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Abstract

In this paper we will survey our results on the Camassa–Holm equations and their relation to turbulence as discussed in S.
Chen, C. Foias, D.D. Holm, E. Olson, E.S. Titi, S. Wynne, The Camassa–Holm equations as a closure model for turbulent
channel and pipe flow, Phys. Rev. Lett 81 (1998) 5338. S. Chen, C. Foias, D.D. Holm, E. Olson, E.S. Titi, S. Wynne, A
connection between the Camassa–Holm equations and turbulent flows in channels and pipes, Phys. Fluids, in press. In particular
we will provide a more detailed mathematical treatment of those equations for pipe flows which yield accurate predictions of
turbulent flow profiles for very large Reynolds numbers. There are many facts connecting the Camassa–Holm equations to
turbulent fluid flows. The dimension of the attractor agrees with the heuristic argument based on the Kolmogorov statistical
theory of turbulence. The statistical properties of the energy spectrum agree in numerical simulation with the Kolmogorov
power law. Furthermore, comparison of mean flow profiles for turbulent flow in channels and pipes given by experimental and
numerical data show acceptable agreement with the profile of the corresponding solution of the Camassa–Holm equations.
©1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

The Camassa–Holm equations are well suited to modeling the statistical properties of turbulent fluid flows.
We first recall the method of averaged Lagrangians and the derivation of the Camassa–Holm equations. We then
summarize the results on existence, uniqueness, and regularity of solutions to the viscous Camassa–Holm equations
and compare these results with the known results for the Navier–Stokes equations. Next, we present the estimate
of the attractor and a graph of the energy spectrum that shows the Camassa–Holm equations in a periodic box are
consistent with the Kolmogorov theory of isotropic and homogeneous turbulence. In particular, the dimension of the
attractor is bounded by(`/`d)

3 where` is a macro-scale and̀d is the Kolmogorov dissipation length and the energy
spectrum decays with the well known Kolmogorov 5/3 power law. Finally we use the Camassa–Holm equations to
model turbulent flows in channels and pipes.
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In our previous papers [5,6] the Camassa–Holm equations were also used to model turbulent flows in channels
and pipes. Here we present a theory withα constant throughout the width of the channel that has not been discussed
before. This theory has the advantage of simplicity and builds intuition on how the method of averaged Lagrangians
works in the case of channel and pipe flows. However, this approximate theory applies well only for low to moderate
Reynolds numbers. At high Reynolds numbers the mean velocity profiles for this theory show a non-physical bump
near the boundaries just outside the viscous regime.

The difficulties with the simplified theory seem to be resolved when we allowα to vary near the boundaries.
However, only for pipe flows do the experimentally produced data have Reynolds numbers high enough to exhibit
the full need for such a theory. In our previous papers [5,6] for ease of presentation this theory was derived for the
geometry of the channel. Then analogous results for the more complicated geometry of the pipe were stated. In this
paper we give the calculation specifically for the geometry of the pipe fully illuminating the mathematics behind
the theory presented already. Moreover, for completeness we discuss also other theoretical aspects of work on the
viscous Camassa–Holm equations.

2. The viscous Camassa–Holm equations

A detailed derivation of the Camassa–Holm equations appears in [6]. Basically, we decompose turbulent La-
grangian trajectories into mean and fluctuating parts, make a first order approximation, and then average in the
Lagrangian picture. To obtain a PDE we use the Euler–Poincaré equations

(
∂

∂t
+ (u · ∇)

)
1

D

δL

δu
+ 1

D

δL

δui

∇ui − ∇ δL

δD
= 0 (2.1)

for the averaged LagrangianL as in [13] and then at the end add a viscous term. In such a way we obtain the
dissipative Camassa–Holm equations

∂

∂t
v + (u · ∇)v + vj∇uj = ν1v − ∇π, div u = 0 (2.2)

where

v = u − (∇ · 〈σ 〉)u − ∂i(〈σiσj 〉∂ju) (2.3)

is the momentum per unit of mass. Here,u is the Eulerian velocity field corresponding to the averaged Larangian
trajectory,π is a modified pressure, andσ is a random vector which denotes the fluctuating displacement of the actual
Lagrangian trajectory from the averaged one. The angular brackets denote averages with respect to the underlying
probability distribution of the random fluctuations in the Lagrangian trajectories. Note that our choice of the viscous
term is of the form−ν1v and not−ν1u. The latter case is the case of the second grade non-Newtonian fluid [9,10].

