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Abstract

Background: The Cancer Genome Atlas (TCGA) project has generated genomic data sets covering over 20

malignancies. These data provide valuable insights into the underlying genetic and genomic basis of cancer.

However, exploring the relationship among TCGA genomic results and clinical phenotype remains a challenge,

particularly for individuals lacking formal bioinformatics training. Overcoming this hurdle is an important step

toward the wider clinical translation of cancer genomic/proteomic data and implementation of precision cancer

medicine. Several websites such as the cBio portal or University of California Santa Cruz genome browser make

TCGA data accessible but lack interactive features for querying clinically relevant phenotypic associations with

cancer drivers. To enable exploration of the clinical–genomic driver associations from TCGA data, we developed

the Cancer Genome Atlas Clinical Explorer.

Description: The Cancer Genome Atlas Clinical Explorer interface provides a straightforward platform to query

TCGA data using one of the following methods: (1) searching for clinically relevant genes, micro RNAs, and proteins

by name, cancer types, or clinical parameters; (2) searching for genomic/proteomic profile changes by clinical

parameters in a cancer type; or (3) testing two-hit hypotheses. SQL queries run in the background and results are

displayed on our portal in an easy-to-navigate interface according to user’s input. To derive these associations, we

relied on elastic-net estimates of optimal multiple linear regularized regression and clinical parameters in the space

of multiple genomic/proteomic features provided by TCGA data. Moreover, we identified and ranked gene/micro

RNA/protein predictors of each clinical parameter for each cancer. The robustness of the results was estimated by

bootstrapping. Overall, we identify associations of potential clinical relevance among genes/micro RNAs/proteins

using our statistical analysis from 25 cancer types and 18 clinical parameters that include clinical stage or smoking

history.

Conclusion: The Cancer Genome Atlas Clinical Explorer enables the cancer research community and others to explore

clinically relevant associations inferred from TCGA data. With its accessible web and mobile interface, users can examine

queries and test hypothesis regarding genomic/proteomic alterations across a broad spectrum of malignancies.
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Background
Extensive catalogues of genetic aberrations in cancers

have been generated by high throughput technologies

such as next-generation sequencing (NGS) and genomic

scale microarrays [1–3]. For example, over 800 genomes

[4] and 2,700 exomes [5] from more than 25 cancer

types have been sequenced by NGS since 2008 [6]. Despite

the breadth and depth of these cancer genome data sets,

there are only a small number of studies that utilize these

cancer genome data sets for identifying associations

among genomic findings and clinical parameters or phe-

notypes. Rather, the majority of studies use unsupervised

analysis methods to delineate specific molecular signa-

tures [7–11]. Many of these studies have restricted sample

sizes, thus the studies have limited power in detecting

genomic associations with various clinical phenotypes

[12, 13]. Although molecular profiling studies have

brought enormous biological insights about cancer, clin-

ical translation of these discoveries requires associating

molecular features with clinical phenotypes.

The Cancer Genome Atlas (TCGA) project has gener-

ated genomic, epigenomic, transcriptomic, and prote-

omic data for over 20 different cancer types [14–21].

These data sets provide broad insight into the under-

lying genetic aberrations existing across multiple cancer

types. In addition, TCGA has clinical data describing

specific metrics such as histopathology and clinical stage,

among others. Overall, TCGA data has the potential for

determining the clinical significance of critical genetic

aberrations.

For clinicians and other cancer researchers lacking bio-

informatics expertise, extrapolating desired information

from the copious amounts of data supplied by TCGA

proves to be a difficult task. Several websites, including

the cBio portal [22] and the University of California, Santa

Cruz (UCSC) genome browser [23], were developed to

make TCGA data more accessible. These sites are gener-

ally configured for providing primary genomic results ra-

ther than clinical associations. Some programs, such as

StratomeX, use an unsupervised approach to explore the

relationship between clinical parameters and patient strat-

ifications based on molecular profiling [24]. However, the

results from StratomeX are provided as tumor sample

clusters without the granularity of identifying specific

genes. In contrast, many investigators are interested in

reviewing lists of candidate genes that facilitates the inter-

pretation of genomic results for non-computational bio-

medical researchers and other users.

