chaos and the models that exhibit it describe

the coupling of two oscillators whose periods are incommensurate — the ratio of periods is not
rational. The ratio of the number of periods of one oscillator to the other in order to complete

a full cycle for both is called the winding number ��. This is a key parameter that controls the
entire system’s behavior: when �� is rational the two oscillators are phase-locked. Quasiperiodic

behavior is common in nature and underlies such disparate phenomena as cardiac arrhythmia,
the stability of the solar system, and the puzzling synchronization of two mechanical clocks

located in close proximity.

The simplest model of two “competing” oscillators is the discrete-time circle map

���� � ����� ��� �

�	
�
 ���� � � � ��
�

�
��� ��

(23)

The map’s name derives from the fact that the ��� � operation keeps the state �� on the unit
circle. One thinks of �� then as a phase — or, more properly, the relative phase of the two

original oscillators. There are two control parameters, � and �. The former directly sets the
phase advance and the latter the degree of nonlinearity, which can be roughly interpreted as the

coupling strength between the two oscillators.

As a function of the nonlinearity parameter the behavior makes a transition to chaos. Like
the logistic map, there is a signature to the path by which chaotic behavior is approached from

periodic behavior. Furthermore, the circle map’s signature has the basic character of a phase

transition.[62]

The following will investigate one arc through ��� ��-space that exhibits just such a phase
transition to chaos. This is a path that includes the golden mean circle map — so-called since

its winding number is the golden mean �� � ��
�
�

�
. The easiest way to implement this is to set

� � ��. Varying � ��� �� then gives a wide sample of behavior types on the quasiperiodic route
to chaos. � � � is the threshold of nonlinear behavior, since the map for larger values becomes

many-to-one; � � � is also a necessary, but not sufficient condition for deterministic chaos.
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The measuring instrument uses three types of partition depending on the parameter range:
� � �, � ��� ��, and � � �. Generally, the instrument is a binary partition that labels

�� ���� ���� with � � � and �� � ����� ��� with � � �. For � � �, �� � �

� and ��� � �; for
� ��� ��, �� � �

� and ��� � ��� �
� ; and, for � � �, �� is the larger and ��� the smaller value of

������ ��	�� ��� on the interval. By iterating the map many times on an initial condition

a time series � ������ 
 
 
 is produced. When observed with an instrument the time series is
converted to a binary string � � ������ 
 
 
 of coarse measurements �� �� � .
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Figure 9 (a) Statistical complexity �� versus specific entropy ������ for the quasiperiodic route to chaos. Tokens denote

estimated ���� ���� at 303 values of the circle map with � � ��
�
�

�
and nonlinearity parameter � in three different ranges:

101 values for � � ��� �� (triangles), 101 values for � � ���	� ��
� (circles), and 101 values for � � ���	� �� (crosses). These are
ranges in which the behavior is more than simple periodic. 	-machine reconstruction used a tree depth of 
 � �� and a morph
depth of � � �� for the first range and �
� �� � ���� � for the second two ranges, which typically have higher entropy rates.
The entropy density was estimated with a subsequence length of � � ��. Refer to Figure 6(a) for details of the annotations.
(b) At the golden mean critical winding number (with � � �) in the quasiperiodic route to chaos the number ��� of inferred
states grows without bound. Here the sequence length ranges up to � � �� where ��� � ��
 states are found.

Figure 9(a) shows the complexities and entropies estimated for the quasiperiodic route to

chaos at several hundred settings along the chosen parameter arc. As with period-doubling,
the quasiperiodic behavior with entropies ����	� 
 �� are periodic. All those with higher

entropies are unpredictable. The statistical complexity is maximized at the border between the
ordered and chaotic “thermodynamic phases”. The lower bounds, Eqs. (20) and (21), are shown

again as solid lines for both phases. The circle map clearly obeys them, as did the logistic
map, though the scatter differs. For example, there is a cluster of points just below �� at high

complexity. These are all due to the “irrational” quasiperiodic behavior that is predictable. The
complexity derives from the fact that the map essentially “reads out” the digits of their irrational

winding number. This leads to data streams that require large �-machines to model. There is
also some scatter at high entropy and low complexity. This is due to highly intermittent behavior

that results in all subsequences being observed, but with an underlying probability distribution
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that is far from uniform. The result is that �-machine reconstruction approximates the behavior
as a biased coin — zero complexity, since it has a single state, and entropy less than unity.

What happens at the quasiperiodic onset at � � �? The metric entropy is zero here,
since the number of length � subwords increases strictly linearly: ���� � � � �. The

single symbol entropy is high, ���� �������� bits, since the frequency of isolated zeros
is 	
�

���

����

��
� ���� �������, where �� is the �

�� Fibonacci number.

�-machine reconstruction applied to this “critical” data stream does not lead to a finite

state machine. In fact, just as for the logistic map at the onset of chaos, the machine size
keeps diverging. (See Figure 9(b).) A finite approximation to the presumably infinite “critical”

machine is shown in Figure 10(a).

