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THE CALDERÓN PROBLEM WITH PARTIAL DATA

IN TWO DIMENSIONS

OLEG YU. IMANUVILOV, GUNTHER UHLMANN, AND MASAHIRO YAMAMOTO

1. Introduction

We consider the problem of determining a complex-valued potential q in a
bounded two-dimensional domain from the Cauchy data measured on an arbitrary
open subset of the boundary for the associated Schrödinger equation Δ+q. A moti-
vation comes from the classical inverse problem of electrical impedance tomography.
In this inverse problem one attempts to determine the electrical conductivity of a
body by measurements of voltage and current on the boundary of the body. This
problem was proposed by Calderón [9] and is also known as Calderón’s problem.
In dimensions n ≥ 3, the first global uniqueness result for C2-conductivities was
proven in [28]. In [25], [5] the global uniqueness result was extended to less regular
conductivities. Also see [14] for the determination of more singular conormal con-
ductivities. In dimension n ≥ 3 global uniqueness was shown for the Schrödinger
equation with bounded potentials in [28]. The case of more singular conormal
potentials was studied in [14].

In two dimensions the first global uniqueness result for Calderón’s problem
was obtained in [24] for C2-conductivities. Later the regularity assumptions were
relaxed in [6] and [2]. In particular, the paper [2] proves uniqueness for L∞-
conductivities. In two dimensions a recent breakthrough result of Bukhgeim [7]
gives unique identifiability of the potential from Cauchy data measured on the
whole boundary for the associated Schrödinger equation. As for the uniqueness in
determining two coefficients, see [10], [18].

In all the above-mentioned articles, the measurements are made on the whole
boundary. The purpose of this paper is to show global uniqueness in two dimensions,
both for the Schrödinger and conductivity equations, by measuring all the Neumann

data on an arbitrary open subset Γ̃ of the boundary produced by inputs of Dirichlet

data supported on Γ̃. We formulate this inverse problem more precisely below.
Let Ω ⊂ R

2 be a bounded domain with smooth boundary which consists of N

smooth closed curves γj , ∂Ω =
⋃N

j=1 γj , and let ν be the unit outward normal

vector to ∂Ω. We denote ∂u
∂ν = ∇u · ν. A bounded and positive function γ̃(x)
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models the electrical conductivity of Ω. Then a potential u ∈ H1(Ω) satisfies the
Dirichlet problem

(1.1)
div(γ̃∇u) = 0 in Ω,

u
∣∣
∂Ω

= f,

where f ∈ H
1
2 (∂Ω) is a given boundary voltage potential. The Dirichlet-to-

Neumann (DN) map is defined by

(1.2) Λγ̃(f) = γ̃
∂u

∂ν

∣∣∣
∂Ω

.

The inverse problem is to recover γ̃ from Λγ . This problem can be reduced to
studying the set of Cauchy data for the Schrödinger equation with the potential q
given by

(1.3) q = −Δ
√
γ̃√
γ̃

.

More generally we define the set of Cauchy data for a bounded potential q by

(1.4) Ĉq =

{(
u|∂Ω,

∂u

∂ν

∣∣∣
∂Ω

)
| (Δ + q)u = 0 on Ω, u ∈ H1(Ω)

}
.

We have Ĉq ⊂ H
1
2 (∂Ω)×H− 1

2 (∂Ω).

Let Γ̃ ⊂ ∂Ω be a nonempty open subset of the boundary. Denote Γ0 = ∂Ω \ Γ̃.
Our main result gives global uniqueness by measuring the Cauchy data on Γ̃.

Let qj ∈ C2+α(Ω), j = 1, 2, for some α > 0 and let qj be complex-valued. Consider

the following sets of Cauchy data on Γ̃:

(1.5) Cqj =

{(
u|Γ̃,

∂u

∂ν

∣∣∣
Γ̃

)
| (Δ + qj)u = 0 inΩ, u|Γ0

= 0, u ∈ H1(Ω)

}
, j = 1, 2.

Theorem 1.1. Assume Cq1 = Cq2 . Then q1 = q2.

Remark. As far as a regularity of the potentials qj is concerned, we can relax the
assumptions: qj are of C2+α in a neighborhood of the boundary ∂Ω and qj ∈
C1+α(Ω).

Using Theorem 1.1, one concludes immediately as a corollary the following global
identifiability result for the conductivity equation (1.1). This result uses the fact
that knowledge of the Dirichlet-to-Neumann map on an open subset of the boundary
determines γ and its first derivatives on Γ̃ (see [22], [29]).

Corollary 1.1. With some α > 0, let γ̃j ∈ C4+α(Ω), j = 1, 2, be nonvanishing
real-valued functions. Assume that

Λγ̃1
(f) = Λγ̃2

(f) on Γ̃ for all f ∈ H
1
2 (Γ), supp f ⊂ Γ̃.

Then γ̃1 = γ̃2.

It is easy to see that Theorem 1.1 implies the analogous result to [19] in the
two-dimensional case.

Notice that Theorem 1.1 does not assume that Ω is simply connected. An inter-
esting inverse problem is whether one can determine the potential or conductivity
in a region of the plane with holes by measuring the Cauchy data only on the
accessible boundary. This is also called the obstacle problem.
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Let Ω, D be domains in R2 with smooth boundaries such that D ⊂ Ω. Let
V ⊂ ∂Ω be an open set. Let qj ∈ C2+α(Ω \D), for some α > 0 and j = 1, 2. Let
us consider the following set of partial Cauchy data:

C̃qj =

{(
u|V ,

∂u

∂ν

∣∣∣
V

)
|(Δ + qj)u = 0 in Ω \D, u|∂D∪∂Ω\V = 0, u ∈ H1(Ω \D)

}
.

Corollary 1.2. Assume C̃q1 = C̃q2 . Then q1 = q2.

A similar result holds for the conductivity equation.

Corollary 1.3. Let γ̃j ∈ C4+α(Ω \D), j = 1, 2, be nonvanishing real-valued func-
tions. Assume

Λγ̃1
(f) = Λγ̃2

(f) on V ∀f ∈ H
1
2 (∂(Ω \D)), supp f ⊂ V.

Then γ̃1 = γ̃2.

In a forthcoming article we will give other applications of Theorem 1.1 to inverse
boundary-value problems in two dimensions. We discuss briefly one important ex-
ample, the anisotropic conductivity problem. In this case the conductivity depends
on direction and is represented by a positive definite symmetric matrix

σ = {σij} in Ω.

The conductivity equation with voltage potential g on ∂Ω is given by

2∑
i,j=1

∂

∂xi
(σij ∂u

∂xj
) = 0 in Ω, u|∂Ω = g.

The Dirichlet-to-Neumann map is defined by

Λσ(g) =

2∑
i,j=1

σijνi
∂u

∂xj
|∂Ω.

It has been known for a long time that Λσ does not determine σ uniquely in the
anisotropic case [23]. Let F : Ω → Ω be a diffeomorphism such that F (x) = x for

x on Γ̃. Then
ΛF∗σ = Λσ,

where

(1.6) F∗σ =

(
(DF ) ◦ σ ◦ (DF )T

| detDF |

)
◦ F−1.

Here DF denotes the differential of F, (DF )T its transpose, and the composition
inside parentheses in (1.6) is matrix composition. The question of whether one can
determine the conductivity up to the obstruction (1.6) in the case of full Cauchy
data has been solved in two dimensions for C2 conductivities in [24], Lipschitz
conductivities in [26], and merely L∞ conductivities in [3]. The method of proof in
all these papers is the reduction to the isotropic case performed using isothermal
coordinates [27]. Using the same method and Corollary 1.1, we have

Theorem 1.2. Let σk = {σij
k } ∈ C7+α(Ω) for k = 1, 2 and some positive α.

Suppose that σk are positive definite symmetric matrices on Ω. Let Γ̃ ⊂ ∂Ω be
some open set. Assume

Λσ1
(g)|Γ̃ = Λσ2

(g)|Γ̃ ∀g ∈ H
1
2 (∂Ω), supp g ⊂ Γ̃.
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Then there exists a diffeomorphism

F : Ω → Ω, F |Γ̃ = Identity, F ∈ C6+α(Ω̄), α > 0

such that
F∗σ1 = σ2.

We mention that in [3] K. Astala, M. Lassas, and L. Päivärinta have shown
a partial data result in the anisotropic problem in two dimensions for bounded
measurable conductivities, similar to Theorem 1.2, assuming that one knows both

the Dirichlet-to-Neumann and Neumann-to-Dirichlet map on Γ̃. On the other hand,
to the authors’ knowledge, there are no uniqueness results similar to Theorem 1.1
with Dirichlet data supported and Neumann data measured on the same arbitrary
open subset of the boundary, even for smooth potentials or conductivities. In
dimension n ≥ 3 Isakov [17] proved global uniqueness assuming that Γ0 is a subset
of a plane or a sphere. In dimensions n ≥ 3, [8] proves global uniqueness in
determining a bounded potential for the Schrödinger equation with Dirichlet data
supported on the whole boundary and Neumann data measured in roughly half the
boundary. The proof relies on a Carleman estimate with a linear weight function.
This implies a similar result for the conductivity equation with C2 conductivities.
In [20] the regularity assumption on the conductivity was relaxed to C3/2+α with
some α > 0. The corresponding stability estimates are proved in [15]. In [19],
the result in [8] was generalized to show that by measuring all possible pairs of
Dirichlet data on a possibly very small subsets of the boundary Γ+ and Neumann
data on a slightly larger open domain than ∂Ω \ Γ+, one can uniquely determine
the potential. The method of the proof uses Carleman estimates with nonlinear
weights. The case of the magnetic Schrödinger equation was considered in [11]
and an improvement on the regularity of the coefficients is done in [21]. Stability
estimates for the magnetic Schrödinger equation with partial data were proven in
[30].

The two-dimensional case has special features since one can construct a much
larger set of complex geometrical optics solutions than in higher dimensions. On the
other hand, the problem is formally determined in two dimensions and is therefore
more difficult. The proof of our main result is based on the construction of appro-
priate complex geometrical optics solutions by Carleman estimates with degenerate
weight functions.

This paper is composed of four sections and an appendix. In Section 2, we
establish our key Carleman estimates, and in Section 3, we construct appropri-
ate complex geometrical optics solutions. In Section 4, we complete the proof of
Theorem 1.1. In the appendix we consider the solvability of the Cauchy-Riemann
equations with Cauchy data on a subset of the boundary. We also establish a Car-
leman estimate for Laplace’s equation with degenerate harmonic weights that we
use in the earlier sections.

2. Carleman estimates with degenerate weights

Throughout the paper we use the following notations.
Notation. i =

√
−1; x1, x2, ξ1, ξ2 ∈ R

1; z = x1 + ix2; ζ = ξ1 + iξ2; z denotes the
complex conjugate of z ∈ C. We identify x = (x1, x2) ∈ R2 with z = x1 + ix2 ∈ C.
∂z = 1

2 (∂x1
− i∂x2

); ∂z = 1
2 (∂x1

+ i∂x2
); D = ( 1i

∂
∂x1

, 1i
∂

∂x2
);β = (β1, β2); |β| =

β1 + β2; Dβ = (( 1i
∂

∂x1
)β1 , ( 1i

∂
∂x2

)β2). The tangential derivative on the boundary
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is given by ∂�τ = ν2
∂

∂x1
− ν1

∂
∂x2

, with ν = (ν1, ν2) the unit outer normal to ∂Ω;

B(x̂, δ) = {x ∈ R2||x− x̂| < δ}; f : R2 → R1; f ′′ is the Hessian matrix with entries
∂2f

∂xi∂xj
. L(X,Y ) denotes the Banach space of all bounded linear operators from a

Banach space X to another Banach space Y .
Let Φ(z) = ϕ(x1, x2) + iψ(x1, x2) ∈ C2(Ω) be a holomorphic function in Ω with

real-valued ϕ and ψ:

(2.1) ∂zΦ(z) = 0 in Ω.

Denote by H the set of critical points of the function Φ

H = {z ∈ Ω|∂zΦ(z) = 0}.

Assume that Φ has no critical points on Γ̃ and that all the critical points are
nondegenerate:

(2.2) H ∩ ∂Ω \ Γ0 = {∅}, ∂2
zΦ(z) �= 0, ∀z ∈ H.

Then we know that Φ has only a finite number of critical points and we can set

(2.3) H = {x̃1, ..., x̃
}.
Consider the problem

(2.4) Δu+ q0u = f in Ω, u|Γ0
= g,

where ν is the unit outward normal vector to ∂Ω.
Assume that Φ satisfies

(2.5) Γ0 ⊂ {x ∈ ∂Ω|(ν,∇ϕ) = 0}.
We have

Proposition 2.1. Let q0 ∈ L∞(Ω). Assume (2.1), (2.2), (2.5). There exists τ0 > 0
such that for all |τ | > τ0 there exists a solution to problem (2.4) such that

(2.6) ‖ue−τϕ‖L2(Ω) ≤ C(‖fe−τϕ‖L2(Ω)/
√
|τ |+ ‖ge−τϕ‖L2(Γ0)).

The proof of this proposition given in the appendix.
Let us introduce the operators:

∂−1
z g =

1

2πi

∫
Ω

g(ζ, ζ)

ζ − z
dζ ∧ dζ = − 1

π

∫
Ω

g(ζ, ζ)

ζ − z
dξ2dξ1,

∂−1
z g = − 1

2πi

∫
Ω

g(ζ, ζ)

ζ − z
dζ ∧ dζ = − 1

π

∫
Ω

g(ζ, ζ)

ζ − z
dξ2dξ1 = ∂−1

z g.

See, e.g., pp. 28–31 in [32] where ∂−1
z and ∂−1

z are denoted by T and T , respectively.
Then we have (e.g., p. 47 and p. 56 in [32])

Proposition 2.2. (A) Let m ≥ 0 be an integer number and let α ∈ (0, 1). Then
∂−1
z , ∂−1

z ∈ L(Cm+α(Ω), Cm+α+1(Ω)).

(B) Let 1 ≤ p ≤ 2 and 1 < p̃ < 2p
2−p . Then ∂−1

z , ∂−1
z ∈ L(Lp(Ω), Lp̃(Ω)).

