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It is increasingly apparent that cancer development not
only depends on genetic alterations but on an abnormal
cellular memory, or epigenetic changes, which convey
heritable gene expression patterns critical for neoplastic
initiation and progression. These aberrant epigenetic
mechanisms are manifest in both global changes in chro-
matin packaging and in localized gene promoter changes
that influence the transcription of genes important to
the cancer process. An exciting emerging theme is that
an understanding of stem cell chromatin control of gene
expression, including relationships between histone
modifications and DNA methylation, may hold a key to
understanding the origins of cancer epigenetic changes.
This possibility, coupled with the reversible nature of
epigenetics, has enormous significance for the preven-
tion and control of cancer.

The fact that virtually all human cancer types have epi-
genetic abnormalities that collaborate with genetic
changes to drive progressive stages of tumor evolution
has been the subject of multiple recent reviews (Jones
and Baylin 2002; Herman and Baylin 2003; Feinberg and
Tycko 2004; Lund and van Lohuizen 2004b; Baylin and
Ohm 2006; Feinberg et al. 2006). This recognition inter-
sects with the explosion of knowledge about the role of
chromatin assembly and modification in the control of
gene expression patterns (Strahl and Allis 2000; Jenu-
wein and Allis 2001; Bannister et al. 2002; Briggs et al.
2002; Lachner and Jenuwein 2002) to present a rich op-
portunity for understanding how tumor-related epige-
netic changes are initiated and maintained. In mamma-
lian cells, for proper packaging of DNA to ensure the
balance between transcriptional activity and repression,
there is a dynamic regulation of DNA cytosine methyl-
ation at CpG sites, nucleosome remodeling, and a series
of deacetylation, methylation, and other modifications
at key histone amino acid residues (Bestor 1998; Bird and
Wolffe 1999; Strahl and Allis 2000; Jenuwein and Allis
2001; Bannister et al. 2002; Bird 2002; Briggs et al. 2002;

Lachner and Jenuwein 2002). Transcriptional repression
characterizes the bulk of the heavily DNA methylated
mammalian genome and may safeguard against un-
wanted transcription of normally repressed DNA se-
quences (Bestor 1998). This DNA compaction also has an
important role for the structural maintenance of proper
chromosome replication (Okano et al. 1999; Xu et al.
1999; Tuck-Muller et al. 2000; Robertson 2005). In con-
trast, individual gene promoters or clusters of coordi-
nately regulated genes are maintained in more open tran-
scriptional configurations, which are dependent on
states of chromatin balance involving differing ratios of
active and repressive histone modifications (Bird and
Wolffe 1999; Bernstein et al. 2002, 2005, 2006; Bird 2002;
Boyer et al. 2006; Lee et al. 2006). Exciting information,
on a genome-wide scale, has recently emerged to de-
scribe chromatin marks that accompany and/or allow
cell lineage commitment steps (Bernstein et al. 2002,
2005, 2006; Boyer et al. 2006; Lee et al. 2006). This re-
view explores how this information may be critical for
understanding the epigenetic abnormalities in cancer
and their role in the biology of tumor evolution.

One key component of the cancer epigenome is an
altered DNA methylation pattern composed of global de-
methylation and promoter localized hypermethylation
(Fig. 1). These changes fundamentally participate in an
altered structure and function of DNA, potentially in-
volving unwanted transcription of repeat elements, ab-
normal activation of individual genes (Bestor 1998; Bird
2002), predisposition to genomic instability through dis-
ruption of chromosome replication control (Narayan et
al. 1998; Okano et al. 1999; Xu et al. 1999; Tuck-Muller
et al. 2000), and finally, aberrant silencing of genes im-
portant to the initiation and progression of tumors (Jones
and Laird 1999; Jones and Baylin 2002; Herman and Bay-
lin 2003). The last abnormality is especially being recog-
nized and involves many classic tumor suppressor genes,
developmental transcription factors, tissue remodeling
genes, DNA repair genes, cell cycle control genes, anti-
apoptotic genes, and genes that prevent abnormal activ-
ity of developmental pathways in tumors. In fact, any
single cancer may simultaneously have all such genes
epigenetically silenced (Baylin and Ohm 2006), and the
loss of function of genes in tumors may have far more

[Keywords: Cancer; cancer stem cell; chromatin modification; DNA
methylation; epigenetics]
3Corresponding author.
E-MAIL sbaylin@jhmi.edu; FAX (410) 614-9884.
Article is online at http://www.genesdev.org/cgi/doi/10.1101/gad.1464906.

GENES & DEVELOPMENT 20:3215–3231 © 2006 by Cold Spring Harbor Laboratory Press ISSN 0890-9369/06; www.genesdev.org 3215

 Cold Spring Harbor Laboratory Press on August 23, 2022 - Published by genesdev.cshlp.orgDownloaded from 

http://genesdev.cshlp.org/
http://www.cshlpress.com


epigenetic causes than genetic ones (Jones and Baylin
2002). In this review, we will particularly stress the
emerging theme that epigenetic mechanisms may con-
tribute to the earliest phases of tumor development and
that links may exist between stem cell chromatin con-
trol and the vulnerability of genes to be epigenetically
altered during tumorigenesis.

The position of epigenetic abnormalities in
tumor progression

A full understanding of the impact of epigenetic changes
in cancer depends on pinpointing at what stages of neo-
plastic evolution they occur and how they influence the
biology of each progression step toward invasive disease.
While epigenetic changes, like genetic alterations, may
arise at any such steps, it is increasingly apparent that

many chromatin-mediated abnormalities appear well be-
fore invasive cancer (Baylin and Ohm 2006; Feinberg et
al. 2006). This fact potentially alters the view that all
tumors begin with genetic mutations and, instead,
places epigenetic changes as possible seminal events for
tumor initiation (Baylin and Ohm 2006; Feinberg et al.
2006). These points link epigenetic changes in cancer to
events that maintain stem/precursor cell phenotypes
and how these contribute to tumorigenesis. They also
connect epigenetics to cancer predisposition factors,
such as aging, and cell responses to stress, such as occur
in chronic inflammation, in terms of channeling cells
into abnormal clonal expansion.