Notably, the intrinsic computation in quasiperiodicity can be finitely represented at a next
higher level. When the average winding number is the golden mean, one finds the “Fibonacci”

machine shown in Figure 10(b). There is a two state finite control automaton shown at the top
portion of Figure 10(b) that determines copying operations on two registers, A and B, holding

binary strings. The finite control is started in the left-most, double-circled state, A begins with
“1”, and B with “0”. The finite control machine’s edges are labelled with the actions to be

taken on each state-to-state transition. The first symbol on each edge label is a zero or one read
from the input data stream that is to be recognized. The symbol read determines the edge taken

when in a given state. The backward slash indicates that a string production is performed on
registers A and B. This consists of copying the previous contents of A to B and appending the

previous contents of B to A. The string productions are denoted A AB and B A. They are

applied simultaneously. If there are two backward slashes, then two “Fibonacci” productions are
performed. The input string must match the contents of register A, when register A is read in

reverse. The latter is denoted by the left-going arrow above A in the edge label. Table 2 shows
the temporal development of the contents of A and B.
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Figure 10 (a) A portion of the infinite critical machine for the quasiperiodic route to chaos at the golden mean winding number.
Note that the dedecorated machine is shown — that is, the intervening states along deterministic chains have been suppressed.
(b) The Fibonacci machine: the finite representation of the infinite machine in (a).

The basic computation step describing the quasiperiodic critical dynamics employs a pair

of string productions. The computational class here is quite similar to that for period-doubling
behavior — that is, nested stack automata. It is at this higher level that a finite description of the

golden mean critical behavior is found. This is demonstrated, as for period-doubling, by noting
that the productions are context-free Lindenmayer productions and that these can be mapped

first to an indexed context-free grammar and then to nested stack automaton.[31] Thus, rather
than Figure 10(b) the Fibonacci machine can be represented with a stack automaton analogous

to that shown in Figure 8(b) for the period-doubling onset of chaos.



34 J. P. Crutchfield

t � � �

1 1 0 1

2 10 1 2

3 101 10 3

4 10110 101 5

5 10110101 10110 8

Table 2 Contents of the Fibonacci machine registers A and B as a function of machine transitions. The registers contain binary
strings and are modified by string concatenation: A � AB and B � A. That is, the previous contents of A are moved to B

and the previous contents of B are appended to A.

The required length of the Fibonacci machine registers grows as a function of the number
of applications of the production at an exponential rate which is the golden mean, since the

string length grows like the Fibonacci numbers — an observation directly following from the
productions. Thus, with very few transitions in the machine input strings of substantial length

can be recognized.

Another interpretation of the recognition performed by the Fibonacci machine in Figure 10(b)
is that it phase locks to the quasiperiodic data stream. That is, the Fibonacci machine can jump

in at any point in the “critical” string, not necessarily some special starting time, and, from that
symbol on, determine if the subword it is reading is in the language of all Fibonacci subwords.

Temporal computation in deterministic chaos

This investigation of the computational structure of two well-known routes to chaos show
that away from the onset of chaos there are (at least) finite memory processes. Finite memory

processes are all that is found below the onset — that is, with periodic processes. Above
the onset the situation is much more interesting. There is a universal lower bound that the

primary band-merging sequence obeys. But above this there can be more complex and highly
unpredictable processes. These examples make it clear how to construct processes in this region

of the complexity-entropy plane. Take a nonminimal representation of the all-sequences process,
(say) one with 16 states. Add transition probabilities randomly to the outgoing edges, observing

the need to have them sum to unity for each state. Typically, this machine will be minimal.
And if the range of probabilities is restricted to be near 1/2, then the entropy will be high and

by construction the process has a statistical complexity of about 4 bits. Now an entire family of
high complexity, moderate entropy machines can be constructed by applying the period-doubling

operator to the high entropy machine just created. This results in processes of lower and lower
entropy and higher and higher complexity. These move down to the onset of chaos. Finally,

note that the analysis of this family’s complexity versus entropy dependence is not so different

from that for the lower bound.

The preceding subsections also showed that to get a simple model that captures the system’s

true computational capability, as determined by observations, it is sometimes necessary to jump
up to a more powerful computational class. At both onsets of chaos the computational analysis

identified structures that were higher than finite memory devices. The onset of chaos led to
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infinite memory and, just as importantly, to memory that is organized in a particular way to
facilitate some types of computation and to proscribe others. The logistic and circle maps at their

respective onsets of chaos are far less than Turing machines, especially ones that are universal.
At the onset the information processing embedded in them jumps from the finitary level to the

level of stack automata. One practical consequence of failing to change to a more powerful
representation for these critical systems is that an observer will conclude that they are more

random, less predictable, and less complex, than they actually are. More generally, appreciating
how infinite complexity can arise at the onset of chaos leads one to expect that highly nonlinear

systems can perform significant amounts of and particular forms of information processing.

5.2 The cost of indeterminism

This section explores the possible ill-effects of measurement distortion: the apparent com-
plexity can diverge if the “wrong” instrumentation is used. (This section follows Ref. [63].)

Along the way a new class of processes will be considered — the stochastic nondeterministic
finite automata, often called hidden Markov models. One of the main conclusions will be that an

agent’s sensory apparatus can render a simple environment apparently very complex. Thus, in
an evolutionary setting the effects described here indicate that there should be a strong selection

pressure on the quality of measurements produced by an agent’s sensory apparatus.

The simplest example

Returning to the logistic map, let’s fix its parameter to � � � — where its attractor fills the

interval and has the maximal entropy rate of �� � �. The probability density function for the
invariant measure over “internal” real-valued states � ��� �� is

����	 �
�

� � ��
(24)

Then, we associate a state � with the event �� ��� ��	 and a state � with the event �� ���� ��;
recalling that �� �

�

�
is the map’s maximum. Finally, we use a sliding-block code on the resulting

� � stream that outputs � � � when the length 2 subsequences ��, ��, or �� occur, and

� � � when �� occurs. The � � data stream that results is produced by the machine shown
in Figure 11 — a stochastic nondeterministic finite automaton (SNFA).

