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Abstract. We present a new data set of attributes for 671

catchments in the contiguous United States (CONUS) min-

imally impacted by human activities. This complements the

daily time series of meteorological forcing and streamflow

provided by Newman et al. (2015b). To produce this exten-

sion, we synthesized diverse and complementary data sets to

describe six main classes of attributes at the catchment scale:

topography, climate, streamflow, land cover, soil, and geol-

ogy. The spatial variations among basins over the CONUS

are discussed and compared using a series of maps. The large

number of catchments, combined with the diversity of the

attributes we extracted, makes this new data set well suited

for large-sample studies and comparative hydrology. In com-

parison to the similar Model Parameter Estimation Experi-

ment (MOPEX) data set, this data set relies on more recent

data, it covers a wider range of attributes, and its catchments

are more evenly distributed across the CONUS. This study

also involves assessments of the limitations of the source

data sets used to compute catchment attributes, as well as

detailed descriptions of how the attributes were computed.

The hydrometeorological time series provided by New-

man et al. (2015b, https://doi.org/10.5065/D6MW2F4D) to-

gether with the catchment attributes introduced in this paper

(https://doi.org/10.5065/D6G73C3Q) constitute the freely

available CAMELS data set, which stands for Catchment At-

tributes and MEteorology for Large-sample Studies.

1 Introduction

Catchment attributes are descriptors of the landscape. Their

interplay shapes catchment behavior by influencing how

catchments store and transfer water. To synthesize the multi-

faceted composition of catchments, catchment attributes nec-

essarily cover a wide range of features, such as the catch-

ment climate, hydrology, land cover, soil, geology, topogra-

phy, and river network. Over the last decades, catchment at-

tributes have been developed in a variety of ways and are the

building blocks of countless hydrological studies.

A fruitful research direction is to explore interrelationships

among catchment attributes. Key examples include how the

interaction of climate and topography influences vegetation

productivity (Voepel et al., 2011), how aridity affects the an-

gle of stream intersections, thereby constraining the shape

of the river network (Seybold et al., 2017), or the extent

to which land cover influences annual streamflow (Oudin et

al., 2008) or evapotranspiration (Zhang et al., 2001). Catch-

ment attributes are also a standard way to characterize catch-

ment (dis)similarities and are consistently employed to de-

velop catchment classifications (e.g., McDonnell and Woods,

2004; Wagener et al., 2007; Sawicz et al., 2011; Berghuijs

et al., 2014). Furthermore, there have been considerable ef-

forts to use catchment attributes to reflect the structure of the

landscape in models. One approach is to infer hydrological

model parameter values from catchment attributes (Abdulla

and Lettenmaier, 1997; Seibert, 1999; Hundecha et al., 2008;

Samaniego et al., 2010; Hrachowitz et al., 2013) with the par-

allel objectives of accounting for landscape characteristics in

an explicit way (not only implicitly by calibration), and of

implementing hydrological models in ungauged basins. An-

other approach is to base not only parameter values but also
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the choice of model structure on catchment attributes (Clark

et al., 2011; McMillan et al., 2011; Fenicia et al., 2014). Both

approaches provide guidance on how to deal with geophys-

ical characteristics that vary dramatically within the model

domain, for instance, in the context of continental-scale mod-

eling.

Although catchment attributes are routinely used when

working with a handful of catchments, there is a growing

recognition that a large sample of catchments can provide in-

sights that cannot be gained from a small sample (Gupta et

al., 2014). Large-sample data sets enable us to concentrate on

catchment similarities and on the formulation of conclusions

that are valid for a large number of (gauged and ungauged)

catchments. Individual catchments can then be considered to

be part of a continuum of catchment attributes, which vary in

space along several gradients (such as aridity or soil depth).

Working with a large number of catchments enables us to

study changes along different gradients and to better disen-

tangle the effects of catchment attributes on catchment be-

havior. This is particularly useful for comparative hydrol-

ogy, i.e., to identify how similarities and differences between

locations influence ecohydrological processes (Falkenmark

and Chapman, 1989; Troch et al., 2009; Thompson et al.,

2011; Harman and Troch, 2014). Further, large-sample hy-

drology opens new opportunities for data analysis and, for

instance, makes it possible to explore interrelationships be-

tween catchment attributes on the basis of their spatial pat-

terns, as exemplified later in this study using map compar-

isons.

Several data sets of catchment attributes for large-sample

hydrology now exist (see the review by Gupta et al., 2014).

The large-sample data set introduced in this paper is an ex-

tension of the Newman et al. (2015b) data set, referred to

as N15 hereafter. N15 covers 671 catchment in the contigu-

ous USA (CONUS), for which it provides daily meteorolog-

ical forcing from three data sets, Daymet (Thornton et al.,

2012), Maurer (Maurer et al., 2002), and NLDAS (Xia et al.,

2012), as well as daily streamflow measurements from the

United States Geological Survey (USGS). All those catch-

ments have 20 years of continuous discharge records from

1990 to 2009 and are minimally impacted by human activi-

ties (see Sect. 2.1 in Newman et al., 2015b). Here, we cover

the same catchments and provide additional quantitative esti-

mates of a wide range of catchment attributes. We named this

extended N15 data set the CAMELS data set, which stands

for Catchment Attributes and MEteorology for Large-sample

Studies.

Section 2 explains the motivations to extend the N15 data

set. Sections 3–8 present six classes of basin characteris-

tics: topographic characteristics, climate indices, hydrologi-

cal signatures, and land cover, soil, and geology character-

istics, respectively. These six sections are organized using

the following structure. We first provide some research back-

ground on this class of basin characteristics, introduce the at-

tributes we selected, and explain the reasons behind their se-

lection. Since these attributes are well established, we briefly

introduce them in the main text and provide further details

in tables, which contain units and abbreviations for the at-

tributes, as well as references to the equations and data sets

used for their computation. We follow by discussing the spa-

tial variations of these attributes across the CONUS and by

assessing their main limitations of the source data sets. Sec-

tion 9 compares the CAMELS data set to the Model Param-

eter Estimation Experiment data set (MOPEX; Duan et al.,

2006; Schaake et al., 2006), another large sample of catch-

ments for the CONUS. Section 10 discusses the online avail-

ability of the CAMELS data set and possible future exten-

sions. Conclusions are presented in Sect. 11.

2 Motivations to extend the Newman et al. (2015b)

data set

In creating the CAMELS data set, we seek to achieve the

following objectives:

1. In order to make a wide range of geophysical data sets

available and comparable at the catchment scale, we

compiled complementary catchment attributes from di-

verse data sources and synthesized them into a single

coherent data set. These attributes have been available

separately for some time, but comprehensive multivari-

ate catchment-scale assessments have so far been dif-

ficult, because disparate data sets have different spatial

configurations, are stored in different archives, and use

different data formats. By creating catchment-scale es-

timates of these attributes, we simplify the assessment

of their interrelationships.

2. To summarize meteorological forcing and discharge

daily time series, we derived climate indices and hy-

drological signatures using the daily time series from

N15. We selected climate indices and hydrological sig-

natures that reduce the dimensionality of the hydrocli-

matic data sets, while preserving most of their informa-

tion content. In other words, daily time series are rich

in information, but summarizing this information makes

catchment comparison easier.

3. For the characterization of catchment land cover, soil,

and geology, we leveraged data sets not used in N15 in

order to describe the land cover, soil, and geology of

each catchment. The attributes we extracted are com-

monly used to explore catchment behavior and to sup-

port parameter estimation for hydrological and land sur-

face models. A goal is to better assess how well those

data sets capture the landscape features that matter for

the storage and transfer of water across the landscape.

