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Nucleotide signaling molecules contribute to the regulation of cellular pathways. In the 
immune system, cyclic adenosine monophosphate (cAMP) is well established as a 
potent regulator of innate and adaptive immune cell functions. Therapeutic strategies 
to interrupt or enhance cAMP generation or effects have immunoregulatory potential 
in autoimmune and inflammatory disorders. Here, we provide an overview of the cyclic 
AMP axis and its role as a regulator of immune functions and discuss the clinical and 
translational relevance of interventions with these processes.
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iNTRODUCTiON

Cells must be able to sense and integrate countless extracellular and intracellular signals and adapt 
their cellular functions. Second messengers serve as initiating components of intracellular signal 
transduction cascades that transmit signals by cellular messengers that depend on extracellular sign-
aling molecules (1). Thereby second messengers serve to greatly amplify the strength of the original 
first signal. Cyclic adenosine monophosphate (cAMP) was the first discovered intracellular second 
messenger of extracellular ligand action (2). Within the immune system, cAMP regulates pro- and 
anti-inflammatory activities: drugs that elevate intracellular cAMP levels reduce the production of 
pro-inflammatory mediators and increase the production of anti-inflammatory factors in numerous 
immune cells. This review aims to shed light on the variety of processes influenced by cAMP in the 
immune system with regard to treatment options in diseases.

THe cAMP PATHwAY

Cyclic adenosine monophosphate, identified in 1957 (2) as the first intracellular second messenger 
of extracellular ligand action, is now established as a universal regulator of metabolism and gene 
expression in all life forms (3). A family of enzymes called adenylate cyclases (AC) catalyzes cAMP 
formation from ATP. In vertebrates, AC comprise nine membrane-bound isoforms and one soluble 
isoform (4). AC vary in distribution and developmental expression and their regulation is complex 
and isozyme specific. In addition to AC expression and activity cAMP homeostasis is regulated by 
a superfamily of phosphodiesterases (PDE) that degrade intracellular cyclic nucleotides. PDE com-
prise more than 100 enzyme variants divided into 11 families (5) based on their structure, specificity 
for, and modulation by, cyclic nucleotides. Certain PDE increase their activities in response to cAMP 
and cAMP stimulates the synthesis of new PDE mRNA (6, 7), resulting in a feedback loop between 
cAMP levels and PDE activity. Contributing to the complexity of the pathway, some PDE families 
are strictly cAMP-specific (PDE 4, 7, and 8), whereas others are cyclic guanosine monophosphate 
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FiGURe 1 | cAMP as a regulator of immunity. Adenylate cyclases (AC) 
produce cAMP from adenosin-tri-phosphate (ATP). High levels of cytosolic 
cAMP lead to activation of protein kinase A (PKA). PKA stimulation induces 
the phosphorylation of transcription factors, such as CREB, ICER/CREM, 
ATF-1, and CBP to drive camp-driven genes. Phosphodiesterase 4 (PDE4) 
decreases intracellular cAMP levels and counterbalances the intracellular 
cAMP effect. ATF, cAMP-dependent transcription factor; CBP, cAMP-binding 
protein; CNG, cyclic nucleotide-gated ion channel; CREB, cAMP response 
element-binding protein; ICER, inducible cAMP early repressor;  
P, phosphorylation.
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(cGMP)-specific (PDE 5, 6, and 9) (8, 9). Additional families 
hydrolyze both cAMP and cGMP (PDE 1, 2, 3, 10, and 11), 
establishing cross-regulation of both pathways with important 
implications in the utility of pharmacotherapeutic agents target-
ing cyclic nucleotide metabolism (10, 11).

