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Abstract. We consider non-linear elliptic equations having a measure in the
right-hand side, of the type div a(x, Du) = µ, and prove differentiability and
integrability results for solutions. New estimates in Marcinkiewicz spaces are also
given, and the impact of the measure datum density properties on the regularity
of solutions is analyzed in order to build a suitable Calderón-Zygmund theory
for the problem. All the regularity results presented in this paper are provided
together with explicit local a priori estimates.

Mathematics Subject Classification (2000): 35J60 (primary); 35J70 (secondary).

Contents
1 Introduction and results . . . . . . . . . . . . . . . . . . . . . . . . 195
2 Preliminaries, function spaces . . . . . . . . . . . . . . . . . . . . 205
3 Regularity for homogeneous problems . . . . . . . . . . . . . . . . 213
4 Comparison estimates . . . . . . . . . . . . . . . . . . . . . . . . . 218
5 Basic approximation . . . . . . . . . . . . . . . . . . . . . . . . . 225
6 General measures . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
7 The capacitary case . . . . . . . . . . . . . . . . . . . . . . . . . . 236
8 Morrey estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
9 Marcinkiewicz estimates . . . . . . . . . . . . . . . . . . . . . . . 243
10 The super-capacitary case . . . . . . . . . . . . . . . . . . . . . . . 251
11 Sharpness, comparisons, extensions . . . . . . . . . . . . . . . . . 255
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

1. Introduction and results

Let us consider the following Dirichlet problem:{
−div a(x, Du) = µ in �

u = 0 on ∂�.
(1.1)
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Here we assume that � ⊂ Rn is a bounded domain, µ is a signed Radon measure
with finite total variation |µ|(�) < ∞, and a : � × Rn → Rn is a Carathèodory
vector field satisfying the following standard monotonicity and Lipschitz assump-
tions:



ν(s2 + |z1|2 + |z2|2) p−2
2 |z2 − z1|2 ≤ 〈a(x, z2) − a(x, z1), z2 − z1〉

|a(x, z2) − a(x, z1)| ≤ L(s2 + |z1|2 + |z2|2) p−2
2 |z2 − z1|

|a(x, 0)| ≤ Ls p−1 ,

(1.2)

for every z1, z2 ∈ Rn , x ∈ �. Here, and in the rest of the paper, when referring to
the structural properties of a, and in particular to (1.2), we shall always assume

p ≥ 2, n ≥ 2, 0 < ν ≤ L , s ≥ 0 . (1.3)

The measure µ will be considered as defined on the whole Rn by simply letting
|µ|(Rn \ �) = 0. At certain stages, we shall also require the following Lipschitz
continuity assumption on the map x 	→ a(x, z):

|a(x, z) − a(x0, z)| ≤ L|x − x0|(s2 + |z|2) p−1
2 , ∀ x, x0 ∈ �, z ∈ R

n . (1.4)

Assumptions (1.2) are modeled on the basic example

−div[c(x)(s2 + |Du|2) p−2
2 Du] = µ, ν ≤ c(x) ≤ L , (1.5)

which is indeed covered here. When s = 0 and c(x) ≡ 1 we have the familiar
p-Laplacean operator on the left-hand side

−�pu = −div(|Du|p−2 Du) = µ . (1.6)

For the problem (1.1) in the rest of the paper we shall adopt the following distribu-
tional-like notion of solution, compare with [8] for instance.

Definition 1.1. A solution u to the problem (1.1) under assumptions (1.2), is a
function u ∈ W 1,1

0 (�) such that a(x, Du) ∈ L1(�, Rn) and∫
�

a(x, Du)Dϕ dx =
∫

�

ϕ dµ, for every ϕ ∈ C∞
c (�) . (1.7)

The existence of such a solution is usually obtained combining a priori estimates
with a suitable approximation scheme [8, 20, 27], see also Section 5 below. The
same approach is followed here and therefore in the rest of the paper when talking
about regularity we shall refer to that of Solutions Obtained as Limits of Approxi-
mations (SOLA) [7, 20], and we shall actually simultaneously obtain existence and
regularity results. Here we just want to recall that uniqueness of solutions to (1.1)
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in the sense of Definition 1.1 generally fails [67], and a main open problem of
the theory is identifying a suitable functional class where a unique solution can be
defined and found. In this respect many possible definitions have been proposed,
and technically demanding attempts have been made: for this we refer for instance
to [6, 10, 45, 63], and to the references therein. Nevertheless, a general uniqueness
theory is still missing except for p = 2 or p = n [7,27,35]; in particular we refer to
the paper [21] for a rather comperhensive discussion about the uniqueness problem,
and measure data problems in general. We shall not discuss uniqueness problems
any further, our aims here being quite different: we are mainly interested in a priori
regularity estimates. For the same reason, we shall confine ourselves to distribu-
tional solutions as defined in (1.1), while the results we are going to propose could
be approached also for other notions of solutions: entropy ones, for instance.

The study of problem (1.1) began with the fundamental work of Littman &
Stampacchia & Weinberger [54,68], who defined solutions in a duality sense in the
case of linear equations with measurable coefficients: ai (x, z) ≡ ãi j (x)z j . When
referring to Definition 1.1, the existence theory for the general quasi linear Leray-
Lions type operators in (1.1)1 has been established in the by now classical paper of
Boccardo & Gallouët [8], who proved the existence of a solution u to problem (1.1)
such that

Du ∈ Lq(�, R
n), for every q < b when p ≤ n , (1.8)

where

b := n(p − 1)

n − 1
. (1.9)

Dolzmann & Hungerbühler & Müller were able to prove the same result for a large
class of systems including the p-Laplacean one [26, 27]. Inclusion (1.8) is optimal
in the scale of Lebesgue spaces, see Section 11.1, as Du ∈ Lb in general. Anyway
(1.8) can be sharpened using Marcinkiewicz spaces [6, 27], see (2.17) below, since

Du ∈ Mb(�, R
n) . (1.10)

When p > n instead, µ belongs to W −1,p′
, that is the dual of W 1,p, and the ex-

istence of a unique solution in the natural space W 1,p
0 (�) follows by standard du-

ality methods [53]. Related regularity results for the equation (1.6) with a non-
negative measure µ were given by Lindqvist [51], in connection to the notion
of p-superharmonic functions; see also [37] for a fairly comprehensive treatment
of this subject. Related estimates and problems, using various techniques, are
in [22, 32, 37, 42, 70].

1.1. General measures

Up to now, regularity results in Lq spaces of the type in (1.8)-(1.10) are the only
ones available in the literature. One of the aims of this paper is to give the first
higher regularity results for the gradient of solutions, in particular estimating the
oscillations of the gradient rather than its size. Let us focus for simplicity on the
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case p = 2, looking at (1.8) from a different viewpoint, considering �u = f . In
this case the standard Calderón-Zygmund theory [33] asserts

f ∈ L1+ε =⇒ Du ∈ W 1,1+ε for every ε > 0 . (1.11)

Using Sobolev’s embedding theorem we have in particular Du ∈ Ln/(n−1), that
is, the limit case of (1.8). This does not hold when ε = 0, since the inclusion
Du ∈ W 1,1 generally fails. So, one could interpret (1.8) as the trace of a potentially
existent Calderón-Zygmund theory below the limit case W 1,1. Indeed we have:

Theorem 1.2 (of Calderón-Zygmund type). Under the assumptions (1.2) and
(1.4) with p ≤ n, there exists a solution u ∈ W 1,1

0 (�) to the problem (1.1) such
that

Du ∈ W
1−ε
p−1 ,p−1

loc (�, R
n) , (1.12)

for every ε ∈ (0, 1), and in particular

Du ∈ W 1−ε,1
loc (�, R

n) , when p = 2 . (1.13)

More in general

Du ∈ W
σ(q)−ε

q ,q

loc (�, R
n) , (1.14)

for every ε ∈ (0, σ (q)), where

p−1 ≤ q <
n(p − 1)

n − 1
= b, σ (q) := n − q(n − 1)

p − 1
= n(1−q/b) , (1.15)

and b is in (1.9).

In other words, in (1.13) we “almost have” second derivatives of u; see any-
way (1.24) below and comments after (1.18). Explicit local estimates are actually
available:

Theorem 1.3 (Calderón-Zygmund estimates I). Under the assumptions and no-
tations of Theorem 1.2, let q ∈ [p−1, b) and σ ∈ (0, σ (q)). There exists a constant
c ≡ c(n, p, L/ν, q, σ ) such that for every ball BR ⊂⊂ � of radius R > 0 it holds∫

BR/2

∫
BR/2

|Du(x) − Du(y)|q
|x − y|n+σ

dx dy ≤ c

Rσ

∫
BR

(|Du|q + sq) dx

+ cRσ(q)−σ [|µ|(BR)] q
p−1 .

(1.16)

Moreover, for any open subset �′ ⊂⊂ � the local estimate∫
�

|Du|q dx +
∫

�′

∫
�′

|Du(x) − Du(y)|q
|x − y|n+σ

dx dy ≤ c[|µ|(�)] q
p−1 +csq |�| (1.17)

holds, where c ≡ c(n, p, L/ν, q, σ, dist(�′, ∂�), �).
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Therefore, it is possible to establish an optimal Calderón-Zygmund theory
for non-linear elliptic problems with measure data, provided the right Sobolev
spaces are considered: that is, the fractional ones; see the definition in (2.9).
Fractional Sobolev spaces are an essential tool in modern analysis in that they
provide the natural intermediate scale to state optimal regularity results, and to
show the persistence of certain assertions up to the so called “limit cases”. In-
clusion (1.13) is an instance of this situation, and the comparison between (1.13)
and (1.11) tells us that Calderón-Zygmund theory does not have W 1,1 as an end-
point, but it continues below W 1,1. Inclusions (1.12)-(1.14) are sharp for every
choice of the couple (q, σ (q)) in (1.15) as Du ∈ W σ(q)/q,q

loc in general; note that
(p − 1, σ (p − 1)) = (p − 1, 1). On the converse, inclusion (1.14) admits (1.8) as a
corollary, at least in a local fashion; see Section 11.1. When p = 2, as ε ↘ 0 we do
not approach an integer fractional differentiability exponent in (1.12), as for (1.13),
but only 1/(p − 1). This is not a surprise: even for the model case

�pu = 0 , (1.18)

the existence of second derivatives of W 1,p-solutions is not clear due to the degen-
eracy of the problem, while fractional derivatives naturally appear [59]

u ∈ W 1,p =⇒ Du ∈ W 2/p,p . (1.19)

On the other hand, a classical result going back to K. Uhlenbeck [72] asserts that
although Du may be not differentiable for (1.18), certain natural non-linear ex-
pressions of the gradient still are (in T. Iwaniec’s words [28]). Indeed, defining

V (Du) := (s2 + |Du|2) p−2
4 Du ,

then under the assumptions (1.2) we have that V (Du) ∈ W 1,2
loc (�, Rn) for any

W 1,p-solution to
div a(Du) = 0 ; (1.20)

see Lemma 3.2 below, and under stronger assumptions also [36,56,57], [34, Chap-
ter 8], and [52, Chapter 4]. See also Section 11.2 for more comments on the fact
that passing to V (Du) allows for a gain in differentiability. Observe that the main
essence here is that the product between the differentiability and the integrability
indexes of the fractional spaces involved for Du and V (Du), respectively, is invari-
ant

2

p
· p = 1 · 2 . (1.21)

This phenomenon extends to measure data problems as well:

Theorem 1.4 (Non-linear Calderón-Zygmund estimates). Under the assump-
tions (1.2) and (1.4) with p ∈ (2, n], let u ∈ W 1,q

0 (�) be the solution to (1.1)
found in Theorem 1.2. Then

V (Du) ∈ W
p

2(p−1)
−ε,

2(p−1)
p

loc (�, R
n), for every ε ∈ (0, 1) . (1.22)
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Moreover, for any open subset �′ ⊂⊂ �, we have

∫
�′

∫
�′

|V (Du(x)) − V (Du(y))| 2(p−1)
p

|x − y|n+1−ε
dx dy ≤ c̃|µ|(�) + c̃s p−1|�| , (1.23)

where c̃ ≡ c̃(n, p, L/ν, ε, dist(�′, ∂�), �).

When the problem is non-degenerate, that is s > 0 in (1.3), something more
can be proved: W 1,p-solutions to (1.20) belong to W 2,2

loc . The following corollary
of Theorem 1.4 contains the analogue in the measure data case.

Corollary 1.5 (The non-degenerate case). Under the assumptions (1.2) and (1.4)
with p ∈ (2, n], let u ∈ W 1,q

0 (�) be the solution to (1.1) found in Theorem 1.2, and
assume s > 0. Then

Du ∈ W
p

2(p−1)
−ε,

2(p−1)
p

loc (�, R
n), for every ε ∈ (0, 1) . (1.24)

Moreover estimate (1.23) holds with Du replacing V (Du) provided the constant c̃
is replaced by the new one: s(2−p)(p−1)/pc(n, p)c̃.

Remark 1.6. In Theorems 1.3 and 1.4, and Corollary 1.5, the constants c, c̃ de-
pending on q, ε, σ blow-up as q ↗ b, ε ↘ 0, σ ↗ σ(q). Also observe that
formally letting p = 2 in the three previous statements we obtain (1.13).

Combining inclusions (1.13) and (1.22) with Proposition 2.4 below we gain

Corollary 1.7 (BV-type behavior). Let �u denote the set of non-Lebesgue points
of the solution found in Theorem 1.2, in the sense of

�u :=
{

x ∈ � : lim inf
ρ↘0

−
∫

B(x,ρ)

|Du(y) − (Du)x,ρ | dy > 0

or lim sup
ρ↘0

|(Du)x,ρ | = ∞
}

.

(1.25)

Then its Hausdorff dimension dim(�u) satisfies

dim(�u) ≤ n − 1 . (1.26)

The same result holds replacing Du by V (Du) in (1.25).

Therefore solutions behave as BV functions [5]. For p = 2 one can guess this,
with some brave heuristics, by looking at �u = µ, “replacing” �u by D2u.

Before going on let us observe that the above results are only local, while
we are dealing with a Dirichlet problem; this is a precise, simplifying choice of
ours. Indeed the techniques presented here are suitable to be carried out up to the
boundary under additional regularity assumptions on ∂�, say C2 for instance, or
Lipschitz in some cases, but since they are already delicate and involved, at this
stage we prefer to confine ourselves to the local versions of the results, in order to
highlight the main new ideas. For the case p < 2 see also [61]; here the results
change.
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1.2. Diffusive measures

The sharpness of (1.10) and (1.12)-(1.14) stems from considering counterexamples
involving Dirac measures, see again Section 11.1. It is therefore natural to wonder
whether things change when considering measures diffusing on sets with higher
Hausdorff dimension. A natural way to quantify this, also suggested by a classical
result of Frostman, see [3, Theorem 5.1.12], is to consider the following density
condition:

|µ|(BR) ≤ M Rn−θ 0 ≤ θ ≤ n, M ≥ 0, (1.27)

satisfied for any ball BR ⊂ Rn of radius R. Assuming (1.27) does not allow µ to
concentrate on sets with Hausdorff dimension less than n − θ , and indeed higher
regularity of solutions can be obtained. We have anyway to distinguish two cases.

1.3. The super-capacitary case

This is when θ ≥ p, making sense only if p ≤ n. We see that in all the above
results the role of the dimension n is actually played by θ in (1.27); in particular,
the critical exponent b appearing in Theorem 1.2 and in (1.8) is replaced by the
larger one

m := θ(p − 1)

θ − 1
. (1.28)

The first improvement is in the integrability properties of Du, detectable in two
different scales: Marcinkiewicz and Morrey ones, see (2.18) and (2.19).

Theorem 1.8 (Marcinkiewicz-Morrey regularity). Under the assumptions (1.2)
with p ≤ n, and (1.27) with θ ≥ p, there exists a solution u ∈ W 1,1

0 (�) to the
problem (1.1) such that

Du ∈ Mm,θ
loc (�, R

n) ⊆ Mm
loc(�, R

n) , (1.29)

where m is in (1.28). Moreover, for any open subset �′ ⊂⊂ � we have

‖Du‖Mm,θ (�′) ≤ cM
1

p−1 + cs|�| 1
m , (1.30)

where c ≡ c(n, p, L/ν, �′, �), and M appears in (1.27). In particular, in the limit
case θ = p we have

Du ∈ Mp,p
loc (�, R

n) ⊆ Mp
loc(�, R

n) . (1.31)

The exponent m is expected to be the best possible in (1.29) for every p ≥ 2, and
it actually is when p = 2, see Section 11.3: Theorem 1.8 may be also regarded
as the non-linear version of a classical result of Adams [2]. As explained below,
when θ < p, the solution u is uniquely found in W 1,p

0 (�), so that (1.27) provides



202 GIUSEPPE MINGIONE

the natural scale that allows to pass from (1.10), when θ = n, to (1.31), when
θ = p; in this last case the W 1,p-regularity of the solution is missed just by a
natural Marcinkiewicz-scale factor. A warning for the reader: in Mq,θ the second
exponent does not “tune” the first one; these are not like Lorentz spaces: indeed
Mq,0 ≡ L∞ and Mq,n ≡ Mq , for every q ≥ 1. Finally, note that (1.29) does not
require (1.4) since we are not dealing with higher derivatives of the gradient, and
we do not need to “differentiate” equation (1.1)1, that obviously needs (1.4).

The second effect of condition (1.27) is an expansion of the range (1.15). The
fractional derivatives are themselves in a Morrey space, see the definition in (2.16).
This leads to the final and central stage of our regularity program:

Theorem 1.9 (Sobolev-Morrey regularity). Under the assumptions (1.2) and
(1.4) with p ≤ n, and (1.27) with θ ≥ p, let u ∈ W 1,1

0 (�) be the solution found in
Theorem 1.8. Then

Du ∈ W
σ(q,θ)−ε

q ,q,θ

loc (�, R
n) , (1.32)

for every ε ∈ (0, σ (q, θ)), where m is in (1.28), and

p−1 ≤ q <
θ(p − 1)

θ − 1
= m, σ (q, θ) := θ−q(θ − 1)

p − 1
= θ(1−q/m) . (1.33)

In particular

Du ∈ W
1−ε
p−1 ,p−1,θ

loc (�, R
n), and Du ∈ W 1−ε,1,θ

loc (�, R
n) when p = 2 . (1.34)

Moreover, for any open subset �′ ⊂⊂ � and σ ∈ (0, σ (q, θ)), we have

‖Du‖W σ/q,q,θ (�′) ≤ cM
1

p−1 + cs|�| 1
q , (1.35)

where c ≡ c(n, p, L/ν, q, σ, dist(�′, ∂�), �), and M is in (1.27).

Originally introduced in [15, 16], Sobolev-Morrey spaces W α,q,θ appear in
various forms in several pde issues as they provide the natural scaling properties
of solutions [47,58,71]. Estimate (1.35) extends to the case of non-linear equations
with measure data the classical Morrey space results for linear elliptic equations
[12,17,23,24,34,50]; see the definition in (2.14) below. The standard result for the
model case �v = f is that Dv ∈ W 1,q,θ when f ∈ Lq,θ for q > 1, that is∫

BR

|D2v|q dx ≤ cRn−θ .

Inclusion (1.34) sharply extends this to the case q = 1, that is previous inequality
is replaced by the following analogue:∫

BR

∫
BR

|Du(x) − Du(y)|
|x − y|n+1−ε

dx dy ≤ cRn−θ ,
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which is valid for every ε ∈ (0, 1) and every ball BR ⊂⊂ � of radius R, where c
depends on ε and on the distance between BR and ∂�. Finally, in light of (1.29)
we can interpret (1.32) and therefore also (1.14) as a scale of regularity for Du
leading, as q ↗ m, from the maximal differentiability (1.34) towards the maximal
integrability (1.29).

1.4. The capacitary case

This is when θ < p; this case is simpler and we will be shorter. Here µ ∈ W −1,p′
,

that is, the dual space of W 1,p, and moreover µ cannot charge null p-capacity sets.
When p > n this follows from Sobolev’s embedding theorem; one-point sets have
positive p-capacity. When θ < p ≤ n a basic theorem of D. R. Adams [1, 3] still
ensures that µ ∈ W −1,p′

; here note that (1.27) implies |µ|(BR) � R p−θCapp(BR).
At the end (1.1) can be solved by monotonicity methods [53], and the existence of
a unique solution in the natural space W 1,p

0 (�) follows.