4. To define limitations in catchment attributes, our inten-

tion is not only to provide quantitative estimates of di-

verse catchment characteristics but also to explore and
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discuss limitations of those estimates. Catchment at-

tributes are uncertain for different reasons, so we pro-

vide metadata of different kinds (e.g., the difference in

basin area estimated using different data sources, or the

fraction of soil poorly characterized). Our aims are (i) to

contribute to raise awareness of uncertainties in geo-

physical attributes, which are frequently considered in a

purely deterministic way, and (ii) to facilitate catchment

selection based on the reliability of their attributes.

5. In order to ensure spatial consistency across the do-

main, we reduce the risk of generating artificial regional

variations by using only data sets that cover the entire

CONUS and not different data sets for different parts of

the domain.

For most variables and catchments, the spatial resolution

of the source data set (e.g., the remote-sensed land cover

characteristics) is smaller than the catchments, making up-

scaling necessary. By default, the upscaling was done using

the arithmetic mean, except where indicated otherwise.

3 Location and topography

Location information and topographic indices were extracted

for each catchment by N15 (Table 1). We display these at-

tributes on maps to introduce the main topographic features

of the CONUS. Elevation obviously exerts a key control on

catchment behavior (Fig. 1a), as it strongly influences a wide

range of catchment attributes that we present in this paper,

such as soil depth, land cover, the fraction of the precipi-

tation falling as snow, or streamflow seasonality. Figure 1b

illustrates that the eastern half of the CONUS is, with the

exception of the Appalachian Mountains, much flatter than

its western counterpart. Figure 1c shows the spatial distri-

bution of catchment size and highlights that there are some

large catchments: five catchments have an area greater than

10 000 km2, and four of those are located in the Great Plains.

Since we compute the catchment average of every attribute

presented in this paper, it is important to keep mind that those

catchment averages become less meaningful as the catch-

ment area increases. In the context of hydrological modeling,

the larger the catchment, the greater the need to account for

spatial heterogeneity using some kind of spatially distributed

representation.

As explained earlier, our aim is to reveal weaknesses in

catchment characteristics and to discuss the impacts of such

weaknesses for hydrological modeling. One way to do so

is to compare different estimates of the same quantity, for

instance, catchment area. Two methods were used to de-

termine the contours of each catchment: geospatial fabric

(Viger, 2014; Viger and Bock, 2014) and GAGES II (Fal-

cone, 2011). The polygons from geospatial fabric were in-

strumental to produce the N15 data set, since they were used

to clip the gridded forcing data sets and the digital elevation

model (from which elevation bands were derived), and im-

portantly, they were used to estimate the area of each catch-

ment, which enabled the conversion of discharge at the catch-

ment outlet to average runoff depth over the catchment. It

is hence essential to determine if the area computed from

the geospatial fabric polygon is reliable. We compared it to

the area computed using the GAGES II data set and com-

puted the absolute relative error between the two estimates.

In eight catchments, the error is greater than 100 % (red dots

in Fig. 1d), and in 62 catchments, the relative error is greater

than 10 % (red and orange dots). Several of these catchments

are located in the Great Basin and in California where the

geospatial fabric had difficulty identifying watershed bound-

aries. Additionally, the geospatial fabric was not designed

to exactly replicate basin area above gauging locations, but

rather its development focused on continental-scale hydro-

logic modeling; thus, some basin area discrepancies are in-

herent in the development of the geospatial fabric. We rec-

ommend not using catchments with large error discrepan-

cies with GAGES-II, as they are most likely erroneous in

the geospatial fabric (e.g., Bock et al., 2016). Note that, in

general, catchment delineation is more challenging in flat ar-

eas, but here errors in flat areas are relatively well contained,

except in Florida.

4 Climatic indices

4.1 Data and methods

Climatic indices were derived using the N15 meteorological

forcing data. N15 includes forcing from three data sets (NL-

DAS, Maurer, and Daymet), but for the computation of the

indices only Daymet data were used. All the climate indices

and hydrological signatures (Sect. 5) were computed for the

period 1 October 1989 to 30 September 2009 (hydrological

years 1990 to 2009). The choice of this period was based

on the proportion of missing daily discharge measurements

(the forcing time series were all extracted from gridded data

sets and are all complete). We consider this period to be long

enough to derive climatological indices (in particular when

rare events are characterized) and short enough to be little

impacted by the lack of daily discharge measurements at the

beginning and end of the period covered in N15 (1980–2014;

see Fig. 2).

There is a wide range of climatic indices in the literature.

We selected indices with the goal to synthesize this myriad

of possibilities and to provide direct support to the study of

hydrological processes (Table 2). These indices characterize

dry periods, high precipitation events, and the baseline over

two timescales: the daily timescale (e.g., frequency of high

precipitation events) and the seasonal timescale (e.g., the pro-

portion of precipitation falling as snow).

www.hydrol-earth-syst-sci.net/21/5293/2017/ Hydrol. Earth Syst. Sci., 21, 5293–5313, 2017
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Figure 1. (a–d) Maps of topographic characteristics over the CONUS. The histograms indicate the number of catchments (out of 671) in

each bin. (e) Map of the regions referred to in this study (source: NOAA National Centers for Environmental Information; https://www.ncdc.

noaa.gov/temp-and-precip/drought/nadm/geography).

Table 1. Name, location, and topographic characteristics.

Attribute Description Unit Data source References

gauge_id catchment identifier (eight-digit USGS – N15 – USGS data

hydrologic unit code)

huc_02 region (two-digit USGS hydrologic unit code) – N15 – USGS data

gauge_name gauge name, followed by the state – N15 – USGS data

gauge_lat gauge latitude ◦N N15 – USGS data

gauge_lon gauge longitude ◦E N15 – USGS data

elev_mean catchment mean elevation m above sea level N15 – USGS data

slope_mean catchment mean slope m km−1 N15 – USGS data

area_gages2 catchment area (GAGESII estimate) km2 N15 – USGS data Falcone (2011)

area_geospa_fabric catchment area (geospatial fabric estimate) km2 N15 – geospatial fabric Viger (2014);

Viger and Bock (2014)

At the seasonal timescale, we computed three indices:

aridity, the fraction of the precipitation falling as snow, and

the seasonality and timing of precipitation. These three in-

dices were previously used for the classification of 321 catch-

ments across the CONUS and were shown to provide rel-

evant insights into the relationship between catchment be-

havior and their physiographic characteristics (Berghuijs et

al., 2014; note that we use slightly different formulations of

these indices; see Table 2). Aridity is defined as the ratio

of mean annual potential evapotranspiration over the mean

annual precipitation. The occurrence of snow was estimated

for daily time steps using a temperature threshold of 0 ◦C.

The seasonality and timing of precipitation are combined

into a single metric, which relies on sine curves represent-

ing the annual cycle of precipitation and temperature. Note

that sine curves do not necessarily provide a good fit to the

annual precipitation cycle, for instance, in areas experienc-

ing a strong annual cycle and multiple consecutive months

with low precipitation, such as California (see Berghuijs and

Woods, 2015 for a solution to this issue), yet they enable

a first-order characterization of the dominant climatologi-

cal features of diverse locations, which is useful for studies

such as this one. These three seasonal indices provide a good

overview of the mean and seasonal climatic conditions but

do not explicitly consider dry periods and intense precipita-

tion events, which occur at different timescales and are key

drivers of droughts and floods. To fill this gap, we consid-

ered the frequency of dry days and high precipitation events,

as well as the mean duration of these events, and determined

the season during which most of the high precipitation events
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Table 2. Climatic indices.