As a second messenger, cyclic AMP serves in multiple 
downstream pathways. Most prominent, it activates the cAMP-
dependent protein kinase A I (PKA) (12) (see Figure 1). Upon 
binding of cAMP to the regulatory subunits, PKA dissociates into 
its regulatory and catalytic subunits and the catalytic subunits 
phosphorylate specific Ser and Thr residues on numerous target 
proteins initiating successive signaling cascades, particularly in 
nutrient metabolism (13). In addition, cAMP-activated PKA 
binds and phosphorylates cAMP-responsive transcription fac-
tors, including cAMP-response element binding protein (CREB), 
members of the cAMP-responsive element modulator/inducible 
cAMP early repressor (CREM/ICER) protein family (14), activat-
ing transcription factor-1 (ATF-1), NFκB, and nuclear receptors 
(see Figure 1). Phosphorylated CREB, CREM, and ATF-1 inter-
act with the transcriptional coactivators CREB-binding protein 
(CBP) and p300 when bound to cAMP-response elements (CREs) 
in target genes (15). In addition to PKA activation, cAMP also 
directly modulates the activity of guanine-nucleotide-exchange 
factor (GEF) exchange proteins (Epacs) and cyclic nucleotide-
gated channels (CNGs) (16) all with important roles in cellular 
functions (17, 18). In addition to PKA, CREB, CREM, and ATF-1 

can all be phosphorylated by many other kinases, and the action 
of PKA is counterbalanced by specific protein phosphatases.

Basal cytosolic cAMP levels are in the low micrometer range 
(19). In the cytosol, cAMP is not evenly distributed but rather 
forms submembranous spatially discrete pools generated in 
microdomains containing AC, PDE next to PKA localized by 
A-kinase-anchoring proteins (AKAPs) (20). Specificity in cAMP 
signaling and fine and selective tuning of its different tasks is 
ensured by the differential expression of distinct isoforms and 
splice variants of anabolic, katabolic, and signaling molecules in 
various tissues and cell types and by differential composition of 
cAMP microdomains (21). Although various cAMP activities 
can have redundant, independent, or opposing effects within 
the same cell (22), some individual AC and PDE knockout and 
transgenic mice (23, 24) show specific phenotypes. In particular, 
individual PDE control select cyclic nucleotide-regulated events 
by being integrated into non-overlapping multi-molecular 
regulatory signaling complexes, suggesting cell or tissue-specific 
interference points (25, 26).

Eventually, an important, often overlooked aspect of the path-
way consists in the secretion of cAMP into extracellular space and 
its transmission via gap junctions between cells (27). Whereas 
transmitted cAMP directly contributes to intracellular cAMP 
levels, excreted cAMP is converted into AMP and adenosine by 
cell surface bound PDE and ecto-5′-nucleotidases CD39 and 
CD73. By signaling through A2A and A2B adenosine receptors, 
extracellular adenosine stimulates AC and increases intracellular 
cAMP generation (28). Knockout mice with disrupted CD39 
and CD73 have underscored the importance of the extracellular 
cAMP–adenosine feedback mechanism in physiological pro-
cesses (29, 30). In the immune system extracellular cAMP may 
contribute to regulatory T cells (Treg) function (31, 32) and has 
been shown to promote monocyte differentiation into dendritic 
cells (DCs) (33).

CYCLiC AMP iN iMMUNe HOMeOSTASiS 
AND PATHOPHYSiOLOGY

Due to its multiple roles in cell physiology cAMP exerts broad 
modulatory effects on a variety of cells (see Figure  2). In the 
immune system, cyclic AMP regulates both innate and adaptive 
immune cell activities (34).

