Cambridge University Press 978-0-521-84258-7 - The Calculus of Retirement Income: Financial Models for Pension Annuities and Life Insurance Moshe A. Milevsky Frontmatter More information

The Calculus of Retirement Income

Financial Models for Pension Annuities and Life Insurance

This book introduces and develops—from a unique financial perspective—the basic actuarial models that underlie the pricing of life-contingent pension annuities and life insurance. The ideas and techniques are then applied to the real-world problem of generating sustainable retirement income toward the end of the human life cycle. The roles of lifetime income, longevity insurance, and systematic withdrawal plans are investigated within a parsimonious framework. The underlying technology and terminology of the book are based on continuous-time financial economics, merging analytic laws of mortality with the dynamics of equity markets and interest rates. Nonetheless, the text requires only a minimal background in mathematics, and it emphasizes examples and applications rather than theorems and proofs. *The Calculus of Retirement Income* is an ideal textbook for an applied course on wealth management and retirement planning, and it can serve also as a reference for quantitatively inclined financial planners. This book is accompanied by material on the Web site (www.ifid.ca/CRI).

Moshe A. Milevsky is Associate Professor of Finance at the Schulich School of Business, York University, and the Executive Director of the IFID Centre in Toronto, Canada. He was elected Fellow of the Fields Institute in 2002. Professor Milevsky is co-founding editor of the *Journal of Pension Economics and Finance* (published by Cambridge University Press) and has authored more than thirty scholarly articles in addition to three books. His writing for popular media received a Canadian National Magazine Award in 2004. He has lectured widely on the topics of retirement income planning, insurance, and investments in North America, South America, and Europe, and he is a frequent guest on North American television and radio.

Cambridge University Press 978-0-521-84258-7 - The Calculus of Retirement Income: Financial Models for Pension Annuities and Life Insurance Moshe A. Milevsky Frontmatter More information

The Calculus of Retirement Income

Financial Models for Pension Annuities and Life Insurance

MOSHE A. MILEVSKY

Schulich School of Business

CAMBRIDGE UNIVERSITY PRESS Cambridge University Press 978-0-521-84258-7 - The Calculus of Retirement Income: Financial Models for Pension Annuities and Life Insurance Moshe A. Milevsky Frontmatter More information

> CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

> > Cambridge University Press 40 West 20th Street, New York, NY 10011-4211, USA

www.cambridge.org Information on this title: www.cambridge.org/9780521842587

© Moshe A. Milevsky 2006

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2006

Printed in the United States of America

A catalog record for this publication is available from the British Library.

Library of Congress Cataloging in Publication data Milevsky, Moshe Arye, 1967– The calculus of retirement income : financial models for pension annuities and life insurance / Moshe A. Milevsky.

p. cm.

ISBN 0-521-84258-1 (hardback) 1. Old age pensions – Mathematical models. 2. Annuities – Mathematical

models. 3. Retirement income – Mathematical models. I. Title.

HD7105.3.M54 2006 368.3'701 - dc22

2005029455

ISBN-13 978-0-521-84258-7 hardback ISBN-10 0-521-84258-1 hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party Internet Web sites referred to in this publication and does not guarantee that any content on such Web sites is, or will remain, accurate or appropriate.

Cambridge University Press
978-0-521-84258-7 - The Calculus of Retirement Income: Financial Models for Pension
Annuities and Life Insurance
Moshe A. Milevsky
Frontmatter
More information