Theorem 1.10 (Capacitary Calderón-Zygmund estimates). Assume (1.2), (1.4),
and (1.27) with θ < p. Then the unique solution u ∈ W 1,p

0 (�) to the problem (1.1)
satisfies

Du ∈ W
σ(p)−ε

p ,p

loc (�, R
n), σ (p) := p − θ

p − 1
, (1.36)

for every ε ∈ (0, σ (p)). Moreover, for any open subset �′ ⊂⊂ � we have

∫
�

|Du|p dx+
∫

�′

∫
�′

|Du(x) − Du(y)|p

|x − y|n+σ
dx dy ≤ cM

1
p−1 |µ|(�)+cs p|�| , (1.37)

where c ≡ c(n, p, L/ν, σ, θ, dist(�′, ∂�), �), and M appears in (1.27).

As a corollary of (1.36) and of the fractional Sobolev embedding Theorem 2.2,
we also have the following higher integrability result:

Du ∈ Lt
loc(�, R

n) for every t <
np

n − σ(p)
. (1.38)

We point out the analogy between (1.36) and the results in [46] for the case θ <

p ≤ n, stating that solutions to (1.6) are C0,α-regular with α = σ(p); see also
[41, 43, 49]. Theorem 1.10 extends to general elliptic systems, see Section 11.6.

1.5. Additional results

For the proof of the above theorems we shall need the following intermediate result,
which may have its own interest; see also [19, 25] for a particular case.
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Theorem 1.11 (Morrey space regularity). Under the assumptions (1.2) with p ≤
n, and (1.27) with θ ≥ p, let u ∈ W 1,1

0 (�) be the solution found in Theorem 1.8.

Then Du belongs to the Morrey space Lq,δ(q)

loc (�, Rn), for every q and δ(q) such as

1 ≤ q <
θ(p − 1)

θ − 1
= m, δ(q) := q(θ − 1)

p − 1
. (1.39)

For every �′ ⊂⊂ �, there exists c ≡ c(n, p, L/ν, q, dist(�′, ∂�), �) such that

‖Du‖Lq,δ(q)(�′) ≤ cM
1

p−1 + cs|�| 1
q . (1.40)

For the sake of completeness we also include a corollary that in different forms, but
not in the following one, already appears in the literature [27, 31, 73].

Theorem 1.12 (BMO/VMO regularity). Under the assumptions (1.2) with p ≤
n, and (1.27) with θ = p, the solution u ∈ W 1,1

0 (�) found in Theorem 1.8 belongs
to BMOloc(�). Moreover, if

lim
R↘0

|µ|(BR)

Rn−p
= 0 , (1.41)

locally uniformly in �, then u ∈VMOloc(�). Finally, for every open subset �′ ⊂⊂
� there exists a constant c ≡ c(n, p, L/ν, dist(�′, ∂�), �) such that

[u]BMO(�′) ≤ cM
1

p−1 + cs|�| . (1.42)

For the exact meaning of “locally uniformly” in (1.41) see Definition 2.6 below; see
also Remark 2.7. Observe that also in this case the result complements the ones in
the literature: as soon as θ < p solutions are Hölder continuous [41, 49].

Remark 1.13. In Theorems 1.9-1.12 the constants c depending on q, ε blow-up as
q ↗ m, ε ↘ 0, σ ↗ σ(q, θ); σ ↗ σ(p) in case of Theorem 1.10.

Finally, a road-map to the paper. Some of the results presented are obtained
via a delicate interaction between various types of regularity scales. For instance,
as for Theorems 1.8 and Theorem 1.9, we have

Du ∈ Lq,δ(q)

loc (�, R
n), q < b =⇒ Du ∈ Mm,θ

loc =⇒ Du ∈ W
σ(q,θ)−ε

q ,q,θ

loc . (1.43)

In Section 2 we collect a miscellanea of preliminary material and notations. Section
3 includes some results for elliptic problems, that in the form presented are not
explicitly contained in the literature. In Section 4 we collect a few preparatory
lemmas of comparison type, while in Section 5 we fix the basic approximation
procedure. Section 6 contains the proofs of Theorems 1.2-1.4 and Corollary 1.5,
while Section 7 contains the one of Theorem 1.10. Section 8 contains the proof
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of Theorems 1.11 and 1.12. Section 9 contains the proof of Theorem 1.8, while
Section 10 contains the one of Theorem 1.9. Finally, in Section 11 we discuss the
sharpness of some of the results obtained.

Part of the results obtained in this paper have been announced in the prelimi-
nary Comptes Rendus note [60].
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2. Preliminaries, function spaces

2.1. General notation

In this paper we shall adopt the usual, but somehow arguable convention to denote
by c a general constant, that may vary from line to line; peculiar dependence on
parameters will be properly emphasized in parentheses when needed, while special
occurences will be denoted by c∗, c1, c2 or the like. With x0 ≡ (x0,1, . . . , x0,n) ∈
Rn , we denote

BR(x0) ≡ B(x0, R) := {x ∈ R
n : |x − x0| < R} ,

and

Q R(x0) ≡ Q(x0, R) := {x ∈ R
n : sup |xi − x0,i | < R, 1 ≤ i ≤ n} ,

the open ball and cube, respectively, with center x0 and “radius” R. We shall often
use the short hand notation BR ≡ B(x0, R) and Q R ≡ Q(x0, R), when no ambigu-
ity will arise. Moreover, with B, Q being balls and cubes, respectively, by γ B, γ Q
we shall denote the concentric balls and cubes, with radius magnified by a factor
γ. If g : A → Rk is an integrable map with respect to the Borel measure µ, and
0 < µ(A) < ∞, we write

(g)µ,A := −
∫

A
g(x) dµ := 1

µ(A)

∫
A

g(x) dµ .

When µ is the Lebesgue measure and A ≡ B(x0, R), we may also use the short
hand notation (g)µ,A ≡ (g)A ≡ (g)BR ≡ (g)B .
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Permanent conventions. In the estimates the constants will in general depend on
the parameters n, p, ν, L . The dependence on ν, L is actually via the ellipticity
ratio L/ν, and will be given directly in this way. This can be seen by passing
to rescaled vector fields a/ν. When considering a function space X (�, Rk) of
possibly vector valued measurable maps defined on an open set � ⊂ Rn , with
k ∈ N, e.g.: L p(�, Rk), W α,p(�, Rk), we shall define in a canonic way the local
variant X loc(�, Rk) as that space of maps f : � → Rk such that f ∈ X (�′, Rk),
for every �′ ⊂⊂ �. Moreover, also in the case f is vector valued, that is k > 1, we
shall also use the short hand notation X (�, Rk) ≡ X (�), or even X (�, Rk) ≡ X .

2.2. The map V (z), and the monotonicity of a(x, z)

With s ≥ 0, we define

V (z) = Vs(z) := (s2 + |z|2) p−2
4 z , z ∈ R

n , (2.1)

which is easily seen to be a locally bi-Lipschitz bijection of Rn . A basic property
of V , whose proof can be found in [36], Lemma 2.1, is the following: For any
z1, z2 ∈ Rn , and any s ≥ 0, it holds

c−1
(

s2+|z1|2+|z2|2
) p−2

2 ≤ |V (z2) − V (z1)|2
|z2 − z1|2 ≤ c

(
s2+|z1|2+|z2|2

) p−2
2

, (2.2)

where c ≡ c(n, p), is independent of s. We also notice that

|z|p ≤ |V (z)|2 ≤ 2(s p + |z|p) . (2.3)

Indeed when p = 2 this is trivial, otherwise when p > 2 we just use Young’s
inequality with conjugate exponents (p, p/(p − 2)); in what follows we shall also
need another elementary property of V :

Vs/A(z/A) = A−p/2Vs(z), for every s ≥ 0, and A > 0 . (2.4)

The strict monotonicity properties of the vector field a implied by the left-hand side
in (1.2)1 can be recast using the map V . Indeed combining (1.2)1 and (2.2) yields,
for c ≡ c(n, p, ν) > 0, and whenever z1, z2 ∈ Rn

c−1|V (z2) − V (z1)|2 ≤ 〈a(x, z2) − a(x, z1), z2 − z1〉 . (2.5)

Moreover, since p ≥ 2, assumption (1.2)1 also implies

c−1|z2 − z1|p ≤ 〈a(x, z2) − a(x, z1), z2 − z1〉 . (2.6)

Finally, inequality (1.2)1, together with (1.2)3 and a standard use of Young’s in-
equality, yield for every z ∈ Rn

c−1(s2 + |z|2) p−2
2 |z|2 − cs p ≤ 〈a(x, z), z〉, c ≡ c(n, p, L/ν) , (2.7)



CALDERÓN-ZYGMUND ESTIMATES AND MEASURE DATA 207

while (1.2)2 and again (1.2)3 give, again via Young’s inequality

|a(x, z)| ≤ c(s2 + |z|2) p−1
2 . (2.8)

In the following and for the rest of the paper, unless otherwise stated, we shall
denote V ≡ Vs with s fixed at the beginning, in (1.3).

2.3. Fractional Sobolev/Nikolski spaces, and difference operators

We recall some basic facts about fractional order Sobolev spaces, using the standard
notation from [4], adapted to the situations we are going to deal with. For a bounded
open set A ⊂ Rn and k ∈ N, parameters α ∈ (0, 1) and q ∈ [1, ∞), we write
w ∈ W α,q(A, Rk) provided the following Gagliardo-type norm is finite:

‖w‖Wα,q (A) :=
(∫

A
|w(x)|q dx

) 1
q +

(∫
A

∫
A

|w(x) − w(y)|q
|x − y|n+αq

dx dy

) 1
q

=: ‖w‖Lq (A) + [w]α,q;A < ∞ . (2.9)

For a possibly vector valued function w : � → Rk , and a real number h ∈ R, we
define the finite difference operator τi,h for i ∈ {1, . . . , n} as

τi,hw(x) ≡ τi,h(w)(x) := w(x + hei ) − w(x) . (2.10)

where {ei }1≤i≤n denotes the standard basis of Rn . This makes sense whenever
x, x + hei ∈ A, an assumption that will be satisfied whenever we use τi,h in the
following. In particular, we shall very often take x ∈ A where A ⊂⊂ � is an
open subset of �, and where |h| ≤ dist(A, ∂�). Accordingly, the Nikolski space
N α,q(A), with A ⊂⊂ � is hereby defined by saying that u ∈ N α,q(A) if and only if

‖w‖N α,q (A) := ‖w‖Lq (A) +
n∑

i=1

sup
h

|h|−α‖τi,hw‖Lq (A) ,

is finite, where 0 < |h| ≤ dist(A, ∂�). In the following we shall also let W 0,q ≡
N 0,q ≡ Lq . The strict inclusions

W α,q(A) ⊂ N α,q(A) ⊂ W α−ε,q(A) , ∀ ε ∈ (0, α) ,

are well known, and the next lemma somehow quantifies the last one.

Lemma 2.1. Let w ∈ Lq(�, Rk), q > 1, and assume that for ᾱ ∈ (0, 1], S ≥ 0
and an open set �̃ ⊂⊂ � we have

‖τi,hw‖Lq (�̃) ≤ S|h|ᾱ , (2.11)

for every 1 ≤ i ≤ n and every h ∈ R satisfying 0 < |h| ≤ d, where 0 < d ≤
min{1, dist(�̃, ∂�)}. Then w ∈ W α,q

loc (�̃, Rk) for every α ∈ (0, ᾱ), and for each
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open set A ⊂⊂ �̃ there exists a constant c ≡ c(d, ᾱ −α, dist(A, ∂�̃)), independent
of S and w, such that

‖w‖Wα,q (A,Rk) ≤ c
(
S + ‖w‖Lq (A,Rk)

)
. (2.12)

Basic references for the last result are [4, Chapter 7], or [48]; see also [30, Lemma
3], from which the previous lemma follows via a covering argument. The following
result is nothing but Sobolev’s embedding theorem in the case of fractional spaces;
see again [4] and also [30, Lemma 3].

Theorem 2.2 (Fractional Sobolev embedding). Let w ∈ W α,q(A, Rk),with q ≥
1 and α ∈ (0, 1], such that αq < n, and let A ⊂ Rn be a Lipschitz domain. Then
w ∈ Lnq/(n−αq)(A, Rk), and there exists a constant c ≡ c(n, α, q, [∂ A]0,1) such
that

‖w‖
L

nq
n−αq (A) ≤ c‖w‖Wα,q (A) .

For the following fact see for instance [59] and related references.

Proposition 2.3 (Fractional Poincaré inequality). If B ≡ B(x0, R) ⊂ Rn is a
ball and w ∈ W α,q(B, Rk), then∫

B
|w−wB |q dx ≤c(n)Rαq

∫
B

∫
B

|w(x)−w(y)|q
|x − y|n+αq

dx dy =c(n)Rαq [w]q
α,q;B . (2.13)

The following result is classical in potential theory [3]; see again [59] for an ele-
mentary proof that avoids potential theory.

Proposition 2.4. Let w ∈ W α,q
loc (�, Rk), where 0 < α < 1, q ≥ 1 are such that

αq < n. Let �w denote the set of non-Lebesgue points of w in the sense of

�w :=
{

x ∈� : lim inf
ρ↘0

−
∫

B(x,ρ)

|w(y)−(w)x,ρ |qdy >0 or lim sup
ρ↘0

|(w)x,ρ |=∞
}

.

Then its Hausdorff dimension dim(�w) satisfies dim(�w) ≤ n − αq.

2.4. Morrey spaces, BMO, VMO

We shall adopt a slightly modified definition of Morrey spaces, or more precisely:
there are several possible, essentially equivalent definitions in the literature; we
choose one. With A ⊂ Rn being an open subset, we define the Morrey space
Lq,θ (A), with q ≥ 1 and θ ∈ [0, n] as that of those measurable maps w ∈ Lq(A)

such that the following quantity is finite:

‖w‖q
Lq,θ (A)

:= sup
BR⊂A,R≤1

Rθ−n
∫

BR

|w|q dx . (2.14)
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In the following, when considering the space M(A) of Borel measures with finite
mass on A ⊂ Rn , we shall automatically consider them extended on the whole Rn

in the trivial way: |µ|(Rn \ A) := 0. When considering L1,θ (A), as in [2], we
include measures µ ∈ M(A) defining in this case

‖µ‖L1,θ (A) := sup
BR⊂A,R≤1

Rθ−n|µ|(BR) < ∞ ,

and actually L1,θ (A) will be considered as a subspace of M(A). Trivially, if µ

satisfies (1.27) then µ ∈ L1,θ (A) for every open subset A ⊂ Rn and ‖µ‖L1,θ (A) ≤
M . Information on Morrey spaces are in [1, 34]. Our definition differs from the
usual one in that we consider only balls contained in A when stating (2.14), and with
radius not larger than one, because we shall treat interior regularity, and information
near the boundary ∂� will play no role. Such a modification is truly inessential, and
will simplify the already heavy technical treatment in the following pages; observe
that our definition is anyway consistent with the one in [69], Definition 1.1.

The following lemma is elementary and can be obtained via a standard scaling
argument; the simple proof is left to the reader.

Lemma 2.5. Let g ∈ Lq,θ (B(x0, r)) and define g̃(y) := g(x0 + r y) for y ∈
B(0, 1) ≡ B1. Then g̃ ∈ Lq,θ (B1) and ‖g̃‖Lq,θ (B1)

= r−θ/q‖g‖Lq,θ (B(x0,r)).

We now pass to recall the definition of BMO and VMO spaces, introduced
in [40, 66] respectively. As already in the case of Morrey spaces, we shall also
modify a bit the definition in order to adapt it to the local statement we are giving in
the following. The space BMO(A) is that of those measurable maps w : A → Rn

such that the semi-norm

[w]BMO(A) := sup
BR⊂A

−
∫

BR

|w − (w)BR | dx

is finite. Further information can be found for instance in [34], and its references.
Finally the space VMOloc(�). Let �′ ⊂⊂ � be an open subset, and define

ωw(R, �′) := sup
Br ,r≤R

−
∫

Br

|w − (w)Br | dx ,

where Br ⊂⊂ � is centered in �′. Then a map w : � → Rn belongs to VMOloc(�)

if and only if limR↘0 ωw(R, �′) = 0 for every open subset �′ ⊂⊂ �. In connection
to VMO spaces we shall need the following:

Definition 2.6. A Borel measure µ ∈ M(�) is said to satisfy the condition in
(1.41) locally uniformly in � iff for every �′ ⊂⊂ � and every ε > 0 there exists
R̄ > 0, depending on ε and dist(�′, ∂�), such that |µ|(BR) ≤ εRn−p, whenever
BR ⊂ �′ and R ≤ R̄.

Remark 2.7. When p = n it is a simple exercise in basic measure theory to check
that the measure µ fulfills Definition 2.6 iff µ has no atoms, i.e.: µ({x0}) = 0 for
every x0 ∈ �. This allows to view the local VMO regularity results of [31] as a
particular case of Theorem 1.12.
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2.5. Sobolev-Morrey spaces

Beside that of Morrey spaces, we recall the definition of Sobolev-Morrey spaces of
fractional order; also in this case we propose an inessential modification of the usual
definition to simplify the treatment in the following. Let A ⊂ Rn be an open subset;
we say that a map w ∈ W α,q(A, Rk), belongs to W α,q,θ (A, Rk), with α ∈ (0, 1],
q ∈ [1, ∞), θ ∈ [0, n], iff w ∈ W α,q(A, Rk), and moreover

[w]q
α,q,θ;A :=




sup
BR⊂A,R≤1

Rθ−n[w]q
α,q;BR

< ∞ if α < 1

‖Dw‖q
Lq,θ (A)

if α = 1

< ∞ . (2.15)

In any case we let

‖w‖Wα,q,θ (A) := ‖w‖Wα,q (A) + [w]α,q,θ;A . (2.16)

For such spaces and generalizations, see the original papers [15, 16] and [58, 71].

2.6. Marcinkiewicz spaces

Finally, Marcinkiewicz spaces Mt(A,Rk), t ≥1, also called Lorentz-Marcinkiewicz
spaces and denoted by Lt,∞(A), or by Lt

w(A), when they are called “weak-Lt ”
spaces. A measurable map w : A → Rk belongs to Mt (A, Rk) iff

sup
λ≥0

λt |{x ∈ A : |w| > λ}| =: ‖w‖t
Mt (A) < ∞ . (2.17)

Yet, we recall the definition of Marcinkiewicz-Morrey spaces [2]. A map w ∈
Mt (A, Rk) belongs to the space Mt,θ (A, Rk) with θ ∈ [0, n] iff

sup
BR⊂A,R≤1

Rθ−n‖w‖t
Mt (BR) < ∞ .

Accordingly, we let

‖w‖Mt,θ (A) := ‖w‖Mt (A) +
[

sup
BR⊂A,R≤1

Rθ−n‖w‖t
Mt (BR)

]1/t

. (2.18)

Obviously

‖w‖Mt,n(A) ≈ ‖w‖Mt (A), Mt,n(A) ≡ Mt (A) ,

and, according to the definition in (2.14)

Mt,θ1(A)⊂Mt,θ2(A) ⇐⇒ θ1 <θ2, with ‖w‖Mt,θ2 (A) ≤‖w‖Mt,θ1 (A). (2.19)
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Lemma 2.8 (Hölder’s inequality in Mt ). Let f ∈ Mt (A) with t > 1. Then f ∈
Lq(A) with 1 ≤ q < t and it holds

‖ f ‖Lq (A) ≤
(

t

t − q

) 1
q |A| 1

q − 1
t ‖ f ‖Mt (A) . (2.20)

The proof of the latter result is standard [27, 73]. Next, a so called “trace type
inequality” [1, 55].

Theorem 2.9. Let λ be a non-negative Radon measure on Rn such that λ(BR) ≤
M Rn−θ , for every ball BR ⊂ Rn, where 0 ≤ θ < p ≤ n and M > 0. Then when
p < n for every w ∈ W 1,p

0 (BR) we have∫
BR

|w|p dλ ≤ cM R p−θ

∫
BR

|Dw|p dx , (2.21)

where c ≡ c(n, p, θ). In the limit case p = n inequality (2.21) holds replacing
cM Rn−θ by cM Rσ , for any σ < n − θ , where c ≡ c(n, θ, σ ).

Proof. We did not find any direct reference for this result, therefore we sketch the
proof for the reader’s convenience, based on the results in [1]. Firstly the case
p < n. Letting

pθ := (n − θ)p

n − p
, and λ̃ := λ/M , (2.22)

we obviously have λ̃(BR) ≤ Rn−θ , and then it holds

(∫
BR

|w|pθ dλ̃

) 1
pθ ≤ c(n, p)

(∫
BR

|Dw|p dx

) 1
p

.