Monocytes and Granulocytes
The functional state of monocytes orchestrates inflammatory and 
reparative phases in inflammatory responses and appears to be 
accompanied by changes in their intracellular cAMP levels. In 
the mouse, two major types of monocytes, Ly6Chigh and Ly6Clow, 
circulate in blood. Ly6Chigh monocytes display pro-inflammatory 
activity, whereas Ly6Clow monocytes are patrolling cells, monitor 
tissue integrity, and exert anti-inflammatory and tissue repair 
activities (35). The orphan nuclear receptor Nr4a1 (Nur77) regu-
lates the expression of genes linked to inflammation. Inflammatory 
stimuli inhibit its expression and induce an inflammatory 
Ly6Chigh phenotype (36, 37). In turn, Nur77 is upregulated and 
represses numerous inflammatory genes in the transition from 
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FiGURe 2 | effect of cAMP on immune, tumor, and epithelial cells. Impact and function of cyclic adenosin monophopshate (cAMP) on T and B lymphocytes, 
granulocytes, monocytes, macrophages, dendritic cells, epithelial cells, and melanoma cells. LTB4, leukotriene B4; LTC4, leukotriene C4.
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an inflammatory Ly6Chigh to anti-inflammatory Ly6Clow/neg state 
(38–40). Elevated cAMP levels induce Nur77 expression (41) and, 
thus, favor a reparatory monocyte phenotype (42). Through these 
effects on phagocytes increased cAMP levels affect myeloid cell 
immunity against pathogen and parasites (43–45) and may also 
affect the differentiation of tumor-infiltrating myeloid-derived 
suppressor cells (MDSCs) by repression of TNF-α production. In 
regard of the latter CREB activation has been shown to upregulate 
miR-9 expression that promotes the differentiation of the so-
called MDSCs with significantly increased immunosuppressive 
function (46).

In sum, increased cAMP levels appear to generally weaken 
monocyte inflammatory functions (47–50). Interestingly, bacteria 
and fungi have taken advantage of this effect in the course of evolu-
tion. Pathogen capture and programed destruction are among the 
most important activities of innate immune cells to prevent tissue 
invasion and pathogen dissemination. Certain microbacteria and 
fungi have evolved to hijack the host cAMP axis by introducing 
microbial adenylyl and guanylyl cyclases (51) and by intoxicating 
the host cell with preformed cAMP or adenylate cyclase toxins 
(52–54). Bordetella pertussis, for example, suppresses neutrophil 
extracellular trap (NET) formation by overwhelming leukocytes 
with supraphysiologic intracellular cAMP levels (55). Likewise, 
bacterial-derived or -induced cAMP facilitates intracellular bac-
terial survival by multiple actions, including CREB-dependent 
anti-apoptotic signaling and repression of intracellular bacterial 
killing in invaded monocytes and macrophages.

NK Cells
Natural killer (NK) cells are capable of destroying tumor cells and 
virally infected cells (cytolysis) without prior sensitization. In NK 

cells, cAMP levels regulate target cell adherence and cytotoxic 
function. Both pharmacological repression and induction of 
cAMP inhibit perforin-mediated and CD95 ligand-mediated 
target cell lysis (56–60).

Dendritic Cells
As professional antigen-presenting cells of the immune system, 
DCs are equipped with a unique capability to induce and regulate 
adaptive immune responses. In DC, cyclic AMP suppresses the 
release of pro-inflammatory mediators (TNF-α, IL-17, IFN-γ) 
(61) and promotes the release of anti-inflammatory mediators, 
such as IL-10 (62). As a functional consequence, cAMP concen-
trations in DC regulate T cell immunity (63). Pharmacological 
inhibition of cyclic nucleotide PDE4, which is highly expressed 
in DC, for example, suppresses the DC Th1-polarizing capacity 
(64, 65) and commands secretion of IL-6 and TGF-beta and sub-
sequent induction of Th17 differentiation (66). It, thus, appears 
that cAMP levels differentially regulate cytokine production by 
DC as a response to changes in the microenvironment. Apart 
from spatio-temporal fine-tuning of DC activities, cAMP activi-
ties in DC depend on the stage of DC maturation: prostaglandin 
E2 (PGE2), a key inducer of cAMP, exerts a stimulatory function 
for immature DCs in peripheral tissues (67) but inhibitory func-
tion for mature DCs in lymph nodes (68).