Contents

List of Figures and Tables			page x
		I MODELS OF ACTUARIAL FINANCE	
1	Intro	duction and Motivation	3
	1.1	The Drunk Gambler Problem	3
	1.2	The Demographic Picture	5
	1.3	The Ideal Audience	9
	1.4	Learning Objectives	10
	1.5	Acknowledgments	12
	1.6	Appendix: Drunk Gambler Solution	14
2	Mod	eling the Human Life Cycle	17
	2.1	The Next Sixty Years of Your Life	17
	2.2	Future Value of Savings	18
	2.3	Present Value of Consumption	20
	2.4	Exchange Rate between Savings and Consumption	22
	2.5	A Neutral Replacement Rate	26
	2.6	Discounted Value of a Life-Cycle Plan	27
	2.7	Real vs. Nominal Planning with Inflation	28
	2.8	Changing Investment Rates over Time	30
	2.9	Further Reading	32
	2.10	Problems	33
3	Mod	els of Human Mortality	34
	3.1	Mortality Tables and Rates	34
	3.2	Conditional Probability of Survival	35
	3.3	Remaining Lifetime Random Variable	37
	3.4	Instantaneous Force of Mortality	38
	3.5	The ODE Relationship	39
	3.6	Moments in Your Life	41

v

vi

Cambridge University Press
978-0-521-84258-7 - The Calculus of Retirement Income: Financial Models for Pension
Annuities and Life Insurance
Moshe A. Milevsky
Frontmatter
More information

Contents

	3.7	Median vs. Expected Remaining Lifetime	44
	3.8	Exponential Law of Mortality	45
	3.9	Gompertz-Makeham Law of Mortality	46
	3.10	Fitting Discrete Tables to Continuous Laws	49
	3.11	General Hazard Rates	51
	3.12	Modeling Joint Lifetimes	53
	3.13	Period vs. Cohort Tables	55
	3.14	Further Reading	59
	3.15	Notation	60
	3.16	Problems	60
	3.17	Technical Note: Incomplete Gamma Function in Excel	61
	3.18	Appendix: Normal Distribution and Calculus Refresher	62
4	Valu	ation Models of Deterministic Interest	64
	4.1	Continuously Compounded Interest Rates?	64
	4.2	Discount Factors	66
	4.3	How Accurate Is the Rule of 72?	67
	4.4	Zero Bonds and Coupon Bonds	68
	4.5	Arbitrage: Linking Value and Market Price	70
	4.6	Term Structure of Interest Rates	72
	4.7	Bonds: Nonflat Term Structure	73
	4.8	Bonds: Nonconstant Coupons	74
	4.9	Taylor's Approximation	75
	4.10	Explicit Values for Duration and Convexity	76
	4.11	Numerical Examples of Duration and Convexity	78
	4.12	Another Look at Duration and Convexity	80
	4.13	Further Reading	81
	4.14	Notation	82
	4.15	Problems	82
5	Mod	els of Risky Financial Investments	83
	5.1	Recent Stock Market History	83
	5.2	Arithmetic Average Return versus Geometric Average	
		Return	86
	5.3	A Long-Term Model for Risk	88
	5.4	Introducing Brownian Motion	91
	5.5	Index Averages and Index Medians	97
	5.6	The Probability of Regret	98
	5.7	Focusing on the Rate of Change	100
	5.8	How to Simulate a Diffusion Process	101
	5.9	Asset Allocation and Portfolio Construction	102
	5.10	Space–Time Diversification	104
	5.11	Further Reading	107
	5.12	Notation	108
	5.13	Problems	108

Cambridge University Press	
978-0-521-84258-7 - The Calculus of Retirement Income: Financial Models for Pensic	n
Annuities and Life Insurance	
Moshe A. Milevsky	
Frontmatter	
More information	