That Figure 11 gives the correct model of this source is seen by first noting that the
intermediate states � and � have the asymptotic probabilities

����	 �

��

�

������	 �
�



(25)

and, by symmetry, ����	 � �

�
. The two inverse iterates of ��, �� � ��

�

�
�
�
, delimit the

interval segments corresponding to the occurrence of � � pairs. These then give the four

state transition probabilities, such as

���� �	 �
�����	

����	
� 


�
�

�

������	 (26)
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It turns out they are all equal to �

�
.

With the use of the pairwise� � coding this construction might seem somewhat contrived.

But it can be reinterpreted without recourse to an intermediate code. It turns out that the � �
data stream comes directly from the binary partition

� �� ��� ��� � � �� �� ���� �� � � � (27)

This is a partition that is not much more complicated than the original. The main difference is

that the “decision point”, originally at ��, has been moved over to ��.

1|1/2
1|1/2 1|1/2

0|1/2

A
(1/2)

B
(1/2)

Figure 11 The source is a stochastic nondeterministic finite automaton — a class sometimes referred to as hidden Markov
models. The hidden process consists of two states ����� and uniform branching between them — denoted by the fractions �

on the edge labels ���. The observer does not have access to the internal state sequences, but instead views the process through
the symbols � on the edge labels ���. The inscribed circle in each state indicates that both states are start states. The fractions
in parentheses give their asymptotic probabilities, which also will be taken as their initial probabilities.

The result is that the environment seen by the agent is described by the two-state stochastic

process shown in Figure 11. There are two internal states ��� . Transitions between them
are indicated with labeled, directed edges. The labels � � give the probability � of taking the

transition. When the transition is taken the agent receives the measurement symbol � �� � .
In effect, the agent views the internal state dynamics through the instrument defined by the

particular association of the measurement symbols and the transitions. The agent assumes no
knowledge of the start state and so the environment could have started in either � or � with

equal likelihood.

Figure 12 shows the minimal machine for the environment’s internal state dynamics. It is

the single state Bernoulli process � �

�
� �
�

— a fair coin. From Eqs. (10) and (12) it is evident
that the metric entropy is �� � � bit per symbol, as is the topological entropy �. From Eqs.

(11), (12), and (13) both the topological complexity and statistical complexities are zero. It is
a very random, but simple process.

B|1/2A|1/2

Figure 12 The minimal machine for Figure 11’s internal state process. It has a single state and equal branching probabilities.
The topological and statistical complexities are zero and the topological and metric entropies are 1 bit per state symbol —
a highly unpredictable, but low complexity process. That this is the correct minimal description of the internal state process
follows directly from using machine reconstruction, assuming direct access to the internal state sequences ������ � � �. All
state sequences are allowed and those of equal length have the same probability.
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The goal, of course, is for the agent to learn the causal structure of this simple process from
the �� � data stream. It has no knowledge of Figure 11, for example. The overall inference

procedure is best illustrated in two steps. The first is learning a model of the “topological”
process that produces the set of sequences in the data stream, ignoring the probabilities with

which they occur. The second step is to learn a model that gives the sequences’ probabilities.

1

1

0

(2/3)
a

(1/3)
b

Figure 13 The process’s topological structure is given by a deterministic finite automaton — the golden mean machine. The
only rule defining the sequences is “no consecutive �s”. The number of sequences of length � is given by the Fibonacci number
����; the growth rate or topological entropy �, by the golden mean � � �

�
� �

�
� : � � ���� �. The numbers in parentheses

give the states’ asymptotic probabilities.

The first step is relatively straightforward and can be explained briefly in words. Inspection

of the stochastic automaton’s output symbols in Figure 11 shows that if � � � is observed, then
� � � must follow. Further reflection shows that this is the only restriction: consecutive �s are

not produced. All other binary sequences occur.

The automaton, again “topological”, that captures this property is shown in Figure 13. This
automaton is also what machine reconstruction generates. There are several things to notice.

First, the state a has a circle inscribed in it. This denotes that a is the start state; and it
happens to be the unique start state. The reconstructed �-machine has removed the first element

of non-causality in the original process: ignorance of the start state. Second, the automaton is
deterministic — a term used here as it is in formal language theory and which does not refer

to probabilistic elements. Determinism means that from each state a symbol selects a unique
successor state.

Note that the original process (Figure 11) with its measurement labeling is not deterministic.
If the process happens to be in state� and the observer then sees � � �, then at the next time step

the internal process can be in either state � or �. This ambiguity grows as one looks at longer
and longer sequences. Generally, indeterminism leads to a many-to-one association between

internal state sequences and measurement sequences. In this example, the observation of ����
could have been produced from either the internal state sequence ����� or �����.