Cancer, loss of gene imprinting, and the earliest steps
in neoplasia

The possibility for epigenetic origins of neoplasia is
raised by abnormalities in gene imprinting found in can-
cer. Normal imprinting, mediated by both DNA meth-
ylation and histone modifications, ensures paternally de-
termined, heritable transcriptional expression of one
gene allele and repression of the other (Surani 1991,
1993; Bartolomei and Tilghman 1997; Ferguson-Smith
and Surani 2001). Several genes undergo loss of imprint-
ing (LOI) in cancers, such that both alleles are expressed
in the tumor (Feinberg and Tycko 2004; Feinberg 2005;
Holm et al. 2005; Feinberg et al. 2006). The potential for
tumorigenesis to ensue in such a setting is evident from
development wherein embryos derived strictly from ma-
ternal source form ovarian teratomas and those strictly
from paternal source form hydatidiform moles/chorio-
carcinomas. Perhaps the most well studied example in
adult cancers is the IGF2 gene, whose biallelic expres-
sion would result in overproduction of a potent growth
factor (Feinberg and Tycko 2004; Feinberg 2005; Holm et
al. 2005; Feinberg et al. 2006). LOI for IGF2 is found in
normal-appearing colonic epithelium of patients with
colorectal cancer and may be associated with increased
risk of colon cancer even when found in circulating
white cells (Cui et al. 2003; Kaneda and Feinberg 2005;
Sakatani et al. 2005). The LOI mechanism is a compli-
cated one. Abnormal increase of promoter DNA meth-
ylation in the H19 gene accompanies its transcriptional
silencing and transfer of enhancer control for this gene
more distally on the same chromosome, resulting in bi-
allelic IGF2 expression (Bartolomei 2003; Kato and
Sasaki 2005). Recent work in an animal model solidifies
that such LOI might initiate tumorigenesis. The intesti-
nal epithelium of mice engineered for Igf2 biallelic ex-
pression has a higher proportion of progenitor to differ-
entiated cells as may also occur in humans with consti-
tutive biallelic expression of IGF2 (Sakatani et al. 2005).
Another example wherein LOI of IGF2 appears to pro-
duce abnormal progenitor cell expansion without an as-
sociated genetic alteration is in the formation of a subset
of Wilm’s tumors, a childhood renal cancer. In this set-
ting, the biallelic expression appears to foster abnormal
expansion of a renal progenitor cell pool yielding the

Figure 1. The normal versus cancer epigenome. (Top) In nor-
mal mammalian cells, CpG islands in proximal gene promoter
regions (a three-exon gene is shown, with each exon marked in
blue and numbered) are largely protected from DNA methyl-
ation (cytosines are shown as open lollipops) and reside in re-
stricted regions of open chromatin (inset, upstream of transcrip-
tion start shows three nucleosomes with wide spacing), or eu-
chromatic states, favorable for gene transcription (large blue
arrow). In contrast, for most regions of the genome, such as in
the bodies of many genes and areas outside genes, particularly
including repeat elements and pericentromeric regions, the cy-
tosines in CpG dinucleotides are methylated (black lollipops).
This DNA methylation is characteristic of the bulk of the hu-
man genome, which is packaged as closed chromatin (the inset
above methylated CpGs shows multiple nucleosomes with
higher-order, tight compaction) unfavorable for transcription.
(Bottom) In cancer cells, there tends to be a reversal of this
pattern. Proximal promoter CpG islands for many abnormally
silenced genes (as represented by the same gene as shown in the
top panel, and which is depicted as representing the tumor sup-
pressor genes listed) become DNA hypermethylated and reside
in a closed chromatin, or more heterochromatic-type state,
which is not favorable for transcription (red X). In contrast, cy-
tosines in CpG dinuleotides in other regions of the genome
display hypomethylation and are associated with states of ab-
errantly loosened chromatin. The overall result is abnormal
chromatin packaging with the potential for underpinning an
abnormal cellular memory for gene expression and for convey-
ing abnormal structural function for chromosomes.
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substrate for later cancer progression events (Feinberg et
al. 2006).

Finally, a recent elegant mouse model further ups the
ante for abnormal imprinting as an initiation event for
cancer. The authors developed a mouse model with sub-
stantial loss of gene imprinting through transient germ-
line DNA demethylation produced via regulated disrup-
tion of the maintenance DNA methyltransferase,
Dnmt1 (Holm et al. 2005). Embryonic fibroblasts from
these mice formed tumors in immunocompromised
mice and have properties of spontaneously immortalized
cells in vitro. Furthermore, these cells can be fully trans-
formed in one step with the introduction of the H-Ras
oncogene. Finally, chimeric animals derived from em-
bryonic stem (ES) cells from the engineered mice devel-
oped multiple tumors. The authors concluded from the
findings that “LOI alone can predispose cells to tumor-
genesis and identify a pathway through which immor-
tality conferred by LOI lowers the threshold for transfor-
mation” (Holm et al. 2005). Clearly, this study and all
the work discussed above for LOI vividly illustrate the
concept that a switch in heritable gene expression pat-
terns, in the absence of mutations, may lead to abnormal
expansion of stem/progenitor cells and, thus establish a
risk that subsequent events will promote full transfor-
mation and evolution of cancer.

Cancer, aberrant transcriptional repression, and the
earliest steps in neoplasia

As mentioned earlier, perhaps the most intensely stud-
ied epigenetic abnormality in cancer is the aberrant tran-
scriptional silencing of genes associated with DNA hy-
permethylation of promoter region CpG islands. There
are many hints that this epigenetic abnormality, like
LOI, could be seminal in neoplastic evolution. For ex-
ample, one of the most common tumor suppressor genes
affected in many tumor types by this loss of function
event is p16ink4A. The DNA hypermethylation of this
gene is observed during progression of tumors such as
lung cancer as early as preneoplastic lesions (Belinsky et
al. 1998; Nuovo et al. 1999; Belinsky 2004) and recent
data in knockout mice indicate that germline loss of this
gene can increase stem cell life span (Janzen et al. 2006;
Krishnamurthy et al. 2006; Molofsky et al. 2006). Experi-
mentally, loss of p16ink4A appears to facilitate early tu-
morigenesis by being permissive for subsequent emer-
gence of genomic instability (Foster et al. 1998; Kiyono
et al. 1998) and may directly allow for additional epige-
netic silencing of other genes (Reynolds et al. 2006).
Other evidence for the early tumorigenic role of epige-
netic gene silencing comes from additional studies of
classic tumor suppressor genes. Germline mutations of
these genes cause familial forms of cancer through
mechanisms that obviously result in early expansion ab-
normalities (Hanahan and Weinberg 2000). To a variable
extent, these same genes are found to be DNA hyper-
methylated in subsets of nonfamilial cancers such as
VHL in renal, APC in colon, and BRCA1 in breast can-
cers (Herman et al. 1994; Esteller et al. 2000a, b; Heden-

falk et al. 2001; van ’t Veer et al. 2002). While it is pos-
sible that these epigenetic changes could be late events
in the nonfamilial tumor setting, it is just as likely they
could affect adult precursor cells in early neoplastic
stages. Interestingly, for example, identical patterns of
microarray gene expression occur in breast cancers from
patients who have germline BRCA1 mutations and fa-
milial breast cancers as in sporadic nonfamilial breast
cancers, which harbor hypermethylated BRCA1 genes
(Hedenfalk et al. 2001; van ’t Veer et al. 2002).