It is interesting to note that the main difference between this approach and the approach used in deriving the
Reynolds equations is the order in which the steps are performed. To derive the Reynolds equations one first
obtains the Euler equations as the critical points of the Lagrangian, one then adds the viscous term to obtain the
Navier–Stokes equations, and finally one takes ensemble averages. Whereas in our approach, we first average over
the Lagrangian fluctuation to get an approximate averaged Lagrangian, we then obtain a PDE as the critical points
for the averaged Lagrangian, and finally we add a viscous term.



S. Chen et al. / Physica D 133 (1999) 49–65 51

Table 1
Comparison of rigorous mathematical results for the 3d Camassa–Holm equation with the Navier–Stokes equations

Question VCHE 2DNS 3DNS

a. Existence of global weak solutions Yes Yes Yes
b. Uniqueness of global weak solutions Yes Yes Unknown
c. Existence of local weak solutions Yes Yes Yes
d. Existence of global strong solutions Yes Yes Unknown
e. Existence of global attractor Yes Yes Unknown
f. Physical upper bound for dimf (A) Yes Yes Unknown

Fig. 1. The energy spectrum of the Camassa–Holm equation in a 3d-box compared with the Kolmogorov 5/3 power law.

3. Space periodic flows

Existence, uniqueness, and regularity of solutions to the Camassa–Holm equations in the period case are studied
in [12]. The rigorous mathematical results are comparable among the 3d viscous Camassa–Holm equations (VCHE),
the 2d Navier–Stokes (2DNS), and the 3d Navier–Stokes (3DNS). Table 1 summarizes what is known so far. Note
that the mathematical theory of the 3d VCHE does not have the pitfalls of the 3DNS equations.

In the case of the Camassa–Holm equations the estimate for dimf (A) agrees with the Landau–Lifschitz heuristic
argument for number of degrees of freedom for fully developed turbulent flows. In particular [12] the fractal
dimension statisfies

dimf (A) ≤ c0

(
`

α

)3/2(
`

`d

)3

(3.1)

where` is a macro-scale,̀d is the analogue of the Kolmogorov’s classical dissipation length. The symmetries of the
periodic box imply the Lagrangian fluctuations have〈σ 〉 = 0 and〈σiσj 〉 = α2δi,j . Thusα is a length independent
of position related to the statistics of the Lagrangian fluctuations. Scaling arguments for channels and pipes indicate
thatα is proportional tò . Therefore, the first factor is constant and we obtain exactly the classical estimate.

Recent numerical experiments [4] carried out forα = 1/32 show that the energy spectrum of the 3d Camassa–Holm
equations is remarkably similar to the accepted theoretical picture for the Navier–Stokes equations. This agreement
is demonstrated in Fig. 1.

It is encouraging how well Kolmogorov theory of 3d turbulence agrees with the statistical properties of the viscous
Camassa–Holm equations. This is particularly interesting, in light of the fact that the mathematically rigorous results
for the viscous Camassa–Holm equations compare more easily with the 2DNS equations. Recall that the 2DNS
equations are consistent with the Kraichnan statistical theory of turbulence rather than the 3d Kolmogorov theory.
Note that the estimates of dimf (A) for the 3d VCHE is consistent with the Kolmogorov theory of 3d turbulence in
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Fig. 2. Choice of coordinates for the infinite channel.

the same way as the dimension of the attractor for the 2DNS equations are consistent with the Kraichnan theory of
turbulence [7,11].

4. The channel geometry

We consider fluid flowing between two parallel plates shown in Fig. 2 separated by a distance of 2d.

4.1. The viscous Camassa–Holm in the channel

The time independent version of Eq. (2.2) is given by

(u · ∇)v + vj∇uj = ν∇v − ∇π, div u = 0 (4.1)

where again

v = u − (∇ · 〈σ 〉)u − ∂i(〈σiσj 〉∂ju) (4.2)

is the momentum per unit of mass. Sinceu represents a mean velocity, solutions to this equation correspond to
statistically stationary flows in thex direction. The even symmetry of the mean velocity about the mid-plane of the
channel and the translation invariance in they direction implies thatu, which points in thex direction, depends
only onz and is even symmetric. Similarly, the ensemble averages of the fluctuationsσ only depend onz. Thus we
write

u = (U(z), 0, 0), α2(z) = 〈σ 2
3 〉, and β(z) = 〈σ3〉

and substitute into Eq. (4.1). Noting that

∇ · 〈σ 〉 = β ′, ∂i(〈σiσj 〉∂ju) = (α2U ′)′, and v = (V (z), 0, 0)

we obtain the time-independent viscous Camassa–Holm equations for the channel

νV ′′ = ∂xπ, 0 = ∂yπ, and − V U ′ = ∂zπ (4.3)

where

V = U − β ′U − (α2U ′)′ (4.4)

subject to the boundary conditions

U(±d) = 0 and νU ′(±d) = ∓τ0
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whereτ0 is the boundary shear stress. We also require thatU is symmetric across the channel. Integrating the third
equation in Eq. (4.3) gives

π = f (x, y) +
∫

V U ′ dz

and so∂xπ does not depend onz. It follows thatνV ′′ = π ′
0 is constant.