Attribute Description Unit Data source References

p_mean mean daily precipitation mm day−1 N15 – Daymet∗

pet_mean mean daily PET, estimated by N15 us-

ing Priestley–Taylor formulation calibrated for

each catchment

mm day−1 N15 – Daymet∗

aridity aridity (PET / P , ratio of mean PET, estimated

by N15 using Priestley–Taylor formulation cal-

ibrated for each catchment, to mean precipita-

tion)

– N15 – Daymet∗

p_seasonality seasonality and timing of precipitation (esti-

mated using sine curves to represent the an-

nual temperature and precipitation cycles; pos-

itive (negative) values indicate that precipita-

tion peaks in summer (winter); values close to

0 indicate uniform precipitation throughout the

year)

– N15 – Daymet∗ Eq. (14) in Woods et al. (2009)

frac_snow fraction of precipitation falling as snow (i.e., on

days colder than 0 ◦C)

– N15 – Daymet∗

high_prec_freq frequency of high precipitation days (≥ 5 times

mean daily precipitation)

days yr−1 N15 – Daymet∗

high_prec_dur average duration of high precipitation events

(number of consecutive days ≥ 5 times mean

daily precipitation)

days N15 – Daymet∗

high_prec_timing season during which most high precipitation

days (≥ 5 times mean daily precipitation) occur

season N15 – Daymet∗

low_prec_freq frequency of dry days (< 1 mm day−1) days yr−1 N15 – Daymet∗

low_prec_dur average duration of dry periods (number of con-

secutive days < 1 mm day−1)

days N15 – Daymet∗

low_prec_timing season during which most dry days

(< 1 mm day−1) occur

season N15 – Daymet∗

∗ Computed over the period 1 October 1989 to 30 September 2009.
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Figure 2. Availability of streamflow measurements for periods of

different lengths (colors) centered on different years (x axis). The

symbols (crosses and circles) indicate the number of catchments

with at most 1 or 5 % of daily streamflow measurements missing,

respectively. The shape of the curves indicates that the proportion

of missing data decreases from 1980 to 1990, stays low, and then

increases after 2010. Note that years are hydrological years (starting

on 1 October).

and dry days occur. This provides some insights into the pre-

cipitation regime (convective or stratiform) and phase (liquid

or snow).

4.2 Spatial variability in climatic indices

The annual precipitation cycle is strongest over the Pacific

coast (maximum in winter), over the northern Great Plains,

and Florida (maximum in summer) and weakest along the

Atlantic coast (Fig. 3a). The fraction of precipitation falling

as snow is highest over the Rocky, Cascade, and Sierra

Nevada mountain ranges, followed by the Northeast and the

Great Lakes regions (Fig. 3b). Aridity is the highest over

the Southwest, High Plains, and Great Plains, when in con-

trast, the Northwest, Northeast, and the Appalachians are the

most humid regions (Fig. 3c). High precipitation events oc-

cur most frequently in winter along the Pacific coast (Fig. 3f)

and are relatively long lasting (Fig. 3e), which reflects their

large (synoptic)-scale nature. In contrast, summertime con-

vective systems (e.g., mesoscale systems) over the High

Plains, Great Plains, and the upper and middle Mississippi

Valley generate the most frequent high precipitation events.

In the band stretching from Louisiana to Georgia, high pre-

www.hydrol-earth-syst-sci.net/21/5293/2017/ Hydrol. Earth Syst. Sci., 21, 5293–5313, 2017



5298 N. Addor et al.: The CAMELS data set

Figure 3. Maps of climatic indices over the CONUS. The histograms and bar plots indicate the number of catchments (out of 671) in each

bin or category.

cipitation events are most frequent in winter, as the result

of the intense extratropical cyclone activity. The frequency

of dry days (Fig. 3g) is closely related to aridity (Fig. 3c).

Catchments located in the region stretching from California

to Texas typically experience the longest periods of succes-

sive dry days, while those in the Northeast are at the other

end of the spectrum (Fig. 3h). Dry days are particularly fre-

quent in summer west of the Rocky Mountains, in winter in

the Great Plains and Mississippi Valley, and in autumn in the

Atlantic coast states (Fig. 3i).

5 Hydrological signatures

5.1 Data and methods

Hydrological signatures were chosen using a similar ratio-

nale as for climate indices: we aimed to capture the hydro-

logical baseline, as well as low-flow and high-flow events.

All signatures were computed using daily discharge time se-

ries retrieved by N15 from the USGS for the period 1 Octo-

ber 1989 to 30 September 2009 (Fig. 2).

We selected signatures from the set that Sawicz et

al. (2011) used to explore the similarity between 280 catch-

ments in the eastern US and classify them (Table 3). The

runoff ratio indicates how much of the long-term precipi-

tation leaves the catchment as streamflow, thereby reflect-

ing losses to evapotranspiration and groundwater. We use

the slope of the flow duration curve to characterize stream-

flow variability: steeper flow duration curves define greater

variability over the year. The slope is computed between the

log-transformed 33rd and 66th streamflow percentiles. In in-

termittent streams, the frequency of days with no flow can

be greater than 33 %, so that Q33 = 0 mm day−1. Since the

logarithm cannot be extracted, the slope of the flow duration

curve is undefined. The contribution of baseflow to the total

discharge is estimated by the baseflow index computed by

hydrograph separation using a digital filter implemented by

Ladson et al. (2013). It has to be recognized that the tech-

nique used for the separation influences the estimated base-

flow index (see Beck et al., 2013 and Ladson et al., 2013

for recent examples), yet hydrograph separation can provide

valuable insights into catchment behavior (e.g., Harman et

Hydrol. Earth Syst. Sci., 21, 5293–5313, 2017 www.hydrol-earth-syst-sci.net/21/5293/2017/
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al., 2011), and the baseflow index has proven to be a use-

ful variable to compare and classify large samples of catch-

ments (e.g., Sawicz et al., 2011; Beck et al., 2016). Further,

catchment response to a change in precipitation, which is

particulary relevant in the context of climate change (e.g.,

Vano et al., 2015), was evaluated by computing the elastic-

ity between annual precipitation and discharge. Finally, we

characterized discharge seasonality using the half-flow date.

This indicator is frequently used to quantify the impacts of

climate change on the hydrology of snow-dominated catch-

ments (e.g., Court, 1962; Stewart et al., 2005; Addor et al.,

2014). The half-flow dates have been shown to occur earlier,

as temperature increases can force both an earlier onset of

snowmelt and a higher proportion of precipitation falling as

rain.

Since the hydrological signatures introduced so far do

not explicitly consider low- and high-flow events, we de-

fined high- and low-flow days using thresholds based on

the median and mean daily flow, respectively (Clausen and

Biggs, 2000; Olden and Poff, 2003; Westerberg and McMil-

lan, 2015). We computed the average duration and average

frequency of high- and low-flow events. We also extracted

5th and 95th percentiles (Q5 and Q95, respectively) from

the flow duration curve to characterize those events.