Most recently, studies of hypermethylated genes iden-
tified by emerging techniques to screen cancer cell ge-
nomes for epigenetic changes (Ushijima 2005) are reveal-
ing a potential network of epigenetic events that, again,
stress the theme that epigenetic alterations may have
pivotal involvement in abnormal clonal expansion of
stem/progenitor cells and predisposition to cancer. One
such situation involves the Wnt developmental path-
way, which is essential for stem/progenitor cell func-
tion, expansion, and maintenance in the normal intes-
tine and elsewhere during embryogenesis and adult cell
renewal (Gregorieff and Clevers 2005; Radtke and Clev-
ers 2005). This pathway is canonically overactive in co-
lon cancer via mutations in downstream pathway genes
such as APC and �-catenin (Kinzler and Vogelstein 1996;
Morin et al. 1997; Fodde et al. 2001; Gregorieff and Clev-
ers 2005; Radtke and Clevers 2005). A family of secreted
frizzled related genes (SFRPs), which encode for proteins
that antagonize Wnt activation at the cell membrane
(Finch et al. 1997; Rattner et al. 1997; Lacher et al. 2003),
are epigenetically silenced early during colon cancer pro-
gression and in virtually every established colon cancer
(Suzuki et al. 2002, H. Suzuki et al. 2004; Akino et al.
2005). The early silencing of these genes may constitute
broaching of an “epigenetic gate keeper” step prior to the
downstream mutations in APC or �-catenin, or the loss
of “genetic gatekeeper steps,” to activate the Wnt path-
way, start colon tumorigenesis, and later to collaborate
with the mutations to provide for a fully activated Wnt
pathway to promote tumor progression (Baylin and Ohm
2006).

Another fascinating possibility for fostering early ab-
normal clonal expansion involves a network of epige-
netic events linking sustained increases in SIRT1 to the
tumor suppressor, p53, and to generalized silencing of
cancer genes. SIRT1 is a multitasking, stress-sensing
protein and is a member of the class III histone deacety-
lases (HDACs) or sirtuins. SIRT1 deacetylase activity
can post-translationally modify p53 to down-modulate
its transcriptional activity (Luo et al. 2001; Vaziri et al.
2001; Langley et al. 2002). Normal tissue responses to
cell stress and injury are transient and must coordinate
cell renewal, tissue repair, and apoptotic responses. The
latter, dependent upon cell cycle checkpoints mediated
by p53 (Sharpless and DePinho 2002), prevent cell sur-
vival following cytokine exposure and increases in reac-
tive oxygen species (ROS) that can generate DNA dam-
age (Nelson et al. 2004; Bartsch and Nair 2005; Nagata
2005; Lu et al. 2006). These normal responses to acute
inflammation and wound healing then use feedback cir-
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cuits to modulate resistance to stress such that cell re-
population occurs and then properly ceases (Coussens
and Werb 2002; Balkwill and Coussens 2004; Nelson et
al. 2004; Lu et al. 2006). Abnormally proplonged survival
responses during chronic exposure to such stress may
often be at the heart of abnormal clonal expansion,
which promotes tumor risk.

The first focal point of an epigenetic circuit that links
SIRT1 to such abnormal survival responses (Fig. 2) in-
volves silencing of HIC1, which occurs early in progres-
sion of major tumors (Wales et al. 1995; Eguchi et al.
1997; Fujii et al. 1998; Hayashi et al. 2001). HIC1, a
member of the zinc finger containing POZ family tran-
scriptional repressors (Bardwell and Treisman 1994;
Zollman et al. 1994), was discovered in a random search
for hypermethylated genes in a frequent deletion area of
chromosome region 17p13.3, and is itself a transcrip-
tional activation target of p53 (Wales et al. 1995; Guer-
ardel et al. 2001). HIC1 and SIRT1 form a complex that
localizes to the SIRT1 promoter and suppresses its tran-
scription (Chen et al. 2005). Hic1 homozygous knockout
mice have multiple lethal epithelial defects (Carter et al.
2000), eightfold increased levels of Sirt1 in embryonic
fibroblasts (Chen et al. 2005), and the heterozygotes are
tumor prone (Chen et al. 2003). When crossed with p53
heterozygotes, a new spectrum of virulent tumors is in-
duced (Chen et al. 2004). Thus, the epigenetic loss of
HIC1 function (Fig. 2) can then potentially blunt normal

cellular responses to p53 through SIRT1 increases and,
potentially, increase cell life span through this route.
Even one copy increases of the SIRT1 homolog Sir2 can
prolong the life span of cells in organisms from Cae-
norhabditis elegans to mammals (Kaeberlein et al. 1999;
Lin et al. 2000; Tissenbaum and Guarente 2001; Howitz
et al. 2003). Hic1-deficient mouse and human cancer
cells have a p53- and SIRT1-dependent reduction in
apoptotic responses to DNA damage (Chen et al. 2005).
Taken together (Fig. 2), early heritable loss of HIC1 ex-
pression could trigger blunting of apoptosis and prolon-
gation of cellular life span to facilitate early abnormal
clonal expansion in settings, such as chronic inflamma-
tion, that predispose to cancer.

The next step in the potential network of SIRT1
events would suggest epigenetic events that beget epige-
netic events. Among the targets for SIRT1 deacetylase
activity are histone amino acids such as Lys 16 of his-
tone H4 (H4K16) and H3K9. These modifications are key
for a role of the yeast SIRT1 ortholog Sir2 in maintaining
transcriptional silencing for genes in telomeric and mat-
ing loci regions (Guarente 2000; Kimura et al. 2002; Suka
et al. 2002). Additionally, in Drosophila, Sir2 partici-
pates in long-term maintenance of gene silencing funda-
mental for development and stem cell function (Fu-
ruyama et al. 2004). SIRT1 appears to play a similar role
in the transcriptional silencing of DNA hypermethyl-
ated cancer genes by localizing to the promoters of such
genes to deacetylate H4K16 and H3K9. Induced de-
creases in SIRT1 activity, thus, results in re-expression
of the silenced genes (Pruitt et al. 2006). For example,
this experimental depletion of SIRT1 in cancer cells re-
sults in reactivation of the silenced Wnt antagonist
genes, the SFRPs, and thus reverses the overactivity of
Wnt pathway in breast and colon cancer cells (Fig. 2;
Pruitt et al. 2006). A final nodal point for epigenetic si-
lencing of HIC1 involves other routes by which silencing
of this gene results in overactivity of the Wnt pathway.
HIC1 can associate with TCF-4 and thus recruit
�-catenin to localized nuclear structures, termed HIC1
bodies (Fig. 2). This HIC1 activity then normally helps
prevent formation of nuclear �-catenin–TCF complexes
that would otherwise drive canonical Wnt pathway ac-
tivity (Valenta et al. 2006).

In summarizing this first section, there is compelling
evidence, from deregulation of gene imprinting to aber-
rant transcriptional silencing of genes, that epigenetic
abnormalities may play an influential role in allowing
abnormal clonal expansion and initiating the neoplastic
cascade. How these heritable abnormalities in gene ex-
pression patterns come to exist in neoplastic cells and
how the mechanisms involved relate to normal epige-
netic control of gene expression are explored in the re-
mainder of this review.