Now we write the equation in terms of non-dimensional quantities. First, we recall that the mean Reynolds number
R and the skin friction Reynolds numberR0 are defined by

R = Ūd

ν
and R0 = u∗d

ν

whereu2∗ = τ0, and

ū = 1

2d

∫ d

−d

U(z) dz

is the mean flux across the channel [17]. Then define

φ(η) = U(z)

u∗
where η = R0

z + d

d
. (4.5)

With this rescaling, the boundary conditions are

φ(0) = φ(2R0) = 0, φ′(0) = 1, and φ′(2R0) = −1.

IntegratingνV ′′ = π ′
0 gives

R2
0

d2

d

dη

(
α2 dφ

dη

)
−
(

1 − R0

d

dβ

dη

)
φ = −f0 − 3f1

(
1 − η

R0

)2

(4.6)

wheref0 is a constant of integration andf1 = −d2π ′
0/(6u∗ν). Our basic ansatz is thatU in the viscous Camassa–

Holm equations is the same as the mean velocityU in the Reynolds equations. Recall that the Reynolds equations are
obtained by averaging the Navier–Stokes equations [14]. In particular, we write the solution of the Navier–Stokes
equations as(U + u, v, w) whereU is the mean velocity in thex direction andu, v, andw are the fluctuating
Eulerian velocity components in thex, y, andz directions, respectively, and then take ensemble averages of the
Navier–Stokes equations to obtain

−νU ′′ + ∂z〈uw〉 = ∂xP, ∂z〈wv〉 = −∂yP, and ∂z〈w2〉 = −∂zP

where again−∂xP = p0 is constant. Integrating the first equation gives

−νU ′ + 〈uw〉 = zp0 + p1.

The boundary conditions

〈uw〉|z=±d = 0 and νU ′|z=±d = ∓τ0

imply

−〈uw〉 = −zτ0

d
− νU ′(z)
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Table 2
Values forC, f0, f1, andξ determined from direct numerical simulation for Reynolds numbersR0 = 180 and 395

R0 φmax Ceξ f0 f1 ξ

180 18 −26.15 18 −1.6 13
395 20 −27.31 20 −2.1 28

or by Eq. (4.5) in terms of the rescaled variables

−〈uw〉
τ0

= 1 − η

R0
− φ′(η). (4.7)

Consequently, we can solve for the Reynolds shear stress−〈uw〉/τ0 in terms of our nondimensionalized mean
velocity profileφ.

4.2. Globally isotropic homogeneous Lagrangian fluctuations

Kolmogorov theory applies to the case of homogeneous isotropic turbulence. In this case, homogeneity impliesα

does not depend on position and isotropy impliesβ = 0. For the periodic box discussed in Section 3 it is obvious, in
the absence of physical boundaries, that the fluctuations should be homogeneous and isotropic. In fully developed
turbulent channel and pipe flows, there is good reason to suppose the same for most of the flow region, with the
possible exception of the boundary layer. To start, it is reasonable to see what insight can be obtained for the channel
by takingα constant andβ = 0 throughout the entire channel width. In this case Eq. (4.6) becomes

R2
0

d2
α2φ′′ − φ = −f0 − 3f1

(
1 − η

R0

)2

(4.8)

which has a symmetric solution aboutη = R0 given by

φ = C cosh

(
ξ

(
1 − η

R0

))
+ 3f1

(
1 − η

R0

)2

+ 6
f1

ξ2
+ f0 (4.9)

where we have setξ = d/α for notational convenience andC is an undetermined constant. We now compare this
solution with the numerical simulations of Kim, Moin and Moser [15] and also [16]. The Reynolds numberR0 is
given by the simulation. We determineC, f0 andf1 from the equations

φ(0) = 0, φ′(0) = 1, and φ(R0) = φmax

whereφmax is the experimentally determined average centerline velocity of the flow andξ is treated as a shape
parameter used to fit the data. In particular, for comparison with the numerical simulation we use the values from
Table 2. Note that the constantC must be small to balance the exponentially large behavior of cosh(ξ(1 − η/R0))

with ξ � 1 near the wall whereη/R0 � 1.
In Fig. 3 we graph our resulting functionφ as well as the Reynolds shear stress−〈uw〉/τ0 along with the data

from the direct numerical simulation.
As might be expected there are some difficulties in the agreement of our solution with the direct numerical simu-

lations near the walls of the channel. This is probably due to the fact that the fluctuations are neither homogeneous
nor isotropic in this region. However, our solution shows the correct qualitative behavior away from the boundaries.
In particular, our solution has an inflection point nearη = 10 and another one farther from the wall whose position
is Reynolds number dependent.
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Fig. 3. Comparison of the constantφ of the Camassa–Holm equation and the Reynolds shear stress−〈uw〉/τ0 with direct numerical simulation
for turbulent flow in the infinite channel. The solid lines represent our solution while the dashed line represents the numerical simulation of Kim,
Moin and Moser [15,16].