This is Adams’ inequality, see [55, Corollary 1.93]; see also [3, comments at Chap-
ter 7] to see the earlier contributions of Mazy’a, and the original paper of Adams [1].
Using Hölder’s inequality, as pθ ≥ p, we have

(
−
∫

BR

|w|p dλ̃

) 1
p ≤

(
−
∫

BR

|w|pθ dλ̃

) 1
pθ ≤ cλ̃(BR)

− 1
pθ

(∫
BR

|Dw|p dx

) 1
p

,

therefore, using again that λ̃(BR) ≤ Rn−θ and (2.22) we have∫
BR

|w|p dλ̃ ≤ cλ̃(BR)
p−θ
n−θ

∫
BR

|Dw|p dx ≤ cR p−θ

∫
BR

|Dw|p dx ,

and (2.21) follows scaling back to λ. Now we treat the case p = n. In this case
observe that λ̃(BR) ≤ c logq(1−n)/n(R−1) when R ≤ 1/2, and λ̃(BR) ≤ 2σ−q Rq
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when R > 1/2, where q > n, and c ≡ (n, p, θ, q) is a suitable constant. Therefore
we may apply Theorem 1.94 from [55], see also [3], Theorem 7.2.2, to have

(∫
BR

|w|q dλ

) 1
q ≤ c(n, p, θ, q)

(∫
BR

|Dw|n dx

) 1
n

.

Applying Hölder’s inequality and λ̃(BR) ≤ Rn−θ yields, with c ≡ c(n, p, θ, q)∫
BR

|w|n dλ ≤ c(n, q, σ )λ̃(BR)
q−n

q

∫
BR

|Dw|n dx ≤ cR
(n−θ)

(
1− n

q

) ∫
BR

|Dw|ndx .

The assertion follows taking q ≡ q(σ ) large enough, and scaling back to λ.

Remark 2.10. In a similar way, if w ∈ W 1,p
0 (�) with c ≡ c(n, p, θ, �) we have∫

�

|w|p dλ ≤ cM
∫

�

|Dw|p dx . (2.23)

2.7. Technical lemmata

The following is a simple variant of a well known iteration result. See for instance
[34, Chapter 7], or [73, last section].

Lemma 2.11. Let φ : [0, R̄] → [0, ∞) be a non-decreasing function such that

φ(�) ≤ c0

( �

R

)δ0
ϕ(R) + BRγ , for every � < R ≤ R̄, B ≥ 0 ,

where γ ∈ (0, δ0). Then if δ1 ∈ [γ, δ0), there exists c1 ≡ c1(c0, δ1, γ ) such that

φ(�) ≤ c1

( �

R

)δ1
ϕ(R) + c1B�γ , for every � ≤ R ≤ R̄ .

Then, Giaquinta & Giusti’s “simple but fundamental lemma”, [34, Chapter 6].

Lemma 2.12. Let ϕ : [R0, 2R0] → [0, ∞) be a function such that

ϕ(t) ≤ (1/2)ϕ(�) + B(� − t)−β + K , for every R0 < t < � < 2R0 ,

where B, K ≥ 0 and β > 0. Then ϕ(R0) ≤ c(β)BR−β

0 + cK .

Finally, a standard fact.

Lemma 2.13. Let �′ ⊂⊂ � ⊂ Rn be bounded domains. There exists another open
subset �′′ such that �′ ⊂⊂ �′′ ⊂⊂ � and

dist(�′, ∂�′′) = dist(�′′, ∂�) = dist(�′, ∂�)/2 . (2.24)

Proof. Just let �′′ := {x ∈ � : dist(x, �′) < 1/2 }.
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3. Regularity for homogeneous problems

In this section we recall some results on the regularity of solutions to homogeneous
elliptic systems and equations with p-growth; some of them are well-known; some
others, much less if not at all, especially in the explicit form needed in this paper.
In such cases we shall give - sometimes sketchy - proofs; anyway a good general
reference for the whole section is [34, Chapters 6 and 7].

Let us start with a simple but rather rarely used lemma on reverse Hölder in-
equalities. For the proof it suffices to follow in [34, Remark 6.12, page 205]; see
also [11] for this kind of result.

Lemma 3.1. Let g : A → Rk be a measurable map, and χ0 > 1, c, s ≥ 0, such
that (

−
∫

BR

|g|χ0 dx

) 1
χ0 ≤ c −

∫
B2R

(|g| + s) dx ,

whenever B2R ⊂⊂ A, where A ⊂ Rn is an open subset. Then, for every t ∈ (0, 1]
there exists a constant c0 ≡ c0(n, c, t) such that, for every B2R ⊆ A

(
−
∫

BR

|g|χ0 dx

) 1
χ0 ≤ c0

(
−
∫

B2R

(|g|t + st ) dx

) 1
t

.

The next two lemmata will be of fundamental importance in the following in that
they provide estimates below the natural growth exponent p. For reasons that will
become clear in Section 11 the first one is stated directly for systems, that is when
u is a vector valued map and therefore N ≥ 1.

Lemma 3.2. Let v0 ∈ W 1,p(A, RN ) be a weak solution to the system

div a0(Dv0) = 0 in A .

Here a0 : RN×n → RN×n satisfies the assumptions (1.2) obviously recast to fit
the vectorial case with no x-dependence, and A ⊂ Rn is an open subset. Then
V (Dv0) ∈ W 1,2

loc (A, RN×n), and there exists c ≡ c(n, N , p, L/ν) such that for
every z0 ∈ RN×n and every ball BR ⊆ A, we have∫

BR/2

|D(V (Dv0))|2 dx ≤ c

R2

∫
BR

|V (Dv0) − V (z0)|2 dx . (3.1)

Moreover, for every t ∈ (0, 1] there exists c ≡ c(n, N , p, L/ν, t) such that

(
−
∫

BR/2

|V (Dv0) − V (z0)|2 dx

) 1
2

≤ c

(
−
∫

BR

|V (Dv0) − V (z0)|2t dx

) 1
2t

. (3.2)

All the constants named c involved in (3.1)-(3.2) are independent of the choice of
z0 ∈ RN×n.
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Proof.
Step 1: Regularization. We first regularize the problem following a few smooth-
ing arguments similar to those in [29]. We consider a standard, symmetric and non-
negative mollifier φ : RN×n → R, such that φ ∈ C∞

0 (B1), and ‖φ‖L1(RN×n) = 1.
Moreover, in order to apply the technique of [29] we also need a technical assump-
tion, namely we need to take φ such that∫

B1\B1/2

φ(z) dz ≥ 1/1000 . (3.3)

For every k ∈ N set φk(z) := k N×nφ(kz), and then define the smooth vector field
ak(z) via convolution as follows:

ak(z) := (a0 ∗ φk)(z) :=
∫

B(0,1)

a0(z + k−1 y)φ(y) dy .

Assumptions (1.2) and a few convolution estimates also using (3.3), similar to those
of [29], Lemma 3.1, imply that each ak satisfies




|ak(z)| + |∂zak(z)|(s2
k + |z|2) 1

2 ≤ c(s2
k + |z|2) p−1

2

c−1(s2
k + |z|2) p−2

2 |λ|2 ≤ 〈∂zak(z)λ, λ〉

|a0(z) − ak(z)| ≤ ck−1(s2
k + |z|2) p−2

2 ,

(3.4)

whenever z, λ ∈ RN×n , where sk := s + k−1, k ∈ N, and c ≡ c(n, N , p, L/ν).
Note that the new ellipticity/growth constant c is actually independent of k ∈ N.
Moreover each ak satisfies the assumptions (1.2) with s replaced by sk , for different
constants ν, L , but still depending on the original ones. This fact and standard
monotonicity methods [53] allow to define, with BR ⊂⊂ � as in the statement,
vk ∈ v0 + W 1,p

0 (BR) as the unique solution to

{ −div ak(Dvk) = 0 in BR
vk = v0 on ∂ BR . (3.5)

Step 2: Estimates. Under assumptions (3.4)1,2 the proof of Caccioppoli’s type
inequality (3.1) with c ≡ c(n, N , p, L/ν), V (Dv0) ≡ Vsk (Dvk), and any ball
Br ⊆ BR , can be inferred from [18], Theorem 1.1, with minor variants, see also
[29, 36, 48]. As for the proof of (3.2), set

χ0 :=



n
n−2 if n > 2

2 if n = 2
> 1 .
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Using a simple scaling argument, and applying Sobolev embedding theorem to the
map Vsk (Dvk) − Vsk (z0), we get that there exists a constant c ≡ c(n) such that for
any ball Br ⊆ BR(

−
∫

Br/2

|Vsk (Dvk) − Vsk (z0)|2χ0 dx

) 1
χ0

≤ c −
∫

Br/2

|Vsk (Dvk) − Vsk (z0)|2 dx

+cr2 −
∫

Br/2

|D(Vsk (Dvk))|2 dx .

We now use (3.1) with V (Dv0) ≡ Vsk (Dvk) for the last integral, thereby getting

(
−
∫

Br/2

|Vsk (Dvk) − Vsk (z0)|2χ0 dx

) 1
χ0

≤ c −
∫

Br

|Vsk (Dvk) − Vsk (z0)|2 dx .

In the last two inequalities it is c ≡ c(n, N , p, L/ν). Inequality (3.4) for V (Dv0) ≡
Vsk (Dvk) now follows from Lemma 3.1, and then Hölder’s inequality again.

Step 3: Approximation. Assumptions (3.4)1,2 imply in a rather standard way that
ak(z) satisfy the growth and monotonicity assumptions (2.7)-(2.8) with s replaced
by sk , uniformly with respect to k ∈ N. In turn this implies that vk is a so-called
Q-minimum of the functional

w 	→
∫

BR

(|Dw|p + s p + k−p) dx (3.6)

with Q ≡ Q(n, N , p, L/ν) ≥ 1 being independent of k ∈ N; for such a conclusion
see Theorem 6.1 from [34] applied to the functional in (3.6), when, with the notation
of [34], it is a1(x) ≡ [a2(x)]p/(p−1) ≡ s p

k . The Q-minimality of vk now easily
yields

‖Dvk‖L p(BR) ≤ c(n, N , p, L/ν)‖|Dv0| + s + 1‖L p(BR) . (3.7)

Therefore, up to a non-relabeled subsequence we may assume that {vk}k weakly
converges to some map in W 1,p

0 (BR); actually we may assume that vk → v0

strongly in W 1,p(BR) too. Indeed, using that both v0 and vk are solutions, and
that v0 ≡ vk on ∂ BR , and making also use of (2.6), we have∫

BR

|Dvk − Dv0|p dx ≤ c
∫

BR

〈a0(Dvk) − a0(Dv0), Dvk − Dv0〉 dx

= c
∫

BR

〈a0(Dvk) − ak(Dvk), Dvk − Dv0〉 dx

≤ 1

2

∫
BR

|Dvk − Dv0|p dx

+c
∫

BR

|a0(Dvk) − ak(Dvk)|
p

p−1 dx .
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The last integral tends to zero as k ↗ ∞ by (3.4)3 and (3.7). Therefore Dvk → Dv0
strongly in L p(BR), and since all the vk, v0 share the same boundary datum it fol-
lows vk → v0 strongly in W 1,p(BR). In turn this and (2.3) imply that up to another
subsequence Vsk (Dvk) → V (Dv0) strongly in L2(BR). Fix z0 ∈ RN×n as in the
statement; applying estimate (3.1) to Vsk (Dvk) instead of V (Dv0), which is al-
lowed by the previous step, we infer that {Vsk (Dvk)}k is bounded in W 1,2(BR/2)

and therefore it also holds Vsk (Dvk) ⇀ V (Dv0) weakly in W 1,2(BR/2) up to
yet another subsequence. We are ready to conclude: writing estimate (3.1) with
V (Dv0) ≡ Vsk (Dvk) and letting k ↗ ∞ we find the final form of (3.1) for the orig-
inal V (Dv0) using strong convergence for the right-hand side, and lower semicon-
tinuity for the left-hand one. From this last fact the inclusion V (Dv0) ∈ W 1,2

loc (A)

in turn follows via a covering argument. In the same way (3.2) follows from the
similar inequality for the Vsk (Dvk) given in Step 2.

Finally, a few basic consequences of De Giorgi’s regularity theory for elliptic equa-
tions, and Gehring’s lemma for elliptic problems and variational integrals; see for
instance [34, Chapters 6-7], for a reasonable overview of the subject.

Lemma 3.3. Let v ∈ W 1,p(A) with p ∈ (1, n] be a weak solution to the equation

div a(x, Dv) = 0 in A , (3.8)

under the assumptions

|a(x, z)| ≤ c(s2 + |z|2) p−1
2 , c−1|z|p − cs p ≤ 〈a(x, z), z〉 , (3.9)

for every x ∈ � and z ∈ Rn, where c ≡ c(L/ν) and ν, L are the numbers given in
(1.2). There exists β ≡ β(n, p, L/ν) ∈ (0, 1], such that for every q ∈ (0, p] there
exists c ≡ c(n, p, L/ν, q) such that, whenever BR ⊆ A, and 0 < � ≤ R it holds∫

B�

(|Dv|q + sq) dx ≤ c
( �

R

)n−q+βq
∫

BR

(|Dv|q + sq) dx . (3.10)

Moreover, there exists χ ≡ χ(n, p, L/ν) > 1, such that Dv ∈ L pχ

loc (A, Rn) and

(
−
∫

BR/2

|Dv|pχ dx

) 1
pχ

≤ c

(
−
∫

BR

(|Dv|q + sq) dx

) 1
q

, (3.11)

where again c ≡ c(n, p, L/ν, q).

Proof. First observe that by (3.9) we may apply Theorem 6.1 from [34] with the
choice a1(x) ≡ [a2(x)]p/(p−1) ≡ s p, concluding that the solution v is a Q-
minimum of the functional

w 	→
∫

A
(|Dw|p + s p) dx (3.12)
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with Q ≡ Q(n, p, L/ν) ≥ 1. This in turn allows to use Theorem 6.7 from
[34] that in the special case of the functional in (3.12) applies with the choice
θ(x, u) ≡ s, and ultimately yields the existence of higher integrability exponent
χ ≡ χ(n, p, L/ν) > 1 such that Dv ∈ L pχ

loc (A, Rn); moreover (3.11) holds for
q = p. In turn (3.11) for every q ∈ (0, p] follows applying Lemma 3.1 with the
choice χ0 ≡ χ . In particular Hölder’s inequality gives(

−
∫

BR/2

|Dv|p dx

) q
p

≤ c −
∫

BR

(|Dv|q + sq) dx . (3.13)

It remans to establish (3.10); this inequality is standard when q = p, that is

−
∫

B�

|Dv|p dx ≤ c
( �

R

)−p+βp −
∫

BR

|Dv|p dx + c
( �

R

)−p+βp
s p , (3.14)

where β > 0 is as specified in the statement. For the proof of (3.14) see Remark
3.4 below. Therefore, when � ∈ (0, R/2], using Hölder’s inequality yields

−
∫

B�

|Dv|q dx ≤
(

−
∫

B�

|Dv|p dx

) q
p

(3.14)≤ c
( �

R

)−q+βq
(

−
∫

BR/2

|Dv|p dx

) q
p

+ c
( �

R

)−q+βq
sq

(3.13)≤ c
( �

R

)−q+βq −
∫

BR

(|Dv|q + sq) dx .

Summing sq to both sides of the previous inequality, taking into account that � ≤ R
and q − βq ≥ 0, and finally getting rid of the averages gives (3.10) when � ∈
(0, R/2]; the case � ∈ (R/2, R] trivially follows and the lemma is completely
proved.

Remark 3.4 (An esoteric detail). By carefully tracing the dependence of the con-
stants back in De Giorgi’s theory - see in particular [34], Paragraphs 7.1-7.3 - we are
giving here a justification of inequality (3.14). Using Theorem 7.7 from [34], ap-
plied to the particular functional in (3.12) when a(x) ≡ s p, and taking into account
Remark 7.7 again from [34], we have that (3.14) holds in the preliminary form

−
∫

B�

|Dv|p dx ≤ c
( �

R

)−p+βp −
∫

BR

|Dv|p dx + c‖s p‖Lt (BR)�
−p+βp , (3.15)

where β := min{β̃(n, p, L/ν), nε/p} and β̃(n, p, L/ν) > 0, 1/t := p/n − ε;
here ε ∈ (0, p/n) can be picked arbitrarily small. In fact, choose ε ≡ ε(n, p, L/ν)

small enough in order to have that β = nε/p; then

‖s p‖Lt (BR)�
−p+βp ≤ c(n, p)s p R p−nε�−p+βp = cs p

( �

R

)−p+βp
.

Merging the latter inequality with (3.15) yields (3.14).
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4. Comparison estimates

Let us first introduce some notation that we shall keep for the rest of the paper;
accordingly to (1.15) and (1.33), in the case θ ∈ [p, n] in (1.27) we define


σ(q, θ) := θ(1 − q/m) = θ − q(θ−1)

p−1 when p − 1 ≤ q < m

σ(q) := n − q(n−1)
p−1 when 1 ≤ q < b .

(4.1)

Here, as in the rest of the paper, b will denote the number defined in (1.9), and m
the one in (1.28). For the rest of the section we fix a ball

BR ≡ B(x0, R) ⊂⊂ �, with R ≤ 1 .

The first two lemmas are dealing with weak solutions to more regular problems
i.e. u ∈ W 1,p

0 (�) will be the unique solution to

{ −div a(x, Du) = f ∈ L∞(�) in �

u = 0 on ∂�, (4.2)

for a fixed f to be eventually chosen; such a solution exists via standard mono-
tonicity methods [53] as f belongs to the dual of W 1,p. By the same argument we
introduce v ∈ u + W 1,p

0 (BR), defined as the unique solution to

{ −div a(x, Dv) = 0 in BR
v = u on ∂ BR . (4.3)

Lemma 4.1. Under the assumptions (1.2) with p ≤ n, with u ∈ W 1,p(BR) as in
(4.2), and v ∈ u + W 1,p

0 (BR) as in (4.3), we have for any 1 ≤ q < b that

∫
BR

|V (Du)− V (Dv)|2q/p +|Du − Dv|q dx ≤ c

(∫
BR

| f | dx

) q
p−1

Rσ(q) , (4.4)

where σ(q) is in (4.1), and c ≡ c(n, p, ν, q).

Proof.
Step 1. Here we observe that we can assume B(x0, R) ≡ B1 by a scaling argument.
Indeed, changing variables, we let for y ∈ B1



ũ(y) := R−1u(x0 + Ry), ṽ(y) := R−1v(x0 + Ry),

ã(y, z) := a(x0 + Ry, z), f̃ (y) := R f (x0 + Ry), BR ≡ B(x0, R),

−div ã(y, Dũ) = f̃ , −div ã(y, Dṽ) = 0 .

(4.5)
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Obviously ũ ≡ ṽ on ∂ B1. It is readily verified that the new vector field ã still
satisfies (1.2). Now (4.4) follows by writing its corresponding version for R = 1,
and scaling back to BR .