Components of control for DNA methylation
and chromatin, packaging of the genome, and cancer

If epigenetic abnormalities of gene expression are espe-
cially important to stem/precursor cell contribution to

Figure 2. Epigenetic silencing of HIC1—a potential model for
how a network of epigenetic abnormalities may facilitate ab-
normal cellular expansion. Under normal cellular conditions,
cellular stress response signals to genotoxic stresses, such as a
build-up of ROS, lead to changes in the balance between NAD
and NADH and induction of SIRT1 expression. This response in
normal cells aids cell survival to allow repair in a transient
manner. This response is then suppressed through feedback
steps involving HIC1–SIRT1 complex formation, transcrip-
tional repression of SIRT1 expression, and p53 activation of
HIC1 as described in the text. However, during chronic cell
renewal, epigenetic inactivation of HIC1 (red Xs), a frequent
early event in tumorigenesis, can lead to abnormal cell survival
and clonal expansion. This involves chronic SIRT1 increases,
and participation of this protein in suppression of p53 function,
epigenetic silencing of additional genes, and increases in WNT
pathway activity through loss of expression of SFRPs and direct
loss of HIC1 modulation of WNT pathway transcription.
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the earliest stages of neoplasia, how do we begin to un-
derstand the molecular underpinnings for their appear-
ance? The answers lie in dissecting the growing appre-
ciation of how chromatin construction and DNA meth-
ylation recruitment are joined, and how these events
differ between normal stem/precursor cells and neoplas-
tic cells.

The DNA methylation machinery

As discussed, epigenetic abnormalities in cancer include
both losses and gains of DNA methylation (Feinberg and
Vogelstein 1983; Feinberg et al. 1988; Jones and Laird
1999; Jones and Baylin 2002; Feinberg and Tycko 2004;
Baylin and Ohm 2006) and we understand more about
the latter. DNA methyltransferases (DNMTs), which
catalyze the covalent addition of methyl groups to cy-
tosines in the CpG dinucleotide context, have been in-
criminated in the DNA methylation abnormalities in
cancer. Overexpression of DNMT1 induces transforma-
tion of NIH 3T3 cells (Wu et al. 1993) and contributes to
cell transformation by the Fos oncogene (Bakin and Cur-
ran 1999). Inhibition of DNMT activities by 5-aza-2�-
deoxycytidine, a cytosine analog, delays large T antigen
(TAg)-induced prostate cancer transformation in the
TRAMP mouse model (Czermin et al. 2002) and lung
cancer development in a rodent carcinogenesis model
(Belinsky et al. 2003). Elevated levels of DNMT proteins
and activities occur in various cancer types, including
gastric, bladder, leukemia, colon, and lung (Issa et al.
1993; Belinsky et al. 1996; Melki et al. 1998; De Marzo et
al. 1999; Robertson et al. 1999; Ramsahoye et al. 2000;
Wagner et al. 2003; Etoh et al. 2004; Agoston et al. 2005).

Most of what we know about how mammalian DNA
methylation patterns are established comes from studies
of mouse normal development. Homozygous deletion of
any of the three Dnmt loci encoding catalytically active
Dnmts, Dnmt1, Dnmt3a, and Dnmt3b, is lethal (Li et al.
1992; Lei et al. 1996; Okano et al. 1999). In this regard,
deletion of Dnmt3a and Dnmt3b abolishes de novo
methylation, while Dnmt1 deletion produces bulk DNA
demethylation, reflecting a maintenance methyltrans-
ferase role for this enzyme (Okano et al. 1999) consistent
with in vitro enzymatic studies (Gruenbaum et al. 1982;
Pedrali-Noy and Weissbach 1986). The above paradigm
for embryonic separation of maintenance versus de novo
Dnmt activities has been challenged in the cancer set-
ting. Using both genetic deletion and RNA interference
(RNAi) approaches in human colon and other cancer
cells (Rhee et al. 2000, 2002; Ting et al. 2004, 2006),
severe depletion of DNMT1 has produced only minor
decreases in overall DNA methylation, minimal loss of
promoter hypermethylation, and undetectable re-expres-
sion of silenced tumor suppressor genes. Undeniably,
there have been controversies regarding such lack of re-
quirement for DNMT1 in maintaining promoter hyper-
methylation and gene silencing in cancer cells, and some
investigators have found changes in the above param-
eters in cancer cells with DNMT1 depletion (Robert et
al. 2003; Yan et al. 2003; M. Suzuki et al. 2004). Most

recently, small amounts of a cryptic splice form of
DNMT1 has been found in HCT116 DNMT1−/− colon
cancer cells, which may be sustaining them (Egger et al.
2006). One resolution to some of the above differences
may be that threshold requirements differ for DNMT1 in
various cancers. In our own studies of RNAi-induced
depletion of DNMT1, we identified one cell line, T47D
breast cancer cells, that displayed an essential require-
ment for retention of substantial DNMT1 levels for
maintaining DNA methylation and cell survival (Ting et
al. 2006). Yan et al. (2003) also found a specific require-
ment for DNMT1 in MDA-MB-231 and Hs578t breast
cancer cell lines for maintaining Estrogen Receptor
methylation and repression.

The biology behind this differential requirement for
DNMT1 may involve cooperativity between DNMTs for
maintenance of DNA methylation in human cancer
cells. In HCT116 colon cancer cells, knockout of
DNMT3b, the conventional de novo methyltransferase,
from DNMT1−/− HCT116 cells (double knockout or
DKO cells) results in a >95% loss in genomic 5-methyl
cytosines and complete promoter demethylation and re-
expression of aberrantly silenced genes (Rhee et al. 2002;
Akiyama et al. 2003; Paz et al. 2003; Satoh et al. 2003; H.
Suzuki et al. 2004). Multiple DNMTs are being colocal-
ized to promoters of hypermethylated genes and defined
as components of transcriptional repression complexes
(Di Croce et al. 2002; Kim et al. 2002; Datta et al. 2003).
However, the precise interactions between these pro-
teins require further investigation.

The above discussion relates primarily to the mainte-
nance of DNA methylation in cancer, but what estab-
lishes the patterns to start with? For example, does
DNMT1 contribute to de novo methylation and to aber-
rant promoter CpG island methylation and abnormal
gene silencing? DNMT1 has low intrinsic de novo activ-
ity against unmethylated substrates, and there is a lack
of in vivo evidence for Dnmt1 de novo methylation in
the murine ES cell system (Lei et al. 1996) and in studies
of its ectopic expression of DNMT1 in Drosophila (Lyko
et al. 1999). However, overexpression of the protein re-
sults in detectable de novo methylation of CpG island
sequences in human fibroblasts (Vertino et al. 1996). Un-
methylated human CpG islands are robust substrates for
DNMT1 de novo DNA methylation activity, and over-
expression of DNMT1 in cultured Drosophila cells can
specifically establish methylation on these substrates
when they are stably incorporated into the fly genome
(Jair et al. 2006). DNMT1 in HCT116 colon cancer cells
may account for 50% of the de novo methyltransferase
activity against these substrates in vitro (Jair et al. 2006).
DNMT1 may, then, be capable of initiating aberrant
CpG island hypermethylation at least in cancer cells.