To enable a gene-centric exploration of the potential

clinical–genomic associations in TCGA data, we devel-

oped the Cancer Genome Atlas Clinical Explorer (http://

genomeportal.stanford.edu/pan-tcga/). Enabling improved

access of cancer genomic data, this web and mobile inter-

face allows users to navigate the list of cancer genes, micro

RNAs (miRs), or proteins from TCGA data and explore

their translational or clinical significance. We conducted a

successful initial study [25] where we analyzed the rela-

tionship between genomic/proteomic profiles and clinical

phenotypes for colorectal cancers using the breadth of

TGCA data. Using an elastic-net regularized regression

method we integrated genomic alteration data from differ-

ent genomic platforms as well as clinical meta-data from

TCGA. For example, for colorectal cancer, the elastic-net

analysis identified hyper-methylation of MLH1 and muta-

tions of TGFBR2 as top predictors for a tumor with

microsatellite instability (MSI)—these are well-known ex-

amples of MSI-related events. Subsequently, we identified

genetic aberrations in cancer genes indicative of clinical

stage in colorectal cancer, considering multiple genomic

features and clinical data. We determined that combining

data from multiple genomic platforms outperformed the

analysis based on an individual genomic assay.

Given our success in the small pilot study, we con-

ducted a new and significantly expanded study using 25

cancer types with 18 clinical parameters from TCGA

Project. Our results from these elastic-net analyses suc-

cessfully identified known associations between genomic/

proteomic and clinical data.

The Cancer Genome Atlas Clinical Explorer allows

users to answer queries such as “which genes correlate

with the metastasis of skin cancer,” “do stomach cancers

with PIK3CA genetic aberrations behave differently in

EBV [Epstein–Barr virus] infected individuals compared

to uninfected,” or “what are the differences in TP53 copy

number between tumor samples with or without TP53

mutations.” Overall, this web interface eliminates barriers

to accessing TCGA data, allows researchers to address im-

portant questions to their projects, and allows researchers

to adjust their hypotheses and experimental designs in the

investigations accordingly.

Construction and content
All data originated from the public websites of TCGA

Project. The Cancer Genome Atlas Clinical Explorer

summarizes TCGA clinical parameters and translates

these data into a list of clinically relevant cancer drivers

including genes, miRs, and proteins. First, we generated

descriptive statistics such as mutation frequencies or

copy number variation (CNV). These selected gene aber-

ration statistics were categorized by cancer types and de-

rived from SQL queries using our relational database

that contains pre-processed TCGA data, as described

later. Second, we generated a list of genes, miRs, and pro-

teins that correlate with specific clinical parameters using

elastic-net analysis as described [25]. For example, if

breast cancer data had ten clinical parameters with an ad-

equate number of samples having annotation, the elastic-

net analysis would be run separately for each clinical
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parameter. Overall, our analysis included 25 cancer types

and 18 clinical parameters.

Some of the clinical features were available to a limited

number of cancer types. For instance, PAM50 information

is only available in breast cancer samples and EBV infec-

tion is exclusive to stomach cancer. Compared to our ini-

tial, limited analysis on TCGA colorectal cancer data, this

new study has been dramatically increased in scale and

fully leverages the wealth of new molecular data, clinical

parameters, and different cancer types. For example, new

features of this study include (1) an expanded miR and re-

verse phase protein array (RPPA) data set that was not

previously available; (2) analysis of an additional 24 can-

cers with more than ten clinical parameters, providing a

significantly more expanded analysis and results database

compared to our previous publication (e.g. four clinical

parameters in colorectal adenocarcinoma [COADREAD]);

and (3) development of a new interactive interface that

allows users to easily explore TCGA data with an orienta-

tion toward clinical phenotypes.

Data sources

We downloaded TCGA genomic/proteomic data (2 April

2015 version) from the Broad Firehose (http://gdac.broa

dinstitute.org) using firehose_get (version 0.4.3) and ran

md5sum to ensure the integrity of the downloaded data

and to verify that all genomic data files were intact. These

data files included genomic, transcriptomic, epigenomic,

and proteomic data for each of the 25 cancer types.

Specifically, these data included DNA CNV, somatic

mutations, mRNA expression level by RNA sequencing

(RNA-Seq), DNA methylation, miR expression level by

RNA-Seq, and protein expression level by RPPA (Table 1).