Step 2. Here we prove the following implication:∫
B1

| f | dx ≤ 1 =⇒
∫

B1

|V (Du) − V (Dv)|2q/p + |Du − Dv|q dx ≤ c2 , (4.6)

with c2 ≡ c2(n, p, ν, q). Notice that the following computations remain valid also
for q ∈ [1, p − 1). In order to prove (4.6) we shall revisit the technique of [8],
reporting the necessary modifications in some detail for the sake of clarity. For
k > 0, let us define the following truncation operators, classical after [8]:

Tk(s) := max{−k, min{k, s}}, �k(s) := T1(s − Tk(s)), s ∈ R . (4.7)

Since both u and v are solutions, we test the weak formulation∫
B1

〈a(x, Du) − a(x, Dv), Dϕ〉 dx =
∫

B1

f ϕ dx , (4.8)

with ϕ ≡ Tk(u − v); this function is admissible as it is in L∞(BR) ∩ W 1,p
0 (BR),

and we have (2.8). Using the monotonicity inequalities (2.5)-(2.6), and the bound
in (4.6), we easily obtain with c ≡ c(n, p, ν)∫

Dk

|V (Du) − V (Dv)|2 + |Du − Dv|p dx ≤ ck
∫

B1

| f | dx ≤ ck . (4.9)

Here we have set
Dk := {x ∈ B1 : |u(x) − v(x)| ≤ k} . (4.10)

Moreover, testing again (4.8) with ϕ ≡ �k(u − v), and again using (2.5)-(2.6) and
the bound in (4.6), we obtain∫

Ck

|V (Du) − V (Dv)|2 + |Du − Dv|p dx ≤ c
∫

B1

| f | dx
(4.6)≤ c , (4.11)

where this time

Ck := {x ∈ B1 : k < |u(x) − v(x)| ≤ k + 1} , (4.12)

and c ≡ c(n, p, ν). By Hölder’s inequality, and the very definition of Ck , we find∫
Ck

|V (Du) − V (Dv)|2q/p + |Du − Dv|q dx

≤ c|Ck |1− q
p

(∫
Ck

|V (Du) − V (Dv)|2 + |Du − Dv|p dx

) q
p

(4.13)

(4.11)≤ c|Ck |1− q
p ≤ c

k
q∗

(
1− q

p

)
(∫

Ck

|u − v|q∗
dx

)1− q
p

.
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With 0 = k0 ∈ N to be fixed later, we have, using the previous inequality and
Hölder’s inequality for sequences, and finally Sobolev’s embedding theorem, as
q < n under the present assumptions:∫

B1

|V (Du) − V (Dv)|2q/p + |Du − Dv|q dx

=
∫

Dk0

|V (Du) − V (Dv)|2q/p + |Du − Dv|q dx

+
∞∑

k=k0

∫
Ck

|V (Du) − V (Dv)|2q/p + |Du − Dv|q dx (4.14)

(4.9)≤ ck0 + c

[ ∞∑
k=k0

1

k
q∗

(
p−q

q

)
] q

p (∫
B1

|u − v|q∗
dx

)1− q
p

≤ ck0 + cH(k0)

(∫
B1

|Du − Dv|q dx

) q∗
q

(
1− q

p

)
,

with

H(k0) :=
[ ∞∑

k=k0

1

k
q∗

(
p−q

q

)
] q

p

, and c ≡ c(n, p, ν, q) .

Here H(k0) is finite since q < b implies that q∗(p/q − 1) > 1. We finally dis-
tinguish two cases. If p < n then we take k0 = 1 in (4.14), and observe that
γ := (q∗/q)(1 − q/p) < 1. Therefore, applying Young’s inequality in (4.14) with
conjugate exponents 1/γ and 1/(1 − γ ) we find (4.6). In the case p = n we have
that γ = 1 and the previous argument does not work; instead, we choose k0 large
enough in order to have cH(k0) = 1/2 in (4.14), and (4.6) follows again. Observe
that this determines k0 ≡ k0(n, p, ν, q) possibly large, and this finally reflects in
the constant c appearing in (4.6).

Step 3. We are ready to conclude the whole proof, again by mean of a scaling
argument. We shall prove the validity of the estimate for BR ≡ B1, and then
we shall conclude using Step 1. Without loss of generality we assume that A :=
‖ f ‖1/(p−1)

L1(B1)
> 0, otherwise u ≡ v and the assertion is trivially verified. We define

the new solutions ũ := A−1u, ṽ := A−1v, the new datum f̃ := A1−p f , and the
new vector field ã(x, z) := A1−pa(x, Az). Therefore we have that ũ ≡ ṽ on ∂ B1,
and moreover div ã(x, Dũ) = f̃ , div ã(x, Dṽ) = 0, in the weak sense. We make
sure that we can apply the result in Step 2. Trivially ‖ f̃ ‖L1(B1)

= 1 and moreover it
is easy to see that the vector field ã(x, z) satisfies (1.2) with s replaced by s/A ≥ 0.
Therefore the inequality in (4.6) holds in the form∫

B1

|Vs/A(Dũ)− Vs/A(Dṽ)|2q/p +|Dũ − Dṽ|q dx ≤ c2, c2 ≡ c2(n, p, ν, q) .
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Re-scaling back from ũ − ṽ to u − v and using (2.4), we find

∫
B1

|V (Du) − V (Dv)|2q/p + |Du − Dv|q dx ≤ c2

(∫
B1

| f | dx

) q
p−1

,

and the proof is concluded via Step 1.

Remark 4.2. Although the previous lemma has been stated for q ≥ 1 we shall use
it only for the case q ≥ p − 1.

Lemma 4.3. Under the assumptions (1.2) with p ≤ n, assume p −1 ≤ q < b, and
f ∈ L1,θ (BR). With u ∈ W 1,p

0 (BR) as in (4.2), and v ∈ u + W 1,p
0 (BR) as in (4.3),

we have for any R ≤ 1

∫
BR

|V (Du) − V (Dv)| 2q
p + |Du − Dv|q dx ≤ c‖ f ‖

q−p+1
p−1

L1,θ (BR)

∫
BR

| f | dx Rσ(q,θ) ,

(4.15)
where σ(q, θ) is in (4.1), and c ≡ c(n, p, ν, q).

Proof. First observe that the definition in (4.1) implies

(n − θ)

(
q

p − 1
− 1

)
+ σ(q, n) = σ(q, θ) . (4.16)

Now, since p − 1 ≤ q we may estimate

(∫
BR

| f | dx

) q
p−1 ≤ R

(n−θ)
(

q
p−1 −1

)
‖ f ‖

q−p+1
p−1

L1,θ (BR)

∫
BR

| f | dx , (4.17)

and then we conclude by merging (4.17) with (4.4), taking (4.16) into account.

The next twin lemmata are about the capacitary case θ < p. In the following u will
be the solution to (1.1), and µ the Radon measure in (1.1)1. We have u ∈ W 1,p

0 (�),
and u is the unique solution, since under the assumptions considered in the next two
lemmata it is µ ∈ W −1,p′

(�) by a theorem of D. R. Adams [1, 3].

Lemma 4.4. Under the assumptions (1.2) with p > n, and with u, v ∈ W 1,p(BR)

as in (1.1) and (4.3) respectively, if (1.27) holds then∫
BR

|V (Du) − V (Dv)|2 dx ≤ cM
1

p−1 |µ|(BR)Rσ(p) , (4.18)

where σ(p) = (p − θ)/(p − 1) is as in (1.36), and c ≡ c(n, p, ν).
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Proof. Notice that here it can be also θ = n. We test the weak formulation∫
BR

〈a(x, Du) − a(x, Dv), Dϕ〉 dx =
∫

BR

ϕ dµ , (4.19)

with ϕ ≡ u − v, which is admissible as p > n and therefore both u and v are
Hölder continuous. Moreover, using Morrey-Sobolev’s embedding theorem, and
the fact that u ≡ v on ∂ BR , we estimate∣∣∣∣

∫
BR

(u − v) dµ

∣∣∣∣ ≤ ||u − v||L∞(BR)|µ|(BR)

≤ cR
p−n

p ‖Du − Dv‖L p(BR)|µ|(BR) .

Combining the last inequality with (4.19) and using (2.5)-(2.6) we gain

‖V (Du)−V (Dv)‖2
L2(BR)

+‖Du−Dv‖p
L p(BR) ≤ cR

p−n
p ‖Du−Dv‖L p(BR)|µ|(BR),

thereby, applying Young’s inequality and then using (1.27) we conclude

‖V (Du) − V (Dv)‖2
L2(BR)

+ ‖Du − Dv‖p
L p(BR)

≤ cR
p−n
p−1 [|µ|(BR)] p

p−1 ≤ cR
p−θ
p−1 M

1
p−1 |µ|(BR) .

Lemma 4.5. Under the assumptions (1.2) and (1.27) with 0 ≤ θ < p < n, and
with u, v ∈ W 1,p(BR) as in (1.1) and (4.3) respectively, we have that (4.18) holds,
with σ(p) as in (1.36) and c ≡ c(n, p, ν, θ). In the case 0 ≤ θ < p = n estimate
(4.18) remains valid modulo replacing the right-hand side by cM1/(n−1)|µ|(BR)Rσ ,
for any choice σ < σ(n) = (n − θ)/(n − 1), where c ≡ c(n, ν, θ, σ ).

Proof. Firstly we deal with the case p < n. We test (4.19) with ϕ ≡ u − v, which
is again admissible since θ < p implies that µ ∈ W −1,p′

(�). Therefore using
again monotonicity (2.6) as for the previous lemma, using Hölder’s inequality and
applying Theorem 2.9 with the measure λ ≡ |µ|, we have

‖V (Du) − V (Dv)‖2
L2(BR)

+ ‖Du − Dv‖p
L p(BR) ≤ c

∣∣∣∣
∫

BR

(u − v) dµ

∣∣∣∣
≤ c[|µ|(BR)]1− 1

p

(∫
BR

|u − v|p d|µ|
) 1

p

(4.20)

≤ cM
1
p R

p−θ
p [|µ|(BR)]1− 1

p

(∫
BR

|Du − Dv|p dx

) 1
p

.

Using again Young’s inequality yields (4.18). In order to treat the case p = n
it suffices to use Theorem 2.9 again, and applying it in (4.20) as for the case
p < n.
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Finally, a comparison lemma of a different type. With BR̄ ≡ B(x0, R̄) ⊆
B(x0, R) and v as in (4.3), let us define v0 ∈ v + W 1,p

0 (BR̄) as the unique weak
solution to { −div a(x0, Dv0) = 0 in BR̄

v0 = v on ∂ BR̄ . (4.21)

Lemma 4.6. Under the assumptions (1.2) and (1.4), with v as in (4.3) and v0 as in
(4.21), with c ≡ c(n, p, L/ν) we have∫

BR̄

|V (Dv0) − V (Dv)|2 dx ≤ cR̄2
∫

BR̄

(|Dv|p + s p) dx . (4.22)

Proof. Using (2.7)-(2.8) it follows that v0 is a Q-minimum of the functional w 	→∫
BR

(|Dw|p + s p)dx , with Q ≡ Q(n, p, L/ν), see Theorem 6.1 from [34] that
implies ∫

BR̄

|Dv0|p dx ≤ c(n, p, L/ν)

∫
BR̄

(|Dv|p + s p) dx . (4.23)

In turn, using (1.2)1, and the fact that both v and v0 are solutions, we have∫
BR̄

(s2 + |Dv0|2 + |Dv|2) p−2
2 |Dv − Dv0|2 dx

≤ c
∫

BR̄

〈a(x0, Dv) − a(x0, Dv0), Dv − Dv0〉 dx

= c
∫

BR̄

〈a(x0, Dv) − a(x, Dv), Dv − Dv0〉 dx

(1.4)≤ cR̄
∫

BR̄

(s2 + |Dv0|2 + |Dv|2) p−1
2 |Dv − Dv0| dx

Young≤ 1

2

∫
BR̄

(s2 + |Dv0|2 + |Dv|2) p−2
2 |Dv − Dv0|2 dx

+cR̄2
∫

BR̄

(s2 + |Dv0|2 + |Dv|2) p
2 dx .

Using (2.2) for the left-hand side, we get∫
BR̄

|V (Dv0) − V (Dv)|2 dx ≤ cR̄2
∫

BR̄

(|Dv|p + |Dv0|p + s p) dx ,

and (4.22) follows by merging the latter inequality with (4.23).

Remark 4.7 (Global estimates by scaling). We consider (4.2), and we find a
global a priori estimate for u, making explicit the ones in [8]. Let us go back to
Lemma 4.1, Step 2, and let’s modify a bit the estimates given there. Assume not
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only that ‖ f ‖L1(�) ≤ 1 as in (4.6), but now also that sq |�| ≤ 1. Just forget about

v, and test (4.2)1 on the whole � with Tk(u) and �k(u), as u ∈ W 1,p
0 (�); then use

(2.7) to get 


∫
Dk

|Du|p dx ≤ ck‖ f ‖L1(�) + cs p|Dk |
∫

Ck

|Du|p dx ≤ c‖ f ‖L1(�) + cs p|Ck | ,

(4.24)

where this time Dk := {x ∈ � : |u(x)| ≤ k} and Ck := {x ∈ � : k < |u(x)| ≤
k + 1}, consistently with (4.10) and (4.12) respectively, and the constant c just
depends on n, p, L/ν. Then proceed as in (4.13), but using (4.24), and we get

‖Du‖q
Lq (Ck)

≤ c|Ck |1−q/p + csq |Ck | .

Summing up these inequalities as for (4.14), the terms |Ck |1−q/p are treated as
in (4.13) and subsequent estimates, while, obviously, sq |Dk0 | + ∑

k≥k0
sq |Ck | =

sq |�|. Therefore, when p < n, it follows that ‖Du‖q
Lq (�) ≤ c(1 + sq |�|) ≤ c̃,

where c̃ is universal in the sense it only depends on n, p, L/ν, q , and on �. In the
case p = n, which already requires a different treatment in Lemma 4.1, c̃ must be
replaced by c̃(|�|1/q−1/p + 1); indeed we need to use also

‖Du‖q
Lq (Dk0 ) ≤ c(kq/p

0 ‖ f ‖q/p
L1(�)

|�|1−q/p + sq |�|) ≤ c̃(|�|1−q/p + 1) ,

that comes from (4.24) exactly as in Lemma 4.1, Step 2, case p = n. Now we use a
scaling argument to treat the general case. Define, A := ‖ f ‖1/(p−1)

L1(�)
+ s|�|1/q > 0,

and accordingly, ũ := A−1u, f̄ := A1−p f , ã(x, z) := A1−pa(x, Az), so that
the vector field ã satisfies (1.2) with s replaced by s/A. Moreover ũ satisfies div
ã(x, ũ) = f̄ in the weak sense and obviously ũ ∈ W 1,p

0 (�). By the definition of
A we have that ‖ f̃ ‖L1(�) ≤ 1 and (s/A)q |�| ≤ 1, therefore we get the universal
bounds ‖Dũ‖Lq (�) ≤ c̃ when p < n, and ‖Dũ‖Lq (�) ≤ c̃(|�|1/q−1/n + 1) when
p = n. Taking into account the definitions of ã and A the latter inequalities readily
give

‖Du‖Lq (�) ≤ c‖ f ‖1/(p−1)

L1(�)
+ cs|�|1/q , (4.25)

that is the estimate we were looking for; the constant c in (4.25) will depend on
n, p, q, L/ν, and �. The dependence on � is on (|�|1/q−1/n + 1) in the case
p = n. As for Step 2 from Lemma 4.1, here everything works for q ∈ [1, p − 1)

too.
Remark 4.8. An a priori estimate can be derived for the super-capacitary case of
Theorem 1.10 too. Testing (1.7) with u, and this is possible since θ < p implies
µ ∈ W −1,p′

, using (2.7), and proceeding as in Lemmata 4.4 and 4.5, but using
(2.23) instead of (2.21), we have, with c as in Theorem 1.10

‖Du‖p
L p(�) ≤ cM1/(p−1)|µ|(�) + cs p|�| . (4.26)



CALDERÓN-ZYGMUND ESTIMATES AND MEASURE DATA 225

5. Basic approximation

In order to establish the existence and regularity results for the problem (1.1) for
a general measure µ, a standard device [8, 26] is to consider solutions to suitable
approximate problems, and then to prove a priori estimates; the main feature of such
solutions is to be in the natural space W 1,p

0 (�). Then the final assertion follows
by a suitable passage-to-the-limit argument. We remark that this procedure is not
necessary when considering the assumptions of Theorem 1.10, that is when θ <

p (p-capacitary measures). In this section we set up the approximation scheme,
considered in the rest of the paper for the case θ ∈ [p, n]. In fact, as already
remarked in the Introduction, in the case θ < p the measure µ belongs to the dual
space W −1,p′

(see [1]), and at this point the standard monotone operator theory
provides a unique solution to (1.1) in the natural energy space W 1,p

0 (�), therefore
no approximation with W 1,p-solutions is obviously needed.

We consider a standard, symmetric and non-negative mollifier φ ∈ C∞
0 (B1)

such that ‖φ‖L1(Rn) = 1, and then define, for k ∈ N, φk(x) := knφ(kx). Finally the
functions fk : Rn → R are defined via convolution, fk(x) := (µ ∗ φk)(x). Since in
particular fk ∈ L∞(�), applying standard monotonicity methods [53] we can find
a unique uk ∈ W 1,p

0 (�) such that{ −div a(x, Duk) = fk in �

uk = 0 on ∂�. (5.1)

From now on and for the rest of the paper the sequence {uk}k ⊂ W 1,p
0 (�) will

be the one fixed by (5.1). Let us collect some basic facts now. Up to extracting a
non-relabeled subsequence we can assume

fk ⇀ µ weakly in the sense of measures. (5.2)

Moreover, looking at [62], Proposition 2.7, we have

‖ fk‖L1(�) ≤ |µ|(�), ‖ fk‖L1,θ (�) ≤ ‖µ‖L1,θ (�)

(1.27)≤ M , (5.3)

and

‖ fk‖L1(BR) ≤ |µ|(BR+1/k), ‖ fk‖L1,θ (BR) ≤ ‖µ‖L1,θ (BR+1/k)
. (5.4)

Applying Remark 4.7 and in particular estimate (4.25) to uk , and eventually using
(2.3), we get∫

�

|V (Duk)|2q/pdx +
∫

�

|Duk |qdx ≤c[|µ|(�)] q
p−1 + csq |�|, ∀ q <b , (5.5)

where c ≡ c(n, p, L/ν, q, �), and is independent of k ∈ N. Therefore we immedi-
ately obtain that up to a non-relabeled subsequence

uk ⇀ u weakly in W 1,q(�) and uk → u strongly in Lq(�) . (5.6)
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The function u is eventually shown to be a solution of (1.1). The proof of this fact
usually involves certain truncation arguments [8,9] to prove the strong convergence
of the gradients. Thanks to the stronger a priori estimates we derive here we shall
give a very short proof of such convergence; see Theorem 1.2. The function u is the
solution the Theorems and results of Section 1 in the super-capacitary case θ ≥ p.

6. General measures

This section is mainly devoted to the proof of Theorems 1.2-1.4 and Corollary 1.5.
The ingredients will be: the lemmata of Section 4, the key estimate below the
growth exponent (3.2), and a variant of a fractional regularity technique recently
introduced in [48] in order to obtain singular sets estimates for variational prob-
lems.

Warning. In the rest of the paper we shall very often deal with a solution u to
problem (4.2), for a fixed, but a priori un-specified L∞ function f . Eventually we
shall take f ≡ fk and u ≡ uk , where uk, fk appear in (5.1).

Keeping (4.1) in mind, let us define

δ := pσ(q, θ)

2q
; γ (t) := δ

δ + 1 − t
, for every t ∈ [0, δ + 1) . (6.1)

Remark 6.1. We have δ ≤ 1. Indeed, by (4.1), when p − 1 ≤ q then σ(q, θ) ≤ 1,
therefore

δ ≤ p

2q
≤ p

2(p − 1)
≤ 1 ,

which holds since p ≥ 2. For the same reason we have 2q/p ≥ 1 for q ≥ p − 1.