B and T Cells
In addition to innate cell function, cAMP also controls numerous 
adaptive immune cell activities. In adaptive immune cells, cAMP 
is essentially required in the induction of antigen-stimulated acti-
vation (69–72) but subsequently limits activation by negatively 
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FiGURe 3 | The cAMP pathway in Treg and its regulation by iFN-α. 
Signaling via the T cell receptor (TCR) leads to an activation of adenylate 
cyclases, resulting in high cAMP levels in regulatory T cells (Treg). cAMP can 
be transferred via gap junctions into conventional T cells (Tcon), thereby 
mediating the suppressive activity of Treg (A). Phosphodiesterase 4 (PDE4), 
which can be activated by MAP kinase ERK-related pathways, reduces 
cAMP amounts in Treg by enzymatic cleavage, impairing the regulatory 
activity of Treg (B). IFN-α abolishes the suppressive function of Treg by cAMP 
reduction, restoring the Tcon activation. Inhibition of the ERK or PDE4 
pathway, respectively, results in a renewed suppressive capacity of IFN-α 
treated Treg (C).
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regulating signaling through B cell and T cell receptors (TCR). 
In B cells, it provides an essential signal in the induction of 
antigen-stimulated proliferation and antibody production (69, 
70, 72). Elevation of intracellular cAMP enhances IgE produc-
tion by promoting recombination of the Ig heavy chain loci and 
by favoring Th2 differentiation. In T cells, cAMP participates 
in the regulation of nearly all functional activities ranging from 
peripheral maintenance of naïve T cells (73) to their activation 
via the TCR (74), acquisition of effector function (75, 76), and 
memory (77). In cognate activation, cAMP acts as a temporary 
inhibitory feedback signal that limits T cell activation through 
the cAMP–PKA–Csk signaling pathway (74). Unlike temporary 
increases, continuously elevated cAMP levels induce an anergy-
like state (78, 79). Likewise, anergizing TCR signals result in 
increased intracellular cAMP concentrations that upregulate 
the cyclin-dependent kinase (CDK) inhibitor p27kip1, sequester 
cyclin D2–cdk4, and cyclin E/cdk2 complexes and prevent pro-
gression through the G1 restriction point of the cell cycle (80). 
Furthermore, cAMP levels regulate the acquisition of effector 
function. Pharmacological upregulation of cAMP by inhibition of 
PDE activity, for example, prevents the development and function 
of cytotoxic T lymphocyte (CTL) (81). The significance of cAMP 
in acquisition of effector functions in T cells is also reflected 
by the observation that CREB mutant mice have normal T cell 
numbers in the thymus but exhibit a marked defect in peripheral 
T cell proliferation and IL-2 production, resulting from G1 
cell-cycle arrest and apoptotic cell death (82). Most prominent, 
cAMP forms an essential component of the suppressive mecha-
nism in Treg (83–92). Treg contain increased levels of cytosolic 
cAMP, further upregulate their cAMP level upon activation and 
consign cAMP to target cells via gap junctions (83, 85). In the 
target cell, cAMP inhibits the proliferation and differentiation 
of effector functions, in part by interfering with gene expression 
via ICER (90). Repression of cAMP accumulation in Treg by 
either adenylyl cyclase inhibition, application of a cAMP-specific 
antagonist, or PDE overexpression abrogates murine and human 
Treg suppression (83, 84, 86, 91, 93). Inversely, blockade of cAMP 
degradation by PDE inhibition improves Treg-mediated suppres-
sion in a murine asthma model (85). In line, non-functional Treg 
in Foxp3-mutant scurfy mice harbor significantly reduced levels 
of cytosolic cAMP (94).

Increased cAMP formation in Treg is a prerequisite for their 
suppressive activity (95) (see Figures  3 and 4). Constitutively 
high cAMP levels in Treg appear to be caused by Foxp3-induced 
decreased PDE3B expression (96) and increased AC9 activity 
(87) driven by their constitutive active state (95). During Treg-
mediated suppression, cAMP is transferred via gap junctions to 
conventional T cells (Tcon), where it represses IL-2 production 
and inhibits the proliferative response (83). Pharmacological 
inhibition of cAMP formation abrogates the suppressive function 
of Treg (see Figure 3) (91).