		Contents	vii
6	Models o	of Pension Life Annuities	110
Ū	6.1 Mo	tivation and Agenda	110
	6.1 Mo	rket Prices of Pension Annuities	110
	6.2 Wia	ustion of Pension Annuities: General	110
	6.4 Val	uation of Pension Annuities: Exponential	115
	65 The	Wrong Way to Value Pension Annuities	115
	6.6 Valu	uation of Pension Annuities: Gompertz-Makeham	115
	6.7 Hov	w Is the Annuity's Income Taxed?	110
	6.8 Def	Ferred Annuities: Variation on a Theme	121
	6.9 Per	iod Certain versus Term Certain	123
	6.10 Val	uation of Joint and Survivor Pension Annuities	125
	6.11 Du	ration of a Pension Annuity	128
	6.12 Var	iable vs. Fixed Pension Annuities	130
	6.13 Fur	ther Reading	134
	6.14 Not	tation	136
	6.15 Pro	blems	136
7	Models of Life Insurance		138
	7.1 A F	Tree (Last) Supper?	138
	7.2 Ma	rket Prices of Life Insurance	138
	7.3 The	e Impact of Health Status	139
	7.4 Hov	w Much Life Insurance Do You Need?	140
	7.5 Oth	er Kinds of Life Insurance	142
	7.6 Val	ue of Life Insurance: Net Single Premium	143
	7.7 Val	uing Life Insurance Using Pension Annuities	145
	7.8 Arb	vitrage Relationship	147
	7.9 Tax	Arbitrage Relationship	148
	7.10 Val	ue of Life Insurance: Exponential Mortality	149
	7.11 Val	ue of Life Insurance: GoMa Mortality	149
	7.12 Life	e Insurance Paid by Installments	150
	7.13 NS	P: Delayed and Term Insurance	150
	7.14 Var	iations on Life Insurance	151
	7.15 Wh	at If You Stop Paying Premiums?	154
	7.16 Du	ration of Life Insurance	157
	7.17 Fol	lowing a Group of Policies	159
	7.18 The	Next Generation: Universal Life Insurance	160
	7.19 Fur	ther Reading	162
	7.20 Not	ation	162
	7.21 Pro	blems	162
8	Models o	of DB vs. DC Pensions	164
	8.1 A C	Choice of Pension Plans	164
	8.2 The	Core of Defined Contribution Pensions	165
	8.3 The	e Core of Defined Benefit Pensions	169

Cambridge University Press
978-0-521-84258-7 - The Calculus of Retirement Income: Financial Models for Pension
Annuities and Life Insurance
Moshe A. Milevsky
Frontmatter
More information

viii	Contents	
	 8.4 What Is the Value of a DB Pension Promise? 8.5 Pension Funding and Accounting 8.6 Further Reading 8.7 Notation 8.8 Problems 	172 176 180 181 182
	II WEALTH MANAGEMENT: APPLICATIONS AND IMPLICATIONS	
9	 Sustainable Spending at Retirement 9.1 Living in Retirement 9.2 Stochastic Present Value 9.3 Analytic Formula: Sustainable Retirement Income 9.4 The Main Result: Exponential Reciprocal Gamma 9.5 Case Study and Numerical Examples 9.6 Increased Sustainable Spending <i>without</i> More Risk? 9.7 Conclusion 9.8 Further Reading 9.9 Problems 9.10 Appendix: Derivation of the Formula 	 185 185 187 190 192 193 202 206 208 208 209
10	 Longevity Insurance Revisited 10.1 To Annuitize or Not To Annuitize? 10.2 Five 95-Year-Olds Playing Bridge 10.3 The Algebra of Fixed and Variable Tontines 10.4 Asset Allocation with Tontines 10.5 A First Look at Self-Annuitization 10.6 The Implied Longevity Yield 10.7 Advanced-Life Delayed Annuities 10.8 Who Incurs Mortality Risk and Investment Rate Risk? 10.9 Further Reading 10.10 Notation 10.11 Problems 	 215 215 216 218 220 225 226 234 241 244 245 245
	III ADVANCED TOPICS	
11	Options within Variable Annuities11.1To Live and Die in VA11.2The Value of Paying by Installments11.3A Simple Guaranteed Minimum Accumulation Benefit11.4The Guaranteed Minimum Death Benefit11.5Special Case: Exponential Mortality11.6The Guaranteed Minimum Withdrawal Benefit11.7Further Reading11.8Notation	249 249 252 257 258 259 262 268 269