5.2 Spatial variability in hydrological signatures

The mean daily discharge and runoff ratio are strongly cor-

related (Fig. 4a and b) and present clear similarities to catch-

ment aridity (Fig. 3c). In the Great Plains, where the evap-

orative demands exceed available precipitation (aridity > 1),

more than 80 % of the precipitation is evaporated (runoff ra-

tio < 0.2) and the mean annual discharge is often as low as

0.3 mm day−1. In contrast, in the Pacific Northwest, precipi-

tation is often twice as high as PET (aridity < 0.5). Both the

runoff ratio and the mean annual discharge are higher in the

Pacific Northwest than in the Northeast, as can be expected

from the seasonality of precipitation, which peaks in win-

ter in the Pacific Northwest (Fig. 3a). Most of the discharge

flows during the first half of the year in the Pacific Northwest

(Fig. 4c). Streamflow is in contrast delayed by snow accu-

mulation in the Rocky Mountains; it is also late in the Mid-

west (in part because of the seasonality of the precipitation,

which peaks in summer), and in contrast early in the band

stretching from eastern Texas to South Carolina (which is

consistent again with the seasonality of precipitation). Sim-

ilarities exists between the patterns of the slope flow of the

duration curve and the baseflow index (Fig. 4d and e), with

lower baseflow index and higher slopes both indicating flashy

catchments, a clear example being the area stretching from

east Kansas to Kentucky. Finally, at the annual scale, the dis-

charge of more arid catchments tends to react more strongly

to annual precipitation anomalies (Fig. 4f; see also Harman

et al., 2011).

The frequency of low- and high-flow events is correlated

(Fig. 4g and j) and, by definition, both frequencies are low

in catchments with a low slope of the flow duration curve

(Fig. 4d). High flows are least frequent and the most short

lived in the Pacific Northwest and in the Appalachian Moun-

tains, and when they occur, their absolute discharge is higher

than in other regions (Fig. 4i). Q5 is more than 10 times

higher in the Pacific Northwest and in the Appalachian

Mountains than in the most arid catchments, which reflects

the capacity of these humid catchments to sustain baseflow.

Note that even though spatial patterns emerge from the

maps in Fig. 4, they tend to be less smooth than those of

climate indices shown in Fig. 3. In other words, there can

be some strong variations over short distances, for instance,

in the slope of the duration curve or in signatures related to

extreme (high and low) streamflow conditions. Plausible ex-

planations are that (i) hydrological signatures are the end re-

sult of the interactions between several non-linear processes

(as opposed to the smaller number of processes controlling,

for instance, the fraction of precipitation falling as snow),

and (ii) hydrological signatures are sensitive to uncertainties

in discharge measurements (Westerberg et al., 2016), which

we suspect to contribute to sudden variations over short dis-

tances in the maps of particularly sensitive signatures, such

as the slope of duration curve or signatures related to extreme

streamflow conditions.

6 Land cover characteristics

6.1 Data and methods

We considered two key indicators of vegetation density:

the leaf area index (LAI) and the green vegetation frac-

tion (GVF), which approximates the vertical and horizon-

tal density of vegetation, respectively. We used the 1 km

land cover products derived from the Moderate Resolution

Imaging Spectroradiometer (MODIS) data to estimate their

climatological monthly values over 2002–2014. LAI is de-

fined as the one-sided green leaf area per unit ground area in

broadleaf canopies and as half the total needle surface area

per unit ground area in coniferous canopies. We extracted

the maximum monthly LAI, which can be used to constrain

the maximum evaporative capacity and vegetation intercep-

tion capacity in models. Seasonal variations in LAI are prin-

cipally related to trees growing and shedding their leaves.

To quantify these variations, we computed the difference be-

tween the maximum and minimum monthly LAI. In abso-

lute terms, these variations are highest in areas of deciduous

broadleaf forest. The GVF can be used in models to esti-

mate the proportion of each grid cell covered by vegetation

(1 minus the GVF gives the fraction of the grid cell from

which evaporation occurs directly from the soil). Variations

in the GVF are particularly high for croplands as a result of

the growing and harvesting of the crops. Like for the LAI,
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Table 3. Hydrological signatures.

Attribute Description Unit Data source References

q_mean mean daily discharge mm day−1 N15 – USGS data∗

runoff_ratio runoff ratio (ratio of mean daily discharge to mean daily

precipitation)

– N15 – USGS data∗ Eq. (2) in Sawicz et al. (2011)

stream_elas streamflow precipitation elasticity (sensitivity of

streamflow to changes in precipitation at the annual

timescale, using the mean daily discharge as reference)

– N15 – USGS data∗ Eq. (7) in Sankarasubramanian

et al. (2001), the last element

being P /Q not Q/P

slope_fdc slope of the flow duration curve (between the log-

transformed 33rd and 66th streamflow percentiles)

N15 – USGS data∗ Eq. (3) in Sawicz et al. (2011)

baseflow_index baseflow index (ratio of mean daily baseflow to mean

daily discharge, hydrograph separation performed using

the Ladson et al., 2013 digital filter)

– N15 – USGS data∗ Ladson et al. (2013)

hfd_mean mean half-flow date (date on which the cumulative dis-

charge since 1 October reaches half of the annual dis-

charge)

day of year N15 – USGS data∗ Court (1962)

Q5 5 % flow quantile (low flow) mm day−1 N15 – USGS data∗

Q95 95 % flow quantile (high flow) mm day−1 N15 – USGS data∗

high_q_freq frequency of high-flow days (> 9 times the median daily

flow)

days yr−1 N15 – USGS data∗ Clausen and Biggs (2000); Ta-

ble 2 in Westerberg and McMil-

lan (2015)

high_q_dur average duration of high-flow events (number of con-

secutive days > 9 times the median daily flow)

days N15 – USGS data∗ Clausen and Biggs (2000); Ta-

ble 2 in Westerberg and McMil-

lan (2015)

low_q_freq frequency of low-flow days (< 0.2 times the mean daily

flow)

days yr−1 N15 – USGS data∗ Olden and Poff (2003); Ta-

ble 2 in Westerberg and McMil-

lan (2015)

low_q_dur average duration of low-flow events (number of consec-

utive days < 0.2 times the mean daily flow)

days N15 – USGS data∗ Olden and Poff (2003); Ta-

ble 2 in Westerberg and McMil-

lan (2015)

zero_q_freq frequency of days with Q = 0 % N15 – USGS data∗

∗ Computer over the period 1 October 1989 to 30 September 2009.

we extracted the maximum monthly value of the GVF and

the difference between the maximum and minimum monthly

values.

Additionally, we included the land cover class based on the

International Geosphere-Biosphere Programme (IGBP) clas-

sification (Belward, 1996) derived from MODIS data. For

each catchment, we defined the dominant land cover class as

the most frequent class based on all the grid points fully or

partially contained in the basin (each grid cell was weighted

based on how much of it was contained within the basin

boundaries). The fraction of the catchment covered by the

dominant class is an indicator of the representativeness of

the dominant class for the whole catchment.

Finally, based on the IGBP land cover class of each grid

point, we approximated the root-depth distribution based

on Zeng (2001). The distribution is estimated using a two-

parameter equation, the value of these parameters being de-

pendent on the IGBP land cover. The root fraction decreases

exponentially with soil depth: the depth of the soil layer en-

compassing the top 50 % of the root system is typically be-

tween 0.12 and 0.26 m depending on the land cover, and for

the top 99 % of the root system, this depth is typically be-

tween 1.4 and 2.4 m and is often named “rooting depth”.

We computed the root-depth distribution for each grid point

based on its land cover. We then extracted the values associ-

ated with the following percentiles: 10, 25, 50, 75, and 99 %.