In this context, Bacher et al. showed that IFN-α, an antineo-
plastic agent with well-known autoimmune side effects, disturbs 
the immunosuppressive activity of human CD4+CD25+Foxp3+ 
Treg by disabling cAMP upregulation upon activation (92, 97) 
(see Figure  3 and 4). IFN-α-mediated inhibition of Treg sup-
pression can be partially restored by pharmacological inhibitors 

blocking ERK and PDE/PDE4 activity through specific inhibitors 
(92, 97) (see Figures 3 and 4). These results are in line with the 
observation that human T cells predominantly express the short 
PDE4B and PDE4D isoforms, functionally regulated by the 
ERK2 MAP kinase (98, 99). As PDE have an essential role in the 
IFN-α-mediated inhibition of Treg, PDE4 interference by specific 
inhibitors may represent a therapeutic option to restore immune 
regulation in autoimmune diseases, such as psoriasis or lupus 
erythematosus, accompanied by reduced Treg function (64, 100).

Next to its role in the Treg-suppressive mechanism cAMP 
is required for the generation and maintenance of Treg: the 
cAMP-responsive transcription factor CREB stabilizes FoxP3 
expression and promotes and maintains the Treg phenotype 
(101, 102). Treg essentially depend on IL-2 for their peripheral 
maintenance and suppressive activity (103, 104) and their 
number and activity can be therapeutically manipulated by low-
dose IL-2 and particular IL-2/anti-IL-2 complexes (105,  106) 
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FiGURe 4 | Function of cAMP in the interaction of conventional and regulatory T cells. In contrast to Tcon (blue line), Treg (green line) exhibit high levels of 
cAMP (A). Stimulated Tcon display a high proliferation whereas Treg are characterized by a low proliferative capacity [(B), left panels, single culture]. Treg efficiently 
inhibit Tcon proliferation in co-culture experiments by cAMP transfer via gap junctions to Tcon [(B), co-culture]. By contrast, IFN-α abrogates the suppressive 
function of Treg through reduction of cAMP levels [(A), centered panel], resulting in a restored Tcon activation [(B), centered panel]. Blockade of the ERK or PDE4 
pathway, respectively, increases intracellular cAMP amounts [(A), right panel], renews the suppressive activity of Treg [(B), right panel]. Tcon, conventional T cells; 
Treg, regulatory T cells.
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to control autoimmune diseases and inflammation (107). 
Interestingly, IL-2 may contribute to increased cAMP produc-
tion in Treg by increasing adenylate cyclase AC7 activity (88). 
In conjunction with its role in control of the Treg phenotype, its 
transmission via gap junctions to and from Treg also appears to 
play a role in the Treg lifecycle as evidence by the observation 
that Treg numbers are significantly reduced in connexin 43 
knockout mice (108).

Some viruses prevent their rejection by the immune system 
by interfering with the cAMP pathway in T cells. HIV-1 surface 
glycoprotein gp120 induces anergy in naive T lymphocytes (109, 
110) and increases cAMP levels and suppressive activity in Treg 
(86, 111, 112). In turn, cAMP repression restores antiviral T cell 
function in HIV patients (113).

Beyond their role in immune regulation, Treg take on homeo-
static functions by regulating metabolic activity in visceral fat and 
participating in tissue repair. Functionally distinct Treg accumu-
late in injured skeletal muscle and contribute to repair processes. 
Muscle Treg distinctly express the growth factor amphiregulin, 
which improves muscle repair by directly acting on muscle 
satellite cells (114). In line with outlined role of cAMP in Treg 
function, amphiregulin synthesis is inhibited by PKA inhibitors 

and enhanced by ligands that increased cAMP or directly activate 
the PKA (115).

Together these findings classify cAMP as a key component of 
immune cell function and disclose cAMP-regulating enzymes 
as molecular targets for therapeutic intervention with immune 
activities in pathological processes like allergy and autoimmunity.