We shall start deriving a priori estimates for W 1,p-solutions to (4.2). We set

f̄ := ‖ f ‖
q−p+1

p−1

L1,θ (�′′) f if p − 1 ≤ q , (6.2)

where �′′ ⊆ � will be clarified in Lemmas 6.2 and 6.3 below. When θ = n it
follows directly from definition (2.14) that

‖ f̄ ‖L1(�) ≤ ‖ f ‖
q

p−1

L1(�)
. (6.3)

Lemma 6.2. Let u ∈ W 1,p
0 (�) be the unique solution to (4.2), under the assump-

tions (1.2) and (1.4) with p ≤ n, and let q be such that p − 1 ≤ q < b. Assume
that

V (Du) ∈ W t,2q/p
loc (�, R

n) , for some t ∈ [0, δ) , (6.4)
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where δ is as in (6.1), and that for every couple of open subsets �′ ⊂⊂ �′′ ⊂⊂ �

there exists c1 ≡ c1(dist(�′, ∂�′′)), such that

[V (Du)]2q/p
t,2q/p;�′ ≤ c1

∫
�′′

(|Du|q + sq + | f̄ |) dx . (6.5)

Then
V (Du) ∈ W t̃,2q/p

loc (�, R
n) , for every t̃ ∈ [0, γ (t)) , (6.6)

where γ (·) is in (6.1), and for every couple of open subsets �′ ⊂⊂ �′′ ⊂⊂ � there
exists a new constant c depending only on n, p, L/ν, q, dist(�′, ∂�′′), t̃, c1, such
that

[V (Du)]2q/p
t̃,2q/p;�′ ≤ c

∫
�′′

(|Du|q + sq + | f̄ |) dx . (6.7)

Moreover, for every i ∈ {1, . . . , n} and with 0 < |h| < dist(�′, ∂�′′)

sup
h

∫
�′

|τi,h V (Du(x))|2q/p

|h|γ (t)2q/p
dx ≤ c

∫
�′′

(|Du|q + sq + | f̄ |) dx . (6.8)

Proof. We fix a notation that we shall keep for the rest of the paper. Let us take
B ⊂⊂ �, a ball of radius R; we shall denote by Qinn ≡ Qinn(B) and Qout ≡
Qout(B) the largest and the smallest cubes, concentric to B and with sides parallel
to the coordinate axes, contained in B and containing B, respectively; clearly |B| ≈
|Qinn| ≈ |Qout| ≈ Rn . The cubes Qinn(B) and Qout(B) will be called the inner and
the outer cubes of B, respectively. We also denote the enlarged ball as B̂ ≡ 16B.
Consistently with such a notation we put Qinn ≡ Qinn(B) and Q̂out ≡ Qout(B̂),
and therefore we have the following chain of inclusions:

Qinn ⊂ B ⊂⊂ 2B ⊂⊂ 4B ⊂ Qinn(B̂) ⊂ B̂ ⊂ Q̂out . (6.9)

Now we fix arbitrary open subsets �′ ⊂⊂ �′′ ⊂⊂ �, and then take β ∈ (0, 1) to be
chosen later, and let h ∈ R be a real number satisfying

0 < |h|≤min

{(
dist(�′, ∂�′′)

10000
√

n

) 1
β

,

(
1

10000

) 1
1−β

}
=: d <dist(�′, ∂�′′) . (6.10)

We take x0 ∈ �′, and fix a ball of radius |h|β

B ≡ B(h) = B(x0, |h|β) . (6.11)

By (6.10) we have Q̂out ⊂ �′′. Let us first define v ∈ u + W 1,p
0 (B̂), and then

v0 ∈ v + W 1,p
0 (8B), as the unique solutions to the following Dirichlet problems:

{ −div a(x, Dv) = 0 in B̂
v = u on ∂ B̂,

(6.12)
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and { −div a(x0, Dv0) = 0 in 8B
v0 = v on ∂8B, (6.13)

respectively. Now we fix i ∈ {1, . . . , n} and write, using that |h| ≤ d from (6.10)

∫
B
|τi,h V (Du)|2q/p dx ≤ c

∫
B
|τi,h V (Dv0)|2q/p dx

+ c
∫

B
|V (Du(x + hei )) − V (Dv(x + hei ))|2q/p dx

+ c
∫

B
|V (Dv(x + hei )) − V (Dv0(x + hei ))|2q/p dx

+c
∫

B
|V (Du) − V (Dv)|2q/p dx

+ c
∫

B
|V (Dv) − V (Dv0)|2q/p dx

≤ c
∫

B
|τi,h V (Dv0)|2q/p dx (6.14)

+ c
∫

B̂
|V (Du) − V (Dv)|2q/p dx

+ c
∫

2B
|V (Dv) − V (Dv0)|2q/p dx

=: I + I I + I I I .

In order to estimate I I we shall use Lemmas 4.1 and 4.3, this last one when q ≥
p − 1 and θ < n; by the definition of σ(q, θ) in (4.1), we have

∫
B̂

|V (Du) − V (Dv)|2q/p dx ≤ c

(∫
B̂

| f̄ | dx

)
|h|βσ(q,θ) , (6.15)

where we used (6.2) too. To estimate I I I we first appeal to Lemma 4.6 that gives

∫
8B

|V (Dv0) − V (Dv)|2 dx ≤ c

(∫
8B

(s2 + |Dv|2) p
2 dx

)
|h|β2 , (6.16)

and then apply Lemma 3.3 to v in (6.12); with χ ≡ χ(n, p, L/ν) > 1 being the
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exponent determined in in Lemma 3.3 we have

∫
8B

|V (Dv0) − V (Dv)|2q/pdx ≤ c|h|nβ
(

1− q
p

) (∫
8B

|V (Dv0) − V (Dv)|2dx

) q
p

(6.16)≤ c|h| β2q
p +nβ

(
−
∫

8B
(s2 + |Dv|2) p

2 dx

) q
p

≤ c|h| β2q
p +nβ

(
−
∫

8B
(s2 + |Dv|2) pχ

2 dx

) q
pχ

(3.11)≤ c|h| β2q
p

∫
B̂
(s2 + |Dv|2) q

2 dx

(2.3)≤ c|h| β2q
p

∫
B̂
(s2 + |V (Dv)| 4

p )
q
2 dx

(2.3)≤ c|h| β2q
p

∫
B̂
(sq + |Du|q

+|V (Du) − V (Dv)|2q/p) dx

(6.15)≤ c|h| β2q
p

∫
B̂
(sq + |Du|q + | f̄ |) dx .

We recall that 16B = B̂. Summarizing the latter estimate and (6.15) yields

I I + I I I ≤ c
[
|h|βσ(q,θ) + |h|β2q/p

] ∫
B̂
(sq + |Du|q + | f̄ |) dx ,

where c ≡ c(n, p, L/ν, q) is independent of any of the balls considered. Recall-
ing (6.1) and Remark 6.1 that gives δ ≤ 1, we estimate |h|β2q/p ≤ |h|βσ(q,θ) =
|h|βδ2q/p as |h| ≤ 1, therefore

I I + I I I ≤ c|h|βδ2q/p
∫

B̂
(sq + |Du|q + | f̄ |) dx . (6.17)

Implicit in the previous inequality is∫
8B

|V (Du) − V (Dv0)|2q/p dx ≤ c|h|βδ2q/p
∫

B̂
(sq + |Du|q + | f̄ |) dx . (6.18)

Now we turn to I . Applying Lemma 3.2 to v0 taking a0(z) ≡ a(x0, z), (3.1) gives

−
∫

2B
|D(V (Dv0))|2 dx ≤ c|h|−2β −

∫
4B

|V (Dv0) − V (z0)|2 dx, (6.19)



230 GIUSEPPE MINGIONE

for every z0 ∈ Rn , while using (3.2) with t = q/p, we also have

(
−
∫

4B
|V (Dv0) − V (z0)|2 dx

) q
p ≤ c −

∫
8B

|V (Dv0) − V (z0)|2q/p dx . (6.20)

Now, again using Hölder’s inequality yields

∫
B
|τi,h V (Dv0)|2q/p dx ≤ c|h|nβ(1−q/p)

(∫
B
|τi,h V (Dv0)|2 dx

) q
p

. (6.21)

Using the definition of the operator τi,h in (2.10), elementary properties of Sobolev
functions, and again the restriction on |h| imposed in (6.10) that in this case serves
to ensure that B(x0, |h|β) + B(0, |h|) ⊂ B(x0, 2|h|β), we have∫

B
|τi,h V (Dv0)|2 dx ≤ c|h|2

∫
2B

|DV (Dv0)|2 dx

(6.19)≤ c|h|2−2β

∫
4B

|V (Dv0) − V (z0)|2 dx .

(6.22)

Combining (6.21) and (6.22) gives

∫
B
|τi,h V (Dv0)|2q/pdx ≤c|h|(1−β)2q/p+nβ(1−q/p)

(∫
4B

|V (Dv0) − V (z0)|2dx

) q
p

.

Using now (6.20) gives with c ≡ c(n, p, L/ν, q)

I =c
∫

B
|τi,h V (Dv0)|2q/pdx ≤c|h|(1−β)2q/p

∫
8B

|V (Dv0) − V (z0)|2q/pdx , (6.23)

and we estimate the last integral; recall that in the latter estimate z0 ∈ Rn is still to
be chosen. We shall distinguish two cases now.

Case t = 0. In this case we take z0 = 0 in (6.23); then (6.18) and (2.3) yield∫
8B

|V (Dv0) − V (z0)|2q/p dx ≤ c
∫

8B
(sq + |Dv0|q) dx

≤ c
∫

8B
(sq + |Du|q) dx + c

∫
8B

|V (Du) − V (Dv0)|2q/p dx

≤ c
∫

B̂
(sq + |Du|q + | f̄ |) dx .

(6.24)

Case t > 0. In this case we choose z0 as the following “average”:

z0 := V −1 ((V (Du))8B) ; (6.25)
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observe that such a choice is possible since the map V is bijective. Now, first∫
8B

|V (Dv0) − V (z0)|2q/p dx ≤ c
∫

8B
|V (Dv0) − V (Du)|2q/p dx

+ c
∫

8B
|V (Du) − V (z0)|2q/p dx .

(6.26)

Then by (6.4) and Proposition 2.3 with (6.25), we have∫
8B

|V (Du) − V (z0)|2q/p dx ≤ c|h|βt2q/p[V (Du)]2q/p
t,2q/p;8B . (6.27)

Combining (6.27) and (6.18) with (6.26) we have∫
8B

|V (Dv0) − V (z0)|2q/p dx

≤ c|h|βt2q/p
{∫

B̂
(sq + |Du|q + | f̄ |) dx + [V (Du)]2q/p

t,2q/p;B̂

}
.

(6.28)

Observe that we have used t < δ to estimate |h|βδ2q/p ≤ |h|βt2q/p as |h| ≤ 1.
Now let us define for any measurable set A ⊂⊂ � the following set function:

λ(A) :=
∫

A
(sq + |Du|q + | f̄ |) dx + χ(t)[V (Du)]2q/p

t,2q/p;A , (6.29)

where χ(t) = 0 if t = 0, and χ(t) = 1 if t > 0. Summarizing (6.23), (6.24) and
(6.28) we have

I = c
∫

B
|τi,h V (Dv0)|2q/p dx ≤ c|h|[(1−β)+tβ]2q/pλ(B̂) .

Combining the latter estimate with (6.17), and in turn with (6.14), we find∫
B
|τi,h V (Du)|2q/p dx ≤ c

[
|h|[(1−β)+tβ]2q/p + |h|βδ2q/p

]
λ(B̂) .

Since by (6.9) Qinn(B) ≡ Qinn ⊂ B and B̂ ⊂ Q̂out ≡ Qout(B̂), we finally obtain∫
Qinn

|τi,h V (Du)|2q/p dx ≤ c̃
[
|h|[(1−β)+tβ]2q/p + |h|βδ2q/p

]
λ(Q̂out) . (6.30)

Now we conclude with a covering argument. Preliminary, observe that the set func-
tion λ(·) in (6.29) is not a measure due to the presence of [V (Du)]t,2q/p;A in its
definition, but it is nevertheless countably super-additive, that is∑

λ(A j ) ≤ λ
(∪A j

)
, (6.31)
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whenever {A j } j is a countable family of mutually disjoint subsets. The covering
argument goes now as follows: first recall that all the cubes here have sides parallel
to the coordinate axes; then for each h ∈ R \ {0} satisfying (6.10) we can find balls
B1 ≡ B(x1, |h|β), ... , BJ ≡ B(xJ , |h|β), J ≡ J (h) ∈ N of the type considered in
(6.11) such that the corresponding inner cubes Qinn(B1),. . . , Qinn(BJ ) are disjoint
and cover �′ up to a negligible set

|�′ \
⋃

Qinn(B j )| = 0, Qinn(Bi ) ∩ Qinn(B j ) = ∅ ⇐⇒ i = j . (6.32)

Actually we are proceeding as follows: we first take a lattice of cubes {Q j } with
equal side length, comparable to |h|β , and sides parallel to the coordinate axes, in
order to obtain (6.32). They must be centered in �′. Then we view them as the inner
cubes of the balls {B(x j , |h|β)}, according to (6.9). Now we sum up inequalities
(6.30) for j ≤ J and get

∑ ∫
Qinn(B j )

|τi,h V (Du)|2q/p dx

≤ c̃
[
|h|[(1−β)+tβ]2q/p + |h|βδ2q/p

] ∑
λ(Qout(B̂ j )) .

(6.33)

By construction, and in particular by (6.10), we have Qout(B̂ j ) ⊂ �′′, for every
j ≤ J . Moreover by (6.32) each of the dilated outer cubes Qout(B̂ j ) intersects the
similar ones Qout(B̂k) less than (32

√
n)n times. Using all these facts and (6.31), in

turns out that (6.32)-(6.33) imply∫
�′

|τi,h V (Du)|2q/p dx ≤ 28nc̃
[
|h|[(1−β)+tβ]2q/p + |h|βδ2q/p

]
λ(�′′) . (6.34)

Now we determine β in order to minimize the right-hand side with respect to |h|;
this yields [(1 − β) + tβ] = βδ, that is β = γ (t)/δ, see (6.1). Observe that we
are requiring everywhere that β < 1, see (6.10), and the choice β = γ (t)/δ is
admissible since t < δ implies γ (t)/δ < 1. Accordingly, for any h as in (6.10),
(6.34) becomes ∫

�′
|τi,h V (Du)|2q/p dx ≤ c0|h|γ (t)2q/pλ(�′′) , (6.35)

for c0 ≡ c0(n, p, L/ν, q). Therefore, since i ∈ {1, . . . , n} is arbitrary, the crucial
inequality (2.11) of Lemma 2.1 is satisfied with d as in (6.10), q replaced by 2q/p,
ᾱ ≡ γ (t), and finally S ≡ [c0λ(�′′)]p/2q . Up to changing the subsets according to
Lemma 2.13, that is passing to inner and outer subsets to �′′ and �′ respectively,

we may apply Lemma 2.1 that now gives V (Du) ∈ W t̃,2q/p
loc (�′, Rn), for every

t̃ < γ (t); as �′ is arbitrary, this proves the first part of the assertion. Changing
again the subsets, since �′ ⊂⊂ �′′ are themselves arbitrary, using estimate (2.12),
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and finally (2.3), we have that for every couple of open subsets �′ ⊂⊂ �′′ there
exists a constant c ≡ c(n, p, L/ν, q, dist(�′, ∂�′′)) such that

[V (Du)]2q/p
t̃,2q/p;�′ ≤ c

∫
�′′

(sq + |Du|q + | f̄ |) dx + c[V (Du)]2q/p
t,2q/p;�′′ . (6.36)

We have used (2.3) to estimate the integral of V arising when applying (2.12):∫
�′′

|V (Du)|2q/p dx ≤ c
∫

�′′
(sq + |Du|q) dx . (6.37)

Using (6.36) in combination with (6.5), and again changing the subsets via Lemma
2.13, we finally obtain (6.7) with the specified dependence of c. In a completely
similar way using (6.35) it follows (6.8) with |h| ≤ d as in (6.10). The full case
0 < |h| < dist(�′, ∂�′′) follows by increasing the constant c in (6.35) by a number
depending on n, p, q and dist(�′, ∂�′′); indeed when |h| ∈ (d, dist(�′, ∂�′′))

sup
h

∫
�′

|τi,h V (Du(x))|2q/p

|h|γ (t)2q/p
dx

≤ c

dγ (t)2q/p

∫
�′

|V (Du(x + hei ))|2q/p + |V (Du(x))|2q/p dx

≤ c

dγ (t)2q/p

∫
�′′

|V (Du)|2q/p dx
(2.3)≤ c

dγ (t)2q/p

∫
�′′

(sq + |Du|q) dx .

The proof, also of (6.6), is complete as the open subsets considered are arbi-
trary.

Lemma 6.3. Let u ∈ W 1,p
0 (�, RN ) be the unique solution to (4.2), under the as-

sumptions (1.2) and (1.4) with p ≤ n, and let q be such that p − 1 ≤ q < b.

Then

V (Du) ∈ W t,2q/p
loc (�, R

n), Du ∈ W 2t/p,q
loc (�, R

n), for every t ∈ [0, δ) , (6.38)

where δ is in (6.1). Moreover, for every couple of open subsets �′ ⊂⊂ �′′ ⊂⊂ �

there exists a constant c ≡ c(n, p, L/ν, q, t, dist(�′, ∂�′′)) such that

[V (Du)]2q/p
t,2q/p;�′ + [Du]q

2t/p,q;�′ ≤ c
∫

�′′
(|Du|q + sq + | f̄ |) dx (6.39)

and

sup
h

∫
�′

|τi,h Du(x)|q
|h|t2q/p

dx ≤ c
∫

�′′
(|Du|q + sq + | f̄ |) dx , (6.40)

for every i ∈ {1, . . . , n}, where 0 < |h| < dist(�′, ∂�′′).
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Proof. The proof follows from Lemma 6.2 via iteration. We first prove the assertion
about V (Du). The function γ (·) in (6.1) is seen to be increasing and it satisfies

t ∈ (0, δ) =⇒ γ (t) ∈ (t, δ) and γ (δ) = δ . (6.41)

Now, let us inductively define the two sequences {tk}k≥1 and {sk}k≥1 as

s1 := δ

4(δ + 1)
, t1 = 2s1, sk+1 := γ (sk), tk+1 := γ (sk) + γ (tk)

2
. (6.42)

From (6.41) it follows that sk ↗ δ, moreover, since γ (·) is increasing we have that
sk < tk < δ, so that also tk ↗ δ holds. We prove by induction that V (Du) ∈
W tk ,2q/p

loc (�, Rn), for every k ∈ N; this will prove the first assertion in (6.38). Ap-

plying Lemma 6.2 with t = 0 we immediately get V (Du) ∈ W t1,2q/p
loc (�, Rn),

with a corresponding estimate of the type (6.5). Now assuming that V (Du) ∈
W tk ,2q/p

loc (�, Rn), we may apply again Lemma 6.2 with t = tk , to get that V (Du) ∈
W t,2q/p

loc (�, Rn) for every t < γ (tk). Now observe, that since γ (·) is increasing and

sk < tk , we have that tk+1 < γ (tk), and therefore V (Du) ∈ W tk+1,2q/p
loc (�, Rn),

with corresponding estimates of the type (6.7) and (6.8). Taking into account the
fact that the open subsets �′ ⊂⊂ �′′ ⊂⊂ � in Lemma 6.2 are arbitrary, and the esti-
mates (6.5) and (6.7), the part of (6.39) regarding V (Du) also follows by induction.
In the same way, by induction on (6.8), for every i ∈ {1, . . . , n} and considering
0 < |h| < dist(�′, ∂�′′), we have

sup
h

∫
�′

|τi,h V (Du(x))|2q/p

|h|t2q/p
dx ≤ c

∫
�′′

(|Du|q + sq +| f̄ |) dx, ∀ t < δ . (6.43)

The assertions concerning Du instead follows using (2.2) and the fact that p ≥ 2:

[Du]q
2t
p ,q;�′ =

∫
�′

∫
�′

|Du(x) − Du(y)|q
|x − y|n+2tq/p

dxdy

≤
∫

�′

∫
�′

[
(s + |Du(x)| + |Du(y)|)p−2|Du(x) − Du(y)|2]q/p

|x − y|n+2tq/p
dxdy

≤ c
∫

�′

∫
�′

|V (Du(x)) − V (Du(y))|2q/p

|x − y|n+2tq/p
dxdy

= c[V (Du)]2q/p
t,2q/p;�′ , (6.44)

for any �′ ⊂⊂ �, where c ≡ c(n, p); this gives (6.39). A completely similar
argument allows to get (6.40) from (6.43), and the proof is complete.