For each percentile, the catchment average was estimated us-

ing the arithmetic mean. Table 4 provides the complete list

of land cover attributes that we considered.

6.2 Spatial variability in land cover characteristics

The maximum LAI and GVF are highly correlated (Fig. 5a

and d; see also the mean value for each land cover class in

Fig. 5j), which reflects that short vegetation tends to be sparse

and forests of taller trees tend to be dense, but could also in-

dicate that the MODIS data used to compute these two fields

do not enable us to fully differentiate between vertical and

horizontal vegetation density. These two fields are similar to

that of the fraction of forest (Fig. 5c, positive correlation) and

aridity (Fig. 5c, negative correlation), with arid catchments

typically associated with a lower LAI and lower GVF. Note

that because the catchments selected are minimally impacted

by human activities, none of them are classified as predomi-

nantly urban (Fig. 5f).
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Figure 4. Maps of hydrological signatures over the CONUS. The histograms indicate the number of catchments (out of 671) in each bin.

The amplitude of the seasonal variations of LAI is strongly

linked to the LAI maximum (Fig. 5a and b). Overall, catch-

ments dominated by land cover classes with a high LAI

(e.g., deciduous broadleaf forest or mixed forest; Fig. 5j)

tend to experience a significant increase and drop of LAI,

a clear exception to this rule being evergreen broadleaf

forests (Fig. 5j). The seasonal variations of GVF are partic-

ularly high for croplands, which is expected and reflects the

growing–harvesting cycle. However, note that there are also

important seasonal changes in the catchment dominated by

the deciduous broadleaf forests (Fig. 5j), although the hori-

zontal tree density does not change significantly. Again, this

suggests that the MODIS data do not enable to fully differen-

tiate between vertical and horizontal vegetation. Users might

hence decide to consider LAI only to summarize seasonal

land cover variations.

To explore spatial variations in rooting depth, we used

aridity and depth to bedrock (introduced in Sect. 7.1). Fig-

ure 5k shows that in water-limited catchments (aridity > 1)

the rooting depth increases with aridity, which can be in-

terpreted as a sign that trees increase their root-zone stor-

age capacity to compensate for the overall lack of water. In

more humid catchments (aridity < 1), shallow soils seem to

constrain the vertical development of roots of tall trees like
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Figure 5. (a–i) Maps of vegetation characteristics over the CONUS. The histograms indicate the number of catchments (out of 671) in each

bin. (j) Comparison of the LAI and GVF (maximum and difference between maximum and minimum) based on the dominant land cover

class. (k) Comparison of the mean aridity, mean total rooting depth, and mean depth to bedrock for each land cover class; the colored dots

all have the same size.

evergreen needleleaf forest and deciduous broadleaf forest,

and in contrast, mixed forest and evergreen broadleaf forest

can develop deeper roots. These hypotheses illustrate how

the CAMELS data set enables the joint exploration of diverse

attributes for a large number of catchments.

7 Soil characteristics

7.1 Data and methods

The soil characteristics we derived are principally based

on the State Soil Geographic Database (STATSGO) data

set post-processed by Miller and White (1998). Miller and

White (1998) discretized the top 2.5 m of soil into 11 lay-
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Table 4. Land cover characteristics.

Attribute Description Unit Data source References

forest_frac forest fraction – N15 – USGS

data

lai_max maximum monthly mean of the leaf area index (based

on 12 monthly means)

– MODIS∗

lai_diff difference between the maximum and minimum

monthly mean of the leaf area index (based on 12

monthly means)

– MODIS∗

gvf_max maximum monthly mean of the green vegetation frac-

tion (based on 12 monthly means)

– MODIS∗

gvf_diff difference between the maximum and minimum

monthly mean of the green vegetation fraction (based

on 12 monthly means)

– MODIS∗

dom_land_cover dominant land cover (Noah-modified 20-category

IGBP-MODIS land cover)

– MODIS∗

dom_land_cover_frac fraction of the catchment area associated with the dom-

inant land cover

– MODIS∗

root_depth_XX root depth (percentiles XX = 50 and 99 % extracted

from a root depth distribution based on IGBP land

cover)

m MODIS∗ Eq. (2) and Table 2 in

Zeng (2001)

∗ Period from 2002 to 2014.

ers, whose thickness increases with depth (from 5 cm for

the two top layers to 50 cm for the three deepest ones). For

each layer, they relied on the original STATSGO data to de-

termine the dominant soil texture class. They considered a

total of 16 classes: the 12 standard United States Depart-

ment of Agriculture (USDA) soil texture classes plus 4 ad-

ditional non-soil classes characterized as organic material,

water, bedrock, and other.

We estimated the saturated hydraulic conductivity and

porosity (saturated volumetric water content) of each layer

using the multiple regressions relying on sand and clay frac-

tion originally proposed by Cosby et al. (1984) and now com-

monly used for land surface modeling (e.g., Lawrence and

Slater, 2008). For organic material, we used default values

for the saturated hydraulic conductivity and porosity based

on Lawrence and Slater (2008). Then, for each STATSGO

polygon, we computed the average of each soil characteris-

tic (see list in Table 5) over the top 1.5 m of soil using the

following weighted mean:

Xp =

∑i=9

i=1
Xi Ti/Sdepth,

where Xp designates the mean value of the variable X over

the 1.5 m of soil (nine top layers; see first and second points

below), Xi is its value over layer i, Ti is the thickness of layer

i, and Sdepth is the cumulative depth of the layers. Then, for

each catchment, we computed the weighted mean of the soil

characteristics of the STATSGO polygons within the catch-

ment, the weight being the fraction of the catchment covered

by each polygon. For hydraulic conductivity, the harmonic

mean was used instead of the arithmetic mean for the aver-

aging along each soil column and across the catchment (see

Samaniego et al., 2010 for a discussion on upscaling opera-

tors).

Before we start interpreting the results of the aggrega-

tion of STATSGO data to the catchment scale, we consider

it important to discuss some key limitations of STATSGO.

Those limitations were already underscored by Miller and

White (1998) and also affect more recent soil data sets. It is

our impression that although they reduce our ability to cor-

rectly reflect soil properties in hydrological models, they are

commonly overlooked.

Limited depth Miller and White (1998) note that “[. . . ]

only about 2.5 % of the components have layers extend-

ing below 203 cm (80 in). Accordingly, the bottom two

standard layers contain meaningful data only for a mi-

nority of the map units”. In other words, although the

STATSGO data set is often perceived as describing the

top 2.5 m of soil, over the majority of the CONUS only

the top 1.5 m are covered, and data from the bottom 1 m

in those areas are potentially misleading.

Low information content in the deepest layers They

warn the reader that “for approximately half the

components, the minimum and maximum depth to

bedrock [. . . ] both have the value 152 cm (60 in); in

the great majority of these cases, this indicates that this

was the maximum depth to which soil was normally

examined and bedrock was not actually encountered”.

This means that when the two last layers (1.5 to 2.5 m

deep) are marked as bedrock, in about half of the cases,
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Table 5. Soil characteristics.