MODULATiON OF cAMP iN AUTOiMMUNe 
AND iNFLAMMATORY DiSeASeS

Cyclic AMP is a central player in the network of signaling 
pathways underlying pathogenesis of several diseases and several 
interference points are used therapeutically in a variety of condi-
tions. Although the clinical impact of changes in cAMP remains 
incompletely defined, one fundamental conclusion can neverthe-
less be drawn: interventions that enhance cAMP generation or 
actions have immune dampening potential; conversely, repression 
of cAMP or cAMP signaling has immunostimulatory capability.

Formation of cAMP by AC and degradation by PDE identi-
fies AC and PDE as major targets for therapeutic intervention 
with cAMP levels. To date, the AC activity has been mostly 
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pharmacologically targeted through agonists or antagonists 
 affecting upstream G-protein-coupled receptors (GPCR) (23, 
116). However, AC knockout and transgenic mice revealed 
individual and clearly distinct physiological functions for AC 
isoforms (23). The observation that individual isoforms play a 
dominant role in specific tissues has led to AC being consid-
ered as main drug targets (117). In order to achieve selective 
interference, isoform-selective compounds are required. Such 
compounds are currently being sought and tested. Here, the idea 
is pursued, that selective inhibitors intervene in a tissue-specific 
manner, but remain ineffective in tissues that express various AC 
isoforms (118).

AC-specific compounds already reached preclinical stages 
and others have been approved for particular diseases, such as 
colforsin daropate hydrochloride (NKH447), a AC5 selective for-
skolin (FSK) derivate, for the treatment of advanced congestive 
heart failure (119, 120). Thus, even though AC isoform-targeted 
drugs are still in early stages of the development, the finding 
that AC have clearly separated physiological functions at least 
suggests AC as pharmacologic targets in a broad spectrum of 
diseases ranging from neurodegenerative disorders to congestive 
heart failure and lung diseases as asthma and chronic obstructive 
pulmonary disease (COPD).

Since their identification in 1958 (2), continuing efforts have 
been undertaken to advance the understanding of PDE biology 
and function, and PDE have been considered pharmacological 
targets in various diseases, such as pulmonary diseases like 
COPD and asthma, depression, schizophrenia, erectile dysfunc-
tion, and autoimmune disease like psoriasis/psoriasis arthritis 
and rheumatoid arthritis (8, 100, 121–125). Although numerous 
PDE inhibitors have been developed, their introduction into the 
clinic has been hampered by their narrow therapeutic window 
and side effects, such as nausea and emesis, occurring even at 
sub-therapeutic levels.

In the immune system, PDE family 3, 4, and 7 members rep-
resent the predominant cAMP-degrading enzymes (126). PDE4 
are encoded by four separate genes (PDE4A–D) and each PDE4 
controls non-redundant cellular function (127). In addition, 
more than 20 PDE4 variants arise from alternative mRNA splic-
ing or the use of different transcriptional units (5). While PDE4A, 
PDE4B, and PDE4D are expressed in immune cells (T and B 
cells, neutrophils, eosinophils, DCs, monocytes, macrophages), 
PD4C is minimally active or absent (128, 129). PDE3 and PDE7 
are detected in most inflammatory cells, including T and B cells, 
NK, and myeloid cells (6, 59, 127, 130–132). However, PDE4s 
are the predominant cAMP-degrading isoenzymes (126, 127). In 
addition, the expression levels of the PDE isoenzymes are differ-
entially regulated by a variety of inflammatory stimuli (126, 127). 
Apart from immune cells, PDE4 members are also expressed in 
chondrocytes, smooth muscle cells, epithelial cells, and vascular 
endothelium (127). By increasing levels of intracellular cAMP, 
PDE4 inhibitors show anti-inflammatory effects in almost all 
inflammatory and immune cells and are known to suppress a 
multitude of inflammatory responses, including proliferation, 
chemotaxis, phagocytosis, and release of pro-inflammatory 
mediators, such as cytokine and chemokines, reactive oxygen 
species, lipid mediators, and hydrolytic enzymes (34, 126, 129). 