We would now like to use this theory to make predictions of the turbulent flow profile as a function of Reynolds
number. First note that by writing Eq. (4.9) as

φ = −C cosh(ξ)

{
1 − cosh(ξ(1 − η/R0))

cosh(ξ)

}
− 3f1

{
1 −

(
1 − η

R0

)2
}

(4.10)

one realizes the boundary conditionφ(0) = 0. For the boundary conditionφ′(0) = 1 we differentiate to get

φ′ = −Cξ

R0

{
sinhξ

(
1 − η

R0

)}
− 6f1

R0

(
1 − η

R0

)
.

Thereforeφ′(0) = 1 becomes

−Cξ sinh(ξ) − 6f1 = R0. (4.11)

Recall the flux Reynolds numberR is defined by

R = Ūd

ν
=
∫ R0

0
φ dη = −CR0 cosh(ξ)

(
1 − tanhξ

ξ

)
− 2R0f1. (4.12)

Settingθ = −6f1/R0 and eliminatingC from Eqs. (4.11) and (4.12) gives

R2
0 =

(
R − θR2

0

3

)(
ξ tanhξ

1 − ξ−1 tanhξ

)
+ θR2

0. (4.13)
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Upon settingξ = δR0 and takingξ � 1, this simplifies to order O(1/ξ) into the basic relation

1 − θ

δ
= R

R0
− θR0

3
. (4.14)

In terms of the parametersθ andξ , Eq. (4.7) implies the Reynolds shear stress,

−〈uw〉
τ0

= (1 − θ)

{
1 − η

R0
− sinh(ξ(1 − η/R0))

sinh(ξ)

}

Thus,−〈uw〉 ≥ 0 for 0 ≤ η ≤ R0, as seen empirically. In the lower half of the channel, the solution (4.10) may be
expressed to order O(ξe−ξ ) as

φ(η) = 1 − θ

δ
(1 − eδη) + θη

(
1 − η

2R0

)
, (4.15)

for 0 ≤ η ≤ R0. In this notation, we haveα = d/ξ = `∗/δ for the lengthscale in Eq. (4.8). The velocity profileφ

in Eq. (4.10) has its maximum at the center of the channelη = R0. At this pointφmax = φ(R0) is given to leading
order by

φmax = 1 − θ

δ
+ θR0

2
. (4.16)

Recall that the drag coefficient for the channel is defined byD = 2R2
0/R2 = 2u2∗/Ū2. From Eqs. (4.14) and (4.16)

we have

θR0 = 6

(
φmax −

√
2

D

)
,

1 − θ

δ
= 3

√
2

D
− 2φmax. (4.17)

Since 0< θ < 1, relations (4.17) imply the inequalities 3/2 > φmax
√

D/2 > 1, and we may write

1 − θ

δ
= c

√
2

D
, and θR0 = 3(1 − c)

√
2

D
, (4.18)

by introducing the constantc ∈ (0, 1) defined in terms of the velocity profile flatness or centerline velocity ratio
φmax/φ̄ as

3 − c

2
= φmax

φ̄
= φmax

√
D

2
with 0 < c < 1 (4.19)

whereφ̄ = R−1
0

∫ R0
0 φ(η) dη. Comparison with the experimental data of Wei and Willmarth [19] shows thatc is in

the range [0.728, 0.77]. This is consistent with the empirical correlation ofφmax/φ̄ = 1.27R−0.0116 found by Dean
[8]. Eq. (4.18)(b) and the basic relation (4.14) then imply

θ =
(

1 + cξ

3(1 − c)

)−1

= O(ξ−1). (4.20)

Substituting this into Eq. (4.18)(a) gives

R0 = cδR

(
1 + 3(1 − c)

cξ

)
= cδR + O(ξ−1). (4.21)

Thus, to leading order,δ = c−1R0/R = c−1√D/2 and the velocity profile Eq. (4.15) is given by

φ(η) = R

R0

{
c
(
1 − eR0η/(cR)

)
+ 3(1 − c)

η

R0

(
1 − η

2R0

)}
. (4.22)
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Fig. 4. The mean velocity profilesφ and the Reynolds stress−〈uw〉/τ0 for the constantα version of the Camassa–Holm equations compared
with the experimental data of Wei and Willmarth [19] for the channel.