Attribute Description Unit Data source References

soil_depth_pelletier depth to bedrock (maximum 50 m) m Pelletier et al. (2016)

soil_depth_statsgo soil depth (maximum 1.5 m; layers marked as water and

bedrock were excluded)

m Miller and White (1998)

– STATSGO∗

soil_porosity volumetric porosity (saturated volumetric water content

estimated using a multiple linear regression based on

sand and clay fraction for the layers marked as USDA

soil texture class and a default value (0.9) for layers

marked as organic material; layers marked as water,

bedrock, and “other” were excluded)

– Miller and White (1998)

– STATSGO∗

Table 4 in Cosby et

al. (1984);

Lawrence and

Slater (2008)

soil_conductivity saturated hydraulic conductivity (estimated using a mul-

tiple linear regression based on sand and clay fraction

for the layers marked as USDA soil texture class and a

default value (36 cm h−1) for layers marked as organic

material; layers marked as water, bedrock, and “other”

were excluded)

cm h−1 Miller and White (1998)

– STATSGO∗

Table 4 in Cosby et

al. (1984);

Lawrence and

Slater (2008)

max_water_content maximum water content (combination of porosity and

soil_depth_statsgo; layers marked as water, bedrock,

and “other” were excluded)

m Miller and White (1998)

– STATSGO∗

sand_frac sand fraction (of the soil material smaller than 2 mm;

layers marked as organic material, water, bedrock, and

“other” were excluded)

% Miller and White (1998)

– STATSGO∗

silt_frac silt fraction (of the soil material smaller than 2 mm;

layers marked as organic material, water, bedrock, and

“other” were excluded)

% Miller and White (1998)

– STATSGO∗

clay_frac clay fraction (of the soil material smaller than 2 mm;

layers marked as organic material, water, bedrock, and

“other” were excluded)

% Miller and White (1998)

– STATSGO∗

water_frac fraction of the top 1.5 m marked as water (class 14) % Miller and White (1998)

– STATSGO∗

organic_frac fraction of soil_depth_statsgo marked as organic mate-

rial (class 13)

% Miller and White (1998)

– STATSGO∗

other_frac fraction of soil_depth_statsgo marked as “other”

(class 16) %
Miller and White (1998)

– STATSGO∗

∗ Only covers the top 1.5 m.

the bedrock has not actually been reached, which leads

to an underestimation of the soil depth. Given these

limitations, we decided to restrict our attention to the

top 1.5 m of soil (i.e., to the top nine layers).

Only fine fraction characterized The STATSGO sand,

clay, and silt fraction are only for the portion of soil

that is finer than 2 mm. That is, STATSGO data should

certainly not be considered to be representative of the

whole soil column, but it is also important to keep in

mind that they does not either completely characterize

its top part, since only the soil fraction finer than 2 mm

is considered.

Lack of representativeness of the dominant soil texture

class Miller and White (1998) stress that STATSGO

“units may be quite internally heterogeneous, with as

much as 50 % of the map unit having soil properties

that differ significantly from the map unit description”.

Scale inadequacy Although soil hydraulic properties can be

measured in a lab, it is still unclear how to meaningfully

upscale them to the catchment scale (these quantities

can be characterized as incommensurate; Beven, 2012).

In a general sense, soil data sets only characterize the top

soil layers, even when the soil can be much deeper (first and

second points raised above). In fact, the soil depth of a catch-

ment indicated as 1.5 m in STATSGO can be an order of mag-

nitude greater. Uncertainties in soil depth are critical for hy-

drological modeling, in particular because they hamper the

determination of the root-zone storage capacity (Boer-Euser

et al., 2016). To explore those uncertainties, we included a re-

cently released soil data set (Pelletier et al., 2016, referred to

as P16 in continuation), from which we extracted the thick-

ness of the permeable layers above bedrock, i.e., the depth

to bedrock. The principal advantage of this data set is that it

covers the top 50 m of soil. It comes on a global 30 arcsec

(∼ 1 km) grid. We estimated the catchment average by com-

puting the mean from all the grid points falling within each
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Figure 6. Panels (a–h) and (j–l) show maps of soil characteristics over the CONUS. The histograms indicate the number of catchments (out

of 671) in each bin. (i) Comparison of the estimates of the soil depth to bedrock from STATSGO and depth to bedrock from P16. The orange

area includes all the catchments for which there can be an agreement between the two data sets (i.e., estimates from both data sets are smaller

than or equal to 1.5 m). The orange curve is a 1 : 1 curve (note the logarithmic scale on the x axis).

catchment. However, it does not provide information on soil

texture classes, so it cannot be used to estimate variables like

the saturated hydraulic conductivity or the porosity. Another

key difference is that P16 leveraged geomorphological prin-

ciples to obtain more precise estimates than what would be

obtained by interpolating soil pit observations. We do not ex-

plicitly deal with the third and fifth points in this study but

expect them to cause lower-than-expected performance when

hydrological modeling relies on STATSGO or similar data

sets.

7.2 Spatial variability in soil characteristics

Once aggregated to the catchment scale, STATSGO data re-

veal the following features. Catchments with a sand fraction

greater than 50 % are predominantly located along the Gulf

Coast and the Atlantic coast, and in the Great Lakes region
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Figure 7. Maps of geological characteristics over the CONUS. The histograms indicate the number of catchments (out of 671) in each bin.

(Fig. 6a). This leads to a relatively low porosity fraction and

high saturated hydraulic conductivity (Fig. 6d and e). Con-

versely, catchments with a silt fraction greater than 50 % are

mostly located in a band stretching from Kansas to New York

(Fig. 6b). Catchments in this band also tend to feature a com-

paratively large clay fraction (Fig. 6c). This implies a higher-

than-average porosity fraction (Fig. 6d). Although variables

like porosity and saturated hydraulic conductivity are com-

monly relied upon for parameter estimation, we note that

their value in terms of process understanding at the catch-

ment scale should not be overestimated, given the limitations

outlined in Sect. 7.1.

As for soil depth, STATSGO and P16 both indicate that the

soil is shallower in the Appalachian Mountains than along

the Gulf and Atlantic coasts. There are, however, disagree-

ments in the Rocky Mountains (e.g., in Colorado) and in the

Pacific Northwest: STATSGO indicates a soil depth equal to

or greater than 1.5 m when the depth to bedrock according to

P16 is smaller than 1 m. The lack of quantitative agreement

between the two data sets appears clearly in Fig. 6i. The left-

hand part of the figure (orange background) includes all the

catchments in which there can potentially be an agreement

between STATSGO and P16, since the estimated depth to

bedrock is equal to or smaller than 1.5 m. There is, however,

considerable scatter around the 1 : 1 orange curve, which il-

lustrates the uncertainty in estimates of the soil depth, which

directly impact estimates of maximum water content of soils

(Fig. 6f). This issue is even clearer when the right-hand side

of Fig. 6i is considered. In about half of the catchments

(47 %), the depth to bedrock is greater than 1.5 m, so it cannot

be covered by STATSGO. For 24 % of the catchments, the

depth to bedrock estimated using P16 is greater than 15 m,

i.e., 10 times the depth covered by STATSGO. This under-

scores the inability of data sets like STATSGO to provide a

realistic characterization of soils in areas of high sedimentary

deposition.

Finally, we considered three metrics that can be considered

as metadata. The fraction of the catchment characterized as

“water” is relevant because it indicates the presence of lakes

(Fig. 6j). The “organic” fraction, which importantly impacts

soil hydraulic properties, is negligible, but is non-negligible

in many catchments in Florida and in the Great Lakes re-

gion (Fig. 6k). The fraction of soil marked as “other” (for

which no soil characteristics are available and which is ig-
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nored from the computation of all soil attributes) is signifi-

cant in many catchments (Fig. 6l). How detrimental that is

will depend on the application. One way to assess this effect

when using soil characteristics to explain the performance of

hydrological models would be to test whether a clearer rela-

tionship is obtained by progressively excluding catchments

with the highest fraction of soil marked as “other”.