Clinical and pathological data covering 18 clinical pa-

rameters were obtained from TCGA. During the course

of the study, we noted that the availability and

Table 1 Sample numbers of clinical data used from The Cancer Genome Analysis pan-cancer data set

Tumor type (TCGA ID) Number of samples in analysis Number of
clinical
parameters

Total Gene micro RNA Protein

Adrenocortical carcinoma (ACC) 92 75 80 46 5

Urothelial bladder cancer (BLCA) 412 388 409 127 8

Breast invasive carcinoma (BRCA) 1098 945 755 410 9

Cervical cancer (CESC) 307 190 307 173 7

Colorectal adenocarcinoma (COADREAD) 628 476 295 461 10

Esophageal cancer (ESCA) 185 0 184 126 9

Glioblastoma multiforme (GBM) 610 111 0 214 2

Head and neck squamous cell carcinoma (HNSC) 528 496 486 212 9

Chromophobe renal cell carcinoma (KICH) 66 66 66 0 4

Kidney renal clear cell carcinoma (KIRC) 537 446 254 454 7

Papillary kidney carcinoma (KIRP) 291 161 291 207 7

Acute myeloid leukemia (LAML) 200 160 0 0 1

Lower grade glioma (LGG) 516 510 512 258 4

Liver hepatocellular carcinoma (LIHC) 377 189 372 0 7

Lung adenocarcinoma (LUAD) 582 485 450 181 9

Lung squamous cell carcinoma (LUSC) 504 178 342 195 8

Ovarian serous cystadenocarcinoma (OV) 605 216 453 412 1

Pancreatic ductal adenocarcinoma (PAAD) 185 145 178 106 9

Pheochromocytoma and paraganglioma (PCPG) 179 161 179 79 1

Prostate adenocarcinoma (PRAD) 498 419 494 0 4

Skin cutaneous melanoma (SKCM) 470 290 351 169 6

Stomach adenocarcinoma (STAD) 443 255 395 264 11

Thyroid carcinoma (THCA) 503 397 502 222 7

Uterine corpus endometrioid carcinoma (UCEC) 559 241 411 200 4

Uterine carcinosarcoma (UCS) 57 56 56 48 1

Total cancer = 25 10,432 7,056 7,822 4,564

TCGA The Cancer Genome Atlas
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comprehensiveness of clinical data varied across the can-

cer types. For example, the status of EBV infection was

only reported for stomach cancer and clinical stage was

only listed for 16 of the 25 cancers in the TCGA data set

we analyzed. Given the fragmented nature of these clinical

metric data sets, we consolidated the different clinical

metrics across several sources. Twelve clinical parameters

were obtained from the public TCGA data portal, five

clinical parameters were acquired from the UCSC cancer

genome browser, and one clinical parameter was obtained

from the cBio Portal (Table 2). Data consistency was then

evaluated across these sources. When inconsistencies or

issues among the sources were identified, adjustments and

resolutions were made. For example, although TCGA data

portal provides multiple files for each patient, there were

71 cases where the values for a single patient were not

consistent (Additional file 1: Table S1). These cases are an-

notated with “NA” as a missing value. In another example,

we only annotated breast cancer samples regarding triple

markers (her2, estrogen, and progesterone) when this

information was available. Subsequently, we classified

these breast cancer samples into four molecular subtypes:

triple positive, Her2 positive, ER positive (either estrogen

or progesterone positive, or both), and triple negative.

Next, we categorized each clinical parameter into one

of three types: categorical, ordinal, or binary. Categor-

ical variables depict clinical parameters with multiple

subtypes but no clear ordering (e.g., smoking history),

ordinal describes clinical parameters with multiple sub-

types with identifiable ordering (e.g., clinical stage), and

binary represents clinical parameters with only two

subtypes (e.g., gender). Finally, we produced a compre-

hensive data table for all 18 clinical parameters across

all of 25 cancer types. These lists can be reviewed and

downloaded at our web portal (http://genomeportal.

stanford.edu/pan-tcga/data_download).

Target selection for elastic-net analysis

To increase the signal of driver events versus non-

informative passengers, we vetted the gene list for the

elastic-net analysis. We included known and putative

cancer genes according to the Catalogue of Somatic

Mutations in Cancer (COSMIC) [1] and results from

various TCGA studies. As of February 2015, the COS-

MIC database listed 547 genes as cancer-related owing

to their implication for a role in cancer biology as docu-

mented by the scientific literature. We also included 135

genes currently targeted by drugs according to the

Table 2 Type, subtypes, and sources of clinical parameters used in elastic-net analysis. Eighteen total clinical parameters were inclu-