The consequences of indeterminism, though, become apparent in the second inference step:

learning the observed sequences’ probabilities. To implement this, a series of increasingly-
accurate machines approximating the process of Figure 11 is reconstructed; these are shown

in Figure 14. Each gives a systematically better estimate of the original process’s sequence
distribution. The machine resulting from full reconstruction is shown in Figure 15. It has

an infinite number of causal states. All of their transitions are deterministic. Note that the
infinite machine preserves the original process’s reset property: when � � � is observed the

machine moves to a unique state and from this state � � � must be seen. But what happened,
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(1)0|1/4 1|3/41A

1|1.0

1|3/4
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1|1
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0|1/4

1A1B
1|3/4

1A2B

1A

0|1/3

1|1

0|1/4

1A1B
1|3/4

1A2B

1A

0|1/3

1|5/8

1A3B
1|2/3

0|3/8

(a) (b)

(c) (d)

Figure 14 (a) - (d) The zeroth- through third-order causal approximations to the process of Figure 11.

in comparison to the finite machine of Figure 13, to produce the infinite machine in Figure
15? The indeterminism mentioned above for state � has lead to a causal representation that

keeps track of the number of consecutive �s since the last � � �. For example, if �� has been
observed, then ���� � �� � �

�
and ���� � �� � �

�
. But if ��� has been observed, ���� � �� � �

�

and ���� � �� � �

�
. In this way the causal representation accounts for the agent’s uncertainty

in each internal states’ contribution to producing the next symbol. The result is that as more

consecutive �s are seen the relative probability of seeing � � � or � � � continues to change —
and eventually converges to a fair coin. This is reflected in the change in transition probabilities

down the machine’s backbone. Causal machine reconstruction shows exactly what accounting
is required in order to correctly predict the transition probabilities. But it gives more than

just optimal prediction. It provides an estimate of the process’s complexity and a complete
representation of the distribution ����� over infinite sequences.

Interestingly, even if the agent has knowledge of Figure 11, the infinite causal machine of

Figure 15 represents in a graphical way the requirements for achieving optimal predictability
of the original process. There is no shortcut to computing, for example, the original process’s

entropy rate and complexities, since the machine in Figure 15, though infinite, is minimal. That
is, there is no smaller (causal) machine that correctly gives �����. From the topological machine

it follows that the topological entropy is � � ��	� � ��
��� and from Eqs. (10) and (12)
that the metric entropy is �� ��
���
� bits per symbol. Recall that the original process’s

topological and statistical complexities were zero. From Eqs. (11), (12), and (13) the causal
machine’s topological complexity is infinite, �� � ��	� � , and its statistical complexity is

�� ������ bits. These are rather large changes in appearance due to the instrumentation.
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1|5/81|3/4 1|2/3

0|1/3 0|3/8

1|1

0|1/4

1A1B
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1A2B
(3/16)

1A0B
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1|1/2
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(0)
∞

0|1/2

1A4B
(5/64)
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Figure 15 The infinite causal representation of the nondeterministic process of Figure 11. The labels in the states indicate
the relative weights of the original internal states �����. The numbers in parentheses are the asymptotic state probabilities:
���� � ����� � ��� ��	����.

c  = 20

0 |       | c=11
2c
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2 - 1 |        | c++1
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Figure 16 At a higher computational level a single state machine, augmented by a counter register, finitely describes the process
of Figures 11 and 15.

In this example, the agent can be considered to have simply selected the wrong instrument.

The penalty is infinite complexity. Thus, the logistic map can appear to have an infinite number of
causal states and so infinite topological complexity. In contrast to the preceding sections, which

illustrated infinite intrinsic complexity, this example illustrates measurement-induced complexity.

Stochastic counter automata

The apparent infinite complexity of the deterministic denumerable-state machine of Figure

15 gives way to a finite representation once the regularity of the change in transition probabilities
is discovered. The resulting model — in the class of stochastic counter automata for this one

example — is shown in Figure 16. The structural innovation is a counter, denoted �, that
begins with the value �. � can be either incremented by one count or reset to �. When � � � is

observed, the counter is reset to �. As long as � � � is observed, the counter is incremented. The
nondeterminism of the original process is simulated in this deterministic representation using the

counter to modify the transition probabilities: it keeps track of the number of consecutive �s. The
transition probabilities are calculated using the value stored in the counter: ���� � � �� � �

	
�
	�

and ���� � � �� � �
	 � �

	� . The finite control portion of the machine is simply a single state
machine, and so its complexity is zero. But the required register length grows like 	
�	 �. The

cost of nondeterminism in this example is this increment-reset counter.

Recurrent hidden Markov models

This example is just one from a rich class of processes called — depending on the field

— recurrent hidden Markov models, stochastic nondeterministic finite automata, or functions of



40 J. P. Crutchfield

Markov chains. The difficulty of finding the entropy rate for these processes was first noted in
the late 1950’s.[64] In fact, many questions about this class are very difficult. It is only recently,

for example, that a procedure for determining the equivalence of two such processes has been
given.[65] The awareness that this problem area bears on the complexity of observation and the

result that finite complexity processes can appear infinitely complex is also recent.[59]

The new notion of state here that needs to be innovated involves the continuity of real

variables. The causal states are no longer discrete. More precisely, an �-machine state for a
hidden Markov model is a distribution over the hidden states. Since this distribution is a vector

of real numbers, the causal states are continuous. In addition, this vector is normalized since the
components are state probabilities. The result is that the �-machine states for these processes can

be graphically represented as a point in a simplex. The simplex vertices themselves correspond
to �-distributions concentrated on one of the hidden Markov model states; the dimension of

the simplex is one less than the number of hidden states. In the simplex representation the
�-machine models are stochastic deterministic automata (SDA). Only a subset of the simplex

is recurrent. This subset corresponds to an attracting set under the dynamics of the agent’s

step-by-step prediction of the hidden state distribution based on the current data stream. Figure
17 shows the causal state simplices for three example processes.