Chromatin conformation, remodeling, histone
modifications, and the cancer epigenome

To understand the origins of epigenetic alterations in
cancer, we must tap the explosion of knowledge about
molecular control for organizing and maintaining the
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chromatin structure of the normal nucleus and how his-
tone modifications, including lysine acetylation, lysine
and arginine methylation, serine and threonine phos-
phorylation, glutamic acid ADP-ribosylation, and lysine
ubiquitination and sumoylation participate in this pro-
cess. Positioning of the nucleosome with its 147 base
pairs of DNA wrapped around the octamer of the core
histones, H2A, H2B, H3, and H4, in conjunction with
the above modifications of histones, modulates the nor-
mal epigenome in terms of maintaining gene expression
patterns and normal chromosome structure and function
(Jenuwein and Allis 2001). These components are deli-
cately balanced, and small changes in a given parameter
can have major consequences for cell phenotype and
transcriptional patterns. In yeast, a single copy change in
the histone deactylase Sir2 can completely alter zones of
gene silencing with respect to telomeric versus more
proximal chromosome distribution (Kimura et al. 2002;
Suka et al. 2002). It is not hard to imagine, then, that in
cancer cells, global and local shifts of DNA methylation
and chromatin parameters would have great impact.
Cancers have not only altered DNA methylation but
also global changes in the levels of proteins that partici-
pate in chromatin modifications, such as polycomb com-
plex constituents, and in histone modifications, such as
acetylation and methylation of lysine residues on his-
tones H3 and H4 (Varambally et al. 2002; Kirmizis et al.
2003; Kleer et al. 2003; Fraga et al. 2005; Seligson et al.
2005).

DNA methylation and chromatin connections

There is tight interdependence between DNA methyl-
ation and chromatin modifications for DNA packaging.
Select type I and II HDACs, which mediate removal of
acetyl groups from histone lysine residues, are associated
both with complexes involving each of the DNMTs and
with a family of methyl cytosine-binding proteins,
MBDs, which interpret and mediate the transcriptional
repressive activities of DNA methylation (Bird and
Wolffe 1999; Robertson et al. 2000; Rountree et al. 2000;
Bachman et al. 2001; Fuks et al. 2001; Bird 2002; Burgers
et al. 2002). The MBDs have potential for gene promoter
specificity and have been localized to DNA hypermeth-
ylated and aberrantly silenced cancer genes (Nguyen et
al. 2001; Bakker et al. 2002; El-Osta et al. 2002; Koizume
et al. 2002; Darwanto et al. 2003; Muller et al. 2003;
Ballestar and Esteller 2005). Typically, actively tran-
scribed genes are surrounded by acetylated histones but
by deacetylated histones when aberrantly silenced in
cancer in association with DNA hypermethylation
(Cameron et al. 1999; Fahrner et al. 2002; Nguyen et al.
2002; Kondo et al. 2003; McGarvey et al. 2006). In this
apparent collaboration between DNA methylation and
lysine deacetylation, the methylation appears dominant
in that it must be diminished by the demethylating
agent, 5-aza-2�-deoxycytidine, before cellular inhibition
of the type I and II HDACs can effectively achieve tran-
scriptional reactivation of the genes (Cameron et al.
1999; Suzuki et al. 2002). This demethylation also causes

release of the MBDs, and presumably of the HDACs,
from the promoters (Nguyen et al. 2001; Bakker et al.
2002; El-Osta et al. 2002; Koizume et al. 2002; Darwanto
et al. 2003; Muller et al. 2003).

Contrary to the above scenario, SIRT1, a class III
HDAC, participates in the aberrant silencing of cancer
genes but acts differently with respect to promoter DNA
hypermethylation. For SIRT1-target genes, concomitant
increases in acetylation of H4K16, and to a lesser extent
H3K9, induced by inhibition of SIRT1 occur without any
loss of the promoter DNA methylation and may, then,
modulate the transcriptional repression downstream
from DNA methylation (Pruitt et al. 2006). The exact
mechanisms involved, and the holistic role of SIRT1 in
both establishing and maintaining sites of DNA meth-
ylation, becomes important with the recent association
of SIRT1 with protein complexes fundamental to long-
term gene silencing in stem/precursor cells (Kuzmichev
et al. 2005).

While acetylation of histone lysines is associated with
active transcription, methylation of these residues asso-
ciates with either active or repression states depending
upon the modified site (Strahl and Allis 2000; Jenuwein
and Allis 2001; Briggs et al. 2002). The acetylation dy-
namics are balanced by actions of histone acetyltransfer-
ases (HATs) and HDACs, and histone methylation was
recently recognized as also being dynamically regulated
by histone methyltransferases (HMTs) and histone de-
methylases (Shi et al. 2004, 2005; Forneris et al. 2005;
Metzger et al. 2005; Fodor et al. 2006; Tsukada et al.
2006; Yamane et al. 2006). The complex nature of the
“histone code” is further expanded by the presence of
mono, di, and tri forms of lysine methylation, each form
being catalyzed by a different HMT (Rea et al. 2000;
Lachner and Jenuwein 2002; Rice et al. 2003; Lachner et
al. 2004). For example, trimethylation of histone H3 Lys
9 (H3K9me3) is associated with the compaction and
transcriptionally repressive characteristics of pericentro-
meric heterochromatin, while H3K9me2 is more associ-
ated with euchromatic gene silencing (Lachner et al.
2003; Gibbons 2005). Histone acetylation and methyl-
ation patterns are translated by effector proteins, as is
DNA methylation through the MBDs. Proteins contain-
ing bromodomains, which recognize acetylated lysine
residues, and chromodomains, which bind to methylated
lysine residues, are targeted to the histones and cause
changes in gene transcription and genome organization
(Jacobs et al. 2001; Plath et al. 2003).

Cancer-associated DNA hypermethylated and si-
lenced genes can be models to examine chromatin con-
trol of gene expression. When such genes are not DNA
methylated, and basally expressed, their promoters have
a virtually identical distribution of the active marks,
H3K9acetyl and H3K4me (Fahrner et al. 2002; Ghoshal
et al. 2002; Nguyen et al. 2002; Kondo et al. 2003; Kondo
and Issa 2004; McGarvey et al. 2006). In contrast, when
silenced in cancer cells and associated with DNA meth-
ylation, these active marks are severely diminished, and
virtually every histone methylation mark, including
mono-, di-, and trimethylation of H3K9 and H3K27, that
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has best been associated with transcriptional repression
is enriched (McGarvey et al. 2006). As previously noted,
H3K9me3 is associated with the tightly closed configu-
ration of pericentromeric heterochromatin, H3K9me2 is
more associated with euchromatic gene silencing, and
H3K27me is associated with facultative heterochroma-
tin, such as that for silenced genes on the inactive X-
chromosome of mammalian female cells (Lachner et al.
2003). H3K27me is placed by the polycomb protein com-
plexes (PcG) that, from Drosophila to man, mediate
long-term gene silencing (Orlando 2003; Lund and van
Lohuizen 2004a,b; Ringrose and Paro 2004; Schwartz et
al. 2004; Pirrotta and Gross 2005) and, as noted below,
has a potentially critical role in the origins of cancer gene
silencing.