Thus, forξ = d/α � 1, the law
√

D/2 = R0/R and the constantc determine the steady velocity profile of the
VCHE φ(η) at eachR.

We now introduce one more equation, a drag law. This reduces the number of free parameters so that we can
determine our velocity profileφ and Reynolds shear stress−〈uw〉/τ0 solely in terms of the flux Reynolds number.
The lengthscaleα is given to leading order byα/d = 1/(δR0) = 2c/(DR). For instance, using the Blasius drag
law, D = λR−1/4 with λ ' 0.06 (see Dean [8]), we obtain

1

ξ
= α

d
= 2c

λ
R−3/4 = c

(
2

λ

)4/7

R
−6/7
0 , and R0 =

√
λ

2
R7/8. (4.23)

After the Blasius drag law is chosen andc is determined from the midplane velocity data, no free parameters remain
in the model. In Fig. 4 we compare our model to the data of Wei and Willmarth [19].

Also, in Fig. 5 we plot a family of velocity profilesφ(η; R) at various values ofR going beyond the values in
experimental data in Fig. 4 using the Blasius drag law to determine the extra free parameter. As mentioned earlier the
constantC is very small to balance the exponentially large behavior of cosh(ξ(1− η/R0)) near the wall. However,
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Fig. 5. The upper and lower envelopes of the velocity profile using the Blasius drag law as an input to determine the extra free parameter.

away from the wall this implies thatC cosh(ξ(1− η/R0)) ≈ 0. As the point of contact ofφ(η; R) with its envelope
is some distance from the wall, we shall make this approximation in finding the envelopes. In this way, the upper
and lower envelopes of this family are found analytically to beη1/7 power laws up to leading order.

It is interesting to note that Blasius obtains a mean velocity profiles behaving asη1/7 in the median range of the
flow [17]. We get the same functional dependence for the envelopes of the mean velocity profiles as the Reynolds
number is varied. Hence, there is a fixed range inside the channel in which our profiles are estimated by the 1/7
power law.

4.3. Locally isotropic homogeneous Lagrangian fluctuations

The results forα constant throughout the channel show some agreement with the numerical and empirical data
for moderate skin friction Reynolds numbers 170< R0 < 1608. However, for much largerR0 Fig. 5 shows that
the assumptionα constant through the channel leads to a shoulder or overdetermination ofφ for η around 100.
This leads to the physically more reasonable assumption thatα, the averaged size of the Lagrangian fluctuations,
depends on the distance to the wall in the boundary layer. In this case we still can assumeα is constant for most of
the flow region but allow it to vary near the wall whereβ may as well not be zero.

We imagine the Lagrangian fluctuations in the turbulent flow coming from a parameterized familyPz of probability
determinations. In this wayα andβ are given by

α2(z) = 〈σ 2
3 〉 =

∫ d

−d

(ζ − z)2 dPz(ζ ) and β(z) = 〈σ3〉 =
∫ d

−d

(ζ − z) dPz(ζ ). (4.24)

This constrains howα andβ are related. The Cauchy–Schwarz inequality impliesβ2 ≤ α2. In addition, we note
that no fluctuation physically leaves the channel. Thus, the support ofPz must be contained in [−d, d]. Therefore
in Section 4.3 we assumed the turbulence to be isotropic and homogeneous away from the boundaries. Isotropy
impliesPz is symmetric about its mean. Homogeneity impliesPz is a translate dPz(ζ ) = dP(ζ − z) whereP is
some fixed distribution. It is reasonable to further assumepz is unimodal. That is, it has a density with only one
peak.

We now pose the question: in the best case, how close to a boundary could these assumptions hold? Leth be
the distance from the wall where they break down. The density of the probability distribution must be supported



S. Chen et al. / Physica D 133 (1999) 49–65 59

Table 3
Values forC, f0, f1, andξ determined from direct numerical simulation for Reynolds numbersR0 = 180 and 395

R0 φmax Ceξ f0 f1 ξ

180 18 −29.40 18 −1.8 20
395 20 −23.47 20 −2.1 32

Fig. 6. Comparison of the constantα solutionφ of the Camassa–Holm equations and the Reynolds shear stress−〈uw〉/τ0 with direct numerical
simulation in the flow region for the infinite channel away from boundaries. The dashed vertical line has been placed at a distanceη0 = √

3α

from the wall to indicate where the assumptions of isotropy and homogeneity are likely to break down.

completely inside the channel. Assuming a density with only one peak, a uniform distribution has the smallest
support for a given variance; therefore it is the one which could be translated closest to a boundary. Since

α2 = 1

2h

∫ h

−h

ζ 2 dζ = 1

3
h2 for |z| ≤ d − h

one finds thath = √
3α. In terms of wall units, this distance isη = R0(d − h)/d.