Cambridge University Press
978-0-521-84258-7 - The Calculus of Retirement Income: Financial Models for Pension
Annuities and Life Insurance
Moshe A. Milevsky
Frontmatter
More information

	111
12 The Utility of Annuitization	270
12.1 What Is the Protection Worth?	270
12.2 Models of Utility, Value, and Price	271
12.3 The Utility Function and Insurance	272
12.4 Utility of Consumption and Lifetime Uncertainty	274
12.5 Utility and Annuity Asset Allocation	278
12.6 The Optimal Timing of Annuitization	281
12.7 The Real Option to Defer Annuitization	282
12.8 Advanced RODA Model	287
12.9 Subjective vs. Objective Mortality	289
12.10 Variable vs. Fixed Payout Annuities	290
12.11 Further Reading	291
12.12 Notation	292
13 Final Words	293
14 Appendix	295
Bibliography	301
Index	309

Cambridge University Press
978-0-521-84258-7 - The Calculus of Retirement Income: Financial Models for Pension
Annuities and Life Insurance
Moshe A. Milevsky
Frontmatter
More information

Figures and Tables

FIGURES

2.1	The human financial life cycle: Savings, wealth &	
	consumption (constant investment rate)	page 25
2.2	The human financial life cycle: Savings, wealth &	
	consumption (varying investment rate)	32
3.1	RP2000 mortality table used for pensions	36
3.2	Relationships between mortality descriptions	40
3.3	The CDF versus the PDF of a "normal" remaining lifetime R.V.	42
3.4	The hazard rate for the normal distribution	42
3.5	The CDF versus the PDF of an "exponential" remaining	
	lifetime R.V.	47
3.6	RP2000 (unisex pension) mortality table vs. best Gompertz fit	
	vs. exponential approximation	50
4.1	Evolution of the bond price over time	69
4.2	Model bond value vs. valuation rate	71
4.3	The term structure of interest rates	73
4.4	"Taylor's D" as maturity gets closer	77
4.5	How good is the approximation?	81
5.1	Visualizing the stochastic growth rate	89
5.2	Sample path of Brownian motion over 40 years	92
5.3	Another sample path of Brownian motion over 40 years	93
5.4	Sample paths: BM vs. nsBM vs. GBM	94
5.5	What is the Probability of Regret (PoR)?	99
5.6	Space-time diversification	107
6.1	Pension annuity quotes: Relationship between credit rating and	
	average payout (income)	113
6.2	One sample path – Three outcomes depending on h	135
8.1	Pension systems	165
8.2	Salary/wage profile vs. weighting scheme: Modeling pension	
	vesting & career averages	169

Cambridge University Press
978-0-521-84258-7 - The Calculus of Retirement Income: Financial Models for Pension
Annuities and Life Insurance
Moshe A. Milevsky
Frontmatter
More information

	Figures and Tables	xi
8.3	ABO vs. PBO vs. RBO	174
9.1	The retirement triangle	186
9.2	Stochastic present value (SPV) of retirement consumption	189
9.3	Minimum wealth required at various ages to maintain a fixed	
	retirement ruin probability	200
9.4	Probability given spending rate is not sustainable	201
9.5	Expected wealth: 65-year-old consumes \$5 per year but	
	protects portfolio with 5% out-of-the-money puts	204
9.6	Ruin probability conditional on returns	205
10.1	I want a lifetime income	228
10.2	Advanced life delayed annuity	235
11.1	Three types of puts	250
11.2	Titanic vs. vanilla put	260
12.1	Expected loss	271
ΤλΒΙ	FS	
11	Old-age dependency ratio around the world	6
1.1	Expected number of years spent in retirement around the	0
1.2	world	7
2.1	Financial exchange rate between \$1 saved annually over 30	,
2.1	working years and dollar consumption during retirement	23
2.2	Government-sponsored pension plans: How generous are they?	26
2.3	Discounted value of life-cycle plan = $\$0.241$ under first	
	sequence of varying returns	31
2.4	Discounted value of life-cycle plan = $-\$0.615$ under second	01
	sequence of varying returns	31
3.1	Mortality table for healthy members of a pension plan	35
3.2	Mortality odds when life is normally distributed	41
3.3	Life expectancy at birth in 2005	43
3.4	Increase since 1950 in life expectancy at birth $E[T_0]$	44
3.5	Mortality odds when life is exponentially distributed	46
3.6	Example of fitting Gompertz–Makeham law to a group	
	mortality table—Female	49
3.7	Example of fitting Gompertz–Makeham law to a group	-
	mortality table—Male	49
3.8	How good is a continuous law of mortality?—Gompertz vs.	
	exponential vs. RP2000	50
3.9	Working with the instantaneous hazard rate	52
3.10	Survival probabilities at age 65	54
3.11	Change in mortality patterns over time—Female	56
3.12	Change in mortality patterns over time—Male	57
4.1	Year-end value of \$1 under infrequent compounding	65
4.2	Year-end value of \$1 under frequent compounding	65
	varae of \$1 ander frequence compounding	00