ded—availability of each clinical attribute is dependent on cancer type

Clinical
parameter

Number of
subtypes

Type Subtypes Number of
cancer types

Source

Country 16 Categorical US, Russia, Korea South, Italy, etc. 17 TCGA

Gender 2 Binary male, female 18 TCGA

HistoType by cancer type Categorical Ex) Intestinal/diffuse for stomach 10 TCGA

PriorMalignancy 2 Binary yes, no 7 TCGA

FamilyHistory by cancer type Ordinal 0,1,2,3 1 TCGA

M-Status 2 Binary M0, M1 15 TCGA

N-Status 4 Ordinal N0, N1, N2, N3 18 TCGA

ClinicalStage 4 Ordinal I, II, III, IV 16 TCGA

T-Status 5 Ordinal T0, T1, T2, T3, T4, 18 TCGA

HistoGrade 3 Ordinal Low, Intermediate, High 11 TCGA

SmokingHistory 4 Categorical Current smoker, Lifelong Non-smoker, Current reformed smoker
for >15 years, Current reformed smoker for ≤15 years

8 TCGA

MolecularSubtype 2 Categorical CIN, GS, MSI, EBV 1 TCGA

MSIstatus 3 Ordinal MSS, MSI-L, MSI-H 5 UCSC

PAM50clust 5 Categorical Normal-like, Luminal A, Luminal B, Basal-like, HER2-enriched 1 UCSC

RPPAclustersBRCA 6 Categorical ReacI, LumA/B, Basal, LumA, Her2, ReacII 1 UCSC

GeneExpSubtype 4 Categorical Classical, Mesenchymal, Proneural, Neural 1 UCSC

TripleMarker 4 Categorical TripleNegative, Her2Positive, Erpositive, TriplePositive 1 UCSC

EBV present 2 Binary Positive, Negative 1 cBio

cBio cBio portal, EBV Epstein–Barr virus, GeneExpSubtype types based on gene expression in glioblastoma multiforme, HistoGrade histology grade, HistoType

histological type, CIN chromosomal instability, GS genomically stable, MSIstatus microsatellite instability status, MSS Microsatellite stable, MSI-L Microsatellite

instable-low, MSI-H Microsatellite instable-high, PAM50clust clusters based on PAM50, RPPAclustersBRCA clusters based on reverse phase protein array data, TCGA

The Cancer Genome Atlas, UCSC University of California Santa Cruz cancer genome browser
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database tumor alterations relevant for genomics-driven

therapy (TARGET; www.broadinstitute.org/cancer/cga/

target) (Additional file 2: Table S2). In addition, we in-

cluded genes with significant mutations (MutSig; 852),

focal amplifications (CN-AmpPeak; 502), and focal de-

letions (CN-DelPeak; 2,105) that were reported by

Broad Firehose from TCGA data for all 25 cancers

(Additional file 3: Table S3). A total of 2,180 cancer

genes from both COSMIC and TCGA were selected for

analysis (Additional file 4: Table S4). For the miR-

oriented and protein-oriented supervised analysis, we

included all 1,751 miRs that were presented in miRNA-

Seq data and all 228 proteins that were presented in

RPPA data from the 25 cancers types we selected to

analyze (Additional file 4: Table S4). We included all

miRs and proteins because of the limited list that is

currently available for these platforms; TCGA pre-

selected these candidates. For example, the RPPA assay

technology is constrained by the number of different

proteins that can be measured.

Data pre-processing and normalization

We formatted raw genomic/proteomic TCGA data to the

updated, filtered, normalized, and structured meta-data by

each platform (Fig. 1). First, we updated every genomic

symbol to HUGO Gene Nomenclature (HGNC, June 2015

version) and revised all protein names to match those

assigned from the primary output of the Broad Firehose.

Fifteen gene symbols were removed, because they did not

have current HUGO identifiers (Additional file 5: Table S5).

Second, we selected those samples that underwent

analysis using all of the available genomic platforms.

This included gene-oriented analysis (CNV, mutations,

RNA-Seq, methylation), miR analysis (CNV, RNA-Seq),

and protein analysis (RPPA). Of note, in gene-oriented

analysis, all of the samples had methylation values that

were determined with two platforms, Infinium Human-

Methylation27 (HM27) and/or Infinium HumanMethy-

lation450 (HM450). To increase sample coverage,

probes that were common to both platforms were placed

into a methylation matrix—this approach was completed

in eight cancers including BRCA, COADREAD, GBM,

KIRC, LUAD, LUSC, STAD, and UCEC. LAML was the

only exception. For this cancer, all the samples had been

analyzed on both platforms and, for this reason, we ex-

clusively used the HM450 methylation platform given

that this version of the assay is more comprehensive

than the HM27 methylation platform.