HMTs and PcG

The promoters of DNA hypermethylated cancer genes
are enriched for enzymes known to catalyze the above
silencing histone methylation marks including G9a and
EuHMTase for H3K9me2 and EZH2 for H3K27me (Mc-
Garvey et al. 2006). The origins of the H3K9me3 mark is
not known, although at pericentromeric heterochroma-
tin, this modification is established by SuVar HMT fam-
ily members (Melcher et al. 2000; Peters et al. 2001; Mai-
son et al. 2002; Lehnertz et al. 2003; Ebert et al. 2004;
Krouwels et al. 2005). H3Kme2 and H3K9me3 are recog-
nized by chromodomain proteins, including HP1 family
proteins (Aagaard et al. 1999; Melcher et al. 2000; Rea et
al. 2000; Schotta et al. 2002, 2003; Rice et al. 2003; Krou-
wels et al. 2005; Chin et al. 2006), and HP1� localizes to
the promoters of DNA hypermethylated and silenced
cancer genes (McGarvey et al. 2006). Interestingly, the
tumor suppressor Rb may participate in targeting H3
methylation and binding of HP1� to target genes, sug-
gesting a role for SUV39H1 in euchromatic gene repres-
sion and heterochromatic silencing (Aagaard et al. 2000;
Nielsen et al. 2001).

One approach to further understand the roles of these
components and events in the maintenance, and even
the origins, of aberrant gene silencing in cancer is to
exploit the reversible nature of epigenetics and monitor
the chromatin responses. Several groups have induced
re-expression of DNA hypermethylated and silenced
cancer genes through 5-aza-2�-deoxycytidine-induced
DNA demethylation, or examined demethylated genes
in the HCT116 DKO colon cancer and noted reappear-
ance of the active marks H3K9acetyl and H3K4me (Fahr-
ner et al. 2002; Ghoshal et al. 2002; Nguyen et al. 2002;
Kondo et al. 2003; McGarvey et al. 2006). However,
while these active marks are enriched, only one silenc-
ing mark, H3K9me2, is strikingly decreased, while each
of the other repressive marks, H3K9me3, H3K27me2,
and H3K27me3, are retained (McGarvey et al. 2006).
This may incriminate H3K9me2 in the maintenance
and/or the origins of the silencing and suggest that the
polycomb complex-induced H3K27me mark may have
more to do with origins of the gene silencing than with
its maintenance.

Conclusive proof for the precise roles of each of the
defined transcriptional repressive marks in the mainte-
nance and the origins of aberrant gene silencing in cancer
remains to be garnered. In terms of a hierarchy of events,
debate continues as to whether DNA methylation ini-
tiates the silencing or is superimposed upon it. Data sup-
porting a role for DNA methylation affecting histone
methylation exist for Arabidopsis, wherein removal of
the maintenance DNA methyltransferase results in loss
of H3K9 methylation in heterochromatin (Tariq et al.
2003). Further evidence in human cells shows that loss
of DNMT1 results in a decrease of H3K9me2 and
H3K9me3 (Espada et al. 2004). However, it seems that
evidence is building to suggest a primary role for histone
modifications in starting aberrant gene silencing. First,
in Neurospora crassa, the HMT dim-5, which catalyzes
H3K9me3, is required for DNA methylation while in
Arabodopsis, the HMT KRYPTONITE is necessary for
CpNpG methylation by CHROMOMETHYLASE3
(Tamaru and Selker 2001; Jackson et al. 2002, 2004;
Johnson et al. 2002; Tamaru et al. 2003). Second, mouse
ES cells null for the HMT Suv39h display altered DNA
methylation at pericentromeric satellite repeats while
Dnmt1 single- or Dnmt3a/3b double-deficient mouse ES
cells do not impair H3K9 methylation (Lehnertz et al.
2003). Also, studies on mouse ES cells lacking G9a, one
of the enzymes responsible for the H3K9me2 mark, sug-
gest a role for histone methylation in the maintenance of
imprinted regulatory regions (Xin et al. 2003). In human
cancer cells, histone deacetylation and H3K9 methyl-
ation precede resilencing and re-DNA-methylation of
the p16ink4a gene, which recur after initial DNA demeth-
ylation and re-expression in the DKO cells (Bachman et
al. 2003).

Finally, ever increasing evidence suggests a particu-
larly critical role for PcG proteins in epigenetic cancer
gene dysfunction (Lund and van Lohuizen 2004b; Muyr-
ers-Chen et al. 2004; Valk-Lingbeek et al. 2004). The PcG
complexes play an essential role in development through
establishment of long-term gene silencing in Drosophila
(Orlando 2003; Lund and van Lohuizen 2004a; Ringrose
and Paro 2004; Schwartz et al. 2004; Pirrotta and Gross
2005). These complexes exist in at least four groups, in-
cluding the maintenance complex, PRC1, consisting of
RNF2, HPC, ECR, and BMI1, and different initiation
complexes, PRC2 through PRC4, which contain EZH2,
SUZ12, and different isoforms of EED (Orlando 2003;
Kirmizis et al. 2004; Kuzmichev et al. 2004, 2005; Lund
and van Lohuizen 2004a; Ringrose and Paro 2004;
Schwartz et al. 2004; Pirrotta and Gross 2005). The SET
domain of EZH2 is responsible for the contribution of
the PRC2 complex to methylation of both H3K27 and
H1K26. As noted, H3K27me is found at the promoters of
all the DNA hypermethylated and silenced cancer genes
examined (McGarvey et al. 2006). Interestingly, the ex-
act composition of the complex may direct which his-
tone residue is methylated by EZH2 (Kuzmichev et al.
2004, 2005). Increased levels of EZH2 have been impli-
cated in several types of cancer, and the expression level
correlates with prognosis in both prostate and breast can-
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cer (Varambally et al. 2002; Bracken et al. 2003; Kleer et
al. 2003; Bachmann et al. 2006; Matsukawa et al. 2006).
SUZ12, another key PRC2 constituent, is also up-regu-
lated in several tumor types, including colon, breast, and
liver (Bracken et al. 2003; Kirmizis et al. 2004; Reynolds
et al. 2006). The PRC1 component Bmi1 has also been
reported as elevated in cancer and can initiate aspects of
abnormal clonal expansion fundamental to development
of hematopoietic and brain tumors (Lessard et al. 1999;
Leung et al. 2004; Lund and van Lohuizen 2004b; Brugge-
man et al. 2005). Most recently, EZH2 has been linked
with gene targeting for all three mammalian DNMTs
and suggested to have roles in both the triggering of
DNA methylation and its maintenance in gene silencing
(Vire et al. 2006). Bmi1 is also reported to colocalize with
DNMT1 (Hernandez-Munoz et al. 2005). These initial
findings need to be verified and extrapolated to other
normal and neoplastic DNA methylation events.