xii

Cambridge University Press
978-0-521-84258-7 - The Calculus of Retirement Income: Financial Models for Pension
Annuities and Life Insurance
Moshe A. Milevsky
Frontmatter
More information

Figures and Tables

4.3	Years required to double or triple \$1 invested at various	
	interest rates	67
4.4	Valuation of 5-year bonds as a fraction of face value	70
4.5	Valuation of 10-year bonds as a fraction of face value	70
4.6	Estimated vs. actual value of \$10,000 bond after change in	
	valuation rates	80
5.1	Nominal investment returns over 10 years	84
5.2	Growth rates during different investment periods	85
5.3	After-inflation (real) returns over 10 years	86
5.4	Geometric mean returns	87
5.5	Probability of losing money in a diversified portfolio	90
5.6	SDE simulation of GBM using the Euler method	102
6.1	Monthly income from \$100,000 premium single-life pension	
	annuity	111
6.2	A quick comparison with the bond market	112
6.3	Monthly income from \$100,000 premium joint life pension	
<i>.</i> .	annuity	112
6.4	IPAF a_x : Price of lifetime \$1 annual income	118
6.5	Taxable portion of income flow from \$1-for-life annuity	101
	purchased with non-tax-sheltered funds	121
6.6	DPAF $_{u}a_{45}$: Price of lifetime \$1 annual income for 45-year-old	123
6.7	Value $V(r, T)$ of term certain annuity factor vs. immediate	101
	pension annuity factor	124
6.8	Duration value D (in years) of immediate pension annuity	100
	factor	129
6.9	Pension annuity factor at age $x = 50$ when $r = 5\%$	131
6.10	Annuity payout at age $x = 65$ (\$100,000 premium)	134
7.1	U.S. monthly premiums for a \$100,000 death benefit	139
7.2	U.S. monthly premiums for a \$100,000 death benefit—	1.40
	50-year-old nonsmoker	140
7.3	Net single premium for \$100,000 of life insurance protection	150
7.4	Net periodic premium for \$100,000 of life insurance protection	151
1.5	Model results: \$100,000 life insurance—Monthly premiums	1.50
	for 50-year-old by health status	153
7.6	\$100,000 life insurance—Monthly premiums for 50-year-old	150
	by lapse rate	156
7.7	Duration value D (in years) of NSP for life insurance	158
7.8	Modeling a book of insurance policies over time	159
8.1	DC pension retirement income	171
8.2	DC pension: Income replacement rate	171
8.3	DB pension retirement income	172
8.4	DB pension: Income replacement rate	173
8.5	Current value of sample retirement pension by valuation rate	
	and by type of benefit obligation	175

Cambridge University Press
978-0-521-84258-7 - The Calculus of Retirement Income: Financial Models for Pension
Annuities and Life Insurance
Moshe A. Milevsky
Frontmatter
More information