Proof of Theorems 1.2 and 1.3. Firstly, observe that since p ≥ 2, then q ≥ p − 1
implies 2q/p ≥ 1, and therefore Lemma 6.3 can be used in the full range (1.15).
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We consider the approximation sequence {uk}k built in Section 5. Applying to each
uk the result of Lemma 6.3, and keeping in mind (5.3)-(5.5), we have

‖Duk‖q
W σ/q,q (�′) ≤ c

∫
�

(sq +|Duk |q +| f̄k |) dx ≤ c[|µ|(�)] q
p−1 +csq |�| , (6.45)

with the obvious definition of f̄k := ‖ fk‖
q−p+1

p−1

L1(�)
fk : look at (6.2)-(6.3) and recall that

here it is θ = n. The constant c depends as in the statement of Theorem 1.2, while
q ∈ [p − 1, b), and σ ∈ (0, σ (q)). Now estimate (1.17) follows from (5.5),(5.6)
and (6.45), together with a standard lower semicontinuity argument to handle the
left-hand sides of (5.5), (6.45). We conclude showing that u solves (1.1) in the
sense of (1.7). The a priori estimate (6.45) allows for a quick derivation of this fact.
Indeed, thanks to Rellich’s compactness theorem in the case of fractional Sobolev
spaces [4], we have that, up to extracting a diagonal subsequence, Duk strongly
converges to Du in Lt

loc(�, Rn) for every t < nq/(n − σ(q)), and on the other
hand note that nq/(n − σ(q)) = n(p − 1)/(n − 1) > p − 1. Taking into account
the growth condition (2.8), and that fk ⇀ µ by (5.2), we can pass to the limit in
(5.1)1 using (2.8) and a well known variant of Lebesgue’s dominated convergence
theorem, getting that u finally satisfies (1.7). The proof of Theorem 1.2 is now
complete, and estimate (1.17) is also proved. It remains to prove (1.16), to this aim
we use a scaling argument. Take BR ⊂ �, let u ∈ W 1,p(�) be the solution to (4.2)
with a fixed f , and scale it back as in (4.5) in order to obtain ũ(y), a solution in
B1. Now observe that we may apply Lemma 6.3 to ũ since the whole argument of
the lemma is local, and makes no use of the boundary information on the solution
considered. Therefore estimate (6.39) applied to ũ with �′ ≡ B1/2 gives

[Dũ]q
σ/q,q;B1/2

≤ c‖|Dũ| + s‖q
Lq (B1)

+ c‖ f̃ ‖q/(p−1)

L1(B1)
,

for every σ < σ(q); here we also used (6.3) while c ≡ c(n, p, L/ν, σ, q). Scaling
back to BR , observing that [Dũ]q

σ/q,q;B1/2
= Rσ−n[Du]q

σ/q,q;BR/2
we have

[Du]q
σ/q,q;BR/2

≤ cR−σ‖|Du| + s‖q
Lq (BR) + cRσ(q)−σ‖ f ‖q/(p−1)

L1(BR)
.

We used that n − σ(q) = q(n − 1)/(p − 1) by (4.1). Writing the latter estimate for
u ≡ uk , and using the approximation scheme of Section 5 and in particular (5.2)
and (5.4), we finally obtain estimate (1.16).

Remark 6.4. The crucial case in the proof Theorem 1.2 is actually (1.12). The case
(1.14) can be obtained by embedding from (1.12) [65], 2.2.3. Indeed, for a space
W α,q the number α − n/q is called integer dimension; all the spaces in (1.14) share
the same integer dimension if ε = 0, and this allows for using a suitable embedding.
We gave here a self-contained proof, which is on the other hand even shorter than
the one using abstract embedding theorems for Besov spaces.
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Proof of Theorem 1.4. The proof goes along the lines of the one for Theorem 1.2.
Take q = p − 1 in Lemma 6.3, in such a way that now (6.1) gives

δ = p

2(p − 1)
. (6.46)

Now we proceed as for the proof of Theorems 1.2-1.3, again applying Lemma 6.3
first to the approximating solutions uk defined in Section 5, and then passing to the
limit k ↗ ∞ the resulting a priori estimates. The equality in (6.46) together with
(6.38) finally leads to

V (Du) ∈ W
t, 2(p−1)

p
loc (�, R

n) for every t <
p

2(p − 1)
,

which establishes (1.22) in Theorem 1.4. In order to get (1.23) and therefore com-
pleting the proof we just use the a priori estimate (6.39) for the approximate solu-
tions uk , and then we let k ↗ ∞ as for the proof of Theorem 1.3.

Remark 6.5. As for (1.15) we can prove, using Lemma 6.3, that the solution u
found in Theorem 1.4 satisfies

V (Du) ∈ W
pσ(q)

2q −ε,
2q
p

loc (�, R
n), for every ε > 0 ,

for the values of q described in (1.15).

Proof of Corollary 1.5. This is based on inequality (2.2). Set q0 = 2(p − 1)/p;
since p ≥ 2 we have

s
(p−2)q0

2

∫
�′

∫
�′

|Du(x) − Du(y)|q0

|x − y|n+1−ε
dx dy

≤
∫

�′

∫
�′

[
(s + |Du(x)| + |Du(y)|)p−2|Du(x) − Du(y)|2]q0/2

|x − y|n+1−ε
dx dy

≤ c(n, p)

∫
�′

∫
�′

|V (Du(x)) − V (Du(y))|q0

|x − y|n+1−ε
dx dy ,

and the proof is concluded using estimate (1.23).

7. The capacitary case

Here we give the proof of Theorem 1.10, that will be along the lines of the one for
Theorem 1.2; therefore we shall confine to report the necessary modifications. The
main point here is that we do not need estimates below the growth exponent like
(3.2) and (3.11), as the solution u to (1.1) is uniquely determined in W 1,p

0 (�); for
the same reason no approximation scheme as in Section 5 is needed.
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As for (6.1) we first we need to define

δ := σ(p)

2
, γ (t) := δ

δ + 1 − t
t ∈ [0, δ + 1), µ̄ := M

1
p−1 |µ| , (7.1)

where M appears in (1.27), and σ(p) is defined in (1.36). Next lemma is the analog
of Lemma 6.2.

Lemma 7.1. Let u ∈ W 1,p
0 (�, RN ) be the unique solution to (1.1), under the as-

sumptions (1.2), (1.4) and (1.27) for θ < p. Assume that

V (Du) ∈ W t,2
loc (�, R

n) , for some t ∈ [0, δ) , (7.2)

where δ is as in (7.1), and that for every couple of open subsets �′ ⊂⊂ �′′ ⊂⊂ �

there exists a constant c1 ≡ c1(dist(�′, ∂�′′)) such that

[V (Du)]2
t,2;�′ ≤ c1

∫
�′′

(|Du|p + s p) dx + c1µ̄(�′′) . (7.3)

Then
V (Du) ∈ W t̃,2

loc (�, R
n) , for every t̃ ∈ [0, γ (t)) , (7.4)

where γ (·) is in (7.1). Moreover, for every couple of open subsets �′ ⊂⊂ �′′ ⊂⊂ �

there exists a constant c ≡ c(n, p, L/ν, dist(�′, ∂�′′), t̃, c1) such that

[V (Du)]2
t̃,2;�′ ≤ c

∫
�′′

(|Du|p + s p) dx + cµ̄(�′′) . (7.5)

Proof. The proof follows the one of Lemma 6.2, therefore we shall keep the nota-
tion introduced there, giving the suitable modifications. Let us firstly treat the case
p = n. Once again h, v, v0 are as in (6.10) and (6.12)-(6.13), respectively. As for
(6.14),∫

B
|τi,h V (Du)|2dx ≤ c

∫
B
|τi,h V (Dv0)|2 dx + c

∫
B̂
|V (Du) − V (Dv)|2 dx

+ c
∫

2B
|V (Dv) − V (Dv0)|2dx (7.6)

=: I + I I + I I I .

The term I I I is estimated via (6.16), while for I I we use Lemmata 4.4-4.5:∫
B̂

|V (Du) − V (Dv)|2 dx ≤ cµ̄(B̂)|h|βσ(p) .

Therefore, as σ(p) ≤ 2 when p ≥ 2, we have∫
B̂

|V (Du)−V (Dv0)|2dx+I I+I I I ≤c|h|β2δ

{∫
B̂
(s p + |Du|p)dx+µ̄(B̂)

}
. (7.7)
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As for I we shall simply use estimate (6.22). We again distinguish two cases:

Case t = 0. Taking z0 = 0 we have, using (7.7) and (2.3)∫
8B

|V (Dv0) − V (z0)|2dx ≤ c
∫

B̂
(s p + |Du|p)dx +

∫
8B

|V (Du) − V (Dv0)|2 dx

≤ c
∫

B̂
(s p + |Du|p) dx + cµ̄(B̂) . (7.8)

Case t > 0. In this case we choose z0 as in (6.25). Again we estimate∫
8B

|V (Dv0) − V (z0)|2 dx ≤ c
∫

8B
|V (Dv0) − V (Du)|2 dx

+c
∫

8B
|V (Du) − V (z0)|2 dx . (7.9)

Using Proposition 2.3, together with (7.2) and the choice (6.25), gives∫
8B

|V (Du) − V (z0)|2 dx ≤ c|h|β2t [V (Du)]2
t,2;8B . (7.10)

Combining (7.10) and (7.7) with (7.9) we have, as t < δ∫
8B

|V (Dv0) − V (z0)|2 dx

≤ c|h|β2t
[∫

B̂
(s p + |Du|p) dx + µ̄(B̂) + [V (Du)]2

t,2;B̂

]
.

(7.11)

Now let us set for any measurable set A ⊂⊂ �

λ(A) :=
∫

A
(s p + |Du|p) dx + µ̄(A) + χ(t)[V (Du)]2

t,2;A ,

where again χ(t) = 0 if t = 0, and χ(t) = 1 if t > 0. Summarizing (7.6), (7.8)
and (7.11) we have

I ≤ c
∫

B
|τi,h V (Dv0)|2 dx ≤ c|h|2[(1−β)+tβ]λ(B̂) .

Combining this last estimate with (7.7) and (7.6) we finally find∫
B
|τi,h V (Du)|2 dx ≤ c

[
|h|2[(1−β)+tβ] + |h|β2δ

]
λ(B̂) .

From now on we can proceed with the covering argument adopted in the proof of
Lemma 6.2, up to formula (6.34), arriving at∫

�′
|τi,h V (Du)|2 dx ≤ c

[
|h|2[(1−β)+tβ] + |h|β2δ

]
λ(�′′) . (7.12)
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Taking β = γ (t)/δ ∈ (0, 1) now yields∫
�′

|τi,h V (Du)|2 dx ≤ c|h|2γ (t)λ(�′′) ,

that is the analog of (6.35). From this point on the proof proceeds as for Lemma
6.2, and the case p = n is complete. As for p = n, Lemma 4.5 allows to re-do
the whole proof where this time δ := σ ′/2, for any σ ′ ∈ (0, σ (p)); therefore we

obtain V (Du) ∈ W t̃,2
loc (�, Rn) for every t̃ < (σ ′/2)/[(σ ′/2) + 1 − t]. Since σ ′

can be chosen arbitrarily close to σ(p) the statement follows again, and the proof is
complete. In particular (7.4) follows from the fact that the open subsets considered
are arbitrary.

Proof of Theorem 1.10. The proof goes as the one for Lemma 6.3, but directly for
the solution u to (1.1). Applying repeatedly Lemma 7.1 with t ≡ tk as in Lemma
6.3, and {tk} is the sequence defined in (6.42) with δ = σ(p)/2, we get that
V (Du) ∈ W tk ,2

loc (�, Rn) for every k ∈ N, with a corresponding estimate of the
type (7.3). The assertion finally follows observing that this time tk ↗ σ(p)/2,
passing to from V (Du) to Du as in (6.44), and using (4.26) to get the global bound
in (1.37).

8. Morrey estimates

In this section we give the proofs of Theorems 1.11 and 1.12. We shall actually
argue as follows: we first prove Theorem 1.11 in the special case q < b, at least as
a priori estimate. This will allows us to prove Theorem 1.12 immediately, and also
Theorem 1.8 in the next section. In turn Theorem 1.8 will finally imply Theorem
1.11 for the full range q < m; compare with (1.43). Therefore we shall start with

Lemma 8.1. Let u ∈ W 1,p
0 (�) be the solution to (4.2) for a fixed f ∈ L∞(�),

under the assumptions (1.2) with p ≤ n. Then with

p − 1 ≤ q <
n(p − 1)

n − 1
= b, and δ(q) := q(θ − 1)

p − 1
,

as in (1.39), for every couple of open subsets �′ ⊂⊂ �′′ ⊂⊂ � there exists c ≡
c(n, p, L/ν, q, dist(�′, ∂�′′)) such that whenever θ ∈ [p, n]

‖|Du| + s‖Lq,δ(q)(�′) ≤ c‖|Du| + s‖Lq (�′′) + c‖ f ‖1/(p−1)

L1,θ (�′′) . (8.1)

Moreover there exists c ≡ c(n, p, L/ν, q, dist(�′, ∂�), �) such that

‖|Du| + s‖Lq,δ(q)(�′) ≤ c‖ f ‖1/(p−1)

L1(�)
+ c‖ f ‖1/(p−1)

L1,θ (�)
+ cs|�|1/q . (8.2)
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Proof. We shall apply a standard comparison technique to get Morrey estimates.
Let us take BR ⊂⊂ �′′ with R ≤ 1, and define v ∈ u + W 1,p

0 (BR) as the unique
solution to (4.3). Using Lemma 3.3, estimate (3.10), for any � ∈ (0, R)∫

B�

(|Dv|q + sq) dx ≤ c
( �

R

)n−q+βq
∫

BR

(|Dv|q + sq) dx , (8.3)

where c ≡ c(n, p, L/ν, q), and β ≡ β(n, p, L/ν) ∈ (0, 1]. Now we compare u
and v in BR , that is, using the latter estimate∫

B�

(|Du|q + sq) dx ≤ c
∫

B�

(|Dv|q + sq) dx + c
∫

B�

|Dv − Du|q dx

≤ c
( �

R

)n−q+βq
∫

BR

(|Dv|q + sq) dx + c
∫

BR

|Dv − Du|q dx

≤ c
( �

R

)n−q+βq
∫

BR

(|Du|q + sq) dx + c
∫

BR

|Dv − Du|q dx .

(8.4)

Using Lemma 4.3, with c ≡ c(n, p, L/ν, q), and q ∈ [p − 1, b), we get∫
BR

|Du − Dv|q dx ≤ c‖ f ‖
q−p+1

p−1

L1,θ (BR)

∫
BR

| f | dx Rσ(q,θ)

≤ c‖ f ‖
q

p−1

L1,θ (BR)
Rn−δ(q) .

(8.5)

Observe that f ∈ L∞, therefore ‖ f ‖L1,θ (�) < ∞. Combining (8.4) and (8.5) yields∫
B�

(|Du|q + sq) dx ≤ c
( �

R

)n−q+βq
∫

BR

(|Du|q + sq) dx

+ c‖ f ‖
q

p−1

L1,θ (BR)
Rn−δ(q) ,

(8.6)

where c ≡ c(n, p, L/ν). Observe now that θ ≥ p implies n − q ≥ n − δ(q),
therefore we can apply Lemma 2.11 with the choice

ϕ(t) :=
∫

Bt

(|Du|q + sq) dx, B := ‖ f ‖
q

p−1

L1,θ (BR)
,

and δ0 := n − q + βq > δ1 := n − q + βq/2 > γ ≡ n − δ(q) in order to have,
after an elementary manipulation∫

B�

(|Du|q + sq) dx

≤ c1

{
c∗(R)

( �

R

)βq/2
∫

BR

(|Du|q + sq) dx + ‖ f ‖
q

p−1

L1,θ (BR)

}
�n−δ(q) ,

(8.7)
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for every � ≤ R, where c1 ≡ c1(n, p, L/ν, q), and c∗(R) = Rδ(q)−n . Now take
R̄ := dist(�′, ∂�′′)/4, then use (8.7) on the generic ball of radius R̄ centered in
�′; of course such a ball is contained in �′′. Also observe that such a choice of R̄
determines c∗ ≡ c∗(n, dist(�′, ∂�′′)) in (8.7). All in all such choices give∫

B�

(|Du|q + sq) dx ≤ c

[
‖|Du| + s‖q

Lq (�′′) + ‖ f ‖
q

p−1

L1,θ (�′′)

]
�n−δ(q) , (8.8)

with c ≡ c(n, p, L/ν, q, dist(�′, ∂�′′)), for any � ≤ R̄. This procedure, and an el-
ementary estimation involving the definition in (2.14), yield (8.1) with the specified
dependence of the constant. More precisely, (8.8) is satisfied for � ≤ R̄, but then is
satisfied also for any ball B� ⊂ �′, with � ≤ 1, modulo increasing the constant c of
the factor R̄δ(q)−n in the case R̄ < 1; recall that R̄ := dist(�′, ∂�′′)/4. Finally, in
order to get (8.2), fix �′ ⊂⊂ �, and determine �′′ according to Lemma 2.13; at this
point (8.2) follows using (4.25) in (8.1), since dist(�′, ∂�′′) = dist(�′, ∂�)/2.

Proof of Theorem 1.12. Take �′ ⊂⊂ � as in the statement of the Theorem, and
determine �′′ according to Lemma 2.13. We go back to the proof of Lemma 8.1,
and apply the arguments to uk , that is the solution to (5.1), with such a choice of
�′, �′′. We recall that everywhere both dist(�′, ∂�′′) and dist(�′′, ∂�) depend on
dist(�′, ∂�) via (2.24). We start from (8.7); as by (1.39) δ(q) = q when θ = p, we
use Poincaré’s inequality in order to estimate the left-hand side of (8.7) from below.
With c1 being the one in (8.7) up to multiplicative constant c(n, q), we have

−
∫

B�

|uk − (uk)B� |q dx

≤ c1

{
Rq−n

( �

R

)βq/2
∫

BR

(|Duk |q + sq) dx + ‖ fk‖
q

p−1

L1,θ (BR)

}
. (8.9)

Now, fix �′ ⊂⊂ �′′ ⊂⊂ � as in the proof of Lemma 8.1, and using the same
argument used to prove Morrey regularity in the previous proof we find

[uk]B M O(�′) ≤ c‖ fk‖1/(p−1)

L1(�)
+ c‖ fk‖1/(p−1)

L1,θ (�)
+ cs|�|1/q ,

with c ≡ c(n, p, L/ν, q, dist(�′, ∂�)). Letting k ↗ ∞, and using of (5.3), we
finally obtain

[u]B M O(�′) ≤ c[|µ|(�)]1/(p−1) + cM1/(p−1) + cs|�|1/q .

Now (1.42) is finally proved combining the last estimate with the following trivial
consequence of (1.27):

|µ|(�) ≤ [diam(�)]n−θ M , (8.10)

and taking into account that c may depend on � too.
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In order to prove the local VMO regularity we assume that µ satisfies (1.41)
locally uniformly in the sense of Definition 2 in Section 2.4. In order to conclude
it suffices to prove that: For every �′ ⊂⊂ � and every ε > 0 there exist k̄ ≡
k̄(ε, dist(�′, ∂�)) ∈ N and �̄ ≡ �̄(ε, dist(�′, ∂�)) ∈ N, possibly also depending
on n, p, L/ν, q, s, �, such that

−
∫

B�

|uk − (uk)B� |q dx ≤ ε, k ≥ k̄, � ≤ �̄ , (8.11)

whenever B� ⊂⊂ �′′ is ball centered in �′. This with (5.6) will finally prove the
whole theorem as �′ ⊂⊂ � is arbitrary. Using (5.5) and (5.4) with (8.9) we have

−
∫

B�

|uk − (uk)B� |q dx

≤ c1

{
Rq−n

( �

R

)βq/2 [
[|µ|(�)] q

p−1 + sq |�|
]

+ ‖µ‖
q

p−1

L1,θ (BR+1/k)

}
.

(8.12)

Determine a positive radius R̄ ≤ dist(�′, ∂�′′)/4, depending on ε, dist(�′, ∂�)

and on n, p, L/ν, q, such that |µ|(Br ) ≤ (2c1)
−1εrn−p whenever r ≤ 2R̄ and

Br ⊂ �′′. This implies ‖µ‖L1,θ (B2R̄) ≤ (2c1)
−1ε whenever B2R̄ is centered in

�′. Indeed this and R̄ ≤ dist(�′, ∂�′′)/4 imply B2R̄ ⊂ �′′. From now on all the
balls considered will be centered in �′. Taking k̄ ≡ k̄(ε, dist(�′, ∂�)) ∈ N, also
depending on n, p, L/ν, q , such that 1/k̄ ≤ R̄ we have

c1‖µ‖L1,θ (BR̄+1/k)
≤ ε/2 . (8.13)

This fixes k̄ in (8.11). From now on we shall use (8.12) with R ≡ R̄. Now take
�̄ ≡ �̄(ε, dist(�′, ∂�)) ≤ R̄, also depending on n, p, L/ν, q, s, �, in order to have

c1 R̄q−n
(

�̄

R̄

)βq/2 [
[|µ|(�)] q

p−1 + sq |�|
]

≤ ε/2 . (8.14)

This fixes �̄ in (8.11). We finally obtain (8.11) merging (8.13)-(8.14) to (8.12), the
latter used with R̄ ≡ R, and � ≤ �̄.