Importantly, the role of PcG complexes in gene silenc-
ing intersects with recent findings of a role for the
deacetylase SIRT1 at silenced cancer gene promoters
(Pruitt et al. 2006). In flies, overexpression of EZH2 pro-
motes formation of a newly defined polycomb complex,
PRC4, which appears to contain SIRT1 and a specific
isoform of Eed termed Eed2 (Furuyama et al. 2004;
Kuzmichev et al. 2004; Chopra and Mishra 2005). In this
complex, SIRT1 deacetylates H1K26 and EZH2 preferen-
tially methylates this residue. Interestingly, cancer cells
display elevated levels of PcG proteins, including all four
isoforms of EED as well as SIRT1 while these proteins
are barely detectable in nontumor cells (Kuzmichev et al.
2005). A mouse model for human prostate cancer addi-
tionally demonstrated increased EZH2 and SIRT1 levels
in cancer-derived tissues versus normal prostate
(Kuzmichev et al. 2005). Thus, the role of SIRT1, in con-
cert with PcG complexes, may be critical for mainte-
nance of aberrant gene silencing in cancer, emphasizing
again the remarkable potential network of cellular
events outlined in Figure 2.

Stem cells, cancer stem cells, yeast models, and the
cancer epigenome

How can we weave all of the data discussed in this re-
view into a working model for understanding further the
origins of the cancer epigenome and particularly the
most intensely studied component, epigenetic gene si-
lencing? Key clues may relate to the very large numbers
of such silenced genes in cancer cells. Random screening
of the cancer genome for aberrantly silenced genes is
predicting that any given cancer may harbor hundreds of
these latter genes (Suzuki et al. 2002). In most cases, the
silencing appears to involve individual genes inter-
spersed throughout a wide range of chromosome regions,
but large areas of involvement for a chromosome arm
have recently been reported for colon cancers (Frigola et
al. 2006). In colon and other cancers, Issa and colleagues
(Issa 2004) have identified what they have termed a CpG
island methylator phenotype, or “CIMP.” While this no-
tion has been challenged by some (Yamashita et al.

2003), most recent data appear to validate the concept
(Weisenberger et al. 2006). These large-scale gene-silenc-
ing events certainly could represent stochastic changes
accruing during tumor progression. However, it seems
more likely a program might exist to predispose groups
of genes to the chromatin alterations associated with
such a large amount of genomic transcriptional repres-
sion. We speculate that recent findings for chromatin
control of gene expression for stem cell biology may be
providing a major clue to how groups of cancer genes
would undergo such coordinated transcriptional repres-
sion.

It is an old concept that many cancers may arise
through a series of progression steps, with resultant in-
crease in cellular heterogeneity, in a clone of abnormally
expanding adult stem cells (Reya et al. 2001; Lund and
van Lohuizen 2004b; Muyrers-Chen et al. 2004; Valk-
Lingbeek et al. 2004; Bjerkvig et al. 2005). New views of
such “cancer stem cells” emphasize they may be respon-
sible for continued population of the cancer rather than
their progeny cells. Certainly, recent experimental evi-
dence suggests that molecular events that lock in a de-
gree of “stemness” in neoplastic cells can drive tumor
progression. Thus, in a mouse model, conditional germ-
line overexpression of the stem cell gene Oct4 can drive
rapid tumorigenesis in epithelial cells of the intestine
and other organs (Hochedlinger et al. 2005).

What could be the targets for such a stem cell-driven
neoplasia in terms of the cancer epigenome? We suggest
that recent observations by several groups concerning
how ES and progenitor cells use chromatin organization
to maintain their status may hold the answer. In both
murine and human ES cells, transcription factors speci-
fying for cell stemness, including OCT4, NANOG, and
SOX2, are localized to promoter regions of a restricted
group of some 1000 genes for each factor, and some 350
target genes for all three (Boyer et al. 2006; Lee et al.
2006). These target genes, including transcription fac-
tors, genes guiding cell proliferation control, morphogen-
esis regulating genes, etc., have one central theme in that
all are generally related to the pluripotency of stem cells
(Beach et al. 2005; Bernstein et al. 2006; Boyer et al. 2006;
Lee et al. 2006). Importantly, the target genes are largely
maintained at low expression states in ES cells by having
a zone spanning their proximal promoter regions char-
acterized by PcG proteins and the pivotal repressive
mark, H3K27me3 (Bernstein et al. 2006; Boyer et al.
2006; Lee et al. 2006). Also, such genes usually have
proximal promoter CpG islands and sequences outside
gene coding regions that are conserved between mouse
and man (Bernstein et al. 2006).

The PcG occupancy of the above promoters appears to
function for preventing their full expression until ES and
other precursor cells are signaled to undergo commit-
ment steps toward cell lineages (Bernstein et al. 2006;
Boyer et al. 2006; Lee et al. 2006). Importantly, this dic-
tates that the maintained ES expression state must pre-
serve gene expression plasticity such that PcG influ-
ences can be reversed or diminished when gene expres-
sion is required (Bernstein et al. 2006). In subsequent
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maturation steps, or in adult cell differentiation, the role
of PcG complexes may come back into play in that their
maintenance of long-term gene silencing is seen in ma-
ture stem/precursor cells as well (Orlando 2003; Lund
and van Lohuizen 2004a; Ringrose and Paro 2004).

Another defining chromatin feature of the above PcG
target genes in ES cells has been observed that may also
have a special link to aberrant silencing of genes in can-
cer. Surprisingly, within the broad zone of PcG localiza-
tion surrounding their promoters, as marked by the dis-
tribution of H3K27me3, there is a narrower zone dis-
tinctly marked by the presence of the activating mark,
H3K4me3. This has been termed as “bivalent chroma-
tin,” which is hypothesized as essential to maintain cer-
tain ES genes at a low expression level, poised for even-
tual up-regulation as needed for cell lineage commit-
ment (Bernstein et al. 2006). Indeed, when ES cells are
pushed toward neural differentiation in vitro, the expres-
sion of several examined genes is increased, the PcG
mark is notably reduced, and the active H3K4me3 mark
is maintained and/or increased (Bernstein et al. 2006).
Such a change is also observed for genes compared be-

tween the ES cells and naturally committed cell states
(Bernstein et al. 2006). Therefore, a carefully orches-
trated, plastic state of gene expression is maintained by
PcG proteins and their induced chromatin mark to allow
balance between maintenance of stem cell phenotype
and cell differentiation during embryonic development.