Thus, for the part of the flow region away from the boundaryφ takes on the same form as in Eq. (4.9). However,
as this solution does not extend all the way to the wall, the boundary conditionφ(0) = 0 andφ′(0) = 1 cannot
be used to determine free parameters. This gives us additional flexibility in matching the mean flow away from the
boundaries.

In Table 3 we choose these parameters so as to obtain a good fit of our profiles and Reynolds shear stresses with
the direct numerical simulations away from the viscous sublayer, all the way up to the center of the channel. In Fig.
6 we graph our resulting functionφ as well as the Reynolds shear stress−〈uw〉/τ0 along with the data from the
direct numerical simulation. Note that the estimate actually serves fine a little belowη0.

The mathematical treatment of the theory of locally isotropic homogeneous Lagrangian fluctuations for high
Reynolds numbers appears in our paper [6] along with graphs comparing this theory to the experimental data of Wei
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Fig. 7. Statistical compatibility ofα andβ arising from a uniform probability distribution in the near wall region forφ given by direct numerical
simulations [15,16]. The lower constraint is given by the Cauchy–Schwarz inequality and the upper constraint by Eq. (4.26).

and Willmarth [19] and Zagarola [20]. In Section 5 we will present this theory for high Reynolds number turbulent
flows in pipes.

Before concluding this section let us remark the assumption (4.24), that the statistics of the Lagrangian fluctuations
arise from a family of probability distributions, leads to conditions onα andβ in the boundary region. In particular,
we have Cauchy–Schwarz inequality and the fact that the support ofPz must lie in the channel. The Cauchy–Schwarz
inequality impliesβ2 ≤ α2. In [6] the condition that the support ofPz must lie in [−d, d] was given without the
further assumption that the underlying probability distributions be unimodal. This leads to the condition that

α2(z) ≤ d2 − z2 − 2zβ(z) for |z| ≤ d. (4.25)

In this paper, however, we assume that the underlying probability distributions are unimodal. This leads to a more
stringent condition than Eq. (4.25) on the relationship betweenα andβ. In fact, we shall show here that it is possible
to satisfy the even stronger condition in which the underlying probability distributions are taken to be uniform on
their support. Thus, we have that

α2(z) ≤ β2(z) + 1
3(d + z + β(z))2 for − d ≤ z ≤ 0. (4.26)

Integrating Eq. (4.6) we obtain

R2
0

d2
α2φ′ +

∫ R0

η

(
1 − R0

d

∂β

∂η

)
φ = R0f0

(
1 − η

R0

)
+ R0f1

(
1 − η

R0

)3

. (4.27)

From this we solve forα provided thatβ, f0, f1 andφ are known. We takeφ from the direct numerical simulations
of Kim, Moin, and Moser [15,16]. The values forf0 andf1 have already been determined in Table 3 by matching
φ in the homogeneous isotropic region away from the boundaries. Finally, to obtainβ we take

β =
{

β0(1 − η/η1)
2 for η < η1

0 for η1 ≤ η < R0

(see Section 14 of [6] for an empirical justification), and chooseβ0 andη1 > η0 so thatα andβ satisfy the
compatibility condition (4.26) and the Cauchy–Schwarz inequality. The result is shown in Fig. 7. Note that Eq.
(4.25) was checked in [6] for higher Reynolds numbers by using the empirical formula from Panton [18] forφ near
the wall.
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Fig. 8. Choice of coordinates for the pipe.

5. The pipe geometry

In this section we shall develop our method of averaged Lagrangians and Camassa–Holm equations for turbulent
fluid through a pipe. We consider a cylindrical pipe shown in Fig. 8 oriented along thex axis of radiusd with
y = r cosθ andz = r sinθ . Note: we used for the radius rather than for the diameter of the pipe so as to be
consistent with our earlier work where we usedd for the channel half height. Also, the Reynolds numbers reported
by Zagarola [20] are based on pipe diameter and therefore twice what we use here.