Proof of Theorem 1.11. As usual we shall proceed deriving a priori estimates,
therefore let u ∈ W 1,p(�) be the solution to (4.2) for a fixed f ∈ L∞(�). We
shall use the estimates from the proof of Theorem 1.8 below, as explained at the be-
ginning of the section, therefore this proof should be read after the one of Theorem
1.8. Let BR ⊂⊂ �, with R ≤ 1. By Lemma 2.8 with q ∈ (1, m)∫

BR

|Du|q dx
(2.20)≤ m (m − q)−1 |BR|1− q

m ‖Du‖q
Mm(BR)

(2.18)≤ cRn− qθ
m ‖Du‖q

Mm,θ (BR)

(9.35)≤ c

[
‖ f ‖

q
p−1

L1(�)
+ ‖ f ‖

q
p−1

L1,θ (�)
+ sq |�| q

m

]
Rn−δ(q) ,

(8.15)
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where c ≡ c(n, p, L/ν, q, dist(BR, ∂�), �). We used that qθ/m = δ(q), see
(1.39). Therefore taking the supremum over all possible such balls with BR ⊂⊂ �′
we have

‖Du‖Lq,δ(q)(�′) ≤ c‖ f ‖1/(p−1)

L1(�)
+ c‖ f ‖1/(p−1)

L1,θ (�)
+ cs|�|1/m ,

c ≡ c(n, p, L/ν, q, dist(�′, ∂�), �). The assertion follows once again via the ap-
proximation scheme of Section 5, a lower semicontinuity to handle the left-hand
side of the latter estimate, and using (8.10) as for Theorem 1.8.

9. Marcinkiewicz estimates

This section contains the proof of Theorem 1.8. One of our starting points here
will be the brilliant technique for proving Mn-estimates introduced in [27] (case
p = n, that implies θ = p = n). We shall use a delicate combination of some
the arguments from the latter paper with the Morrey space estimates of Section 8,
a direct comparison argument on certain Calderón-Zygmund type balls, and finally
a modification of some ideas from [14, 48]. A different, elegant approach to Mn

estimates based on a suitable version of Gehring’s lemma in Marcinkiewicz spaces
has been recently given in [44]. Let us emphasize here the fact that our technique is
robust enough to catch the borderline case θ = p, and therefore to get the limiting
regularity (1.31).

As everywhere else, we shall derive a priori estimates and in the following
u ∈ W 1,p

0 (�) is a solution to (4.2) for a fixed f ∈ L∞(�); we assume of course
that ‖ f ‖L1,θ (�) > 0, otherwise all assertions trivialize. To begin with the proof
let us consider two open subsets �′ ⊂⊂ �′′ ⊂⊂ �. Take a ball B0 with radius
R0 ≤ 1/2, such that 2B0 ⊂⊂ �′′. We use the restricted maximal function of f
relative to 2B0, that is

M( f )(x) ≡ M2B0( f )(x) := sup
x∈B,B⊆2B0

−
∫

B
| f (y)| dy ,

where B is a ball varying amongst all possible ones in 2B0. The weak (1, 1) esti-
mate

|{x ∈ 2B0 : M2B0( f )(x) > λ}| ≤ c(n)

λ

∫
2B0

| f (y)| dy ∀ λ > 0 ,

holds, see for instance [11], and it immediately follows that

|{x ∈ 2B0 : M2B0( f )(x) > λ}| ≤ c‖ f ‖L1,θ (2B0)
|B0|1−θ/n

λ
∀ λ > 0 . (9.1)

Let us fix R0 < t < � < 2R0. With λ ≥ 0 we shall denote

Et
λ := {x ∈ Bt : |Du(x)| > λ}, E�

λ := {x ∈ B� : |Du(x)| > λ} .
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Here the balls Bt , B� are concentric to B0, and it obviously holds B0 ⊂ Bt ⊂ B� ⊂
2B0. We recall that b is in (1.9) and m as in (1.28), while in the following q and q1
will be fixed numbers such that p − 1 ≤ q < q1 < b.

Step 1: Calderón-Zygmund type decomposition. Let us set

λ0 :=
(

−
∫

2B0

(|Du|q + sq) dx

) 1
q

, (9.2)

and from now on we shall always take λ large enough to have

λ ≥ 4n/q(� − t)−n/qλ0 =: λl , (9.3)

unless otherwise specified. Observe that if x0 ∈ Bt then B(x0, (� − t)R0) ⊂ B� ⊂
2B0 and therefore

−
∫

B(x0,(�−t)R0)

(|Du|q + sq) dx
(9.2)≤ 2n(� − t)−nλ

q
0 ≤ λq ;

in particular
s ≤ λ . (9.4)

Now, let x0 ∈ Et
4λ and define

i(x0) := min

{
i ∈ N : −

∫
B(x0,2−i (�−t)R0)

(|Du|q + sq) dx ≥ 4qλq
}

.

By (9.4) and Lebesgue’s differentiation theory for a.e. x0 ∈ Et
4λ we have 1 ≤

i(x0) < ∞, and the family {B(x0, 2−i(x0)(� − t)R0)} is a covering of Et
4λ up to a

negligible set. We may apply Besicovitch covering theorem [5] in order to extract
from {B(x0, 2−i(x0)(�− t)R0)} a finite number Q(n) of possibly countable families
of mutually disjoint balls {B j } j≤Q(n), B j ≡ {B j

i }, such that Et
4λ is covered by the

union of the closure of such balls up to a negligible set. Rename all these balls
in order to have a new, possibly countable family {Bk}. We need to observe that
2Bk ⊂ B� for every k; this follows from the construction, since for a.e. x0 ∈ B0
we have i(x0) ≥ 1, therefore the radius of Bk does not exceed (� − t)R0/2, and
being Bk centered in Bt then 2Bk ⊂ B� follows. All in all, again by construction
the following facts hold:

Et
4λ ⊂

⋃
k

Bk ∪negligible set ,
∑

k

|E�
λ ∩ Bk | ≤ Q(n)|E�

λ | , 2Bk ⊂ B� (9.5)

and, for every k ∈ N

4qλq ≤ −
∫

Bk

(|Du|q + sq) dx , −
∫

2Bk

(|Du|q + sq) dx < 4qλq . (9.6)
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Denote by Rk the radius of Bk , so that Rk ≤ R0 ≤ 1; using Lemma 8.1 gives

4qλq ≤ −
∫

Bk

(|Du|q + sq) dx ≤ c‖|Du| + s‖q
Lq,δ(q)(2B0)

R
− q(θ−1)

p−1
k ,

and it follows

Rk ≤ cK
1

θ−1 λ− p−1
θ−1 , K := ‖|Du| + s‖p−1

Lq,δ(q)(2B0)
+ ‖ f ‖L1,θ (2B0)

. (9.7)

Step 2: A density estimate. Here we single out one generic ball Bk and argue
under the assumption that there exists xk ∈ Bk such that

M( f )(xk) ≤ T −1K 1/(1−θ)λm , (9.8)

with T ≥ 1 to be determined later. Using Hölder’s inequality and the fact that
Bk ⊂ B�, we start estimating

4qλq |Bk |
(9.6)≤

∫
Bk

(|Du|q + sq) dx

(9.4)≤ 2λq |Bk \ E�
λ | +

∫
Bk∩E�

λ

(|Du|q + sq) dx

≤ 2λq |Bk \ E�
λ |+(2|Bk ∩ E�

λ |)1− q
q1

(∫
Bk∩E�

λ

(|Du|q1 +sq1)dx

)q
q1

.

(9.9)

Therefore, another elementary estimation gives

2q ≤ |Bk \ E�
λ |

|Bk | + 2

[
|Bk ∩ E�

λ |
|Bk |

]1− q
q1

λ−q
(

−
∫

Bk

(|Du|q1 + sq1) dx

) q
q1

. (9.10)

We now estimate the last integral. To this aim, let us introduce the comparison
function vk ∈ u + W 1,p

0 (2Bk) as the unique solution to

{ −div a(x, Dvk) = 0 in 2Bk
vk = u on ∂2Bk . (9.11)

Now

−
∫

Bk

|Du|q1 dx ≤ c −
∫

Bk

|Du − Dvk |q1 dx + c −
∫

Bk

|Dvk |q1 dx , (9.12)
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and we estimate the last two integrals. Using Lemma 4.3 we find

−
∫

2Bk

|Du − Dvk |q1 dx
(4.15)≤ c‖ f ‖

q1−p+1
p−1

L1,θ (2B0)
−
∫

2Bk

| f | dx Rσ(q1,θ)
k

(9.7)≤ c
K

1
θ−1

λm−q1
−
∫

2Bk

| f | dx

(9.8)≤ cλq1

T
,

(9.13)

where c ≡ c(n, p, L/ν, q1); in a completely similar way we also get

−
∫

2Bk

|Du − Dvk |q dx ≤ cλq

T
. (9.14)

On the other hand, since q1 < p, using Hölder’s inequality and (3.11), we have

−
∫

Bk

|Dvk |q1 dx ≤
(

−
∫

Bk

|Dvk |pχ dx

) q1
pχ ≤ c

(
−
∫

2Bk

(|Dvk |q + sq) dx

) q1
q

. (9.15)

In the last line χ ≡ χ(n, p, L/ν) > 1 is the higher integrability exponent such that
Dv ∈ L pχ

loc (2Bk, Rn), that has been determined in Lemma 3.3. In turn, since T ≥ 1,
(9.6) and (9.14) give

−
∫

2Bk

|Dvk |q dx ≤ c −
∫

2Bk

|Du − Dvk |q dx + c −
∫

2Bk

|Du|q dx ≤ cλq . (9.16)

Merging (9.16) and (9.15), and using (9.4), gives

−
∫

2Bk

|Dvk |q1 dx ≤ cλq1 . (9.17)

Connecting (9.13), (9.17), to (9.12), and using again (9.4), yields

−
∫

Bk

(|Du|q1 + sq1) dx ≤ cλq1 , (9.18)

where c ≡ c(n, p, L/ν, q1). Using this last inequality in (9.10) gives

2q ≤ |Bk \ E�
λ |

|Bk | + c1

[
|Bk ∩ E�

λ |
|Bk |

]1− q
q1

,

where c1 ≡ c1(n, p, L/ν, q1), and therefore, since q1 > q, we have

|Bk ∩ E�
λ |

|Bk | ≥
[

1

c1
(2q − 1)

] q1
q1−q =: 1

c2
> 0 , (9.19)

where c2 ≡ c2(n, p, L/ν, q, q1); this is the density estimate we were looking for.
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Step 3: Estimates on balls. We take H ≥ 4n/q ≥ 4 to be chosen, and estimate the
measure of Et

Hλ splitting as

|Et
Hλ| ≤ |Et

Hλ ∩ {x ∈ Bt : M( f )(x) ≤ T −1K 1/(1−θ)λm}|
+ |Et

Hλ ∩ {x ∈ Bt : M( f )(x) > T −1K 1/(1−θ)λm}| =: I + I I .
(9.20)

By (9.1), and the definition of K in (9.7), we immediately have

I I ≤ c(n)T K
θ

θ−1 λ−m Rn−θ
0 , (9.21)

and we concentrate on I . To this aim, since H ≥ 4 by (9.5) we may estimate

I ≤
∑

Ik :=
∑

|Et
Hλ ∩ {x ∈ Bk : M( f )(x) ≤ T −1K 1/(1−θ)λm}| , (9.22)

and in turn we estimate each Ik . Fix one; we may assume there exists xk ∈ Bk such
that (9.8) holds; otherwise Ik = 0 and we are done. By definition of Ik

Ik ≤ |Et
Hλ ∩ Bk | ≤ |{x ∈ Bk : |Du(x)| > Hλ}|

≤ |{x ∈ Bk : |Du(x) − Dvk(x)| > Hλ/2}|
+ |{x ∈ Bk : |Dvk(x)| > Hλ/2}| =: I I Ik + I Vk .

(9.23)

Then, keeping in mind the definition of K in (9.7)

I I Ik ≤ 2q

Hqλq

∫
Bk

|Du − Dvk |q dx

(4.15)≤
c‖ f ‖

q−p+1
p−1

L1,θ (2B0)

Hqλq

∫
2Bk

| f | dx Rσ(q,θ)
k

(9.7)≤ cK
q−p+1

p−1

Hqλq

∫
2Bk

| f | dx Rσ(q,θ)
k

(9.7)≤ cK
1

θ−1

Hqλm

∫
2Bk

| f | dx

(9.8)≤ c3|2Bk |
Hq T

(9.19)≤ c3c22n|Bk ∩ E�
λ |

Hq T
.
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Let χ ≡ χ(n, p, L/ν) > 1 be as in (9.15), that is the number determined in Lemma
3.3; using (9.4) we have

I Vk ≤ 2pχ

H pχλpχ

∫
Bk

|Dvk |pχ dx

(3.11)≤ c|2Bk |
H pχλpχ

(
−
∫

2Bk

(|Dvk |q + sq) dx

) pχ
q

(9.16),(9.4)≤ c4|2Bk |
H pχ

(9.19)≤ c4c22n|Bk ∩ E�
λ |

H pχ
.

Connecting the estimates found for I I Ik, I Vk to (9.23) gives

Ik ≤ c5[H−q T −1 + H−pχ ]|Bk ∩ E�
λ | ,

with c5 ≡ c5(n, p, L/ν, q, q1). Summing up on k using (9.22), (9.5) yields

I ≤ c5 Q(n)[H−q T −1 + H−pχ ]|E�
λ | .

Merging the latter estimate and (9.21) with (9.20) we finally have

|Et
Hλ| ≤ c6

[
H−q T −1 + H−pχ

]
|E�

λ | + c6T K
θ

θ−1 λ−m Rn−θ
0 , (9.24)

where c6 ≡ c6(n, p, L/ν, q, q1), while H ≥ 4n/q and T ≥ 1 are still to be chosen.

Step 4: Iteration and a priori estimate. Let us for a moment assume that R0 =
1/2; we shall eventually deal with the general case by means of a scaling argument.
We introduce the level function l(·, ·) as

l(λ, γ ) := λm |Eγ
λ | , for every γ ∈ [1/2, 1], and λ > 0 , (9.25)

and observe that (9.24) can be rephrased as

l(Hλ, t) ≤ c6

[
Hm−q T −1 + Hm−pχ

]
l(λ, �) + c6 Hm T K

θ
θ−1 . (9.26)

Now observe that m ≤ p < pχ , and equality in the first inequality occurs iff
p = θ ; therefore we take H large enough in order to have c6 Hm−pχ ≤ 1/4; taking
into account the dependence of m, χ , and c6, this fixes H ≡ H(n, p, L/ν, q, q1).
Next, take T large enough to balance H i.e. T := 4c6 Hm−q , recall that m > q;
therefore T ≡ T (n, p, L/ν, q, q1). With such choices (9.26) gives

l(Hλ, t) ≤ (1/2)l(λ, �) + c7K
θ

θ−1 , (9.27)
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with c7 ≡ c7(n, p, L/ν, q, q1). The last inequality holds whenever λ satisfies (9.3),
therefore, taking into account the definition in (2.17) to bound the right-hand side,
with λl as in (9.3) we have

sup
λ≥λl

l(Hλ, t) ≤ (1/2)‖Du‖m
Mm(B�) + c7K

θ
θ−1 ,

and obviously, again by the definition in (2.17), and (9.2)-(9.3), we have

‖Du‖m
Mm(Bt )

≤ (1/2)‖Du‖m
Mm(B�) + Hm |2B0|(� − t)−nm/qλm

0 + c7K
θ

θ−1 .

Observe also that we are proving a priori estimates for approximate solutions, and
therefore we are assuming that u ∈ W 1,p; since m ≤ p in any case it follows that
‖Du‖Mm(2B0) is finite. We can apply Lemma 2.12 with ϕ(t) := ‖Du‖m

Mm(Bt )
,

R0 = 1/2, and 1/2 < t < � < 1; this yields

‖Du‖m
Mm(B0)

≤ cλm
0 + cK

θ
θ−1 , (9.28)

with c ≡ c(n, p, L/ν, q, q1), as H depends on n, p, L/ν, q, q1 and |2B0| ≤ c(n).
Using the definition of λ0 in (9.2) and that R0 = 1/2, we observe that

λm
0 ≤

(
−
∫

2B0

(|Du|q + sq) dx

)m
q ≤ c‖|Du| + s‖m

Lq,δ(q)(2B0)
. (9.29)

Merging (9.29) with (9.28), taking into account the definition of K in (9.7) we easily
obtain

‖|Du| + s‖m
Mm(B0)

≤ c

[
‖|Du| + s‖m

Lq,δ(q)(2B0)
+ ‖ f ‖

m
p−1

L1,θ (2B0)

]
. (9.30)

All this holds provided R0 = 1/2. The general case R0 ∈ (0, 1/2] can be dealt with
by scaling, that is: first considering a general ball B0, then from the very beginning
of the proof reducing the problem to the case R0 = 1/2 scaling as in (4.5), then
obtaining (9.30) for the scaled solution ũ with data f̃ , and finally scaling back to u;
then using also Lemma 2.5 all this yields, for any R0 ∈ (0, 1/2]

‖|Du| + s‖m
Mm(B0)

≤ c

[
‖|Du| + s‖m

Lq,δ(q)(2B0)
+ ‖ f ‖

m
p−1

L1,θ (2B0)

]
Rn−θ

0 , (9.31)

where again c ≡ c(n, p, L/ν, q, q1). For later convenience let us observe that
taking q = p − 1 in the latter estimate, and using that δ(p − 1) = θ − 1 by (1.39),
we have

‖|Du| + s‖m
Mm(B0)

≤ c

[
‖|Du| + s‖m

L p−1,θ−1(2B0)
+ ‖ f ‖

m
p−1

L1,θ (2B0)

]
Rn−θ

0 . (9.32)
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Using (9.31) together with a standard covering argument, and an elementary esti-
mation involving the definition in (2.18), we have

‖|Du| + s‖Mm,θ (�′) ≤ c‖|Du| + s‖Lq,δ(q)(�′′) + c‖ f ‖1/(p−1)

L1,θ (�′′) , (9.33)

where c ≡ c(n, p, L/ν, q, �′, �′′), since (2.24) holds. Finally using (8.1) in the
previous estimate, and via Lemma 2.13 passing again to outer and inner open sub-
sets to �′ and �′′ respectively, as everywhere open subsets �′, �′′ are arbitrary, we
conclude with the desired local a priori estimate

‖|Du| + s‖Mm,θ (�′) ≤ c‖|Du| + s‖Lq (�′′) + c‖ f ‖1/(p−1)

L1,θ (�′′) , (9.34)

for any choice �′ ⊂⊂ �′′, where c ≡ c(n, p, L/ν, q, �′, �′′). In turn, with �′ ⊂⊂
� fixed as in the statement of Theorem 1.8, we can pick �′′ in (9.34) as prescribed
in Lemma 2.13, and taking into account (4.25) we get

‖|Du| + s‖Mm,θ (�′) ≤ c‖ f ‖1/(p−1)

L1(�)
+ c‖ f ‖1/(p−1)

L1,θ (�)
+ cs|�|1/q , (9.35)

where now c ≡ c(n, p, L/ν, q, �′, �). Applying the latter inequality to uk from
(5.1) and taking into account the approximation scheme of Section 5, and in partic-
ular (5.3), as in the proof of Theorem 1.2 we get

‖|Du| + s‖Mm,θ (�′) ≤ c[|µ|(�)]1/(p−1) + cM1/(p−1) + cs|�|1/q , (9.36)

where now u is the solution to the original problem (1.1) constructed in Section 5.
The assertion of Theorem 1.8 with estimate (1.30) follow plugging estimate (8.10)
in (9.36). Just one remark about the convergence of the approximating solutions
uk . In the proof of Theorem 1.2 we used the higher (fractional) differentiability of
solutions to pass to the limit via compactness; this information is not available here
since in Theorem 1.8 we are just assuming a measurable dependence of the coef-
ficients, and not (1.4), which was in turn necessary to get differentiability of Du.
In the present case the converge of the solutions uk can be nevertheless obtained
exactly as in [7, 8, 26].