We define two other operators:

(2.7) RΦ,τg = eτ(Φ−Φ)∂−1
z (geτ(Φ−Φ)), R̃Φ,τg = eτ(Φ−Φ)∂−1

z (geτ(Φ−Φ)).
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We have

Proposition 2.3. Let g ∈ Cα(Ω) for some positive α. The function RΦ,τg is a
solution to

(2.8) ∂zRΦ,τg − τ (∂zΦ)RΦ,τg = g in Ω.

The function R̃Φ,τg solves

(2.9) ∂zR̃Φ,τg + τ (∂zΦ)R̃Φ,τg = g in Ω.

Proof. The proof is by direct computations:

∂zR̃Φ,τg + τ
∂Φ

∂z
R̃Φ,τg = ∂z(e

τ(Φ−Φ)∂−1
z (geτ(Φ−Φ)))

+ τ
∂Φ

∂z
(eτ(Φ−Φ)∂−1

z (geτ(Φ−Φ)))

= − τ
∂Φ

∂z
(eτ(Φ−Φ)∂−1

z (geτ(Φ−Φ))) + (eτ(Φ−Φ)(geτ(Φ−Φ)))

+ τ
∂Φ

∂z
(eτ(Φ−Φ)∂−1

z (geτ(Φ−Φ))) = g.

�

Using the stationary phase argument, we show

Proposition 2.4. Let g ∈ L1(Ω) and let the function Φ satisfy (2.1), (2.2). Then

lim
|τ |→+∞

∫
Ω

geτ(Φ(z)−Φ(z))dx = 0.

Proof. Let {gk}∞k=1 ∈ C∞
0 (Ω) be a sequence of functions such that gk → g in

L1(Ω). Let ε > 0 be an arbitrary number. Suppose that ĵ is large enough such that
‖g − gĵ‖L1(Ω) ≤ ε

2 . Then

|
∫
Ω

geτ(Φ(z)−Φ(z))dx| ≤ |
∫
Ω

(g − gĵ)e
τ(Φ(z)−Φ(z))dx|+ |

∫
Ω

gĵe
τ(Φ(z)−Φ(z))dx|.

The first term on the right hand side of this inequality is less then ε/2 and the second
goes to zero as |τ | approaches infinity by the stationary phase argument. �

Denote

Oε = {x ∈ Ω|dist(x, ∂Ω) ≤ ε}.
We have

Proposition 2.5. Let α > 0, g ∈ C1+α(Ω), and g|Oε
= 0. Then

(2.10) |RΦ,τg(x)|+ |R̃Φ,τg(x)| ≤ C‖g‖C1+α(Ω)/|τ | ∀x ∈ Oε/2.

If g ∈ C2+α(Ω), g|Oε
= 0, and g|H = 0, then

(2.11) ‖RΦ,τg‖C0(O ε
2
) + ‖R̃Φ,τg‖C0(O ε

2
) = o(

1

τ
)

as |τ | → ∞.
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Proof. Denote g̃(x, ξ1, ξ2) = − 1
π

g(ξ1,ξ2)
ζ−z . Let x = (x1, x2) be an arbitrary point in

O ε
2
. We set z = x1 + ix2. We prove (2.10) and (2.11) for the function RΦ,τg. Proof

of the estimates for the function R̃Φ,τg is exactly the same. Let us prove (2.10) first.
Let δ > 0 be sufficiently small and let ek ∈ C∞

0 (B(x̃k, δ)) such that ek|B(x̃k,δ/2) = 1.
We decompose

I(τ ) =

∫
Ω

g̃eτ(Φ−Φ)dξ1dξ2

=


∑
k=1

∫
B(x̃k,δ)

ekg̃e
τ(Φ−Φ)dξ1dξ2 +

∫
Ω

(1−

∑

k=1

ek)g̃e
τ(Φ−Φ)dξ1dξ2.

(2.12)

By the stationary phase argument we can estimate the second integral on the right
hand side of (2.12) as

(2.13) ‖
∫
Ω

(1−

∑

k=1

ek)g̃e
τ(Φ−Φ)dξ1dξ2‖C0(O ε

2
) ≤

C‖g‖C1+α(Ω)

|τ | .

In order to estimate the first term on the right hand side of (2.12), we use that


∑
k=1

∫
B(x̃k,δ)

ekg̃e
τ(Φ−Φ)dξ1dξ2 =


∑
k=1

{∫
B(x̃k,δ)

ek

(
g̃ +

1

π

g(x̃k)

ζ − z

)
eτ(Φ−Φ)dξ1dξ2

−
∫
B(x̃k,δ)

ek
1

π

g(x̃k)

ζ − z
eτ(Φ−Φ)dξ1dξ2

}
.

(2.14)

Applying the stationary phase argument to the second term in (2.14) again, we
get

(2.15) ‖
∫
B(x̃k,δ)

ek
1

π

g(x̃k)

ζ − z
eτ(Φ−Φ)dξ1dξ2‖C1(O ε

2
) ≤

C‖g‖C0(Ω)

|τ | .

In order to estimate the first term on the right hand side of (2.14), we observe


∑
k=1

∫
B(x̃k,δ)

ek

(
g̃ +

1

π

g(x̃k)

ζ − z

)
eτ(Φ−Φ)dξ1dξ2

=


∑
k=1

lim
δ′→+0

∫
B(x̃k,δ)\B(x̃k,δ′)

ek

(
g̃ +

1

π

g(x̃k)

ζ − z

)
eτ(Φ−Φ)dξ1dξ2

=

∑

k=1

lim
δ′→+0

∫
B(x̃k,δ)\B(x̃k,δ′)

ek

(
g̃ +

1

π

g(x̃k)

ζ − z

)
1

τ∂ζΦ
∂ze

τ(Φ−Φ)dξ1dξ2

= −

∑

k=1

lim
δ′→+0

∫
B(x̃k,δ)\B(x̃k,δ′)

∂ζ

(
ek(g̃ +

1

π

g(x̃k)

ζ − z
)

1

τ∂ζΦ

)
eτ(Φ−Φ)dξ1dξ2

−

∑

k=1

lim
δ′→+0

∫
S(x̃k,δ′)

1

2δ′
(ξ1 − iξ2 − ((x̃k)1 − i(x̃k)2))

× ek

(
g̃ +

1

π

g(x̃k)

ζ − z

)
1

τ∂ζΦ
eτ(Φ−Φ)dσ.

(2.16)
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Here and henceforth we set S(x̃k, δ
′) = ∂B(x̃k, δ

′).

Note that for each fixed x from O ε
2
function ek(ξ1, ξ2)(g̃ + 1

π
g(x̃k)
ζ−z ) ∈ C1+α(Ω)

and (g̃ + 1
π

g(x̃k)
ζ−z )(x, x̃k) = 0. Thus

lim
δ′→+0

∫
S(x̃k,δ′)

1

2δ′
(ξ1 − iξ2 − ((x̃k)1 − i(x̃k)2))ek(g̃ +

1

π

g(x̃k)

ζ − z
)

1

∂zΦ
eτ(Φ−Φ)dσ = 0.

By (2.2) there exists a constant C such that

|∂ζ
(

ek
∂ζΦ

(g̃ +
1

π

g(x̃k)

ζ − z
)

)
| ≤ C


∑
k=1

‖g‖C1+α(Ω)

|x− x̃k|2−α
.

Using these inequalities, we pass to the limit in (2.16) and we obtain


∑
k=1

∫
Ω

ek

(
g̃ +

1

π

g(x̃k)

ζ − z

)
eτ(Φ−Φ)dξ1dξ2

= −1

τ


∑
k=1

∫
B(x̃k,δ)

∂ζ

(
ek

(
g̃ +

1

π

g(x̃k)

ζ − z

)
1

∂ζΦ

)
eτ(Φ−Φ)dξ1dξ2.

This inequality and (2.13), (2.15) imply (2.10).
Now we prove (2.11). Thanks to the improved regularity of the function g,

similarly to (2.16) we have

(2.17) ‖
∫
Ω

(1−

∑

k=1

ek)g̃e
τ(Φ−Φ)dξ1dξ2‖C0(O ε

2
) ≤

C

|τ |2 .

By (2.17) and the assumption that g|H = 0 we get

(2.18) I(τ ) = −

∑

k=1

∫
B(x̃k,δ)

∂ζ(
ekg̃

τ∂ζΦ
)eτ(Φ−Φ)dξ1dξ2 + o(

1

τ
).

Consider the radial cut-off function χ ∈ C∞
0 (B(0, 1)) such that

χ ≥ 0, χ|B(0, 12 )
= 1.

Then by (2.18)

I(τ ) = −

∑

k=1

∫
B(x̃k,δ)

∂ζ(
ekg̃

τ∂ζΦ
)χ(|ξ − x̃k| ln |τ |)eτ(Φ−Φ)dξ1dξ2

−

∑

k=1

∫
B(x̃k,δ)

∂ζ(
ekg̃

τ∂ζΦ
)(1− χ(|ξ − x̃k| ln |τ |))eτ(Φ−Φ)dξ1dξ2 + o(

1

τ
)

=


∑
k=1

∫
B(x̃k,δ)

∂ζ

(
1

τ∂ζΦ
∂ζ(

ekg̃

τ∂ζΦ
)(1− χ(|ξ − x̃k| ln |τ |))

)
eτ(Φ−Φ)dξ1dξ2

−

∑

k=1

∫
B(x̃k,δ)

∂ζ(
ekg̃

τ∂ζΦ
)χ(|ξ − x̃k| ln |τ |)eτ(Φ−Φ)dξ1dξ2 + o(

1

τ
).

(2.19)
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Using the inequalities


∑
k=1

|
∫
B(x̃k,δ)

∂z

(
1

τ∂ζΦ
∂ζ(

ekg̃

τ∂ζΦ
)(1− χ(|ξ − x̃k| ln |τ |))

)
eτ(Φ−Φ)dξ1dξ2| ≤

C

τ
3
2

and


∑
k=1

|
∫
B(x̃k,δ)

∂ζ(
ekg̃

τ∂ζΦ
)χ(|ξ − x̃k| ln |τ |)eτ(Φ−Φ)dξ1dξ2|

≤ C

τ


∑
k=1

∫
B(x̃k,δ)

1

|ξ − x̃|2−α
χ(|ξ − x̃k| ln |τ |)dξ1dξ2 = o(

1

τ
),

we obtain (2.11). �

Denote

r(z) = Π

k=1(z − z̃k) where z̃k = x̃1,k + ix̃2,k, H = {x̃1, . . . , x̃
}.

We have

Proposition 2.6. Let α be some positive number, g ∈ C1+α(Ω), and g|Oε
= 0.

Then for each δ ∈ (0, 1), there exists a constant C(δ) > 0 such that

‖R̃Φ,τ (rg)‖L2(Ω) ≤ C(δ)‖g‖C1+α(Ω)/|τ |1−δ,(2.20)

‖RΦ,τ (rg)‖L2(Ω) ≤ C(δ)‖g‖C1+α(Ω)/|τ |1−δ.

Proof. Denote v = R̃Φ,τ (rg). By Proposition 2.5

(2.21) ‖v‖L2(Oε/2) ≤ C‖g‖C1+α(Ω)/|τ |.

Then by Proposition 2.3 we have

∂v

∂z
+ τ

∂Φ

∂z
v = rg in Ω.

There exists a function p such that

−∂p

∂z
+ τ

∂Φ

∂z
p = v in Ω

and there exists a constant C > 0 independent of τ such that

(2.22) ‖p‖L2(Ω) ≤ C‖v‖L2(Ω).

Let χ be a nonnegative function such that χ ≡ 0 on O ε
16

and χ ≡ 1 on Ω \ O ε
8
.

Setting p̃ = χp and using g|Oε
≡ 0, we have that∫

Ω

r(z)gpdx =

∫
Ω\Oε

r(z)gpdx =

∫
Ω

r(z)gp̃dx

and

(2.23) −∂p̃

∂z
+ τ

∂Φ

∂z
p̃ = χv − p

∂χ

∂z
in Ω.

Then

(2.24) ‖χ 1
2 v‖2L2(Ω) =

∫
Ω

r(z)gpdx+

∫
Ω

p
∂χ

∂z
vdx.
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Applying to equation (2.23) the operator ∂
∂z , we have

− ∂

∂z

∂p̃

∂z
=

∂

∂z
(−τ

∂Φ

∂z
p̃+ χv − p

∂χ

∂z
) in Ω, p̃|∂Ω = 0.

The classical a priori estimate for the Laplace operator yields

‖p̃‖H1(Ω) ≤ C‖τ ∂Φ
∂z

p̃− χv + p
∂χ

∂z
‖L2(Ω).

Then by (2.22)

(2.25) ‖p̃‖H1(Ω) ≤ C(|τ |‖p‖L2(Ω) + ‖v‖L2(Ω)) ≤ C|τ |‖v‖L2(Ω).

Taking the scalar product of (2.23) and r(z)

∂zΦ(z)
g, we get∫

Ω

r(z)

∂zΦ(z)
g

(
−∂p̃

∂z
+ τ

∂Φ(z)

∂z
p̃

)
dx =

∫
Ω

r(z)

∂zΦ(z)
g

(
χv − p

∂χ

∂z

)
dx.

Then

τ

∫
Ω

gr(z)p̃dx =

∫
Ω

r(z)

∂zΦ(z)
g

(
χv − p

∂χ

∂z

)
dx−

∫
Ω

∂

∂z̄

(
r(z)

∂zΦ(z)
g

)
p̃dx.

By (2.25) and the Sobolev embedding theorem, for each ε̃ ∈ (0, 1
2 ), we have∣∣∣∣∣

∫
Ω

∂

∂z̄

(
r(z)

∂zΦ(z)
ḡ

)
p̃dx

∣∣∣∣∣ ≤
∣∣∣∣∣
∫
Ω

r(z)∂2
zΦ(z)

(∂zΦ(z))2
gp̃dx

∣∣∣∣∣ +
∣∣∣∣∣
∫
Ω

r(z)

∂zΦ(z)

∂g

∂z̄
p̃dx

∣∣∣∣∣
≤ C‖g‖C1+α(Ω)

∥∥∥∥ 1

∂zΦ

∥∥∥∥
L2−ε̃(Ω)

‖p̃‖
L

2−ε̃
1−ε̃ (Ω)

≤ C‖g‖C1+α(Ω)‖p̃‖Hδ3(ε̃)(Ω)

≤ C‖g‖C1+α(Ω)|τ |δ3(ε̃)‖v‖L2(Ω).