Numerous selective PDE4 inhibitors have been patented and 
some of them have been evaluated in clinical trials, including 
diseases, such as asthma, COPD, atopic dermatitis, rheumatoid 
arthritis, and psoriasis/psoriasis arthritis. However, most of these 
compounds had to be discontinued because of narrow therapeu-
tic windows. Doses needed for an efficient treatment could not be 
reached due to side effects, such as nausea, emesis, diarrhea, and 
abdominal pain being the most common. It has been hypothesized 
that adverse side effects of the PDE4 inhibitors are a result of their 
non-selectivity to all four PDE4 subtypes and PDE4 inhibition 
in non-target tissues at doses similar (or lower) than needed for 
therapeutic efficacy. It is postulated that blocking of PDE4D in 
non-target organs promotes emesis (133). In view of side effect 
profile of second-generation PDE4 inhibitors, new strategies 
for the design of active and non-emetic compounds have been 
employed to overcome the adverse effects and to improve thera-
peutic effects. In this context, despite highly conserved catalytic 
domains of PDE4 isoenzymes, PDE4 subtype-specific inhibitors 
have been generated. For example, potent PDE4B inhibitors with 
more than 100-fold selectivity over PDE4D have been synthesized 
(134, 135). Compared with the non-selective PDE4 inhibitor cilo-
milast (134), selective PDE4B inhibitors demonstrated a potent 
anti-inflammatory activity and significantly less gastrointestinal 
side effects. In order to circumvent side effects observed upon 
oral administration, inhalation (136) and topical application 
(137) of PDE4 inhibitors have been explored in the treatment of 
airway inflammation and inflammatory cutaneous diseases. Two 
phase studies conducted with a PDE4 inhibitor (AN2728) in 
psoriasis and atopic dermatitis patients showed promising results 
(138, 139). The interest for PDE4 anti-inflammatory activity arose 
from early studies with the prototypic PDE4 inhibitor, rolipram 
(140). However, although PDE4 inhibitors have been mostly 
developed to treat lung diseases, such as asthma or COPD, no 
compound has yet reached the market for asthma treatment. By 
contrast, the orally active PDE4 inhibitor roflumilast (Daliresp®, 
Forest Pharmaceuticals) has been approved for COPD by the 
European Medicines Agency in 2010 and the U.S. Food and 
Drug Administration in 2011 based on four clinical trials. These 
studies have shown that roflumilast improves lung function and 
reduces the frequency of COPD exacerbations in patients with 
chronic bronchitis symptoms (141–144). Although side effects 
were generally mild to moderate, nausea, diarrhea, weight loss, 
and headache were still reported (145). Despite these side effects, 
roflumilast received approval for COPD with severe air flow 
limitations, symptoms of chronic bronchitis, and a history of 
exacerbations in several countries (146, 147).

Another currently marketed oral PDE4 inhibitor is apre-
milast (Otezla®, Celgene Corporation) that has been approved 
by the EMA and FDA for psoriasis and psoriasis arthritis, two 
autoimmune diseases, characterized by chronic inflammation, 
tissue and organ involvement, and accelerated growth cycle of 
skin cells. Apremilast was developed based on the rolipram and 
roflumilast pharmacophore by coupling a series of phthalimide 
analogs in order to optimize its activity and to decrease side 
effects (148). The safety and efficacy of apremilast for the treat-
ment of patients with plaque psoriasis and psoriasis arthritis were 
evaluated in numerous multicenter, randomized, double-blind, 
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placebo-controlled clinical trials (ESTEEM-1 and -2 for psoriasis, 
PALACE-1, -2, and -3 for psoriasis arthritis) (149–152). In the 
two ESTEEM trials, apremilast reduced the severity and extent of 
moderate-to-severe plaque psoriasis (including nail, scalp, and 
palmoplantar manifestations) versus placebo in adults. Similarly, 
in three PALACE trials (PALACE 1–3), apremilast improved the 
signs and symptoms of psoriasis arthritis relative to placebo in 
adults with active disease despite treatment with conventional 
synthetic and/or biologic disease-modifying anti-rheumatic 
drugs. According to the published clinical trials, apremilast was 
well tolerated in all study groups analyzed. Throughout phase II 
and III trials, the most frequently reported side effects consisted 
of headache, nausea, diarrhea, emesis, and nasopharyngitis and 
upper respiratory tract infection under continued treatment. 
However, the studies showed that the gastrointestinal adverse 
effects usually subside within a month of therapy.