5.1. The Camassa–Holm equations in the pipe

As before we solve the time independent viscous Camassa–Holm equations (4.1). On average the fluid is flowing
only in thex direction. LetU be the mean velocity of the fluid in that direction. The symmetry conditions are that
U and the averages of the fluctuationsσ depend only onr. Therefore we have

V
∂U

∂r
= −∂π

∂r
, 0 = −1

r

∂π

∂θ
, and − ν

1

r

∂

∂r

(
r
∂V

∂r

)
= −∂π

∂x
(5.1)

where

V = U −
{(

1

r
+ ∂

∂r

)
〈σr 〉

}
U −

(
1

r
+ ∂

∂r

){
〈σ 2

r 〉∂U

∂r

}
(5.2)

Hereσr denotes the component ofσ pointing in the radial direction. The second equation in Eq. (5.1) shows that
π is independent ofθ . The left side of the last equation of the last equation in Eq. (5.1) only depends onr, hence
integrating it with respect tox gives

−π = −x
ν

r

∂

∂r

(
r
∂V

∂r

)
+ h(r).

Differentiate with respect tor and use the first equation in Eq. (5.1) to obtain

−∂π

∂r
= −x

∂

∂r

{
ν

r

∂

∂r

(
r
∂V

∂r

)}
+ h′(r) = V

∂U

∂r

which is only a function ofr. Thus

∂

∂r

{
1

r

∂

∂r

(
r
∂V

∂r

)}
= 0. (5.3)

Solving for the momentum per unit massV under the assumption that it is bounded at the origin yields

V = k1

( r

d

)2 + k2 (5.4)

wherek1 andk2 are constants of integration.
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5.2. Locally isotropic homogeneous fluctuations

As in Section 4.3 for the channel we suppose the distribution of the Lagrangian fluctuationsσ to be isotropic and
homogeneous away from the wall of the pipe. In this region we may suppose that

β = 〈σr 〉 = 0 and α2 = 〈σ 2
r 〉

is independent ofr. Therefore Eq. (5.2) simplifies to

V = U − α2 1

r

∂

∂r

(
r
∂U

∂r

)
.

We now express Eq. (5.4) in terms of non-dimensional coordinatesφ andη (Eq. (4.8)) for the pipe geometry.

R2
0

ξ2

(
1 − η

R0

)−1
∂

∂η

{(
1 − η

R0

)
∂φ

∂η

}
− φ = −f0 − 2f1

(
1 − η

R0

)2

wheref0 = k2/u∗, f1 = k1/(2u∗), andξ = d/α. Solving this equation gives

φ(η) = CI0

(
ξ

(
1 − η

R0

))
+ 2f1

(
1 − η

R0

)2

+ 8
f1

ξ2
+ f0 (5.5)

where

I0(ζ ) =
∞∑

n=0

1

(n!)2

(
r2

4

)n

in the modified Bessel function of the first function of the first kind (see, for example [1]). Note that the second
term in (5.5) is the classical Hagen–Poiseuille flow for laminar flow in a pipe.

5.3. Prediction of flows in pipes

As before, we make the ansatz thatU in the VCHE corresponds to the average velocity in the Reynolds equations.
We shall work in terms of the nondimensional mean velocity profilesφ. It is accepted, based on experimental data,
thatφ is concave with maximum occurring at the center of the pipe. Hence(

1 − η

R0

)
φ(R0) ≤ φ(η) ≤ φ(R0). (5.6)

Since the flux Reynolds number

R = dUav

ν
= 2

d2

∫ d

0
rU(r) dr = 2

∫ R0

0

(
1 − η

R0

)
φ(η) dη, (5.7)

integrating the inequality (5.6) yields that

φ(R0)

3
≤ R

R0
≤ φ(R0).

We also make the empirical observation that

R

R2
0

� 1 � R

R0
for R0 � 1. (5.8)
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An in [6] we assume thatφ has the following scaling property: forR (or R0) large enough, there exists a range
[q1, q2] for q in which

f (q) = φ(q2R0) − φ(qR0) (5.9)

is a function ofq only and independent ofR0. We chooseq1 and q2 so that the assumptions of isotropy and
homogeneity hold homogeneity hold in this range; however, we make no assumptions about the size of the range.
Note that the classical defect law of Izakson, Millikan and von Mises [17] (pp. 186–188) is the particular case of
Eq. (5.9) whereq2 = 1 and the range is assumed to be wide. Therefore

f (q) = C{I0(ξ(1 − q)) − I0(ξ(1 − q2))} + 2f1{(1 − q)2 − (1 − q2)
2}.