(2.26)

Here we choose δ3(ε̃) > 0 such that δ3(ε̃) → +0 as ε̃ → +0 and Hδ3(ε̃)(Ω) ⊂
L

2−ε̃
1−ε̃ (Ω). Therefore

(2.27)

∣∣∣∣∫
Ω

gr(z)p̃dx

∣∣∣∣ ≤ C‖g‖C1+α(Ω)|τ |−1+δ3(ε̃)‖v‖L2(Ω) as δ3(ε̃) → +0.

By (2.21)

(2.28)

∣∣∣∣∫
Ω

p
∂χ

∂z
vdx

∣∣∣∣ ≤ C‖p‖L2(Ω)‖v‖L2(O ε
8
) ≤ C‖g‖C1+α(Ω)‖p‖L2(Ω)/|τ |.

By (2.22), (2.27), and (2.28) we obtain from (2.24)

‖v‖2L2(Ω) ≤ C‖g‖C1+α(Ω)(|τ |−1+δ3(ε̃)‖v‖L2(Ω) + ‖p‖L2(Ω)/|τ |)
≤ C|τ |−1+δ3(ε̃)‖g‖C1+α(Ω)‖v‖L2(Ω).

The proof of the proposition is complete. �

We have

Proposition 2.7. Let α > 0, g ∈ C2+α(Ω), g|Oε
= 0, and g|H = 0. Then

(2.29)

∥∥∥∥RΦ,τg +
g

τ∂zΦ

∥∥∥∥
L2(Ω)

+

∥∥∥∥R̃Φ,τg −
g

τ∂zΦ

∥∥∥∥
L2(Ω)

= o

(
1

τ

)
as |τ | → +∞.
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Proof. By (2.2) and Proposition 2.5

(2.30) ‖R̃Φ,τg‖C0(O ε
2
) + ‖RΦ,τg‖C0(O ε

2
) = o

(
1

τ

)
.

Therefore instead of (2.29) it suffices to prove
(2.31)∥∥∥∥χ1RΦ,τg +

g

τ∂zΦ

∥∥∥∥
L2(Ω)

+

∥∥∥∥χ1R̃Φ,τg −
g

τ∂zΦ

∥∥∥∥
L2(Ω)

= o

(
1

τ

)
as |τ | → +∞,

where χ1 ∈ C∞
0 (Ω) and χ1|Ω\Oε/2

= 1. Denote w = χ1R̃Φ,τg − g
τ∂zΦ

. Here we note

that g
∂zΦ

∈ L∞(Ω). This follows from (2.2), g ∈ C1+α(Ω), and g|H = 0. Then (2.9)

and g|Oε
= 0 yield

(2.32) ∂zw + τ (∂zΦ)w = −∂z

(
g

τ∂zΦ

)
+ (∂zχ1)R̃Φ,τg in Ω, w|∂Ω = 0.

Note that by (2.2) and the fact that g|H = 0, we obtain

(2.33)

∣∣∣∣∂z (
g

∂zΦ

)∣∣∣∣ = ∣∣∣∣ ∂zg∂zΦ
− g

∂zΦ

∂2
zΦ

∂zΦ

∣∣∣∣ ≤ C

Π

k=1|x− x̃k|

.

Consider the radial cut-off function χ ∈ C∞
0 (B(0, 1)) such that

χ ≥ 0, χ|B(0, 12 )
= 1.

By (2.33) and Proposition 2.2(B),

(2.34) R̃Φ,τ

(

∑

k=1

χ(|x− x̃k| ln |τ |)∂z
(

g

∂zΦ

))
→ 0 in L2(Ω) as |τ | → +∞.

In fact, fixing large |τ |, small δ > 0, and p > 1 such that p− 1 is sufficiently small,
we apply Proposition 2.2(B) and (2.33) to conclude∥∥∥∥∥R̃Φ,τ

(

∑

k=1

χ(|x− x̃k| ln |τ |)∂z
(

g

∂zΦ

))∥∥∥∥∥
L2(Ω)

≤ C

∑

k=1

(∫
B(x̃k,δ)

|χ(|x− x̃k| ln |τ |)|p
∣∣∣∣∂z (

g

∂zΦ

)∣∣∣∣p dx
) 1

p

≤ C ′‖g‖C1+α(Ω)


∑
k=1

(∫
B(x̃k,δ)

|χ(|x− x̃k| ln |τ |)|p
1

|x− x̃k|p
dx

) 1
p

≤ C ′′‖g‖C1+α(Ω)(

∫ δ

0

|χ(ρ ln |τ |)|pρ1−pdρ)
1
p .

Thus we obtain (2.34) by the Riemann-Lebesgue lemma.
By Proposition 2.6, we obtain

(2.35)

R̃Φ,τ

((
1−


∑
k=1

χ(|x− x̃k| ln |τ |)
)
∂z

(
g

∂zΦ

))
→ 0 inL2(Ω) as |τ | → +∞.
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In fact the function
((

1−
∑


k=1 χ(|x− x̃k| ln |τ |)
)
∂z

(
g

∂zΦ

))
1

r(z)
∈ C1+α(Ω̄)

for any nonzero τ. Short calculations give the estimate

‖
((

1−

∑

k=1

χ(|x− x̃k| ln |τ |)
)
∂z

(
g

∂zΦ

))
1

r(z)
‖C1+α(Ω) ≤ C|τ | 12 .

So by Proposition 2.6

‖R̃Φ,τ

((
1−


∑
k=1

χ(|x− x̃k| ln |τ |)
)

∂z

(
g

∂zΦ

) )∥∥∥∥∥
L2(Ω)

≤ C

|τ | 12−δ′
.

Therefore (2.34) and (2.35) yield

(2.36)

∥∥∥∥R̃Φ,τ

(
∂z

(
g

∂zΦ

))∥∥∥∥
L2(Ω)

= o(1) as |τ | → +∞.

Denote w̃ = w + 1
τ χ1R̃Φ,τ (∂z(

g
∂zΦ

)).

By (2.36), it suffices to prove

(2.37) ‖w̃‖L2(Ω) = o

(
1

τ

)
as |τ | → +∞.

In terms of (2.32) and (2.9), observe that

(2.38) ∂zw̃ + τ (∂zΦ)w̃ = f in Ω, w̃|∂Ω = 0,

where f = 1
τ (∂zχ1)R̃Φ,τ (∂z(

g
∂zΦ

)) + (∂zχ1)R̃Φ,τg. By (2.36) and (2.30) we have

(2.39) ‖f‖L2(Ω) = o

(
1

τ

)
as |τ | → +∞.

Applying Proposition 5.2 to equation (2.38), we get

‖∂x1
(eiτψw̃)‖2L2(Ω) + τ

∫
∂Ω

(∇ϕ, ν)|w̃|2dσ

+Re

∫
∂Ω

i

((
ν2

∂

∂x1
− ν1

∂

∂x2

)
w̃

)
w̃dσ + ‖∂x2

(eiτψw̃)‖2L2(Ω)

= ‖f‖2L2(Ω).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



PARTIAL CAUCHY DATA 667

Thanks to the zero Dirichlet boundary conditions for the function w̃ we obtain

‖∂x1
(eiτψw̃)‖2L2(Ω) + ‖∂x2

(eiτψw̃)‖2L2(Ω) = ‖f‖2L2(Ω).

Poincaré’s inequality implies

‖w̃‖H1(Ω) ≤ C‖f‖L2(Ω).

From this and using (2.39), we obtain (2.37). As for the first term in (2.29), we can
argue similarly. The proof of the proposition is completed. �

3. Complex geometrical optics solutions

In this section, we construct complex geometrical optics solutions for the Schrö-
dinger equation Δ+ q1 with q1 satisfying the conditions of Theorem 1.1. Consider

(3.1) L1u = Δu+ q1u = 0 in Ω.

We will construct solutions to (3.1) of the form

u1(x) = eτΦ(z)(a(z) + a0(z)/τ ) + eτΦ(z)(a(z) + a1(z)/τ ) + eτϕu11 + eτϕu12,(3.2)

u1|Γ0
= 0.

The function Φ satisfies (2.1), (2.2), and

(3.3) ImΦ|Γ0
= 0.

The amplitude function a(z) is not identically zero on Ω and has the following
properties:

(3.4) a ∈ C2(Ω), ∂za ≡ 0, Re a|Γ0
= 0, a(z)|H∩∂Ω = ∂za(z)|H∩∂Ω = 0.

The function u11 is given by

u11 =− 1

4
eiτψR̃Φ,τ (e1(∂

−1
z (aq1)−M1(z)))

− 1

4
e−iτψRΦ,−τ (e1(∂

−1
z (aq1)−M3(z)))

− eiτψ

τ

e2(∂
−1
z (aq1)−M1(z))

4∂zΦ
− e−iτψ

τ

e2(∂
−1
z (aq1)−M3(z))

4∂zΦ

=w1e
−τϕ + w2e

−τϕ,

(3.5)

where the polynomials M1(z) and M3(z̄) satisfy

∂j
z(∂

−1
z (aq1)−M1(z)) = 0, x ∈ H, j = 0, 1, 2,(3.6)

∂j
z(∂

−1
z (aq1)−M3(z)) = 0, x ∈ H, j = 0, 1, 2.(3.7)

Note that by (3.4)

∂k
z ∂

j
z(∂

−1
z (aq1)−M1(z)) = 0, x ∈ H ∩ ∂Ω, j, k ∈ {0, 1, 2}, and j + k ≤ 2,(3.8)

∂j
z∂

k
z (∂

−1
z (aq1)−M3(z)) = 0, x ∈ H ∩ ∂Ω, j, k ∈ {0, 1, 2}, and j + k ≤ 2.(3.9)

The functions e1, e2 ∈ C∞(Ω) are constructed so that

e1 + e2 ≡ 1 on Ω, e2 vanishes in some neighborhood of H \ ∂Ω,(3.10)

and e1 vanishes in a neighborhood of ∂Ω
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and we set

w1 = −1

4
eτΦR̃Φ,τ (e1(∂

−1
z (aq1)−M1(z)))−

1

4
eτΦRΦ,−τ (e1(∂

−1
z (aq1)−M3(z)))

and

w2 = −eτΦ

τ

e2(∂
−1
z (aq1)−M1(z))

4∂zΦ
− eτΦ

τ

e2(∂
−1
z (aq1)−M3(z))

4∂zΦ
.

Finally a0, a1 are holomorphic functions such that

(a0(z) + a1(z))|Γ0
=

(∂−1
z (aq1)−M1(z))

4∂zΦ
+

(∂−1
z (aq1)−M3(z))

4∂zΦ
.

Then, noting that ∂zΦ = ∂zΦ, (2.8) and (2.9), we have

Δw1 = 4∂z∂zw1

= −∂z(e
τΦ∂zR̃Φ,τ (e1(∂

−1
z (aq1)−M1(z))))

+ (τ∂zΦ)e
τΦR̃Φ,τ (e1(∂

−1
z (aq1)−M1(z)))

− ∂z(e
τΦ∂zRΦ,−τ (e1(∂

−1
z (aq1)−M3(z))))

+ (τ∂zΦ)e
τΦRΦ,−τ (e1(∂

−1
z (aq1)−M3(z)))

= −∂z(e
τΦe1(∂

−1
z (aq1)−M1(z)))− ∂z(e

τΦe1(∂
−1
z (aq1)−M3(z))).

Moreover

Δw2 = 4∂z∂zw2

= −∂z(e
τΦ(e2(∂

−1
z (aq1)−M1(z))))− ∂z(e

τΦe2(∂
−1
z (aq1)−M3(z)))

− eτΦΔ

(
e2(∂

−1
z (aq1)−M1(z))

4τ∂zΦ

)
− eτΦΔ

(
e2(∂

−1
z (a(z)q1)−M3(z))

4τ∂zΦ

)
.

Therefore

Δ(u11e
τϕ) = Δ(w1 + w2)(3.11)

= − aq1e
τΦ − aq1e

τΦ

− eτΦΔ

(
e2(∂

−1
z (aq1)−M1(z))

4τ∂zΦ

)
− eτΦΔ

(
e2(∂

−1
z (a(z)q1)−M3(z))

4τ∂zΦ

)
.

By (3.4) and (3.3) observe that

(3.12) (eτΦ(z)a(z) + eτΦ(z)a(z))|Γ0
= 0.

Let u12 be a solution to the inhomogeneous problem

Δ(u12e
τϕ) + q1u12e

τϕ = −q1u11e
τϕ + h1e

τϕ in Ω,(3.13)

u12 =
1

4
R̃Φ,τ (e1(∂

−1
z (aq1)−M1(z)))(3.14)

+
1

4
RΦ,−τ (e1(∂

−1
z (aq1)−M3(z))) on Γ0,
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where

h1 = eτiψΔ

(
e2(∂

−1
z (aq1)−M1(z))

4τ∂zΦ

)
+ e−τiψΔ

(
e2(∂

−1
z (aq1)−M3(z))

4τ∂zΦ

)
− a0q1e

iτψ/τ − a1q1e
−iτψ/τ.

(3.15)

By (3.4) and (3.11)–(3.15), we conclude that (3.1) is satisfied.
By Proposition 2.1 there exists a positive τ0 such that for all |τ | > τ0 there exists

a solution to (3.13), (3.14) satisfying

(3.16) ‖u12‖L2(Ω) = o(
1

τ
) as τ → +∞.

This can be done because

‖q1u11 + h1‖L2(Ω) ≤ C(δ)/|τ |1−δ ∀δ ∈ (0, 1); ‖u11‖L2(∂Ω) = o(
1

τ
)

and (∇ϕ, ν) = 0 on Γ0. The latter fact can be seen as follows: On ∂Ω, the Cauchy-
Riemann equations imply

(∇ϕ, ν) = ν1∂x1
ϕ+ ν2∂x2

ϕ = ν1∂x2
ψ − ν2∂x1

ψ = −∂ψ

∂�τ
,

which is the tangential derivative of ψ = ImΦ on ∂Ω. By (3.3) the tangential
derivative of ψ vanishes on Γ0.

Consider now the Schrödinger equation

(3.17) L2v = Δv + q2v = 0 in Ω.

We will construct solutions to (3.17) of the form

v(x) = e−τΦ(z)(a(z) + b0(z)/τ )(3.18)

+ e−τΦ(z)(a(z) + b1(z)/τ ) + e−τϕv11 + e−τϕv12, v|Γ0
= 0.