It is an interesting result of the clinical studies that improved 
inhibitor specificity does not prevent side effects. This result sug-
gests that the same or overlapping cell populations caused both 
wanted and unwanted effects. In view of recent research results 
regarding the expression and activities of anabolic and catabolic 
cAMP enzymes in immune cells, the question arises whether par-
ticular PDE4 inhibitor effects are caused by alteration of immune 
cell functions. This question is underlined by the similarity of side 
effects in PDE4 inhibitor studies and some immunotherapeutic 
approaches. Unfortunately, effects in individual immune cell 
populations have not been considered in clinical studies with 
PDE inhibitors so far. For a better understanding of the underly-
ing causes of wanted and unwanted effects, such studies appear 
urgently needed. Alongside their specificity, effective interference 
with the cAMP pathway through inhibitors depends on their 
mechanism of action. Basically, inhibitors may act reversibly 
or irreversibly. Irreversible inhibitors bind to enzymes through 
covalent bonds. Covalent inhibitors have many desirable features, 
including increased biochemical efficiency of target disruption, 
reduced sensitivity toward pharmacokinetic parameters and 
increased duration of action that outlasts the pharmacokinetics 
of the compound. Only few inhibitors of this type, however, exist 
for anabolic and catabolic cAMP enzymes with the common 
ADCY inhibitor MDL-12,330A, a cyclo-alkyllactamide deriva-
tive supposedly representing an exception (153). Most inhibitors 
are reversible, bind to enzyme through non-covalent bonds, and 
typically address the ATP-binding site or the catalytic portion. 
With non-covalent inhibitors, cells can quickly become insensi-
tive by recovering enzyme activity. To increase their activity, how-
ever, inhibitors can be coupled to proteins that regulate protein 

expression. A favorable example exists in proteolytic targeting, 
such as the ubiquitin proteasome system (UPS) (154). Proteolytic 
targeting chimeric molecules, or PROTACS comprise a UPS rec-
ognition motif coupled to an inhibitor via a linker. While a first 
generation of PROTACs suffered from limited cell-permeability, 
the second generation has been improved by using a HIF1α 
peptide fragment as an E3 ubiquitin ligase recognition motif to 
increase permeability (155). Thus, in addition to the development 
of more specific inhibitors to achieve selective interference, their 
inhibitory activity may be improved through proteolytic target-
ing, particularly by preventing target cell resistance.

CONCLUSiON AND PeRSPeCTive

Because of its central importance as a universal regulator of 
metabolism and gene expression, systemic intervention of the 
cAMP metabolism is associated with numerous, sometimes con-
siderable, side effects. Additionally or alternatively to the devel-
opment of isoform-specific AC and PDE inhibitors, new methods 
need to be found by which these inhibitors may be delivered to 
tissues and cells specifically. Novel strategies may encompass the 
development of highly specific agents, new routes of delivery 
(cutaneous, inhalation) or the use of nanoparticles for tissue or 
even cell-specific drug delivery. Since cAMP signaling controls 
very different processes in different cells, a better understanding 
of the cAMP-mediated activities in particular cell types could 
help to pave the way to more specific interventions in cell func-
tion. Unlike anabolic and catabolic cAMP metabolism, very few 
drugs engage in signal transduction yet and, thus, the potential 
use of such actions remains unclear. Although known for over 
60 years, the cAMP signaling still reveals new functional details. 
Therapeutic intervention of its activities, thus, requires further 
elucidation of its role in individual cell types and its entangle-
ments with other signaling and metabolic pathways.
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