The infinite, but countable state machine of Figure 15(a) is shown in this simplex represen-
tation in Figure 17(a) as a discrete point set in the 3-simplex. Each point, somewhat enlarged

there, corresponds to one of the states in Figure 15. Two more examples of �-machines are
given in Figures 17(b) and 17(c). They suggest some of the richness of stochastic finite pro-

cesses. In Figure 17(b), for example, the �-machine has a partial continuum of states; the causal
states lie on a “fractal”. Figure 17(c) shows an �-machine whose causal states limit on a full

continuum of states.

The different classes shown in Figure 17 are distinguished by a new complexity measure

of the �-machines’s state structure — the �-machine dimension �
�� . ��� is the information

dimension of the state distribution on the simplex. In the case of the countable state �-machine

of Figure 17(a) �� is finite due to the strong localization of the state distribution over the earlier
states. But, since the states are a discrete point set, ��� � �. For the fractal and continuum

SDAs the statistical complexity diverges, but ��� � �. ��� is noninteger in the first case and
��� � � in the second. Further results will be presented elsewhere.[59]

The finitary stochastic hierarchy

The preceding examples of stochastic finitary processes can be summarized using the
computational model hierarchy of Figure 18. This hierarchy borrows the finite memory machines

of Figure 2 and indicates their stochastic generalizations. As before each ellipse denotes a model
class. As one moves up the diagram classes become more powerful in the sense that they can

finitely describe a wider range of processes than lower classes. A class below and connected to a
given one can finitely describe only a subset of the processes finitely described by the higher one.

Again, this hierarchy is only a partial ordering of descriptive capability. It should be emphasized
that “descriptive capability” above the Measure-Support line refers to finitely representing a

distribution over the sequences; not just the distribution’s supporting formal languages.
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(a)

(b) (c)

Figure 17 Stochastic deterministic automata (SDA): (a) Denumerable SDA: A denumerable �-machine for the simple
nondeterministic source of Figure 11. It is shown here in the (two-dimensional) 3–simplex defining its possible deterministic
states (indicated with enlarged dots). Since the state probability decays exponentially, the simulation only shows a very truncated
part of the infinite chain of states that, in principle, head off toward the upper vertex. Those dots correspond to the �s backbone
of Figure 15. The state on the lower lefthand vertex corresponds to the “reset” state ���� in that figure. (b) Fractal SDA: A
nondenumerable fractal �-machine shown in the 4–simplex defining the possible deterministic states. (c) Continuum SDA: A
nondenumerable continuum �-machine shown in the 3–simplex defining the possible deterministic states.

In formal language theory it is well-known that deterministic finite automata (���) are as
powerful as nondeterministic finite automata (���).[31] This is shown in the hierarchy as both

classes being connected at the same height. But the equivalence is just topological; that is, it

concerns only the descriptive capability of each class for sets of observed sequences. If one
augments these two classes, though, to account for probabilistic structure over the sequences,

the equivalence is broken in a dramatic way — as the above example for the “mismeasured”
logistic map demonstrated. This is shown in Figure 18 above the Measure-Support line. The

class of ���� is higher than that of the stochastic deterministic finite automata (����). Crudely
speaking, if a ��� has transition probabilities added to its edges, one obtains the single class

of ����. But if transition probabilities are added to an ���, then the class is qualitatively
more powerful and, as it turns out, splits into three distinct classes. Each of these classes is

more powerful than the ���� class. The new causal classes — called stochastic deterministic
automata (���) — are distinguished by having a countable infinity, a fractional continuum, or

a full continuum of causal states: the examples of Figure 17.

Initially, the original logistic map process as represented in Figure 11 was undistinguished

as an SNFA. Via the analysis outlined above its causal representation showed that it is equivalent
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Figure 18 The computational hierarchy for finite-memory nonstochastic (below the Measure-Support line) and stochastic discrete
processes (above that line). The nonstochastic classes come from Figure 2, below the Finite-Infinite memory line. Here “Support”
refers to the sets of sequences, i.e. formal languages, which the “topological” machines describe; “Measure” refers to sequence
probabilities, i.e. what the “stochastic” machines describe. The abbreviations are: A is automaton, F is finite, D is deterministic,
N is nondeterministic, S is stochastic, MC is Markov chain, HMM is hidden Markov model, RHMM is recurrent HMM, and
FMC is function of MC.

to a denumerable stochastic deterministic automaton (����). Generally, in terms of descriptive
power ���� ���� as Figure 18 emphasizes. Recall that we interpret the SNFA as the

environment, which is a Markov chain (��), viewed through the agent’s sensory apparatus.
So the computational class interpretation of the complexity divergence is that �� ����

under measurement distortion. That is, �� and ���� are qualitatively different classes and,
in particular, �� ����, as shown in the hierarchy of Figure 18. The representational

divergence that separates them is characteristic of the transition from a lower to a higher class.

5.3 The costs of spatial coherence and distortion

As an example of hierarchical structure and innovation for spatial processes this section

reviews an analysis of two cellular automata (CA). CA are arguably the simplest dynamical
systems with which to study pattern formation and spatio-temporal dynamics. They are discrete

in time, in space, and in local state value. The two examples considered have two local states
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Figure 19 (a) Elementary cellular automaton 18 evolving over 200 time steps from an initial arbitrary pattern on a lattice of
200 sites. (b) The filtered version of the same space-time diagram that reveals the diffusive-annihilating dislocations obscured
in the original. (After Ref. [66].)

at each site of a one-dimensional spatial lattice. The local state at a site is updated according to

a rule that looks only at itself and its two nearest neighbors.