The construction of v repeats the corresponding steps of the construction of u1.
The only difference is that instead of q1 and τ , we use q2 and −τ , respectively. We
provide the details for the sake of completeness. The function v11 is given by

v11 = − 1

4
e−iτψR̃Φ,−τ (e1(∂

−1
z (q2a(z))−M2(z)))

− 1

4
eiτψRΦ,τ (e1(∂

−1
z (q2a(z))−M4(z)))

+
e−iτψ

τ

e2(∂
−1
z (aq2)−M2(z))

4∂zΦ
+

eiτψ

τ

e2(∂
−1
z (a(z)q2)−M4(z))

4∂zΦ
,

(3.19)

where

∂j
z(∂

−1
z (aq2)−M2(z)) = 0, x ∈ H, j = 0, 1, 2,(3.20)

∂j
z∂

k
z (∂

−1
z (aq2)−M2(z)) = 0, x ∈ H ∩ ∂Ω, j, k ∈ {0, 1, 2}, k + j ≤ 2,(3.21)

∂j
z(∂

−1
z (aq2)−M4(z)) = 0, x ∈ H, j = 0, 1, 2,(3.22)

∂j
z∂

k
z (∂

−1
z (aq2)−M4(z)) = 0, x ∈ H ∩ ∂Ω, j, k ∈ {0, 1, 2}, k + j ≤ 2.(3.23)

Finally b0, b1 are holomorphic functions such that

(b0 + b1)|Γ0
= − (∂−1

z (aq2)−M2(z))

4∂zΦ
− (∂−1

z (aq2)−M4(z))

4∂zΦ
.
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Denote

h2 = e−τiψΔ

(
e2(∂

−1
z (aq2)−M2(z))

4τ∂zΦ

)
+ eτiψΔ

(
e2(∂

−1
z (aq2)−M4(z))

4τ∂zΦ

)
− b0

τ
q2e

−iτψ − b1
τ
q2e

iτψ .

The function v12 is a solution to the problem:

Δ(v12e
−τϕ) + q2v12e

−τϕ = −q2v11e
−τϕ − h2e

−τϕ in Ω,(3.24)

v12|Γ0
=

1

4
R̃Φ,−τ (e1(∂

−1
z (q2a)−M2(z)))

+
1

4
RΦ,τ (e1(∂

−1
z (q2a)−M4(z)))

(3.25)

such that

(3.26) ‖v12‖L2(Ω) = o(
1

τ
) as τ → +∞.

4. Proof of theorem 1.1

We first apply the stationary phase with a general phase function Φ and then
we construct an appropriate weight function.

Proposition 4.1. Suppose that Φ satisfies (2.1), (2.2), and (3.3). Let {x̃1, . . . , x̃
}
be the set of critical points of the function ImΦ. Then for any potentials q1, q2 ∈
C2+α(Ω), α > 0, with the same Cauchy data on Γ̃ and for any holomorphic function
a satisfying (3.4) and M1(z),M2(z),M3(z),M4(z) as in Section 3, we have

2


∑
k=1

π(q|a|2)(x̃k)Re e
2iτImΦ(x̃k)

|(det ImΦ′′)(x̃k)|
1
2

+

∫
Ω

q(a(a0 + b0) + a(a1 + b1))dx

+
1

4

∫
Ω

(
qa

∂−1
z (aq2)−M2(z)

∂zΦ
+ qa

∂−1
z (q2a)−M4(z)

∂zΦ

)
dx

− 1

4

∫
Ω

(
qa

(∂−1
z (aq1)−M1(z))

∂zΦ
+ qa

(∂−1
z (aq1)−M3(z))

∂zΦ

)
dx = 0, τ > 0,

(4.1)

where

q = q1 − q2.

Proof. Let u1 be a solution to (3.1) satisfying (3.2), and let u2 be a solution to the
equation

Δu2 + q2u2 = 0 in Ω, u2|∂Ω = u1|∂Ω.

Since the Dirichlet-to-Neumann maps are equal, we have

∇u2 = ∇u1 on Γ̃.
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Denoting u = u1 − u2, we obtain

(4.2) Δu+ q2u = −qu1 in Ω, u|∂Ω =
∂u

∂ν
|Γ̃ = 0.

Let v satisfy (3.17) and (3.18). We multiply (4.2) by v and integrate over Ω, and

we use v|Γ0
= 0 and ∂u

∂ν = 0 on Γ̃ to obtain
∫
Ω
qu1vdx = 0. By (3.2), (3.16), (3.18),

and (3.26), we have

0 =

∫
Ω

qu1vdx =

∫
Ω

q(a2 + a2 + |a|2eτ(Φ−Φ) + |a|2eτ(Φ−Φ)

+
1

τ
(a(a0 + b0) + a(a1 + b1)) + u11e

τϕ(ae−τΦ + ae−τΦ)(4.3)

+ (aeτΦ + aeτΦ)v11e
−τϕ)dx+ o

(
1

τ

)
, τ > 0.

The first and second terms in the asymptotic expansion of (4.3) are independent of
τ , so that

(4.4)

∫
Ω

q(a2 + a2)dx = 0.

Using the stationary phase argument (see p. 215 in [13]; cf. [16]) and functions
e1, e2 defined in (3.10), we obtain∫

Ω

q(|a|2eτ(Φ−Φ) + |a|2eτ(Φ−Φ))dx =

∫
Ω

e1q(|a|2eτ(Φ−Φ) + |a|2eτ(Φ−Φ))dx

+

∫
Ω

e2q(|a|2eτ(Φ−Φ) + |a|2eτ(Φ−Φ))dx.

By the Cauchy-Riemann equations, we see that sgn(ImΦ′′(x̃k)) = 0, where sgn A
denotes the signature of the matrix A, that is, the number of positive eigenvalues
of A minus the number of negative eigenvalues (e.g., [13], p. 210). Moreover we
note that

det ImΦ′′(z) = −(∂x1
∂x2

ϕ)2 − (∂2
x1
ϕ)2 �= 0.

To see this, suppose that det ImΦ′′(z) = 0. Then

∂x1
∂x2

ϕ(Re z, Im z) = ∂2
x1
ϕ(Re z, Im z) = 0

and the Cauchy-Riemann equations imply that all second-order partial derivatives
of functions ϕ, ψ at the point z are zero. This fact contradicts the assumption that
critical points of the function Φ are nondegenerate.

Using the stationary phase argument (see p. 215 in [13]. cf. [16]), we obtain
(4.5)∫

Ω

e1q(|a|2eτ(Φ−Φ) + |a|2eτ(Φ−Φ))dx = 2

∑

k=1

πq|a|2(x̃k)Re e
2τiImΦ(x̃k)

τ |(det ImΦ′′)(x̃k)|
1
2

+ o

(
1

τ

)
.
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Let x̃1, . . . , x̃k′ be the set of critical points of the function Φ on Γ0. Integrating by
parts, we have

∫
Ω

e2q(|a|2eτ(Φ−Φ) + |a|2eτ(Φ−Φ))dx

=

∫
Ω

e2q|a|2
(
(∇ψ,∇eτ(Φ−Φ))

2iτ |∇ψ|2 − (∇ψ,∇eτ(Φ−Φ))

2iτ |∇ψ|2

)
dx

= lim
δ→+0

∫
Ω\

⋃k′
k=1 B(x̃k,δ)

e2q|a|2
(
(∇ψ,∇eτ(Φ−Φ))

2iτ |∇ψ|2 − (∇ψ,∇eτ(Φ−Φ))

2iτ |∇ψ|2

)
dx

= lim
δ→+0

{
−

∫
Ω\

⋃k′
k=1 B(x̃k,δ)

div

(
e2q|a|2∇ψ

2iτ |∇ψ|2

)
(eτ(Φ−Φ) − eτ(Φ−Φ))dx

+

∫
∂Ω∪

⋃k′
k=1 S(x̃k,δ)

e2q|a|2
(

(∇ψ, ν)

2iτ |∇ψ|2 − (∇ψ, ν)

2iτ |∇ψ|2

)
eτ(Φ−Φ)dσ

}

= −
∫
Ω

div

(
e2q|a|2∇ψ

2iτ |∇ψ|2

)
(eτ(Φ−Φ) − eτ(Φ−Φ))dx

+

∫
∂Ω

q|a|2
2iτ |∇ψ|2

∂ψ

∂ν
(eτ(Φ−Φ) − eτ(Φ−Φ))dσ

= −
∫
supp e2

div

(
e2q|a|2∇ψ

2iτ |∇ψ|2

)
(eτ(Φ−Φ) − eτ(Φ−Φ))dx.

In the last equality, we used the fact that eτ(Φ−Φ) − eτ(Φ−Φ) = 0 on Γ0, which

follows since ImΦ = 0 on Γ0, and q = 0 on Γ̃ and (3.4) in order to show that

div

(
e2q|a|2∇ψ

2iτ |∇ψ|2

)
and

q|a|2
2iτ |∇ψ|2

are bounded functions. The latter fact follows from the unique boundary deter-
mination of potentials from the Dirichlet-to-Neumann map (see for instance [12],
[29]). Applying Proposition 2.4, we obtain

∫
Ω

e2q(|a|2eτ(Φ−Φ) + |a|2eτ(Φ−Φ))dx = o(
1

τ
) as |τ | → +∞.

Therefore

∫
Ω

q(|a|2eτ(Φ−Φ) + |a|2eτ(Φ−Φ))dx = o

(
1

τ

)
.(4.6)
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We calculate the two remaining terms in (4.3). We have∫
Ω

qu11e
τϕ(ae−τΦ + ae−τΦ)dx

= −1

4

∫
Ω

q
{
eτΦR̃Φ,τ (e1(∂

−1
z (aq1)−M1(z)))

+ eτΦRΦ,−τ (e1(∂
−1
z (aq1)−M3(z)))

}
(ae−τΦ + ae−τΦ)dx

−
∫
Ω

(
eτΦ

τ

e2(∂
−1
z (aq1)−M1(z))

4∂zΦ
+

eτΦ

τ

e2(∂
−1
z (aq1)−M3(z))

4∂zΦ

)
× q(ae−τΦ + ae−τΦ)dx

= −1

4

∫
Ω

(qaR̃Φ,τ (e1(∂
−1
z (aq1)−M1(z)))

+ qaRΦ,−τ (e1(∂
−1
z (aq1)−M3(z))))dx

− 1

4

∫
Ω

(qaR̃Φ,τ (e1(∂
−1
z (aq1)−M1(z)))e

τ(Φ−Φ)

+ qaRΦ,−τ (e1(∂
−1
z (aq1)−M3(z)))e

−τ(Φ−Φ))dx

−
∫
Ω

q

(
eτ(Φ−Φ)

τ

ae2(∂
−1
z (aq1)−M1(z))

4∂zΦ

+
eτ(Φ−Φ)

τ

ae2(∂
−1
z (aq1)−M3(z))

4∂zΦ

)
dx

−
∫
Ω

q

(
a

τ

e2(∂
−1
z (aq1)−M1(z))

4∂zΦ
+

a

τ

e2(∂
−1
z (aq1)−M3(z))

4∂zΦ

)
dx

≡ I1 + I2 + I3 + I4.

We estimate I1 and I2 separately. Using Proposition 2.7, (3.6), and Proposi-
tion 2.4, we get

I2 = − 1

4

∫
Ω

(qaR̃Φ,τ (e1(∂
−1
z (aq1)−M1(z)))e

τ(Φ−Φ)

+ qaRΦ,−τ (e1(∂
−1
z (aq1)−M3(z)))e

−τ(Φ−Φ))dx

= − 1

4

∫
Ω

(
e1qa

τ∂zΦ
(∂−1

z (aq1)−M1(z))e
2iτImΦ

+
e1qa

τ∂zΦ
(∂−1

z (aq1)−M3(z))e
−2iτImΦ

)
dx+ o

(
1

τ

)
= o

(
1

τ

)
as |τ | → +∞.

(4.7)

By Proposition 2.7, we obtain

I1 =− 1

4τ

∫
Ω

e1

(
qa

(∂−1
z (aq1)−M1(z))

∂zΦ

+ qa
(∂−1

z (aq1)−M3(z))

∂zΦ

)
dx+ o

(
1

τ

)
as |τ | → +∞.

(4.8)
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By Proposition 2.4 we conclude that

(4.9) I3 = o

(
1

τ

)
as |τ | → +∞.

Similarly∫
Ω

qv11e
−τϕ(aeτΦ + aeτΦ)dx

= −1

4

∫
Ω

q
{
e−τΦR̃Φ,−τ (e1(∂

−1
z (aq2)−M2(z)))

+ e−τΦRΦ,τ (e1(∂
−1
z (aq2)−M4(z)))

}
(aeτΦ + aeτΦ)dx

+

∫
Ω

q

(
e−τΦ

τ

e2(∂
−1
z (aq2)−M2(z))

4∂zΦ

+
e−τΦ

τ

e2(∂
−1
z (aq2)−M4(z))

4∂zΦ

)
(aeτΦ + aeτΦ)dx

= −1

4

∫
Ω

(qaR̃Φ,−τ (e1(∂
−1
z (aq2)−M2(z)))

+ qaRΦ,τ (e1(∂
−1
z (aq2)−M4(z))))dx

− 1

4

∫
Ω

[qaeτ(Φ−Φ)R̃Φ,−τ (e1(∂
−1
z (aq2)−M2(z)))

+ qaeτ(Φ−Φ)RΦ,τ (e1(∂
−1
z (aq2)−M4(z)))]dx

+

∫
Ω

q

(
e−τ(Φ−Φ)

τ

ae2(∂
−1
z (aq2)−M2(z))

4∂zΦ

+
eτ(Φ−Φ)

τ

ae2(∂
−1
z (a(z)q2)−M4(z))

4∂zΦ

)
dx

+

∫
Ω

q

(
a

τ

e2(∂
−1
z (aq2)−M2(z))

4∂zΦ
+

a

τ

e2(∂
−1
z (a(z)q2)−M4(z))

4∂zΦ

)
dx

= J1 + J2 + J3 + J4.

By (3.20) and Proposition 2.7, we have

(4.10) J1 =
1

4τ

∫
Ω

e1

(
qa

∂−1
z (aq2)−M2(z)

∂zΦ
+ qa

∂−1
z (aq2)−M4(z)

∂zΦ

)
dx+ o

(
1

τ

)
as |τ | → +∞. Proposition 2.4 , (3.20), and Proposition 2.7 yield

J2 =− 1

4

∫
Ω

[qaeτ(Φ−Φ)R̃Φ,−τ (e1(∂
−1
z (aq2)−M2(z)))

+ qaeτ(Φ−Φ)RΦ,τ (e1(∂
−1
z (aq2)−M4(z)))]dx = o

(
1

τ

)
.