8 Geological characteristics

8.1 Data and methods

We used two complementary global sets to characterize

the geology of each catchment. The first data set is the

Global Lithological Map (GLiM) by Hartmann and Moos-

dorf (2012). GLiM synthesizes lithological data from 92 re-

gional maps spread across the globe. The spatial resolution is

remarkable, as GLiM relies on ∼ 1.2 million polygons to dis-

cretize the Earth’s surface. Three levels of details are avail-

able. In this study, we focus on the first level, while the two

other levels provide further details that could be processed at

a later stage. The first level differentiates between 16 litho-

logical classes (see the list of classes in the legend of Fig. 7).

We determined the contribution of each lithological class to

the area of each catchment, and recorded the first and second

most frequent classes within the catchment, as well as the

fraction of the catchment they cover. The class “carbonate

sedimentary rocks” is particularly relevant from a hydrolog-

ical perspective (it designates areas likely to host karst sys-

tems); we hence also recorded the fraction of each catchment

associated with this class. Finally, note that although a 0.5◦

gridded version of GLiM is available, we used the more de-

tailed polygon-based version for this study.

The second data set we used to characterize catchment

geology is the GLobal HYdrogeology MaPS (GLHYMPS)

of the subsurface permeability and porosity by Gleeson et

al. (2014). GLHYMPS is based on GLiM spatial polygons,

so its level of spatial detail is equally high. Gleeson et

al. (2014) principally relied on GLiM lithologic classes to

derive quantitative estimates of two key characteristics of

the geologic units below soil horizons: porosity and perme-

ability (i.e., the ease of fluid flow through porous rocks and

soils). For CAMELS, we produced catchment averages of

these two variables, the contribution of each spatial polygon

being weighted by the fraction of catchment it covers. The

arithmetic mean was used for porosity, but for permeability,

we followed Gleeson et al. (2011) and used the geometric

mean instead. The geological attributes are summarized in

Table 6.

A clear advantage of these high-resolution global litholog-

ical maps is that they can be used to extract catchment-scale

attributes for diverse parts of the globe. Yet, data quality is

spatially variable, and caveats of the GLiM and GLHYMPS

(outlined in the Sect. 3 of Gleeson et al., 2014) should be kept

in mind. In particular, there are unrealistic spatial discon-

tinuities coinciding with jurisdictional boundaries in GLiM

maps, which by construction also affect GLHYMPS maps

(for instance, in the region of North and South Dakota).

8.2 Spatial variability in geological characteristics

The four most frequent dominant geological classes in

CAMELS catchments are siliciclastic sedimentary rocks

(34 % of the catchments), unconsolidated sediments (19 %),

metamorphic rocks (16 %), and carbonate sedimentary rocks

(12 %). Unconsolidated sediments dominate in catchments

along the Gulf Coast and along the southern to middle At-

lantic coast (Fig. 7a). In those catchments, both the subsur-

face porosity (Fig. 7f) and permeability (Fig. 7g) are high.

The Pacific coast and the region north of the Appalachian

Mountains features catchments rich in siliciclastic sedimen-

tary rocks, leading to a comparatively low subsurface per-

meability. To the south of the Appalachian Mountains, meta-

morphic rocks are dominant, resulting in a particularly low

subsurface porosity. Finally, the catchments with the highest

proportion of carbonate sedimentary rocks are principally lo-

cated in central-western Texas, in the region stretching from

Lake Michigan to and including Missouri (Fig. 7a and e) and

to some extent in the Appalachian Mountains (Fig. 7b). In

addition to these three main regions, there are also isolated

catchments with a high proportion of carbonate rocks, for in-

stance, in Florida, Nevada, and Vermont. The subsurface per-

meability of those catchments is high. Overall, in 18 % of the

CAMELS catchments, there is only one GLiM lithological

type (Fig. 7c), while in 11 % of the catchments, the dominant

geological class accounts for less than 50 % of the catchment

area (Fig. 7d).

9 Comparison with the MOPEX data set

The CAMELS data set is similar to the data set produced for

MOPEX (Duan et al., 2006; Schaake et al., 2006) in that it

provides hydroclimatic time series and geophysical attributes

for a large number of basins in the CONUS. MOPEX data

have been used in a large number of studies, including two

catchment similarity studies mentioned earlier (Sawicz et al.,

2011; Berghuijs et al., 2014). For CAMELS, we use different

criteria for catchment selection than those used for MOPEX,

which leads to a relatively small overlap between the two

data sets (they have 52 catchments in common; see Fig. 8).

The main differences between MOPEX and CAMELS are

summarized in Table 7.

Both MOPEX and CAMELS require long observation

time series and exclude catchments subject to human influ-

ence, but they use different approaches to characterize these

aspects. For MOPEX, the stations that are part of the hydro-

climatic data network (HCDN; Slack and Landwehr, 1992)

together with those selected by Wallis et al. (1991) were con-
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Table 6. Geological characteristics

Attribute Description Unit Data

source

References

geol_class_1st most common geologic class in the catchment – GLiM Hartmann and Moosdorf (2012)

geol_class_1st_frac fraction of the catchment area associated with its most

common geologic class

– GLiM Hartmann and Moosdorf (2012)

geol_class_2nd second most common geologic class in the catchment – GLiM Hartmann and Moosdorf (2012)

geol_class_2nd_frac fraction of the catchment area associated with its second

most common geologic class

– GLiM Hartmann and Moosdorf (2012)

carb_rocks_frac fraction of the catchment area characterized as “carbon-

ate sedimentary rocks”

– GLiM Hartmann and Moosdorf (2012)

geol_porosity subsurface porosity – GLHYMPS Gleeson et al. (2014)

geol_permeability subsurface permeability (log10) m2 GLHYMPS Gleeson et al. (2014)

sidered to select potential basins. For CAMELS, an updated

version of the HCDN classification was used (HCDN-2009;

Lins, 2012): some catchments were excluded (e.g., because

they no longer met the minimal disturbance criteria defined

in the original HCDN report) and other catchments were

added (e.g., because their streamflow records, which were

considered too short when the original HCDN report was

published, became long enough).

For a catchment to be part of the MOPEX data set, an es-

sential criterion was that its number of rain gauges had to be

higher than a threshold based on the catchment area. This led

to the exclusion of 77 % of the potential MOPEX basins, re-

sulting in only 438 basins considered to have a dense enough

network of gauges. Although we do recognize the impor-

tance of reliable precipitation data for hydrological model-

ing, we did not exclude catchments based on their rain gage

density. We argue that uncertainties in precipitation estimates

(and in forcing in general) can now be assessed using in-

dependent data sets (e.g., Newman et al., 2015a; see also

Sect. 10 of this paper). We also consider that uncertainties

in observed time series (in particular in discharge records;

see Coxon et al., 2015; McMillan and Westerberg, 2015) and

uncertainties in catchment attributes (e.g., soil depth; see dis-

cussion in Sect. 7) can also lead to biased conclusions on hy-

drological processes and hence should also be considered in

the catchment selection processes. Yet the influence of these

sources of uncertainties on research results will depend on

the catchments and variables of interest, so we leave it to the

users to define their own criteria.