Figure 19(a) shows the temporal development of an arbitrary initial pattern under the action
of elementary CA 18 (ECA 18). This rule maps all of the neighborhood patterns to 0; except

001 and 100, which are mapped to 1. A space-time diagram for elementary CA 54 (ECA 54)
is shown in Figure 20(a).

�-machine reconstruction applied to the patterns reveals much of the internal structure of
these systems’ state spaces and the intrinsic computation in their temporal development of spatial

patterns.[60] An important component of CA patterns are domains. CA domains are dynamically
homogeneous regions in space-time defined in terms of the same set of pattern regularities, such

as “every other site value is a �”. From knowledge of a CA’s domains nonlinear filters can
be constructed to show the motion and interaction of domains, walls between domains, and

particles. The result of this filtering process — shown in Figures 19(b) and 20(b) — is a higher
level representation of the original space-time diagrams in Figures 19(a) and 20(a). This new

level filters out chaotic (ECA 18) and periodic (ECA 54) backgrounds to highlight the various
propagating space-time structures — dislocations, particles, and their interactions that are hidden

in the unfiltered space-time diagrams.

In turns out that ECA 18 is described by a single type of chaotic domain — “every other

local state is 0, otherwise they are random” — and a single type of domain wall — a dislocation
that performs a diffusive annihilating random walk.[66] At the level of particles one discovers

an irreducibly stochastic description — the particle motion has vanishing statistical complexity.
Because the description of ECA 18 is finite at this level, one can stop looking further for intrinsic

computational structure. The correct �-machine level, that providing a finite description, has
been found by filtering the chaotic domains.

In ECA 54 there is a single periodic domain with a diversity of particles that move and

interact in complicated — aperiodic, but nonstochastic — ways. ECA 54 is more complex
that ECA 18, in the sense that even at the level of particles ECA 54’s description may not be

finite. Thus for ECA 54, one is tempted to look for a higher level representation by performing
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Figure 20 (a) Elementary cellular automaton 54 evolving over 200 time steps from an initial arbitrary pattern on a lattice of
200 sites. (b) The filtered version of the same space-time diagram that reveals a multiplicity of different particle types and
interactions. (From Ref. [67]. Reprinted with permission of the author. Cf. [68].)

�-machine reconstruction at this “particle” level to find further regularity or stochasticity and
ultimately to obtain a finite description.

These hierarchical space-time structures concern different levels of information processing

within a single CA. In ergodic theory terms, the unfiltered spatial patterns are nonstationary —

both spatially and temporally. With the innovation of domains and particles, the new level of
representation allows for stationary elements, such as the domains, to be separated out from

elements which are nonstationary. For ECA 18, discovering the dislocations lead to a stochastic
model based on a diffusive annihilating random walk that could be analyzed in some detail and

which explained the nonstationary aspects of the dislocation motion. For ECA 54 the description
at this level is still not completely understood.

Intrinsic computation in spatio-temporal processes raises a number of interesting problems.

Aside from the above, there is an analog for spatio-temporal processes of the apparent complexity
explosion in the stochastic nondeterministic processes. This led to the introduction of a new

hierarchy for spatial automata, in which CA are the least capable, that accounts for spatial
measurement distortion.[29] This spatial discrete computation hierarchy is expressed in terms

of automata rather than grammars.[63]

5.4 What to glean from the examples

Understanding the hierarchical structure embedded in the preceding examples required
crossing a model class boundary: from determinism to indeterminism, from finitary support

to finitary measure, from predictability to chaos, from undifferentiated patterns to domains and
particles, and from observed states to hidden internal states. Each of these transitions is a

phase transition in the sense that there is a divergence in a macroscopic observable — the
representation’s complexity — and in that the finitely-describable behaviors on either side of

the divergence are qualitatively distinct. Figure 21 attempts to summarize in a very schematic
way their relationship.

The point that the examples serve to make is that innovation of new computational structures

is required at each step. Just what needs to be innovated can be determined in very large
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measure by the state-grouping step in hierarchical �-machine reconstruction. As was stated
before, beyond the state-grouping it seems that there will always be some undetermined aspect

during the innovation step required of the agent. The undetermined aspect has been isolated by
the algorithmic portion of hierarchical �-machine reconstruction that groups lower level states

into a higher level state. To the extent it is undetermined, though, this step can be the locus of
a now highly-constrained search over a space of new mechanisms. In any evolutionary process,

such a space would be largely circumscribed by the agents’s internal structure and the search, by
how the latter can be modified. In this way, hierarchical �-machine reconstruction reduces the

search space for innovation by a substantial fraction and indicates where random search could
be most informative and effective.
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Figure 21 A schematic summary of the three examples of hierarchical learning in metamodel space. Innovation across transitions
from periodic to chaotic, from stochastic deterministic to stochastic nondeterministic, and from spatial stationary to spatial
multistationary processes were illustrated. The finite-to-infinite memory coordinate from Figure 2 is not shown. The periodic
to chaotic and deterministic to nondeterministic transitions were associated with the innovation of infinite models from finite
ones. The complexity (�) versus entropy (�) diagrams figuratively indicate the growth of computational resources that occurs
when crossing the innovation boundaries.