(4.11)

By Proposition 2.4 we see that

(4.12) J3 = o

(
1

τ

)
as |τ | → +∞.
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Therefore, applying (4.5), (4.7), (4.10), (4.11), (4.9), and (4.12) in (4.3), we conclude
that

2


∑
k=1

π(q|a|2)(x̃k)Re e
2iτImΦ(x̃k)

|(det ImΦ′′)(x̃k)|
1
2

+

∫
Ω

q(a(a0 + b0) + a(a1 + b1))dx

+
1

4

∫
Ω

(
qa

∂−1
z (aq2)−M2(z)

∂zΦ
+ qa

∂−1
z (q2a)−M4(z)

∂zΦ

)
dx

−1

4

∫
Ω

(
qa

∂−1
z (q1a)−M1(z)

∂zΦ
+ qa

∂−1
z (q1a)−M3(z)

∂zΦ

)
dx = o(1)(4.13)

as τ → +∞. Passing to the limit in this equality and applying Bohr’s theorem
(e.g., [4], p. 393), we finish the proof of the proposition. �

We need the following proposition in the construction of the phase function Φ.
Let ỹ0, ỹ1, . . . , ỹm ∈ Ω and ỹm+1, . . . , ỹm+m̂ ∈ Γ0.
Denote by R = (R(ỹ1), . . . ,R(ỹm),R1(ỹm+1), . . . ,R1(ỹm+m̂)) the following op-

erator:

R(ỹk)g = (u(ỹk), ∂zu(ỹk), ∂
2
zu(ỹk)), R1(ŷk)g = (Reu(ŷk), ∂zu(ŷk)/(ν2 + iν1)),

where

(4.14) ∂z̄u = 0 in Ω, Reu(ỹ0) = 0, Imu|Γ0
= 0, Imu|Γ̃ = g.

For any g ∈ C∞
0 (Γ̃) problem (4.14) has at most one solution. We have

Proposition 4.2. The operator R : D(R) ⊂ C∞
0 (Γ̃) → C3m×R2m̂ satisfies ImR =

C3m × R2m̂.

Proof. We note that ImR = C3m × R2m̂ if and only if the closure of ImR is equal

to C
3m×R

2m̂. This follows immediately from Corollary 5.1. Let �H be an arbitrary
element of the space C3m × R2m̂. Consider the problem (5.1) where

x̂1 = ỹj , j ∈ {1, . . . ,m}, x̂m+1 = ỹ0,

c0,1 = h1, c1,1 = h2, c2,1 = h3, . . . , c0,m = h3m−2,

c1,m = h3m−1, c2,m = h3m, c0,m+1 = 0.

Taking into account that ∂zu|Γ0
= (ν2 + iν1)∂�τReu, we take a function b such that

b(ỹm+1) = hm+1, ∂�τ b(ỹm+1) = hm+2, . . . ,

b(ỹm+m̂) = hm+2m̂−1, ∂�τ b(ỹm+m̂) = hm+2m̂.

According to Corollary 5.1, (5.1) with such initial data can be solved approximately.
If necessary we can add to these solutions a real constant such that u(ỹ0) = 0. The
proof of the proposition is complete.

�

End of proof of Theorem 1.1

Proof. We will construct a complex geometrical optics solution of the form (3.2)
where Φ and a satisfy (2.1), (2.2), (3.3), and (3.4).
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Let Ω̃ be a bounded domain in R2 such that Ω ⊂ Ω̃, Γ0 ⊂ ∂Ω̃, ∂Ω̃ ∩ Γ̃ = ∅. Let
x̂ be an arbitrary point in Ω. By Proposition 4.2 and Corollary 5.1 there exists a
holomorphic function u ∈ C2(Ω) such that

Imu|Γ0
= 0, Imu(x̂) �= 0, ∂zu(x̂) = 0, and ∂2

zu(x̂) �= 0.(4.15)

∂Imu

∂ν
|Γ0∩γj

< α′ < 0, if Int((∂Ω \ Γ0) ∩ γj) �= ∅.(4.16)

In the case Int ((∂Ω \ Γ0) ∩ γj) = ∅, then {x ∈ γj |∂�τReu = 0} = {y1,j , y2,j}, and
(4.17) ∂2

�τReu(y1,j) �= 0, ∂2
�τReu(y2,j) �= 0.

Here y1,j , y2,j are the maximum and minimum points of the function Re u on the
boundary contour γj . In fact, the existence of such u is proved as follows. By Corol-
lary 5.1 and the Cauchy-Riemann equations, there exists a sequence of holomorphic
functions uε in Ω such that

uε ∈ C2(Ω), Imuε|Γ0
= 0,

∂Imuε

∂ν
|Γ0∩γj

< α′ < 0, if Int ((∂Ω \ Γ0) ∩ γj) �= ∅.(4.18)

In the case Int ((∂Ω \Γ0)∩ γj) = ∅, thenReuε → b̃j in C2(γj), where b̃j ∈ C2(γj)
is a function such that

{x ∈ γj |∂�τ b̃j = 0} = {y1,j , y2,j} and ∂2
�τ b̃j(y1,j) �= 0, ∂2

�τ b̃j(y2,j) �= 0,

Imuε(x̂) → 1, ∂zuε(x̂) := cε → 0, ∂2
zuε(x̂) → 1 as ε → 0.

Let R be the operator similar to one introduced in Proposition 4.2:

Rg = (u(x̂), ∂zu(x̂), ∂
2
zu(x̂)),

where

∂z̄u = 0 in Ω̃, Reu(x0) = 0, Imu|Γ0
= 0, Imu|∂Ω̃\Γ0

= g,

and x0 ∈ Ω, x0 �= x̂. Obviously we can consider it as operator from the space

D(R) ⊂ C3
0 (∂Ω̃\Γ0) → C

3. We have (e.g., p. 79 in [1]) that there exists a mapping

M : C3 → C3
0 (∂Ω̃ \ Γ0) such that RM = I and

‖My‖C3
0 (Γ̃)

≤ C|y|, y ∈ C
3,

with some constant C > 0. We consider the sequence yε = (0,−cε, 0) ∈ C3. Let

gε = M(yε) → 0 in C3
0 (∂Ω̃ \ Γ0). Denote by wε the function which satisfies

∂z̄wε = 0 in Ω̃, Rewε(x0) = 0, Imwε|Γ0
= 0, Imwε|∂Ω̃\Γ0

= gε,

wε(x̂) = 0, ∂zwε(x̂) = −cε, ∂2
zwε(x̂) = 0.

Hence Im (uε + wε)(x̂) → 1, ∂z(uε + wε)(x̂) = 0 and ∂2
z (uε + wε)(x̂) → 1 and

wε → 0 in C2(Ω).

Hence uε+wε is the function which we are looking for provided that ε is sufficiently
small.

In general, the function u may have critical points on the part of the boundary
∂Ω \ Γ0.

Next we construct a holomorphic function p ∈ C2(Ω) such that u+ εp does not

have critical points on ∂Ω \ Γ0 for all sufficiently small positive ε and Im p|Γ0
= 0.
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If u does not have critical points on ∂Ω \ Γ0, we set p ≡ 0. Otherwise, since u

is holomorphic in Ω̃, the number of such critical points on ∂Ω \ Γ0 is finite and
the function |∇u|2 has zero of finite order at these points. By using a conformal
transformation, if necessary, we may assume that ∂Ω \ Γ0 is a segment on the line

{x2 = 0}. Let {(yk, 0)}Ñk=1 be the set of critical points of the function u on the
boundary ∂Ω \ Γ0.

We divide the set {yk}Ñk=1 into two setsO1 and O2 in the following way: Let us fix

some point yk. By Taylor’s formula ∂Reu
∂x1

(x1, 0) = c1(x1−yk)
κ1+1+o((x1−yk)

κ1+1)

and ∂Imu
∂x1

(x1, 0) = c2(x1 − yk)
κ2+1 + o((x1 − yk)

κ2+1) with some (c1, c2) �= 0. If
c2 �= 0 and κ2 ≤ κ1, then we say that yk ∈ O1. If c1 �= 0 and κ2 > κ1, then we say
that yk ∈ O2.

Now we construct a set of S open in C2(Γ̃) × C2
0 (Γ̃) such that if (b1, b2) ∈ S

and the holomorphic function p satisfies Re p|Γ̃ = b1, Im p|Γ̃ = b2 (if such a function

p exists), then the function u + εp does not have critical points on Γ̃ for all small
positive ε.

Let us consider the two cases. Assume yk ∈ O1. If κ2 is odd, then we take Cauchy
data such that the holomorphic function p satisfies the following: b1 is small and
∂b2
∂�τ is positive near yk if c2 is positive, and ∂b2

∂�τ is negative near yk if c2 is negative
and small on ∂Ω \ Γ0. If κ2 is even and κ1 �= κ2, then we take Cauchy data such
that ∂b2

∂�τ (yk)− 1, ∂b1
∂�τ (yk)− 1 are small and otherwise 1

c2
∂b2
∂�τ (yk) �=

1
c1

∂b1
∂�τ (yk).

Assume yk ∈ O2. If κ1 is odd, then we take the Cauchy data for the holomorphic
function p such that ∂b1

∂�τ is positive near yk if c1 is positive, and ∂b1
∂�τ is negative

near yk if c1 is negative. If κ1 is even, then we take ∂b1
∂�τ (yk) − 1, ∂b2∂�τ (yk) − 1 to

be small. Now we have finished the construction of Cauchy data on Γ0 and in a

neighborhood U of the set {(yk, 0)}Ñk=1. On the part of the boundary ∂Ω \ (Γ0 ∪U)
we continue functions b1, b2 as smooth functions in C2(Γ̃)×C2

0 (Γ̃). By Proposition
5.1 and general results on solvability of the boundary-value problem for ∂z̄ (see,
e.g., [32]) there exists a holomorphic function p which satisfies the above choice of
the Cauchy data with Im p|Γ0

= 0. For all small positive ε the function u+ εp does

not have critical points on ∂Ω \ Γ0.
Denote by Hε the set of critical points of the function u+εp in Ω. By the implicit

function theorem, there exists a neighborhood of x̂ such that for all small ε in this
neighborhood the function u+ εp has only one critical point x̂(ε), this critical point
is nondegenerate, and

(4.19) x̂(ε) → x̂ as ε → 0.

Let us fix a sufficiently small ε. Let Hε = {xk,ε}1≤k≤N(ε). By Proposition 4.2,
there exists a function w holomorphic in Ω, such that

(4.20) Imw|Γ0
= 0, w|Hε

= ∂zw|Hε
= 0, ∂2

zw|Hε
�= 0.

Denote Φδ = u+ εp+ δw. For all sufficiently small positive constants δ, we have

Hε ⊂ Gδ ≡ {x ∈ Ω|∂zΦδ(x) = 0}.
We show now that for all small positive δ, the critical points of the function

Φδ are nondegenerate. Let x̃ be a critical point of the function u + εp. If x̃ is a
nondegenerate critical point, by the implicit function theorem, there exists a ball
B(x̃, δ1) such that the function Φδ in this ball has only one nondegenerate critical
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point for all sufficiently small δ. Let x̃ be a degenerate critical point of u + εp.
Without loss of generality we may assume that x̃ = 0. In some neighborhood of

0, we have ∂zΦδ =
∑∞

k=1 ckz
k+k̂ − δ

∑∞
k=1 bkz

k for some natural positive number

k̂ and some c1 �= 0. Moreover (4.20) implies b1 �= 0. Let (x1,δ, x2,δ) ∈ Gδ and
zδ = x1,δ + ix2,δ → 0. Then either

(4.21) zδ = 0 or zk̂δ = δb1/c1 + o(δ).

Therefore ∂2
zΦ(zδ) �= 0 for all sufficiently small δ. Observe that by (4.15) ImΦδ(x̂(ε))

�= 0. Moreover, without loss of generality we may assume that

(4.22) ImΦδ(x̂(ε)) �= ImΦδ(x) ∀x ∈ Gδ such that x̂(ε) �= x.

To see this, we argue as follows. If (4.22) is not valid, then we add to the function
Φδ a function δ1w̃ where δ1 is a small parameter and w̃ is holomorphic in Ω,

Im w̃|Γ0
= 0, Im w̃(x̂(ε)) = 1, w̃|Gδ\{x̂(ε)} = ∂zw̃|Gδ

= 0, ∂2
z w̃|Gδ

�= 0.

Since the function Φδ was constructed as the approximation of the function u,
by (4.16), (4.17) we have

(4.23)
∂ImΦδ

∂ν
|Γ0∩γj

< α′′ < 0, if Int((∂Ω \ Γ0) ∩ γj) �= ∅.

In the case Int ((∂Ω \Γ0)∩γj) = ∅, then {x ∈ γj |∂�τReΦδ = 0} = {y1,j(δ), y2,j(δ)},
and

(4.24) ∂2
�τReΦδ(y1,j(δ)) �= 0, ∂2

�τReΦδ(y2,j(δ)) �= 0.

Thanks to (4.24), we can claim that all critical points of Φδ are nondegenerate.
By (4.23), (4.24), we can apply Proposition 4.2. Hence there exists a function

aδ ∈ C2(Ω) such that

∂z̄aδ = 0 in Ω, Re aδ|Γ0
= 0,

and

aδ(x)|Gδ∩∂Ω = ∂zaδ(x)|Gδ∩∂Ω = 0, aδ(x̂(ε)) �= 0.

Hence we can apply Proposition 4.1 to conclude∑
x∈Gδ

q(x)c(x)e2iτImΦδ(x) = C(q).

By (4.1), c(x̂(ε)) is not equal to zero.
Since the exponents are linearly independent functions of τ , thanks to (4.22), we

have q(x̂(ε)) = 0. Thus (4.19) implies q(x̂) = 0. Thus the proof is completed. �

5. Appendix

Consider the Cauchy problem for the Cauchy-Riemann equations

L(φ, ψ) = (
∂φ

∂x1
− ∂ψ

∂x2
,
∂φ

∂x2
+

∂ψ

∂x1
) = 0 in Ω, (φ, ψ) |Γ0

= (b1(x), b2(x)),(5.1)

(φ+ iψ)(x̂j) = c0,j , ∂z(φ+ iψ)(x̂j) = c1,j , ∂
2
z (φ+ iψ)(x̂j) = c2,j ∀j ∈ {1, . . . N}.