Now differentiate to obtain

f ′(q) = −CξI ′
0(ξ(1 − q)) − 4f1(1 − q) (5.10)

f ′′(q) = −Cξ2I ′′
0 (ξ(1 − q)) + 4f1 (5.11)

f ′′′(q) = −Cξ3I ′′
0

′(ξ(1 − q)) (5.12)

f ′′′′(q) = Cξ4I ′′
0

′′(ξ(1 − q)) (5.13)

all of which must also be independent ofR0. It follows that

−f ′′′′(q)

f ′′′(q)
= ξ

I ′′
0

′′(ξ(1 − q))

I ′′
0

′(ξ(1 − q))
(5.14)

is independent ofR0. Suppose thatξ varies asR0 varies for largeR0. Then, multiplying by 1− q and setting
ζ = ξ(1 − q) we would obtain that the quantity

ζ
I ′′
0

′′(ζ )

I ′′
0

′(ζ )
= ζ

d

dζ
{log(I ′′

0
′(ζ ))}

is independent ofζ in some interval (ζ1, ζ2). However, this would imply that on this intervalI ′′
0

′(ζ ) = cζ γ for
some constantsc andγ , which is clearly impossible. It follows thatξ must be independent ofR0. Therefore from
Eq. (5.12) we have thatC is independent ofR0 and from Eq. (5.11) thatf1 is independent ofR0. Hence the only
constant that could depend onR0 is f0.

Letη0 be the closest distance to the wall that the statistics of the Lagrangian fluctuations may be assumed isotropic
and homogeneous. Thus, the velocity profile found in Eq. (5.5) holds forη in the interval [η0, R0]. From Eq. (5.7)
we obtain that

R = 2
∫ η0

0

(
1 − η

R0

)
φ(η) dη + 2R0C

(
1 − η0

R0

)
I ′
0(ξ(1 − η0/R0))

ξ
+ R0f1

(
1 − η0

R0

)4

+ R0

(
8
f1

ξ2
+ f0

)(
1 − η0

R0

)2

(5.15)

from which we can solve for the Reynolds number dependence inf0 provided the integral can be reasonably
approximated. We approximateφ on the interval [0, η0] by the piecewise linear function

φ(η) ≈
{

η 0 < for η ≤ η∗
φ(η0) + (n − n0)φ

′(η0) for η∗ ≤ η ≤ η0
(5.16)

whereη∗ is chosen so as to make the function continuous. That is,η∗ = (φ(η0) − η0φ
′(η0))/(1 − φ′(η0)).
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Fig. 9. Prediction of pipe flows. The solid line represents the experimental data from Zagarola [20], the dashed line represents our theoretical
profileφ, the dash-dotted line represents the von Karman log law, and the dotted line represents the Barenblatt–Chorin–Prostokishin power law
[2,3].

Table 4
Givenξ = 30, Ceξ = −67.81, andf1 = −4.184 fixed, we predict values ofφ(η0) andf0 for higher Reynolds numbers

R R0 η0 φ(η0) f0

154750 6604 89.92 16.50 27.94
1549050 54721 740.38 21.35 32.80

17629500 525858 7144.94 26.56 38.00

In predicting velocity profiles, there are six free parameters:C, f0, f1, ξ, η0, andR0. The flux Reynolds number
R is given by the experiments. As in the case of channel flow, the parameterR0 is determined by assuming a drag
law and using the relationR2

0/R2 = D/8. SinceC, f1, andξ are independent of Reynolds number, we fix these
parameters using low Reynolds number experimental data from Zagarola [20]. This is accomplished by choosing
two data points in the logarithmic region, and data at the pipe centerη = R0. This produces a linear system of
equations that may be solved forC andf1. Then,ξ is set, and the two data points chosen as far apart as possible,
so thatφ in Eq. (5.5) best fits the experimental data. We use the first data point(η1, φ(η1)) to setq0 = η1/R0.

For higher Reynolds numbers, we setη0 = q0R0. The parameterf0 is determined using Eq. (5.15) forR and the
approximation (5.16) forφ on the interval [0, η0]. More specifically, we use Eq. (5.5) withη = η0 to obtainf0 in
terms ofφ(η0). Using the the cubic term is proportional to 1/R0 and is neglected. We solve the remaining quadratic
equation forφ(η0), taking the minimal root which is the one consistent with Eq. (5.8). This in turn givesf0.

In Fig. 9 we show this predictive capability forφ. Each plot graphs the von Karman log-law, the Barenblatt–
Chorin–Prostokishin power law [2,3], the Zagarola experimental data [20], and the theoretical curveφ for four
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different Reynolds numbers. The first post includes the velocity profile for a lower Reynolds number and is used
for matching and for setting parametersC, f1, ξ , andq0. In particular, we obtainξ = 30, Ceξ = −67.81, f1 =
−4.184 andq0 = 0.01353 using such a procedure. The remaining three plots are predicted velocity profiles for
higher Reynolds numbers. Table 4 summarizes the values forf0 used for predicting these flows.
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