Remark 9.1 (A local estimate). Estimate (1.30) has a local companion. More pre-
cisely, having (9.34) at our disposal, we may apply the usual scaling procedure in
(4.5), as already done for instance to obtain (1.16). Using such estimates for the ap-
proximating problems (5.1), and employing Lemma 2.5 we end up with the natural
estimate

‖|Duk | + s‖Mm,θ (BR/2)
≤ cR

θ−1
p−1 − n

q ‖|Duk | + s‖Lq (BR) + c‖ fk‖1/(p−1)

L1,θ (BR)
,

for q ∈ [p − 1, b) and c ≡ c(n, p, L/ν), whenever BR ⊂⊂ �. Using (5.4)-(5.5),
and letting k ↗ ∞ we conclude with

‖|Du| + s‖Mm,θ (BR/2)
≤ cR

θ−1
p−1 − n

q ‖|Du| + s‖Lq (BR) + c‖µ‖1/(p−1)

L1,θ (BR+ε)
, ∀ ε > 0 .
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Remark 9.2 (On the limit case θ = p). In proving Theorem 1.8 we used (3.11)
from Lemma 3.3 to estimate I Vk . In turn Lemma 3.3 uses Gehring’s lemma. The
use of Gehring’s lemma is actually needed only in the borderline case θ = p, when
m = p. Indeed in (9.26) we need m − pχ < 0. Now observe that m < p as soon as
θ < p. Therefore in this latter case we may use inequality (3.11) with p replacing
pχ ; in (9.26) we would have Hm−p, still small taking H large. All this does not
need Gehring’s lemma: indeed for solutions to (3.3) the basic Caccioppoli’s type
inequality, together with Poincaré’s one (see [34], Chapters 6-7) give

(
−
∫

BR/2

|Dv|p dx

) 1
p

≤ c

(
−
∫

BR

(|Dv| np
n+p + s

np
n+p ) dx

) n+p
np

.

From this the new form of (3.11), with p replacing pχ , follows by Lemma 3.1.

10. The super-capacitary case

In this section we are going to prove Theorem 1.9. As usual we shall derive a priori
estimates; in the following let u ∈ W 1,p

0 (�) be the solution to (4.2) for a fixed
f ∈ L∞(�). Take B4R ⊂⊂ � with 4R ≤ 1, and then scale u(x) in BR as in (4.5),
therefore obtaining a solution ũ(y) in B1. We fix d ∈ (0, 1). Now apply (6.40) with
�′ ≡ B1/2 and q = p − 1 to have

sup
h

∫
B1/2

|τi,h Dũ(y)|p−1

|h|1−d
dy ≤ c‖|Dũ| + s‖p−1

L p−1(B1)
+ c‖ f̃ ‖L1(B1)

≤ c‖|Dũ| + s‖p−1
L p−1,θ−1(B1)

+ c‖ f̃ ‖L1,θ (B1)
,

(10.1)

for every i ∈ {1, . . . , n}, where 0 < |h| < 1/4 and c ≡ c(n, p, L/ν, d). We have
used that σ(p − 1, θ) = 1 and δ(p − 1) = θ − 1 for every θ ∈ [p, n], by (4.1) and
(1.39) respectively; recall also (6.2). Notice that the application of (6.40) to ũ is
legitimate since the arguments for Lemma 6.3 are local, making no use of boundary
information for the solution. Scaling back (10.1) to BR via Lemma 2.5 gives

sup
h

∫
BR/2

|τi,h Du(x)|p−1

|h|1−d
dx ≤ cM p−1

p−1 (BR)Rn−θ+d , (10.2)

where c ≡ c(n, p, L/ν, d), for every i ∈ {1, . . . , n} where 0 < |h| < R/4, and
where

Mq(BR) := ‖|Du| + s‖Lq,δ(q)(BR) + ‖ f ‖1/(p−1)

L1,θ (BR)
, q ∈ [p − 1, m) . (10.3)

Now take q ∈ (p − 1, m) and select γ ∈ (0, 1) such that

q = (θ − γ )(p − 1)

θ − 1
⇐⇒ σ(q, θ) = γ . (10.4)
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If γ0 ∈ (0, γ ) then

q < m0 := (θ − γ0)(p − 1)

θ − 1
< m , (10.5)

and write, with t ∈ (0, 1)

q = (1 − t)(p − 1) + tm0 =
(

γ − γ0

1 − γ0

)
(p − 1) +

(
1 − γ

1 − γ0

)
m0 . (10.6)

It follows
m − m0

m
= γ0

θ
,

m0

m
= θ − γ0

θ
. (10.7)

Now, by estimate (9.32) we have

‖|Du| + s‖Mm(BR) ≤ c

[
‖|Du| + s‖L p−1,θ−1(B2R) + ‖ f ‖

1
p−1

L1,θ (B2R)

]
R

n−θ
m .

Using Lemma 2.8, the latter estimate and (10.7) we find∫
BR

|Du|m0 dx ≤ m(m − m0)
−1 Rn− m0n

m ‖Du‖m0
Mm(BR)

≤ cγ −1
0 Rn− m0n

m + m0
m (n−θ)

[
‖|Du| + s‖m0

L p−1,θ−1(B2R)
+ ‖ f ‖

m0
p−1

L1,θ (B2R)

]

≤ cγ −1
0 Rn− m0θ

m Mm0
p−1(B2R) = cRn−θ+γ0 Mm0

p−1(B2R) ,

(10.8)

where c ≡ c(n, p, L/ν, γ0). Now, by (10.6) and Hölder’s inequality∫
BR/2

|τi,h Du(x)|q dx =
∫

BR/2

|τi,h Du(x)|(1−t)(p−1)|τi,h Du(x)|tm0 dx

≤
(∫

BR/2

|τi,h Du(x)|p−1 dx

)1−t (∫
BR/2

|τi,h Du(x)|m0 dx

)t

≤ |h|(1−d)(1−t)

(∫
BR/2

|τi,h Du(x)|p−1

|h|1−d
dx

)1−t

·
(∫

BR/2

(|Du(x)|m0 + |Du(x + hei )|m0) dx

)t

.

(10.9)

In turn, taking |h| ≤ R/4, and using (10.8) we have∫
BR/2

(|Du(x)|m0 + |Du(x + hei )|m0) dx ≤ 2
∫

BR

|Du|m0 dx

≤ cMm0
p−1(B2R)Rn−θ+γ0 .

(10.10)
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Combining (10.2), (10.9) and (10.10), and taking into account (10.6) we have

sup
h

∫
BR/2

|τi,h Du(x)|q
|h|(1−d)(1−t)

dx ≤ cMq
p−1(B2R)Rn−θ+(1−t)d+tγ0 ,

where c ≡ (n, p, L/ν, d, γ0), and h is a real number such that 0 < |h| < R/4.
Since i ∈ {1, . . . , n} is arbitrary the last inequality yields in a standard way

sup
h

∫
BR/2

|Du(x + h) − Du(x)|q
|h|σ dx ≤ cMq

p−1(B2R)Rn−θ+(1−t)d+tγ0 , (10.11)

where this time h ∈ Rn with |h| ∈ (0, R/4]. Here we have set

σ := (1 − d)(1 − t)
(10.4),(10.6)= (1 − d)

(
σ(q, θ) − γ0

1 − γ0

)
. (10.12)

As σ(q, θ) = γ by (10.4), a direct computation reveals that (1 − t)d + tγ0 >

dσ(q, θ); using that R ≤ 1 and the latter inequality in (10.11) we have

sup
h

∫
BR/2

|Du(x + h) − Du(x)|q
|h|σ dx ≤ cMq

p−1(B2R)Rn−θ+dσ(q,θ) , (10.13)

with σ as in (10.12) and c ≡ c(n, p, L/ν, d, γ0). Estimate (10.13) has been proved
for q ∈ (p − 1, m). It actually holds for the case q = p − 1 too, and even with
γ0 = 0 in (10.12). This is just a consequence of σ(p − 1, θ) = 1 and (10.2). We
are now ready to conclude the proof. Take γ1 ∈ (0, σ ); then changing variables∫

BR/2

∫
BR/2

|Du(x) − Du(y)|q
|x − y|n+σ−γ1

dx dy

≤
∫

B(0,R)

1

|h|n−γ1

∫
BR/2

|Du(x + h) − Du(x)|q
|h|σ dx dh

≤
(∫

B(0,R)

dh

|h|n−γ1

)
sup

h

∫
BR/2

|Du(x + h) − Du(x)|q
|h|σ dx

(10.13)≤ c(n)γ −1
1 Mq

p−1(B2R)Rn−θ+dσ(q,θ) ,

(10.14)

valid for any q ∈ [p−1, m), where c ≡ c(n, p, L/ν, γ0). Therefore since in (10.12)
and (10.14) γ0, γ1 can be picked arbitrarily small, all in all we have proved that

[Du]σ/q,q;BR ≤ cMq
p−1(B4R)Rn−θ+dσ(q,θ), σ < (1 − d)σ (q, θ) , (10.15)

for all balls BR such that B4R ⊂⊂ �, and q ∈ [p − 1, m). The constant c depends
on n, p, L/ν, q, d, σ . This needs an explanation. The constant c blows up when
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q ↗ m and/or σ ↗ (1 − d)σ (q, θ). Indeed, taking q close to m forces γ0 to be
small via (10.5), and this in turn increases c via (10.8); on the other hand taking σ

close to (1 − d)σ (q, θ) forces γ0, γ1 to be small via (10.12),(10.14) respectively,
and this again increases c via (10.8) and (10.14).

Now using (10.15) together with a standard covering argument, and the fact
that d can be chosen arbitrarily small, and taking into account the definition of
Mq(BR) in (10.3), we conclude that for every couple of open subsets �′ ⊂⊂ �′′ ⊂
⊂ � and every σ < σ(q, θ) it holds

‖Du‖W σ/q,q,θ (�′) ≤ c‖|Du| + s‖L p−1,θ−1(�′′) + c‖ f ‖1/(p−1)

L1,θ (�′′) . (10.16)

Finally using (8.2) with q = p − 1, and changing subsets via Lemma 2.13 we gain

‖Du‖W σ/q,q,θ (�′) ≤ c‖ f ‖1/(p−1)

L1(�)
+ c‖ f ‖1/(p−1)

L1,θ (�)
+ cs|�|1/q , (10.17)

and the constant depends on n, p, L/ν, q, σ, dist(�′, ∂�). The assertion of The-
orem 1.9, together with estimate (1.35) follow via the approximation scheme of
Section 5 as for the other proofs of this paper.

Remark 10.1 (Fractional differentiability vs Morrey regularity). Let us go
back to (10.15), keep now d fixed in (0, 1), not necessarily “small” in order to
approach σ(q, θ) with σ . Then, again via the approximation of Section 5, it easily
follows

Du ∈ W σ/q,q,θ+dσ(q,θ)

loc (�, R
n), for every σ < (1 − d)σ (q, θ) . (10.18)

With q ∈ [p − 1, m) being fixed, inclusion (10.18) tells us that if we decrease
the rate of differentiability down to (1 − d)σ (q, θ), we gain in the Morrey scale
up to θ + dσ(q, θ). Observe that inclusion (10.18) realizes a perfect interpolation
between the maximal differentiability in (1.32) that we may obtain taking d close to
0, and the maximal Morrey regularity in (1.40) that we may obtain formally letting
d ↗ 1 in (10.18), as θ + dσ(q, θ) ↗ δ(q) when d ↗ 1; look at (1.39) and (4.1).
In other words, with a very rough but suggestive notation

lim
d↘0

W (1−d)σ (q,θ)/q,q,θ+dσ(q,θ) = W σ(q,θ)/q,q,θ ,

and
lim
d↗1

W (1−d)σ (q,θ)/q,q,θ+dσ(q,θ) = Lq,δ(q) .

More in general, since when considering Morrey decay properties as (1.27) the ex-
ponent θ replaces n everywhere, the integer dimension of the space W α,q,θ should
be defined as α − θ/q, compare with Remark 6.4. In this respect, exactly as in Re-
mark 6.4, all the spaces W (1−d)σ (q,θ)/q,q,θ+dσ(q,θ) share the same integer dimension
(θ − 1)/(p − 1), for every possible choice of q ∈ [p − 1, m) and d ∈ (0, 1).
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11. Sharpness, comparisons, extensions

We hereby discuss the sharpness of some of the foregoing results, and outline a few
extensions and connections.

11.1. Sharpness of Theorem 1.2

The result in (1.14) is sharp for every choice of the couple (q, σ (q)) in the range
(1.15), and in particular the inclusions (1.12) and (1.13) are sharp too. Indeed, we
cannot have Du ∈ W σ(q)/q,q

loc , as shown by the usual counterexample [45]. Consider
the equation (1.6) in the ball B1 ≡ �, with µ ≡ δ, the Dirac measure charging the
origin, with the related zero-Dirichlet condition. The unique solution to problem
(1.1) is now given by the Green’s function

u(x) := c(n, p)

{
|x | p−n

p−1 − 1 if p < n
log |x | if p = n

,

where c(n, p) is a suitable re-normalization constant. We have Du ∈ Mb(B1),
but Du ∈ Lb

loc(B1), and crucial integrability is lost at the origin. Now, assume

by contradiction that Du ∈ W σ(q)/q,q
loc (B1), then by Theorem 2.2 we would have

Du ∈ Lnq/(n−σ(q))

loc (B1), but this is impossible since nq/(n − σ(q)) = b by (1.15).

Therefore Du ∈ W σ(q)/q,q
loc (B1), and this gives the optimality of Theorem 1.2. On

the other hand, as nq/(n−σ(q)) = b, then assuming Theorem 1.2 allows to recover
the original integrability result in (1.8) in a local form, again via Theorem 2.2.

11.2. About Theorem 1.4.

This is also sharp. In fact assuming that

V (Du) ∈ W
p

2(p−1)
,

2(p−1)
p

loc (�, R
n), for every ε ∈ (0, 1)

by the fractional Sobolev embedding theorem 2.2 we would get

V (Du) ∈ L
n(p−1)2
(n−1)p

loc (�, R
n) ,

and in turn this would imply, via (2.3), that

Du ∈ L
n(p−1)

n−1
loc (�, R

n) ,

which is excluded by the discussion of Section 11.1. Theorem 1.4 can be regarded
as a non-linear version of the so called “uniformization of singularities principle”,
well-known in Complex Analysis: raising a function to a suitably large power we
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get a function with better regularity properties. In such respect we conclude with
an open problem that for the sake of simplicity we state for solutions to equations
involving the p-Laplacean operator (1.6). Take γ ∈ R such that

p − 2

2
≤ γ ≤ p − 2 (11.1)

and prove - or disprove - in the spirit of Theorem 1.4, that, once a Dirichlet class is
fixed as boundary datum, there exists a SOLA solution to (1.6) such that

|Du|γ Du ∈ W
γ+1
p−1 −ε,

p−1
γ+1

loc (�, R
n) , for every ε > 0 . (11.2)

In the first limit case γ = (p − 2)/2 this is essentially the content of Theorem
1.4, while in the other borderline case γ = p − 2 this amounts to prove that
|Du|p−2 Du ∈ W 1−ε,1

loc (�, Rn), for every ε > 0. When p = 2 all such statements
collapse in Theorem 1.2. Observe that, exactly as for (1.21), for every choice of
γ in the range (11.1) the product between the differentiability and the integrability
indexes in (11.2) remains constant, up to the presence of ε.

11.3. The exponent m in (1.28)

We now demonstrate the optimality of m in (1.29) in the case p = 2 by comparing
Theorem 1.8 with the optimal ones of Adams [2] for the case �u = µ. Since our
results are local, up to a standard localization procedure we shall consider the latter
equation in the whole Rn . We consider the fractional integral operator defined by

Iα(µ)(x) :=
∫

Rn

dµ(y)

|x − y|n−α
, α ∈ (0, n] .

When µ has compact support, the unique solution to �u = µ is given by u(x) :=
c1 I2(µ)(x), with c being a suitable re-normalization constant; as a consequence
Du(x) = c2 I1(µ)(x); see also [54]. Now we recall the following result of Adams
[2]:

Iα : L1,θ → Mθ/(θ−α),θ , (11.3)

that is sharp in the sense that we cannot expect Iα(µ) ∈ Lθ/(θ−α), even locally, for
µ ∈ L1,θ , see [2] page 770, no. 2. Taking in our case α = 1 gives θ/(θ − α) = m,
and therefore the exponent m is the natural one for p = 2.

The case p > 2 cannot be treated by such an argument since no explicit rep-
resentation formula is available for solutions to (1.6). We just remark that in the
case p > 2 the exponent m is obtained by multiplying the one for p = 2 times
(p−1). This appears to be a natural phenomenon for measure data problems [9]. We
hereby conjecture that the exponent m is optimal for every p > 2. Finally observe
how the fact that θ replaces n everywhere when assuming (1.27) is in perfect accor-
dance with the embedding properties for Sobolev-Morrey spaces. Indeed, assuming
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Du ∈ L p,θ with p < θ , leads to the improved embedding u ∈ Lθp/(θ−p) [2,15,16];
this covers the usual Sobolev embedding theorem when θ = n.

We remark that in order to prove Theorem 1.8 the full strength of the assump-
tions (1.2) is not needed. Indeed, as a careful inspection of the proof reveals, it
is sufficient to use the assumption in the first line of (1.2) together with the first
inequality in (3.9).

11.4. Sharpness of Theorem 1.9

Here we discuss the optimality of the choice of the couple (q, σ (q, θ)) in (1.32)
in the range displayed in (1.33). The input here in the Sobolev-Morrey embedding
Theorem in the fractional case. We have that W α,q,θ embeds in Lt for every t <

θq/(θ − αq) whenever αq < θ ; see for instance [64]. Now take p = 2 and assume
that Du ∈ W (σ (q,θ)+ε)/q,q

loc for some ε > 0; since m = θq/(θ − σ(q, θ)) we would
conclude with Du ∈ Lm

loc, which is impossible at least when p = 2, as seen a few
lines above. Similarly, as the optimality of m in (1.29) is expected when p > 2,
the optimality of (1.32)-(1.33) in the case p > 2 is expected too. In fact, this is the
same argument used to get the optimality of Theorem 1.2 at the beginning of the
section.

11.5. Lebesgue vs Morrey

Assuming (1.27) improves on (1.10) up to (1.29). Now assume that µ ∈ Lt for
t ∈ [1, (p∗)′); in this case Du ∈ Lg with g = nt (p − 1)/(n − t) [9, 42]; in
particular Du ∈ Mg . On the other hand µ ∈ Lt implies that µ satisfies (1.27) with
θ = n/t ; in this case Theorem 1.8 gives Du ∈ Mm with m = n(p − 1)/(n − t),
that is worse than Du ∈ Mg , but for t = 1. This does not contradict the sharpness
of (1.29). Indeed we may find functions f ∈ L1,θ , with θ arbitrarily close to zero,
such that f ∈ Lt for any t > 1, see [34], comments at Chapter 2. On the other hand,
truncation techniques fully apply in the case of Lt data [45], because functions can
be truncated, while measures cannot, and better integrability of Du follows.

11.6. Systems

Theorem 1.10 extends to systems, under assumptions (1.2) and (1.4), when obvi-
ously recast for the vectorial case; u : � → RN , z ∈ RN×n and so on. In this case
the measure µ takes its values in RN . Indeed for Theorem 1.10 we do not need
Lemma 4.1; this employs the truncation operators (4.7) and they do not work for
general elliptic systems. We also do not need Lemma 3.3, which under the gen-
eral assumptions (1.2) only works in the scalar case. The only basic ingredients
are Lemmas 4.4-4.5 and 3.2. The first two only need monotonicity in (1.2)1, while
the third one is here stated directly in the vectorial case N ≥ 1. Anyway, we are
planning further extensions to certain special classes of systems.
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11.7. Condition (1.27)

This can be relaxed in a local one, since the results we are giving are local. More
precisely, we may assume that for every �′′ ⊂⊂ � there exists a constant M(�′′)
such that

|µ|(BR) ≤ M(�′′)Rn−θ , for every ball BR ⊂⊂ �′′ . (11.4)

Roughly, we are considering µ ∈ L1,θ
loc (�) rather than µ ∈ L1,θ (�). When assum-

ing (11.4) instead of (1.27) the inclusions of Theorems 1.8-1.12 still hold, but the
a priori estimates change. We give the new statement for the estimate of Theorem
1.8, the others to be modified in a similar fashion. For every couple of open subsets
�′ ⊂⊂ �′′ ⊂⊂ � there exists a constant c depending on n, p, L/ν, �′, �′′

‖Du‖Mm,θ (�′) ≤ c‖Du‖L p−1(�′′) + c[M(�′′)]1/(p−1) + cs|�′′|1/m .

Moreover there exists c depending on n, p, L/ν, �′, � such that

‖Du‖Mm,θ (�′) ≤ c[|µ|(�′′)]1/(p−1) + c[M(�′′)]1/(p−1) + cs|�′′|1/m .
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[9] L. BOCCARDO and T. GALLOUËT, Nonlinear elliptic equations with right-hand side mea-
sures, Comm. Partial Differential Equations 17 (1992), 641–655.
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