PART IV
OBSERVATIONS AND HYPOTHESES

1 Complexity as the Interplay of Order and Chaos

Neither order nor randomness are sufficient in and of themselves for the emergence of
complexity. Nor is their naive juxtaposition. As Alfred North Whitehead and many before

and after him knew, order and randomness are mere components in an ongoing process. That
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process is the subtlety in the problem of emergence. For Heraclitus, the persistence of change was
the by-product of an “attunement of opposite tensions”.[69] Natural language, to take one ever-

present example, has come to be complex because utility required it to be highly informative and

comprehensibility demanded a high degree of structure. For the process that is human language,

emergence is a simple question: How do higher semantic layers appear out of this tension?

As far as the architecture of information processing is concerned, these questions for natural
language have direct analogues in adaptation, evolution, and even in the development of scientific

theories.[70] While conflating these fields suggests a possible general theory of the emergence

of complexity, at the same time it reveals an ignorance of fundamental distinctions. Due to the
sheer difficulty of the nonlinear dynamics involved and to the breadth of techniques that must

be brought to bear, one must be particularly focused on concrete results and established theory
in discussing “emergence”.

In spite of receiving much popular attention, the proposals for “computation at the edge of

chaos”,[71] “adaptation toward the edge of chaos”,[72] and “life at the edge of chaos”[73] are
recent examples of the problems engendered by this sort of blurring of basic distinctions. Despite

the preceding sections’ review of the complexity versus entropy spectrum and their analyses of
processes in which higher levels of computation arise at the onset of chaos, there is absolutely

no general need for high computational capability to be near an “edge of chaos”. The infinite-
memory counter register functionality embedded in the highly chaotic hidden Markov model of

Figure 11 is a clear demonstration of this simple fact. More to the point, that stability and order

are necessary for information storage, on the one hand, and that instability is necessary for the
production of information and its communication, on the other hand, are basic requirements for

any nontrivial information processing. The trade-off between these requirements is much of what
computation theory is about. Moreover, natural systems are not constrained in some general way

to move toward an “edge of chaos”. For example, the very informativeness (�� � �) of natural
language means, according to Shannon, that natural language is very far and must stay away

from any “edge of chaos” (�� � �).

A critique of the first two “edge of chaos” proposals, which concern cellular automata, can
be found elsewhere.[74] Aside from the technical issues discussed there, all three proposals

exhibit a fatal conceptual difficulty. To the extent that they presume to address the emergence

of complexity, with reference neither to intrinsic computation nor to the innovation of new
information-processing architectures, they can provide no grounding for the key concepts —

“order”, “chaos”, “complexity”, “computation” — upon which their arguments rely.

The preceding development of statistical complexity, hierarchical �-machine reconstruction,
and various extensions to discrete computation theory is an alternative. The presentation gave a

broad overview of how three tool sets — the calculi of emergence: computation, dynamics, and
innovation — interrelate in three different problem areas: various routes to chaos, measurement

distortion and nondeterminism, and cellular automaton pattern formation. It suggested a way
to frame the question of how structure appears out of the interplay of order and randomness.

It demonstrated methods for detecting and metrics for quantifying that emergence. It showed
how the information processing structure of nonlinear processes can be analyzed in terms of

computational models and in terms of the effective information processing.
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2 Evolutionary Mechanics

The arguments to this point can be recapitulated by an operational definition of emergence.

A process undergoes emergence if at some time the architecture of information processing has
changed in such a way that a distinct and more powerful level of intrinsic computation has

appeared that was not present in earlier conditions.

It seems, upon reflection, that our intuitive notion of emergence is not captured by the

“intuitive definition” given in Part I. Nor is it captured by the somewhat refined notion of
pattern formation. “Emergence” is a groundless concept unless it is defined within the context

of processes themselves; the only well-defined (nonsubjective) notion of emergence would seem
to be intrinsic emergence. Why? Simply because emergence defined without this closure leads to

an infinite regress of observers detecting patterns of observers detecting patterns .... This is not a
satisfactory definition, since it is not finite. The regress must be folded into the system, it must be

immanent in the dynamics. When this happens complexity and structure are no longer referred
outside. No longer relative and arbitrary, they take on internal meaning and functionality.

Where in science might a theory of intrinsic emergence find application? Are there scientific
problems that at least would be clarified by the computational view of nature outlined here?

In several ways the contemporary debate on the dominant mechanisms operating in biological

evolution seems ripe. Is anything ever new in the biological realm? The empirical evidence
is interpreted as a resounding “yes”. It is often heard that organisms today are more complex

than in earlier epochs. But how did this emergence of complexity occur? Taking a long view,
at present there appear to be three schools of thought on what the guiding mechanisms are in

Darwinian evolution that produce the present diversity of biological structure and that are largely

responsible for the alteration of those structures.

The Selectionists hold that structure in the biological world is due primarily to the fitness-
based selection of individuals in populations whose diversity is maintained by genetic varia-

tion.[75] The second, anarchistic camp consists of the Historicists who hold fast to the Dar-
winian mechanisms of selection and variation, but emphasize the accidental determinants of

biological form.[76,77] What distinguishes this position from the Selectionists is the claim that
major changes in structure can be and have been nonadaptive. Lastly, there are the Structuralists

whose goal is to elucidate the “principles of organization” that guide the appearance of biological
structure. They contend that energetic, mechanical, biomolecular, and morphogenetic constraints

limit the infinite range of possible biological form.[16,73,78–81] The constraints result in a rel-

atively small set of structural attractors. Darwinian evolution serves, at best, to fill the waiting
attractors or not depending on historical happenstance.

What is one to think of these conflicting theories of the emergence of biological structure?