Here x̂1, . . . , x̂N are arbitrary fixed points in Ω. We consider the pair b1, b2 and com-

plex numbers �C = (c0,1, c1,1, c2,1, . . . , c0,N , c1,N , c2,N ) as initial data for (5.1). The
following proposition establishes the solvability of (5.1) for a dense set of Cauchy
data.
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Proposition 5.1. There exists a set O ⊂ C2(Γ0)
2 × C3N such that for each

(b1, b2, �C) ∈ O, (5.1) has at least one solution (φ, ψ) ∈ (C2(Ω))2 and O = C2(Γ0)
2×

C3N .

Proof. Denote by B = (b1, b2) an arbitrary element of the space C3(Γ0)× C3(Γ0).
Consider the extremal problem

Jε(φ, ψ) = ‖(φ, ψ)−B‖4
B

11
4

4 (Γ0)
+ ε‖(φ, ψ)‖4

B
11
4

4 (∂Ω)
+ ε‖∂(φ, ψ)

∂ν
‖4
B

7
4
4 (∂Ω)

(5.2)

+
1

ε
‖ΔL(φ, ψ)‖4L4(Ω) +

N∑
j=1

2∑
k=0

|∂k
z (φ+ iψ)(x̂j)− ck,j |2 → inf,

(φ, ψ) ∈ W 3
4 (Ω).(5.3)

Here Bl
k denotes the Besov space of corresponding order.

For each ε > 0 there exists a unique solution to (5.2), (5.3) which we denote as

(φ̂ε, ψ̂ε). This fact can be proved using standard arguments. We fix ε > 0. Denote
by Uad the set of admissible elements of the problem (5.2), (5.3), namely

Uad = {(φ, ψ) ∈ W 3
4 (Ω)|Jε(φ, ψ) < ∞}.

Denote Ĵε = inf(φ,ψ)∈W 3
4 (Ω) Jε(φ, ψ). Clearly the pair (0, 0) ∈ Uad. Therefore there

exists a minimizing sequence {(φk, ψk)}∞k=1 ⊂ W 3
4 (Ω) such that

Ĵε = lim
k→+∞

Jε(φk, ψk).

Observe that the minimizing sequence is bounded in W 3
4 (Ω). Indeed, since the

sequence {L(φk, ψk), L(φk, ψk)|∂Ω} is bounded in L4(Ω) × B
7
4
4 (∂Ω), the standard

elliptic Lp-estimate implies that the sequence {L(φk, ψk)} is bounded in the space
W 2

4 (Ω). Taking into account that the sequence of the traces of the functions (φk, ψk)

is bounded in the Besov space B
11
4
4 (∂Ω) and applying the estimates for elliptic

operators one more time, we obtain that {(φk, ψk)} is bounded in W 3
4 (Ω). By the

Sobolev imbedding theorem the sequence {(φk, ψk)} is bounded in C2(Ω). Then
taking if necessary a subsequence (which we denote again as {(φk, ψk)}), we obtain

(φk, ψk) → (φ̂ε, ψ̂ε) weakly inW 3
4 (Ω), (φk, ψk) → (φ̂ε, ψ̂ε) weakly in B

11
4
4 (∂Ω),

(
∂φk

∂ν
,
∂ψk

∂ν
) → (

∂φ̂ε

∂ν
,
∂ψ̂ε

∂ν
) weakly in B

7
4
4 (∂Ω),

∂k
z (φ+ iψ)(x̂j)− ck,j → Ck,j,ε,

ΔL(φk, ψk) → rε weakly inL4(Ω), L(φk, ψk) → r̃ε weakly inW 2
4 (Ω).

Obviously, rε = ΔL(φ̂ε, ψ̂ε), r̃ε = L(φ̂ε, ψ̂ε). Then, since the norms in the spaces

L4(Ω) and B
11
4
4 (∂Ω), B

7
4
4 (∂Ω), B

11
4
4 (Γ0) are lower semicontinuous with respect to

weak convergence, we obtain that

Jε(φ̂ε, ψ̂ε) ≤ lim
k→+∞

Jε(φk, ψk) = Ĵε.

Thus the pair (φ̂ε, ψ̂ε) is a solution of the extremal problem (5.2), (5.3). Since the
set of admissible elements is convex and the functional Jε is strictly convex, this
solution is unique.
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By Fermat’s theorem (see, e.g., [1], p. 155) we have

J ′
ε(φ̂ε, ψ̂ε)[δ̃] = 0, ∀δ̃ ∈ W 3

4 (Ω).

This equality can be written in the form

I ′Γ0,
11
4
((φ̂ε, ψ̂ε)−B)[δ̃]

+ εI ′∂Ω, 114
((φ̂ε, ψ̂ε))[δ̃] + εI ′∂Ω, 74

(
(φ̂ε, ψ̂ε)

∂ν
)[
∂δ̃

∂ν
] + (pε,ΔLδ̃)L2(Ω)

+

N∑
j=1

2∑
k=0

(∂k
z (φ̂ε + iψ̂ε)(x̂j)− ck,j)∂k

z (δ̃1 + iδ̃2)(x̂j)

+ (∂k
z (φ̂ε + iψ̂ε)(x̂j)− ck,j)∂

k
z (δ̃1 + iδ̃2)(x̂j) = 0,

(5.4)

where pε =
4
ε ((Δ(∂φ̂ε

∂x1
− ∂ψ̂ε

∂x2
))3, (Δ(∂φ̂ε

∂x2
+ ∂ψ̂ε

∂x1
))3). Here I ′Γ∗,κ(ŵ) denotes the deriv-

ative of the functional w → ‖w‖4Bκ
4 (Γ

∗) at ŵ.

Observe that the pair Jε(φ̂ε, ψ̂ε) ≤ Jε(0, 0) = ‖B‖4
B

11
4

4 (Γ0)
+

∑N
j=1

∑2
k=0 |ck,j |2.

This implies that the sequence {(φ̂ε, ψ̂ε)} is bounded in B
11
4
4 (Γ0), the sequences

{∂k
z (φ̂ε + iψ̂ε)(x̂j) − ck,j} are bounded in C, the sequence {εI ′

∂Ω, 114
((φ̂ε, ψ̂ε))[δ̃] +

εI ′
∂Ω, 74

(∂(φ̂ε,ψ̂ε)
∂ν )[ ∂δ̃∂ν ]} converges to zero for any δ̃ in W 3

4 (Ω). Then (5.4) implies that

the sequence {pε} is bounded in L
4
3 (Ω).

Therefore there exist B ∈ B
11
4
4 (Γ0), C0,j , C1,j , C2,j ∈ C, and p = (p1, p2) ∈ L

4
3 (Ω)

such that

(φ̂εk̃
, ψ̂εk̃

)−B ⇀ B weakly in B
11
4
4 (Γ0), pεk̃ ⇀ p weakly in L

4
3 (Ω),(5.5)

∂k
z (φ̂εk̃

+ iψ̂εk̃
)(x̂j)− ck,j ⇀ Ck,j , k ∈ {0, 1, 2}, j ∈ {1, . . . , N}.(5.6)

Passing to the limit in (5.4), we get
(5.7)

I ′Γ0,
11
4
(B)[δ̃] + (p,ΔLδ̃)L2(Ω) + 2Re

N∑
j=1

2∑
k=0

Ck,j∂k
z (δ̃1 + iδ̃2)(x̂j) = 0 ∀δ̃ ∈ W 3

4 (Ω).

Next we claim that

(5.8) Δp = 0 in Ω \
N⋃
j=1

{x̂}

in the sense of distributions. Suppose that (5.8) is already proved. This implies

(p,ΔLδ̃)L2(Ω) + 2Re
N∑
j=1

2∑
k=0

Ck,j∂k
z (δ̃1 + iδ̃2)(x̂j) = 0 ∀δ̃1, δ̃2 ∈ C∞

0 (Ω).

If p = (p1, p2), denoting P = p1 − ip2, we have

Re (ΔP, ∂z̄(δ̃1+ iδ̃2))L2(Ω)+Re
N∑
j=1

2∑
k=0

Ck,j∂
k
z (δ̃1 + iδ̃2)(x̂j) = 0 ∀δ̃1, δ̃2 ∈ C∞

0 (Ω).
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Since by (5.8) supp ΔP ⊂
⋃N

j=1{x̂j}, there exist some constants mβ,j and �̂j such

that ΔP =
∑N

j=1

∑
̂j
|β|=1 mβ,jD

βδ(x − x̂j). The above equality can be written in

the form

−2


̂j∑
|β|=1

mβ,j∂z̄D
βδ(x− x̂j) =

2∑
k=0

(−1)kCk,j∂
k
z δ(x− x̂j).

From this we obtain

(5.9) C0,j = C1,j = C2,j = 0, j ∈ {1, . . . , N}.
Therefore

(5.10) Δp = 0 in Ω.

This implies

(p,ΔLδ̃)L2(Ω) = 0 ∀δ̃ ∈ W 3
4 (Ω), Lδ̃|∂Ω =

∂Lδ̃

∂ν
|∂Ω = 0.

This equality and (5.7) yield

(5.11) I ′Γ0,
11
4
(B)[δ̃] = 0 ∀δ̃ ∈ W 3

4 (Ω), Lδ̃|∂Ω =
∂Lδ̃

∂ν
|∂Ω = 0.

Then using the trace theorem, we conclude that B = 0. Using this and (5.5), we
obtain

(5.12) (φ̂εk̃
, ψ̂εk̃

)−B ⇀ 0 weakly in B
11
4
4 (Γ0).

From (5.6), (5.9) we obtain

∂k
z (φ̂εk̃

+ iψ̂εk̃
)(x̂) ⇀ ck,j , k ∈ {0, 1, 2}, j ∈ {1, . . . , N}.

By the Sobolev embedding theorem B
11
4
4 (Γ0) ⊂ C2(Γ0). Therefore (5.12) implies

(5.13) (φ̂εk̃
, ψ̂εk̃

)−B → 0 in C2(Γ0).

Let the pair (φ̃εk̃
, ψ̃εk̃

) be a solution to the boundary-value problem

(5.14) L(φ̃εk̃
, ψ̃εk̃

) = L(φ̂εk̃
, ψ̂εk̃

) in Ω, ψ̃εk̃
|∂Ω = ψ∗

εk̃
.

Here ψ∗
εk̃

is a smooth function such that ψ∗
εk̃
|Γ0

= 0 and the pair (L(φ̂εk̃
, ψ̂εk̃

), ψ∗
εk̃
)

is orthogonal to all solutions of the adjoint problem (see [32]). Moreover since

L(φ̃εk̃
, ψ̃εk̃

) → 0 in W 2
4 (Ω), we may assume ψ∗

εk̃
→ 0 in C4(∂Ω).

This fact can be seen in the following way. Let {(ej , ẽj)}Kj=1 be a basis of the
kernel of the adjoint problem which is a finite-dimensional space. We choose rk ∈
C∞

0 (Γ̃) such that
1

2

∫
Γ̃

χjrkdt = δjk ∀j, k ∈ {1, . . . ,K}.

Here we note that we can represent ek+iẽk = z′(s)χk(z(s)) (Section 2 of Chapter IV

of [32]) where s is the length parameter of Γ̃ from one fixed point on Γ̃, z(s) is the

parametrization of Γ̃, and χk(z) are some real-valued functions. Then observe that
the functions χj are linearly independent. Assume the contrary. Then there exists
a function e such that it is the linear combination of the functions ej + iẽj and
∂z̄e = 0 and e|Γ̃ = 0. By uniqueness of solution for the Cauchy problem for the
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operator ∂z̄ we have that e = 0 in Ω. This is impossible since (ej , ẽj) are linearly
independent.

Hence we can find functions r̃k ∈ L2(Γ̃) such that

1

2

∫
Γ̃

χj r̃kdt = δjk ∀j, k ∈ {1, . . . ,K}.

Let the sequence {r̃k,δ}δ∈(0,1) ⊂ C∞
0 (Γ̃) approximate the function r̃k in L2(Γ̃).

Let us show that the vectors �vk,δ = ( 12
∫
Γ̃
χ1r̃kdt, . . . ,

1
2

∫
Γ̃
χK r̃kdt) are linearly

independent for small δ. Suppose that they are linearly dependent; then there

exists �Cδ = (c1,δ, . . . , cK,δ) such that

(5.15)

K∑
j=1

cj,δ�vj,δ = 0, | �Cδ| = 1.

Taking if necessary a subsequence, we pass to the limit in (5.15) and we see that

there exists a vector �C �= 0 such that
∑K

j=1 cj�ej = 0. This is of course impossible.

Let us fix δ = δ0 sufficiently small and let H = {hkl} be the matrix such that

K∑
l=1

hkl�vl,δ0 = �ek, k ∈ {1, . . . ,K}.

Setting rk =
∑K

l=1 hklr̃λ,δ0 , we obtain the desired set of functions.
Let us show that such functions can be constructed. First of all the traces are

linearly independent functions on Γ̃. Finally we take

ψ∗
εk

=

K∑
j=1

Re

∫
Ω

(ej + iẽj)(L(φ̂εk , ψ̂εk)1 + iL(φ̂εk , ψ̂εk)2)dx rj .

Among all possible solutions to problem (5.14) (clearly there is no unique solution

to this problem) we choose one such that
∫
Ω
φ̃εkdx = 0. Thus we obtain

(5.16) (φ̃εk , ψ̃εk) → 0 in W 3
4 (Ω).

Therefore the sequence {(φ̂εk−φ̃εk , ψ̂εk−ψ̃εk)} represents the desired approximation
for the solution of the Cauchy problem (5.1).

Now we prove (5.8). Let x̃ be an arbitrary point in Ω \
⋃N

j=1{x̂j} and let χ̃ be

a smooth function such that it is zero in some neighborhood of Γ0 ∪
⋃N

j=1{x̂j} and

the set A = {x ∈ Ω|χ̃(x) = 1} contains an open connected subset F such that

x̃ ∈ F and Γ̃ ∩ F is an open set in ∂Ω. In addition we assume that Int(supp χ) is
a simply connected domain. By (5.7) we have

(5.17) 0 = (p,ΔL(χ̃δ̃))L2(Ω) = (χ̃p,ΔLδ̃)L2(Ω) + (p, [ΔL, χ̃]δ̃)L2(Ω) ∀δ̃ ∈ W 3
4 (Ω).