The chromatin of DNA hypermethylated and silenced
cancer may be remarkably similar to the above bivalent
chromatin. These genes start with a heritable, silenced
state associated with chromatin consisting of highly re-
pressive marks, including mono-, di-, and tri-H3K9me
and H3K27me and the absence of H3K14 acetylation
(McGarvey et al. 2006). As previously discussed, after the
induction of DNA demethylation, the chromatin of the
re-expressed genes does not fully return to the fully ac-
tivated state but, rather, active marks are indeed restored
while repressive marks, including the PcG related mark,
H3K27me, are highly retained (McGarvey et al. 2006).

All of the above perhaps suggest a working model (Fig.
3), wherein during chronic hyperproliferative states that
predispose to cancer, such as prolonged inflammation,
stem/precursor cells may normally harbor genes marked

Figure 3. A model for the potential contribution of stem cell chromatin to the initiation and maintenance of aberrant epigenetic gene
silencing in cancers. During normal ES cell formation, a bivalent chromatin is recruited to the promoters of a subset of genes that need
to be held in a low expression state to prevent lineage commitment. The involvement of small interfering RNA (siRNA) species could
be a trigger to this process, and the chromatin is comprised of histone modifications associated with active transcription (H3K4me)
and inactive transcription (H3K27me). The PRC are responsible for the H3K27me3 mark through the HMT, EZH2, and deacetylation
of key histone lysine residues is catalyzed by HDACs that are recruited by multiple transcriptional repressive complexes. At such
genes, DNA is largely unmethylated (green circles), and histones may be maintained in a mixture of acetylated (green hexagons) and
deacetylated (red hexagons) states. (Bottom left) With normal cell differentiation and lineage commitment, the genes become tran-
scriptionally active, and the silencing marks are reduced while active histone marks are retained. DNA remains unmethylated.
However, as shown in the bottom right, during cancer-predisposing events, abnormal pressure for stem/progenitor cell proliferation
with retained bivalent chromatin may allow polycomb proteins and/or marks to recruit other silencing marks such as H3K9me2 and
H3K9me3 and DNMTs. The promoter evolves abnormal DNA methylation (red circles) and a tight heritable gene silencing (large red
X), which results in loss of function for genes. Tumors may arise in such clones with subsequent progression steps. Experimentally,
the potential underlying bivalent chromatin for such tumor genes, plus retained H3K9me3, can be revealed by induced DNA demeth-
ylation (large green arrow) and resultant gene re-expression.
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by the above bivalent chromatin state. Indeed, many
genes on the list of PcG targets in ES cells, such as
GATA-4, TIMP 3, and others (Lee et al. 2006), are fre-
quently DNA hypermethylated and silenced in human
adult cancers. The repressive marks, particularly
H3K27me3 and H3K9me2 and/or H3K9me3, and resi-
dence of the PcG proteins may make these promoter
regions vulnerable to recruitment of the DNA methyl-
ation machinery through mechanisms discussed during
this review. Imposition of the DNA methylation on
these gene promoters would then convert a low expres-
sion state, with a plasticity that would normally allow
transcriptional activation during cell maturation, to an
epigenetically heritable repressive state. This loss of ex-
pression for many developmental and cell maturation
genes, including some that would otherwise prevent cell
proliferation and would trigger cell senescence or apo-
ptosis, gives the early progenitor cells selective advan-
tage and they would comprise, in essence, tumor stem
cells that may participate in neoplastic evolution if the
initial clones undergo subsequent tumor progression
events. Some of these latter events will clearly be genetic
while others may arise through continued evolution of
epigenetic abnormalities.

There are certainly more questions inherent in this
preliminary model than answers. Nevertheless, the
model may help to map out the areas in which profound
clues are emerging and help guide where research may be
directed. One question is: What initiates the above PcG
marking in normal stem/precursor states? Although this
will have to be identified, one exciting possibility might
be a potential participation by noncoding RNA species
(Fig. 3). Participation of such species in triggering tran-
scriptional repression is being incrementally defined es-
pecially, from work in plants and yeast (Wassenegger and
Pelissier 1998; Pelissier and Wassenegger 2000; Jones et
al. 2001; Volpe et al. 2002; Cam and Grewal 2004). Such
species, in yeast, can target histone-modifying enzymes,
especially those for catalysis of H3K9 and H3K27, to cen-
trimeric repeat regions (Volpe et al. 2002, 2003; Cam and
Grewal 2004). The type I–III HDACs we have discussed
could be targeted to remove acetyl groups from histone
tails, allowing the HMTs to catalyze the mono-, di-, and
trimethyl additions to select lysine residues. HDACs
have recently been implicated as critical players in yeast
for initial establishment of transcriptional silenced re-
gions (Yamada et al. 2005). Recently, several groups have
discovered that small double-stranded RNA (dsRNA)
species targeted to gene promoter regions can reproduc-
ibly induce transcriptional gene silencing in mammalian
cells (Kawasaki and Taira 2004; Morris et al. 2004; Cas-
tanotto et al. 2005; Janowski et al. 2005; Ting et al. 2005).
This type of silencing is observed with a distinctive in-
crease in histone repressive marks at H3K9 and can be
alleviated with a coadministration of TSA and 5-aza-2�-
deoxycytidine (Morris et al. 2004). Whether this dsRNA-
dependent transcriptional silencing (RdTS) is directly
connected to DNA methylation remains to be verified.
However, the strong link between RdTS and histone
modifications raises the interesting prospect that RdTS

may be an endogenous mechanism by which cells estab-
lish epigenetic gene regulation. Recently, a report in
Drosophila implicates dcr-2, aub, and piwi to be in-
volved in PcG-mediated gene silencing (Grimaud et al.
2006). This point, taken together with the data discussed
above, further hints at a possibility that noncoding RNA
species and/or RNAi pathways could be important in the
process of chromatin-based gene silencing in cancer.

Summary

While our knowledge of the cancer epigenome is advanc-
ing rapidly, much remains to be discovered, and many
surprises will surely emerge to enrich our knowledge of
basic chromatin function, relationships of adult stem/
precursor cells to normal cell renewal, and of the origins
and progression of human cancer. Studies of the cancer
epigenome are already beginning to diversify our ap-
proaches to cancer control and care and are providing
potential molecular marker strategies to assess cancer
risk, provide early cancer detection, improve monitoring
of cancer prognosis, and predict therapy responses (Her-
man and Baylin 2003; Laird 2003; Belinsky 2004). Rever-
sal of tumor-associated silencing of tumor suppressor
genes is increasingly being targeted for cancer treatment
and prevention strategies (Silverman et al. 2002; Issa
2005; Gore et al. 2006). From both basic and clinical
research standpoints regarding epigenetics, we have
clearly entered a remarkable era of basic and transla-
tional studies linking chromatin and cancer research.
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