Overall, the data used for CAMELS are more recent than

those used for MOPEX. The period covered by hydromete-

orological time series is 1948–2003 for MOPEX and 1980–

2015 for CAMELS, so given the fast rate of human develop-

ment and the impacts caused by climate change, CAMELS

provides a more current picture of hydrological processes

in the United States. Further, CAMELS leverages new data

sets, which were not available when the MOPEX data were

released, for instance, to characterize soils (Pelletier et al.,

2016) and geology: GLiM (Hartmann and Moosdorf, 2012)

and GLHYMPS (Glesson and et al., 2014). Importantly, data

used for CAMELS are not only more recent but also tend to

be better documented. A clear example is that CAMELS me-

teorological time series come from three widely used gridded

data sets (Daymet, Maurer, and NLDAS), while for MOPEX,

station measurements were aggregated to provide catchment-

scale estimates (Schaake et al., 2006).

Finally, we present a more detailed and transparent de-

scription of the origins and limitations of the data sets used

to derive catchment attributes. A substantial part of this pa-

per is dedicated to the discussion of the limitations of the

source data sets, and we use competing approaches to es-

timate the same quantity, thereby revealing uncertainties in

those attributes. This is motivated by the belief that identify-

ing weaknesses in catchment attributes helps us to anticipate

how they might bias conclusions of hydrological studies.

10 Online availability and possible future extensions

In summary, the CAMELS data set is the combination of two

data sets, which are available for download separately:

1. the hydrometeorological time series in-

troduced in N15 (Newman et al., 2014;

https://doi.org/10.5065/D6MW2F4D) and

2. the catchment attributes introduced in this paper (Addor

et al., 2017; https://doi.org/10.5065/D6G73C3Q).

Our intention with this paper is provide quantitative es-

timates of key geophysical attributes that shape catchment

behavior. We see the data set in its current state as a starting

point and anticipate that it will keep evolving and become

more exhaustive. In particular, our next priority is to compute

and make available network characteristics and descriptors of

catchment geometry, such as drainage density and stream or-

der statistics, which are important for the understanding and

simulation of hydrological processes (Rodríguez-Iturbe and

Valdés, 1979; Gupta et al., 1980; Rinaldo et al., 1991).

One of our goals is to enable users to assess the reliability

of the attributes and to select catchments and interpret re-

sults accordingly, and more work is necessary for a complete

Hydrol. Earth Syst. Sci., 21, 5293–5313, 2017 www.hydrol-earth-syst-sci.net/21/5293/2017/
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Figure 8. A comparison of the spatial distribution of the catchments from (a) the MOPEX data set and (b) the CAMELS data set.

Table 7. Main differences and similarities between MOPEX and CAMELS.

MOPEX CAMELS

Number of catchments and spatial distribution 438 catchments, principally from the east-

ern half of the CONUS and with an under-

representation of the Rocky Mountains

671 catchments, with a relatively even distribu-

tion over the CONUS

Number of catchments common to MOPEX

and CAMELS

52

Period covered by the hydrometeorological

time series

1948–2003 1980–2015

Minimal anthropogenic influence and long

streamflow records assessed by the following:

Wallis et al. (1991) and the hydroclimatic data

network (HCDN; Slack and Landwehr, 1992)

Updated version of the HCDN (HCDN-2009;

Lins, 2012)

Rain gauge density used as catchment selection

criterion

Yes No

Meteorological data Point observations from National Climate Data

Center daily Cooperative Observer Network

(COOP) and SNOTEL stations. Long-term pre-

cipitation averages computed using 1961–1990

PRISM data

Gridded data from Daymet (Thornton et al.,

2012), Maurer (Maurer et al., 2002), and NL-

DAS (Xia et al., 2012)

Streamflow data USGS streamflow measurements

Soil data STATSGO (Miller and White, 1998) STATSGO (Miller and White, 1998) and Pel-

letier et al. (2016)

Vegetation data North America Land Data Assimilation (NL-

DAS)

MODIS imagery

Geology data Not available GLiM (Hartmann and Moosdorf, 2012) and

GLHYMPS (Glesson and et al., 2014)

Reference papers Duan et al. (2006) and Schaake et al. (2006) Newman et al. (2015b) and this paper

uncertainty assessment. Methods and data sets are, however,

already available to quantitatively characterize uncertainties

in following attributes:

Atmospheric forcing The N15 data set provides forcing

from three data sets (Daymet, NLDAS, and Maurer) but

in this study, we only use Daymet. Using the two other

data sets might lead to some differences in climate in-

dices, particularly when it comes to heavy precipitation

events and/or to catchments with a sparse observation

network. Another option to characterize the uncertainty

in the forcing is to use the ensemble of gridded forcing

produced by Newman et al. (2015a).

Discharge measurements Some hydrological signatures

are more sensitive than others to uncertainties in

discharge measurements (Westerberg and McMillan,

2015). Methods to characterize those uncertainties and

explore their propagation into hydrological signatures in

a large sample of catchments exist (Coxon et al., 2015)

but require detailed information on the rating curves

used for discharge estimation, which were not readily

available for this study.

Soils The STATSGO data set is subject to several critical

limitations, many of them being overcome by the re-

cently released POLARIS data set (Chaney et al., 2016)

and SoilGrids (Hengl et al., 2017). A key advantage of

these two data sets is that they describe soil attributes

at high resolution, using machine learning algorithms to

estimate uncertainty.
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11 Concluding remarks

We introduced a new set of attributes for 671 catchments

in the contiguous USA. These attributes, together with the

hydrometeorological time series provided by Newman et

al. (2015b) for the same catchments, constitute the CAMELS

data set. The wide range of geophysical characteristics cov-

ered by these basins opens new opportunities to quantita-

tively explore how the interplay between topography, cli-

mate, land cover, soil, and geology shapes hydrological be-

havior. This enables us to test hypotheses and formulate con-

clusions valid in diverse conditions and not limited to a few

specific locations.

We produced a series of maps depicting catchment at-

tributes over the contiguous USA. We used these maps to

examine regional variations of a wide range of attributes and

to illustrate the relationships between them. From a practical

perspective, our synthesis of several data sources into a single

data set at the catchment scale greatly simplifies the compar-

ative study of catchment characteristics and the exploration

of their influence on hydrological processes.

An essential feature of this work is that it involves a critical

assessment of the limitations of the data and methods used to

derive catchment attributes, and a discussion of their con-

sequences for process understanding and hydrological mod-

eling. We highlight, in particular, uncertainties in soil at-

tributes. By reviewing the assumptions made during the pro-

duction and processing of the STATSGO data set, we aim to

provide the context necessary to adequately manipulate and

interpret these attributes. Other data sets also provide charac-

teristics for a large number of catchments but usually deliver

them without explicitly acknowledging their uncertainties.

The version of CAMELS introduced in this paper is a start-

ing point. We plan to expand this data set by adding new

catchment attributes and refining our characterization of the

uncertainties in catchment attributes, forcing, and streamflow

measurements. Furthermore, we designed the tables of this

paper so that they fully describe the methods and data used to

compute each attribute, in an effort to make our work trans-

parent and reproducible.

To conclude, we envision that the CAMELS data set will

enable progress on a wide range of hydrological challenges

related to catchment similarity, model parameter estimation

based on geophysical characteristics, model benchmarking,

regional variations of model performance, and to the infor-

mation content of geophysical data sets.

Data availability. The hydrometeorological time se-

ries (https://doi.org/10.5065/D6MW2F4D) from N15

and the catchment attributes introduced in this paper

(https://doi.org/10.5065/D6G73C3Q) are freely available on-

line.
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