The simple computations provide the formula

LΔ(χ̃δ̃) = Lχ̃Δδ̃ + L(2(∇χ̃,∇δ̃) + Δχ̃δ̃)

= χ̃LΔδ̃ + [L, χ̃]Δδ̃ + L(2(∇χ̃,∇δ̃) + Δχ̃δ̃)

= χ̃LΔδ̃ + [L, χ̃]L̃Lδ̃ + (2(∇χ̃,∇·) + Δχ̃)Lδ̃ + [L, [Δ, χ̃]]δ̃

= χ̃ΔLδ̃ + [L, χ̃]L̃Lδ̃ + (2(∇χ̃,∇·) + Δχ̃)Lδ̃ + [L, [Δ, χ̃]]δ̃.
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The commutator [L, χ̃] is a matrix with smooth coefficients; [L, [Δ, χ̃]] is a first-

order operator. The Laplace operator can be factorized as Δ = L̃L where

L̃ =

(
∂

∂x1

∂
∂x2

− ∂
∂x2

∂
∂x1

)
.

Denote Lδ̃ = δ̂. Then we have

(5.18) (χ̃p,Δδ̂)L2(Ω) = −(p, [L, χ̃]L̃δ̂ + (2(∇χ̃,∇·) + Δχ̃)δ̂ + [L, [Δ, χ̃]]δ̃).

Consider the functional δ̂ : L4(supp χ̃) → (p, [L, [Δ, χ̃]]δ̃)L2(supp χ̃), where

Lδ̃ = δ̂ inΩ, Im δ̃|S = 0,

∫
supp χ̃

Re δ̃dx = 0,

where S denotes the boundary of supp χ̃. For each δ̂ ∈ L4(supp χ̃) there exists a
unique solution to this problem in W 1

4 (supp χ̃). Hence the functional is defined

and continuous on L4(supp χ̃). Therefore there exists q ∈ L
4
3 (supp χ̃) such that∫

supp χ̃
qδ̂dx = (p, [L, [Δ, χ̃]]δ̃)L2(supp χ̃).

Consider the boundary-value problem

ΔP̃ = f̃ in suppχ, P̃ |S = 0.

Here f̃ = 2div (∇χ̃p)+ q− L̃∗[L, χ̃]∗p−Δχ̃p. A solution to this problem exists and

is unique, since f̃ ∈ (W̊ 1
4 (supp χ̃))

′. Then P ∈ W̊ 1
4
3

(supp χ̃). On the other hand,

thanks to (5.18), P = χ̃p.
Next we take another smooth cut-off function χ̃1 such that supp χ̃1 ⊂ A and

Int(supp χ1) is a simply connected domain. A neighborhood of x̃ belongs to A1 =

{x|χ̃1 = 1}, the interior of A1 is connected, and Int A1∩ Γ̃ contains an open subset
O in ∂Ω. Similarly to (5.17) we have

(χ̃1p,ΔLδ̃)L2(Ω) − (p, [ΔL, χ̃1]δ̃)L2(Ω) = 0 ∀δ̃ ∈ W 3
4 (Ω).

This equality implies that χ̃1p ∈ W 2
4
3

(Ω), using a similar argument to the one

above. Let ω be a domain such that ω ∩Ω = ∅ and ∂ω ∩ ∂Ω ⊂ O contains an open
set in ∂Ω.

We extend p on ω by zero. Then

(Δ(χ̃1p), Lδ̃)L2(Ω∪ω) + (p, [ΔL, χ̃1]δ̃)L2(Ω∪ω) = 0.

Hence, since [ΔL, χ̃1]|A1
= 0, we have

L∗Δ(χ̃1p) = 0 in Int A1 ∪ ω, p|ω = 0.

By Holmgren’s theorem Δ(χ̃1p)|Int A1
= 0; that is, (Δp)(x̃) = 0. �

Consider now the Cauchy problem for the Cauchy-Riemann equations

L(φ, ψ) = (
∂φ

∂x1
− ∂ψ

∂x2
,
∂φ

∂x2
+

∂ψ

∂x1
) = 0 in Ω,

(φ, ψ) |Γ0
= (b(x), 0), (φ+ iψ)(x̂j) = c0,j ,(5.19)

∂z(φ+ iψ)(x̂j) = c1,j , ∂2
z (φ+ iψ)(x̂j) = c2,j ∀j ∈ {1, . . . N}.

Here x̂1, . . . , x̂N are arbitrary fixed points in Ω. We consider the function b and

complex numbers �C = (c0,1, c1,1, c2,1, . . . , c0,N , c1,N , c2,N ) as initial data for (5.19).
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We get as a corollary of Proposition 5.1 the solvability of (5.19) for a dense set of
Cauchy data.

Corollary 5.1. There exists a set O0 ⊂ C2(Γ0)×C3N such that for each (b, �C) ∈
O0, (5.19) has at least one solution (φ, ψ) ∈ (C2(Ω))2 and O0 = C2(Γ0)× C

3N .

The proof of Corollary 5.1 is exactly the same as the proof of Proposition 5.1.
The only difference is that instead of the extremal problem (5.2), (5.3) we have to
consider the following extremal problem:

Jε(φ, ψ) = ‖φ− b‖4
B

11
4

4 (Γ0)
+ ε‖(φ, ψ)‖4

B
11
4

4 (∂Ω)
+ ε‖∂(φ, ψ)

∂ν
‖4
B

7
4
4 (∂Ω)

(5.20)

+
1

ε
‖ΔL(φ, ψ)‖4L4(Ω) +

N∑
j=1

2∑
k=0

|∂k
z (φ+ iψ)(x̂j)− ck,j |2 → inf,

(φ, ψ) ∈ W 3
4 (Ω), ψ|Γ0

= 0,(5.21)

where b is an arbitrary element of the space C3(Γ0).
We have

Proposition 5.2. Let Φ satisfy (2.1) and (2.2). Let f̃ ∈ L2(Ω) and let ṽ be a
solution to

(5.22) 2∂z ṽ − τ (∂zΦ)ṽ = f̃ in Ω

or let ṽ be a solution to

(5.23) 2∂zv − τ (∂zΦ)ṽ = f̃ in Ω.

In the case that ṽ solves (5.22), we have

‖∂x1
(e−iτψ ṽ)‖2L2(Ω) − τ

∫
∂Ω

(∇ϕ, ν)|ṽ|2dσ

+Re

∫
∂Ω

i

((
ν2

∂

∂x1
− ν1

∂

∂x2

)
ṽ

)
ṽdσ + ‖∂x2

(e−iτψ ṽ)‖2L2(Ω) = ‖f̃‖2L2(Ω).

(5.24)

In the case that ṽ solves (5.23), we have

‖∂x1
(eiτψ ṽ)‖L2(Ω) − τ

∫
∂Ω

(∇ϕ, ν)|ṽ|2dσ

+Re

∫
∂Ω

i

((
−ν2

∂

∂x1
+ ν1

∂

∂x2

)
ṽ

)
ṽdσ + ‖∂x2

(eiτψ ṽ)‖2L2(Ω) = ‖f̃‖2L2(Ω).

(5.25)

Proof. We prove the statement of the proposition first for the equation 2∂ṽ
∂z −

τ ∂Φ
∂z ṽ = f̃ . Since 2 ∂

∂z − τ ∂Φ
∂z = ( ∂

∂x1
− i ∂ψ

∂x1
τ ) + ( ∂

i∂x2
− ∂ψ

∂x2
τ ), taking the L2-norms

of the right and the left hand sides of (5.22), we get∥∥∥∥(
∂

∂x1
− i

∂ψ

∂x1
τ

)
ṽ

∥∥∥∥2

L2(Ω)

+ 2Re

((
∂

∂x1
− i

∂ψ

∂x1
τ

)
ṽ,

(
−i

∂

∂x2
− ∂ψ

∂x2
τ

)
ṽ

)
L2(Ω)

+

∥∥∥∥(
−i

∂

∂x2
− ∂ψ

∂x2
τ

)
ṽ

∥∥∥∥2

L2(Ω)

= ‖f̃‖2L2(Ω).
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Since the commutator vanishes by [( ∂
∂x1

− i ∂ψ
∂x1

τ ), ( ∂
i∂x2

− ∂ψ
∂x2

τ )] ≡ 0, we obtain∥∥∥∥(
∂

∂x1
− i

∂ψ

∂x1
τ

)
ṽ

∥∥∥∥2

L2(Ω)

+

((
∂

∂x1
− i

∂ψ

∂x1
τ

)
ṽ, (−iν2ṽ)

)
L2(∂Ω)

+

(
ν1ṽ,

(
−i

∂

∂x2
− ∂ψ

∂x2
τ

)
ṽ

)
L2(∂Ω)

+

∥∥∥∥(
i
∂

∂x2
+

∂ψ

∂x2
τ

)
ṽ

∥∥∥∥2

L2(Ω)

= ‖f̃‖2L2(Ω).

This equality implies∥∥∥∥(
∂

∂x1
− i

∂ψ

∂x1
τ

)
ṽ

∥∥∥∥2

L2(Ω)

− τ

∫
∂Ω

(
∂ψ

∂x2
ν1 −

∂ψ

∂x1
ν2)|ṽ|2dσ

+

∫
∂Ω

i

((
ν2

∂

∂x1
− ν1

∂

∂x2

)
ṽ

)
ṽdσ +

∥∥∥∥(
i
∂

∂x2
+

∂ψ

∂x2
τ

)
ṽ

∥∥∥∥2

L2(Ω)

= ‖f̃‖2L2(Ω).

Finally by (2.1) we observe that

(5.26)
∂ψ

∂x2
=

∂ϕ

∂x1
and

∂ψ

∂x1
= − ∂ϕ

∂x2
.

Thus (5.24) follows immediately.

Now we prove the statement of the proposition for (5.23). Since 2 ∂
∂z − τ ∂Φ

∂z =

( ∂
∂x1

+ i ∂ψ
∂x1

τ ) + (− ∂
i∂x2

− ∂ψ
∂x2

τ ), taking the L2-norms of the right and left hand

sides of (5.23), we get∥∥∥∥(
∂

∂x1
+ i

∂ψ

∂x1
τ

)
ṽ

∥∥∥∥2

L2(Ω)

+ 2Re

((
∂

∂x1
+ i

∂ψ

∂x1
τ

)
ṽ,

(
i
∂

∂x2
− ∂ψ

∂x2
τ

)
ṽ

)
L2(Ω)

+

∥∥∥∥(
i
∂

∂x2
− ∂ψ

∂x2
τ

)
ṽ

∥∥∥∥2

L2(Ω)

= ‖f̃‖2L2(Ω).

Since [( ∂
∂x1

+ i ∂ψ
∂x1

τ ), ( ∂
i∂x2

+ ∂ψ
∂x2

τ )] ≡ 0, we obtain∥∥∥∥(
∂

∂x1
+ i

∂ψ

∂x1
τ

)
ṽ

∥∥∥∥2

L2(Ω)

+

((
∂

∂x1
+ i

∂ψ

∂x1
τ

)
ṽ, (iν2ṽ)

)
L2(∂Ω)

+

(
ν1ṽ,

(
i
∂

∂x2
− ∂ψ

∂x2
τ

)
ṽ

)
L2(∂Ω)

+

∥∥∥∥(
i
∂

∂x2
− ∂ψ

∂x2
τ

)
ṽ

∥∥∥∥2

L2(Ω)

= ‖f̃‖2L2(Ω).

This equality implies∥∥∥∥(
∂

∂x1
+ i

∂ψ

∂x1
τ

)
ṽ

∥∥∥∥2

L2(Ω)

− τ

∫
∂Ω

(
∂ψ

∂x2
ν1 −

∂ψ

∂x1
ν2)|ṽ|2dσ

+

∫
∂Ω

i

((
−ν2

∂

∂x1
+ ν1

∂

∂x2

)
ṽ

)
ṽdσ +

∥∥∥∥(
i
∂

∂x2
− ∂ψ

∂x2
τ

)
ṽ

∥∥∥∥2

L2(Ω)

= ‖f̃‖2L2(Ω).

Thus estimate (5.25) follows immediately from the above equality and (5.26),
finishing the proof of the proposition. �

Now we prove a Carleman estimate for the Laplace operator.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



686 OLEG YU. IMANUVILOV, GUNTHER UHLMANN, AND MASAHIRO YAMAMOTO

Proposition 5.3. Suppose that Φ satisfies (2.1), (2.2), (2.5). Let u ∈ H1
0 (Ω) ∩

H2(Ω) be a real-valued function. Then there exists τ0 such that for all |τ | ≥ τ0 we
have

|τ |‖ueτϕ‖2L2(Ω) + ‖ueτϕ‖2H1(Ω) + ‖∂u
∂ν

eτϕ‖2L2(Γ0)
+ τ2‖|∂Φ

∂z
|ueτϕ‖2L2(Ω)

≤ C(‖(Δu)eτϕ‖2L2(Ω) + |τ |
∫
Γ̃

|∂u
∂ν

|2e2τϕdσ).(5.27)

Proof. Without loss of generality, we may assume that τ > 0. Denote ṽ =
ueτϕ,Δu = f. Observe that Δ = 4 ∂

∂z
∂
∂z̄ and ϕ(x1, x2) =

1
2 (Φ(z)+Φ(z)). Therefore

eτϕΔe−τϕṽ = (2
∂

∂z
− τ

∂Φ

∂z
)(2

∂

∂z̄
− τ

∂Φ̄

∂z̄
)ṽ = (2

∂

∂z̄
− τ

∂Φ̄

∂z̄
)(2

∂

∂z
− τ

∂Φ

∂z
)ṽ = feτϕ.

Denote w̃1 = Q(z)(2 ∂
∂z̄ − τ ∂Φ̄

∂z̄ )ṽ, w̃2 = Q(z)(2 ∂
∂z − τ ∂Φ

∂z )ṽ, where Q(z) ∈ C2(Ω)

is a holomorphic function in Ω. Thanks to the zero Dirichlet boundary condition
for u we have

w̃1|∂Ω = 2Q(z)∂z̄ ṽ|∂Ω = (ν1 + iν2)Q(z)
∂ṽ

∂ν
|∂Ω,

w̃2|∂Ω = 2Q(z)∂z ṽ|∂Ω = (ν1 − iν2)Q(z)
∂ṽ

∂ν
|∂Ω.