The overwhelming impression this debate leaves is that there is a crying need for a theory
of biological structure and a qualitative dynamical theory of its emergence.[82] In short, the

tensions between the positions are those (i) between the order induced by survival dynamics and
the novelty of individual function and (ii) between the disorder of genetic variation and the order

of developmental processes. Is it just an historical coincidence that the structuralist-selectionist
dichotomy appears analogous to that between order and randomness in the realm of modeling?

The main problem, at least to an outsider, does not reduce to showing that one or the other view
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is correct. Each employs compelling arguments and often empirical data as a starting point.
Rather, the task facing us reduces to developing a synthetic theory that balances the tensions

between the viewpoints. Ironically, evolutionary processes themselves seem to do just this sort
of balancing, dynamically.

The computational mechanics of nonlinear processes can be construed as a theory of structure.
Pattern and structure are articulated in terms of various types of machine classes. The overall

mandate is to provide both a qualitative and a quantitative analysis of natural information-
processing architectures. If computational mechanics is a theory of structure, then innovation via

hierarchical �-machine reconstruction is a computation-theoretic approach to the transformation
of structure. It suggests one mechanism with which to study what drives and what constrains

the appearance of novelty. The next step, of course, would be to fold hierarchical �-machine
reconstruction into the system itself, resulting in a dynamics of innovation, the study of which

might be called “evolutionary mechanics”.

The prototype universe of Figure 1 is the scaffolding for studying an abstract “evolutionary

mechanics”, which is distinguished from chemical, prebiotic, and biological evolution. That is,
all of the “substrates” indicated in Figure 1 are thrown out, leaving only those defined in terms of

information processing. This more or less follows the spirit of computational evolution.[83,84]
The intention is to expunge as much disciplinary semantic content as possible so that if novel

structure emerges, it does so neither by overt design nor interpretation but (i) via the dynamics

of interaction and induction and (ii) according to the basic constraints of information processing.
Additionally, at the level of this view mechanisms for genotypic and phenotypic change are

not delineated. In direct terms evolutionary mechanics concerns the change in the information-
processing architecture of interacting adaptive agents. The basic components that guide and

constrain this change are the following.

1. Modeling: Driven by the need for an encapsulation of environmental experience, an agent’s
internal model captures its knowledge, however limited, of the environment’s current state

and persistent structure.

2. Computation: Driven by the need to process sensory information and produce actions,

computation is the adaptive agent’s main activity. The agent’s computational resources
delimit its inferential, predictive, and semantic capabilities. They place an upper bound on

the maximal level of computational sophistication. Indirectly, they define the language with

which the agent expresses its understanding of the environment’s structure. Directly, they
limit the amount of history the agent can store in its representation of the environment’s

current state.

3. Innovation: Driven by limited observational, computational, and control resources, innova-

tion leads to new model classes that use the available resources more efficiently or more

parsimoniously.

The computational mechanics approach to emergence attempted to address each component in

turn, though it did not do so in the fully dynamic setting suggested by the prototype universe.
But evolutionary mechanics is concerned specifically with this dynamical problem and, as such,

it leads to a much wider range of questions.
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At the very least, the environment appears to each agent as a hierarchical process. There are
subprocesses at several different scales, such as those at the smallest scale where the agents are

individual stochastic dynamical systems and those at larger scales at which coordinated global
behavior may emerge. Each agent is faced with trying to detect as much structure as possible

within this type of environment. How can an evolutionary system adapt when confronted with
this kind of hierarchical process?
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Figure 22 Schematic diagram of an evolutionary hierarchy in terms of the changes in information-processing architecture.
An open-ended sequence of successively more sophisticated computational classes are shown. The evolutionary drive up the
hierarchy derives from the finiteness of resources to which agents have access. The complexity-entropy diagrams are slightly
rotated about the vertical to emphasize the difference in meaning at each level via a different orientation. (Cf. Table 1.)

Figure 22 gives a very schematic summary of one of the consequences following from
this framework in terms of successive changes in information-processing architecture. The

underlying representation of the entire prototype universe, of course, is the realization space
of nonlinear processes — the orbit space of dynamical systems. The figure shows instead

a temporal analog of the discrete computation hierarchy of Figure 2 in which the trade-offs
within each computational level are seen through the complexity-entropy plane. The overall

evolutionary dynamic derives from agent interaction and survival. Species correspond in the
realization space to metastable invariant languages: they are temporary (hyperbolic) fixed points

of the evolutionary dynamic. Each species is dual to some subset of environmental regularities
— a niche — whose defining symmetries some subpopulation of agents has been able to discover

and incorporate into their internal models through innovation. Innovation then manifests itself as
a kind of speciation. The invariant sets bifurcate into computationally distinct agents with new,

possibly-improved capabilities. The statistical mechanical picture of this speciation is that of a
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phase transition between distinct computational “thermodynamic” phases. Through all of this
the macro-evolutionary observables — entropy rate ��, statistical complexity ��, and innovation

— monitor changes in the agents’ and the universe’s information-processing architecture.

Evolutionary mechanics seems to suggest that the emergence of natural complexity is a
manifestly open-ended process. One force of evolution appears in this as a movement up the

inductive hierarchy through successive innovations. This force of evolution itself is driven at
each stage by the limited availability of resources.

Some new principle of refreshment is required. The art of progress

is to preserve order amid change, and to preserve change amid

order. Life refuses to be embalmed alive.

A. N. Whitehead in Process and Reality.[1]
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