	Figures and Tables	xiii
8.6	Change in value (from age 45 to 46) of sample retirement	
	pension by valuation rate and by type of benefit obligation	177
8.7	Change in pension value at various ages assuming $r = 5\%$	
	valuation rate	177
8.8	Change in PBO from prior year	178
8.9	Change in ABO from prior year	178
9.1	Probability of retirement ruin given (arithmetic mean)	
	return μ of 7% with volatility σ of 20%	195
9.2	Probability of retirement ruin given μ of 5% with σ of 20%	197
9.3	Probability of retirement run given μ of 5% with σ of 10%	197
9.4(a)	Maximum annual spending given tolerance for 5%	100
0.4(b)	Maximum annual spanding given tolerance for 10%	198
9.4(0)	probability of ruin	108
9.4(c)	Maximum annual spending given tolerance for 25%	190
9.4(C)	probability of ruin	100
95	Probability of ruin for 65-year-old male given collared	177
7.5	portfolio under a fixed spending rate	202
9.6	Probability of ruin for 65-year-old female given collared	202
2.0	portfolio under a fixed spending rate	203
10.1	Algebra of fixed tontine vs. nontontine investment	218
10.2	Investment returns from fixed tontines given survival to	
	year's end	219
10.3	Algebra of variable tontine vs. nontontine investment	220
10.4	Optimal portfolio mix of stocks and safe cash	224
10.5	Monthly income from immediate annuity (\$100,000	
	premium)	231
10.6	Cost for male of \$569 monthly from immediate annuity	231
10.7	Cost for female of \$539 monthly from immediate annuity	232
10.8	Should an 80-year-old annuitize?	232
10.9	ALDA: Net single premium $(_u a_x)$ required at age x to	
	produce \$1 of income starting at age $x + u$	236
10.10	ALDA income multiple: Dollars received during retirement	
	per dollar paid today	239
10.11	Lapse-adjusted ALDA income multiple	240
10.12	Profit spread (in basis points) from sale of ALDA given	211
11.1	mortality misestimate of 20%	244
11.1	BSM put option value as a function of spot price and	252
11.2	maturity—Strike price = $$100$	252
11.2	Annual fact (in basis points) needed to hadre the dasth	230
11.5	Annual ree (in basis points) needed to nedge the death	250
11 /	Annual fee (in basis points) needed to bedge the death	230
11.4	henefit_Male	250
	Senent Marc	257

Cambridge University Press
978-0-521-84258-7 - The Calculus of Retirement Income: Financial Models for Pension
Annuities and Life Insurance
Moshe A. Milevsky
Frontmatter
More information

xiv	Figures and Tables	
11.5	Value of exponential Titanic option	262
11.5	GMWB payoff and the probability of ruin within 14 28	202
11.0	years	265
11.7	Impact of GMWB rate and subaccount volatility on	
	required fee k	268
12.1	Relationship between risk aversion γ and subjective	
	insurance premium I_{γ}	275
12.2	When should you annuitize in order to maximize your	
	utility of wealth?	288
12.3	Real option to delay annuitization for a 60-year-old male	
	who disagrees with insurance company's estimate of his	
	mortality	289
12.4	When should you annuitize?—Given the choice of fixed	
	and variable annuities	291
14.1(a)	RP2000 healthy (static) annuitant mortality table—Ages	
	50-89	296
14.1(b)	RP2000 healthy (static) annuitant mortality table—Ages	
	90–120	296
14.2	International comparison (year 2000) of mortality rates q_x	
	at age 65	297
14.3(a)	2001 CSO (ultimate) insurance mortality table—Ages	• • • •
	50-89	298
14.3(b)	2001 CSO (ultimate) insurance mortality table—Ages	• • • •
	90–120	298
14.4	Cumulative distribution function for a normal random	• • • •
14.5		299
14.5	Cumulative distribution function for a reciprocal Gamma	200
	random variable	299