By Proposition 5.2 we obtain

‖( ∂

∂x1
− iτ

∂ψ

∂x1
)w̃1‖2L2(Ω) − τ

∫
∂Ω

(∇ϕ, ν)|Q|2|∂ṽ
∂ν

|2dσ

+Re

∫
∂Ω

i((ν2
∂

∂x1
− ν1

∂

∂x2
)w̃1)w̃1dσ + ‖( ∂

∂x2
− iτ

∂ψ

∂x2
)w̃1‖2L2(Ω) = ‖Qfeτϕ‖2L2(Ω)

and

‖( ∂

∂x1
+ i

∂ψ

∂x1
τ )w̃2‖2L2(Ω) − τ

∫
∂Ω

(∇ϕ, ν)|Q|2|∂ṽ
∂ν

|2dσ+

Re

∫
∂Ω

i((−ν2
∂

∂x1
+ ν1

∂

∂x2
)w̃2)w̃2dσ + ‖( ∂

∂x2
+ iτ

∂ψ

∂x2
)w̃2‖2L2(Ω) = ‖Qfeτϕ‖2L2(Ω).

We simplify the integral Re i
∫
∂Ω

((ν2
∂

∂x1
− ν1

∂
∂x2

)w̃1)w̃1dσ. We recall that ṽ =

ueτϕ and w̃1|∂Ω = Q(z)(ν1 + iν2)
∂ṽ
∂ν = Q(z)(ν1 + iν2)

∂u
∂ν e

τϕ. Denote A + iB =

Q(z)(ν1 + iν2). We get

Re

∫
∂Ω

i((ν2
∂

∂x1
− ν1

∂

∂x2
)w̃1)w̃1dσ

= Re

∫
∂Ω

i(ν2
∂

∂x1
− ν1

∂

∂x2
)[(A+ iB)

∂u

∂ν
eτϕ](A− iB)

∂u

∂ν
eτϕdσ

= Re

∫
∂Ω

i[(ν2
∂

∂x1
− ν1

∂

∂x2
)(A+ iB)]|∂ṽ

∂ν
|2(A− iB)dσ

+ Re

∫
∂Ω

i

2
(A2 +B2)(ν2

∂

∂x1
− ν1

∂

∂x2
)|∂ṽ
∂ν

|2dσ

=

∫
∂Ω

(∂�τAB − ∂�τBA)|∂ṽ
∂ν

|2dσ.
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Now we simplify the integral Re
∫
∂Ω

i((−ν2
∂

∂x1
+ ν1

∂
∂x2

)w̃2)w̃2dσ. We recall that

ṽ = ueτϕ and w̃2|∂Ω = (ν1 − iν2)Q(z) ∂ṽ∂ν = (ν1 − iν2)Q(z)∂u∂ν e
τϕ. A straightforward

computation gives

Re

∫
∂Ω

i((−ν2
∂

∂x1
+ ν1

∂

∂x2
)w̃2)w̃2dσ

= Re

∫
∂Ω

i(−ν2
∂

∂x1
+ ν1

∂

∂x2
)[(A− iB)

∂u

∂ν
eτϕ](A+ iB)

∂u

∂ν
eτϕdσ

= Re

∫
∂Ω

i[(−ν2
∂

∂x1
+ ν1

∂

∂x2
)(A− iB)]|∂ṽ

∂ν
|2(A+ iB)dσ(5.28)

− Re

∫
∂Ω

i

2
(A2 +B2)(ν2

∂

∂x1
− ν1

∂

∂x2
)|∂ṽ
∂ν

|2dσ

=

∫
∂Ω

(∂�τAB − ∂�τBA)|∂ṽ
∂ν

|2dσ.

Using the above formula, we obtain

‖( ∂

∂x1
+ i

∂ψ

∂x1
τ )w̃2‖2L2(Ω) + ‖( ∂

∂x2
+ i

∂ψ

∂x2
τ )w̃2‖2L2(Ω)

− 2τ

∫
∂Ω

(ν,∇ϕ)|Q|2|∂ṽ
∂ν

|2dσ

+ ‖( ∂

∂x1
− i

∂ψ

∂x1
τ )w̃1‖2L2(Ω) + ‖( ∂

∂x2
− ∂ψ

∂x2
τ )w̃1‖2L2(Ω)

+ 2

∫
∂Ω

(∂�τAB − ∂�τBA)|∂ṽ
∂ν

|2dσ = 2‖Qfeτϕ‖2L2(Ω).(5.29)

We can rewrite (5.29) in the form

‖ ∂

∂x1
(eiψτ w̃2)‖2L2(Ω) + ‖ ∂

∂x2
(eiψτ w̃2)‖2L2(Ω)

− 2τ

∫
∂Ω

(ν,∇ϕ)|Q|2|∂ṽ
∂ν

|2dσ

+ ‖ ∂

∂x1
(e−iψτ w̃1)‖2L2(Ω) + ‖ ∂

∂x2
(e−iψτ w̃1)‖2L2(Ω)

+ 2

∫
∂Ω

(∂�τAB − ∂�τBA)|∂ṽ
∂ν

|2dσ = 2‖Qfeτϕ‖2L2(Ω).(5.30)

At this point, in order to estimate the integral
∫
∂Ω

(∂�τAB−∂�τBA)| ∂ṽ∂ν |2dσ, we have
to make a choice of the holomorphic function Q. If Ω is simply connected, after
an appropriate conformal transformation to the ball, we can take Q ≡ 1. Then the
function (∂�τAB − ∂�τBA) will be positive.

In the general situation, using Proposition 5.1, we choose the holomorphic func-
tion Q(z) such that (∂�τAB − ∂�τBA) is positive on Γ̄0. Such a function can be
constructed in the following way. Let γj be a contour from ∂Ω. We parameterize it

by the smooth curve x(s) : [0, �j ] → γj , satisfying |x′(s)| = 1 and ∂�τA = d
dsA◦x(s).

We take now A ◦ x(s) = �jsin(s/�j), B ◦ x(s) = �jcos(s/�j). Then

(∂�τAB − ∂�τBA) = �j on γj .

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



688 OLEG YU. IMANUVILOV, GUNTHER UHLMANN, AND MASAHIRO YAMAMOTO

Taking into account that A+ iB = Q(z)(ν1 + iν2), we set
(5.31)

b1 = Re

{
�jsin(s/�j)− i�jcos(s/�j)

(ν1 − iν2) ◦ x(s)

}
, b2 = Im

{
�jsin(s/�j)− i�jcos(s/�j)

(ν1 − iν2) ◦ x(s)

}
.

We take Q as a solution to problem (5.1) with the initial data close to the one given
by (5.31). Then we have the estimate

(5.32)

∫
∂Ω

|∂ṽ
∂ν

|2dσ ≤ C1(‖Qfeτϕ‖2L2(Ω) + |τ |
∫
Γ̃

|∂ṽ
∂ν

|2dσ).

The function Q(z), which allowed us to establish the estimate (5.32), might be
equal to zero at some points of Ω. Thus, from now on, we take Q(z) ≡ 1. The
equality (5.30) is valid. Applying this to (5.32), we have

‖ ∂

∂x1
(eiψτ w̃2)‖2L2(Ω) + ‖ ∂

∂x2
(eiψτ w̃2)‖2L2(Ω) − 2τ

∫
∂Ω

(ν,∇ϕ)|∂ṽ
∂ν

|2dσ

+‖ ∂

∂x1
(e−iψτ w̃1)‖2L2(Ω) + ‖ ∂

∂x2
(e−iψτ w̃1)‖2L2(Ω)

≤ C2(‖feτϕ‖2L2(Ω) + |τ |
∫
Γ̃

|∂ṽ
∂ν

|2dσ).(5.33)

Since ϕ is a harmonic function, we have
∫
∂Ω

∂ϕ
∂ν dσ = 0. By (2.1), (2.2) the

function ϕ is not constant, so the set ∂Ω− = {x ∈ ∂Ω|(ν,∇ϕ) > 0} is not empty.
We now establish a Poincaré-type inequality with boundary terms. Let Γ∗ be

some open subset of ∂Ω. Observe that the functional ‖∇W‖L2(Ω) + ‖W‖L2(Γ∗) is

the norm on the Sobolev space H1(Ω). In order to prove this, it suffices to establish
the existence of constant C3 such that

(5.34) ‖W‖L2(Ω) ≤ C3(‖∇W‖L2(Ω) + ‖W‖L2(Γ∗)) ∀W ∈ H1(Ω).

Suppose that (5.34) is false. Then there exists a sequence {Wk} ⊂ H1(Ω) such that
‖Wk‖L2(Ω) = 1 and

(5.35) ‖∇Wk‖L2(Ω) + ‖Wk‖L2(Γ∗) → 0.

On the other hand the sequence Wk is clearly bounded in H1(Ω). So taking a
subsequence and using the compactness of the embedding of H1(Ω) into L2(Ω), we

see that there exists W̃ ∈ H1(Ω) such that

(5.36) Wk → W̃ in L2(Ω).

By (5.35), W̃ ≡ const. On the other hand, by (5.35), W̃ |Γ∗ = 0. Therefore W̃ ≡ 0
and we have a contradiction with (5.36) and the fact that ‖Wk‖L2(Ω) = 1.

Thus, by (5.34) there exists a positive constant C4, independent of τ , such that

1

C4
(‖w̃1‖2L2(Ω) + ‖w̃2‖2L2(Ω)) ≤

1

2
‖ ∂

∂x1
(eiψτ w̃2)‖2L2(Ω)

+
1

2
‖ ∂

∂x2
(eiψτ w̃2)‖2L2(Ω) − τ

∫
∂Ω−

(ν,∇ϕ)|∂ṽ
∂ν

|2dσ

+
1

2
‖ ∂

∂x1
(e−iψτ w̃1)‖2L2(Ω)+

1

2
‖ ∂

∂x2
(e−iψτ w̃1)‖2L2(Ω).(5.37)

Since ṽ is a real-valued function we have

‖2 ∂ṽ

∂x1
+ τ

∂ψ

∂x2
ṽ‖2L2(Ω) + ‖2 ∂ṽ

∂x2
− τ

∂ψ

∂x1
ṽ‖2L2(Ω) ≤ C5(‖w̃1‖2L2(Ω) + ‖w̃2‖2L2(Ω)).
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Therefore

4‖ ∂ṽ

∂x1
‖2L2(Ω) − 2τ

∫
Ω

(
∂

∂x1

∂ψ

∂x2
− ∂

∂x2

∂ψ

∂x1
)ṽ2dx+ τ2‖ ∂ψ

∂x2
ṽ‖2L2(Ω)

+4‖ ∂ṽ

∂x2
‖2L2(Ω) + τ2‖ ∂ψ

∂x1
ṽ‖2L2(Ω) ≤ C6(‖w̃1‖2L2(Ω) + ‖w̃2‖2L2(Ω)).(5.38)

Now we claim that there exists a constant C7 independent of τ such that

(5.39) |τ |‖ṽ‖2L2(Ω) ≤ C7(‖ṽ‖2H1(Ω) + τ2‖|∂Φ
∂z

|ṽ‖2L2(Ω)).

It suffices to prove inequality (5.39) locally assuming that supp v ∈ B(y, δ) where
y ∈ H and the radius δ can be taken sufficiently small. If y ∈ H∩ ∂Ω, by (2.2) one
can take δ such that v|∂Ω∩B(y,δ) = 0. Moreover, if y ∈ H is an arbitrary point, we
may assume, without loss of generality, that y = 0. Since all critical points of the
function Φ are assumed to be nondegenerate, there exists a holomorphic function
Ψ(z) such that ∂zΦ(z) = zΨ(z) and Ψ(0) �= 0. Thus for some positive δ there exists
a positive constant C8 such that

|z| ≤ C8|∂zΦ(z)| ∀(Re z, Im z) ∈ B(0, δ).

Then there exists a positive constant C9 such that∫
Ω

|v|2dx =

∫
Ω

(∂zz)|v|2dx = −
∫
Ω

z(v∂z v̄ + v̄∂zv)dx ≤ C9

∫
Ω

(|∇v|2 + |z|2|v|2)dx.

By (5.38), (5.39) there exists a positive constant C10 such that

(5.40) |τ |‖ṽ‖2L2(Ω) + ‖ṽ‖2H1(Ω) + τ2‖|∂Φ
∂z

|ṽ‖2L2(Ω) ≤ C10(‖w̃1‖2L2(Ω) + ‖w̃2‖2L2(Ω)).

By (5.40) we obtain from (5.33), (5.37) that there exists a positive constant C11

such that

1

C11
(|τ |‖ṽ‖2L2(Ω) + ‖ṽ‖2H1(Ω) + τ2‖|∂Φ

∂z
|ṽ‖2L2(Ω))− τ

∫
∂Ω

(ν,∇ϕ)|∂ṽ
∂ν

|2dσ

+

∫
∂Ω

2(∂�τAB − ∂�τBA)|∂ṽ
∂ν

|2dσ ≤ ‖feτϕ‖2L2(Ω) + |τ |
∫
Γ̃

|(ν,∇ϕ)||∂ṽ
∂ν

|2dσ.

The proof of the proposition is finished. �

Now we give the proof of Proposition 2.1.

Proof. Let us introduce the space

H =

{
v ∈ H1

0 (Ω)|Δv + q0v ∈ L2(Ω),
∂v

∂ν
|Γ̃ = 0

}
with the scalar product

(v1, v2)H =

∫
Ω

e2τϕ(Δv1 + q0v1)(Δv2 + q0v2)dx.

By Proposition 5.3, H is a Hilbert space. Consider the linear functional on H :

v →
∫
Ω
vfdx +

∫
Γ0

g ∂v
∂ν dσ. By (5.27) this is the continuous linear functional with

the norm estimated by C12(‖feτϕ‖L2(Ω)/τ
1
2 +‖geτϕ‖L2(Γ0)). Therefore by the Riesz

representation theorem there exists an element v̂ ∈ H so that∫
Ω

vfdx+

∫
Γ̃

g
∂v

∂ν
dσ =

∫
Ω

e2τϕ(Δv̂ + q0v̂)(Δv + q0v)dx.
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Then, as a solution to (2.4), we take the function u = e2τϕ(Δv̂ + q0v̂). �
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