Third, we removed any molecular features measure-

ments that were missed from 3 % or more samples and

replaced missing values with the median across all sam-

ples for each feature. In average, 257 genes (for RNA-

Seq) and 327 probes (for methylation), 621 miRs, and no

protein were excluded from analysis, while imputation

occurred with 448 genes in RNA-Seq, 289 probes in

methylation, and 357 miRs from miR-Seq. Proteins were

not excluded given the completeness of the data. The list of

excluded gene features can be reviewed and downloaded at

our web and mobile portal (http://genomeportal.stanford.

edu/pan-tcga/data_download).

Fourth, as has been done with other studies, we normal-

ized the scale of each feature by the standard deviation of

each gene’s measurement plus the tenth percentile of the

global standard deviation in each genomic/proteomic

assay [25, 26], as follows:

ĝ i; jð Þ ¼
g i; jð Þ

sd g ið Þð Þ þ sd10 gð Þ

where g(i,j) is the value for feature i in sample j, sd(g(i)) is

the standard deviation across samples for feature i, sd10(g)

is the tenth percentile value of standard deviations across
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Fig. 1 Overview of the elastic-net analysis pipeline. Genomic data was downloaded from Broad Firehose and analyzed in three separate groups.

Gene-oriented analysis relied on samples with data for mutations, copy number alterations, RNA-Seq, and methylation. The genes, miRs, and

proteins with >3 % missing values were excluded; otherwise missing values were imputed using the median sample value. MicroRNA (miR) and

proteins (reverse phase protein array, RPPA) were analyzed separately given the smaller number of genes and targets that came from these analysis

platforms. Integrated genomic/proteomic matrices were associated with clinical outcomes by elastic-net across all 25 type of cancer. SNP single

nucleotide polymorphism
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features, and ĝ(i, j) is the normalized feature value. This

standard deviation correction factor is standard in micro-

array analysis [26] and minimizes the risk of generating

outliers due to normalization. The scale of each platform

was also normalized.

To execute the regression analysis, we converted clin-

ical outcome values into an integer according to the type

of clinical parameter: ordinal, binary, or categorical

(Table 2). For ordinal and binary, we converted clinical

outcomes into numerical values (Additional file 6: Table

S6). For example, Stage I, II, III, and IV designations

were converted into integer values of 1, 2, 3, and 4 re-

spectively. Citing another example, female or male sex

annotations were altered to either 0 or 1. Categorical

clinical features were converted into binary types by

comparing one class to the remaining classes. For ex-

ample, there are four molecular subtypes in breast can-

cer: triple positive, Her2 positive, ER positive, and triple

negative. Thus, using these four designated subtypes, we

complete the following multiple binary comparisons:

triple negative subtype versus others, Her2 positive ver-

sus others, ER positive versus others, and triple positive

versus others. We then converted a selected class into 1

and others into 0 to achieve an integer measurement.

These converted clinical outcomes were assigned to the

samples in the genomic/proteomic data matrices as a

dependent variable for elastic-net analysis. Samples with-

out available clinical metrics and outcomes were excluded

from analysis.

Identification of genes/miRs/proteins associated with

clinical phenotype

As described previously, we organized the pre-processed

data into three groups: (1) gene-oriented; (2) miR-

oriented; and (3) protein-oriented (Fig. 1). We used

elastic-net regression to estimate an optimal multiple

linear regression of the clinical outcome on the space of

genomic features from these three data groups. For ex-

ample, because there were 11 available clinical parame-

ters in stomach cancer, we conducted elastic-net analysis

33 times (three groups × 11 clinical parameters) for

stomach cancer. Our analysis relied on all of the avail-

able clinical attributes across all 25 types of cancers.

We used the elastic-net algorithm package available in

MATLAB (MathWorks, Natick, MA, USA) as previously

published [25]. There were three distinct data categories,

organized into separate data matrices. First, we compiled

and integrated four genomic data types (DNA CNV,

somatic mutations, mRNA expression level by RNA-Seq,

and DNA methylation) for gene-oriented data. Second,

we analyzed the miRNA-oriented data set using miRNA

genomic CNV and miRNA expression level by RNA-Seq.

Third, we used proteomic information available from the

RPPA data.

We rescaled each feature and included the data into a

single integrated matrix. Briefly, each feature in a matrix

was normalized by both the standard deviation of each

gene’s value and the tenth percentile of the global stand-

ard deviations. The elastic-net regression estimates an

optimal multiple linear regression of the clinical out-

come on the integrated space of genomic/proteomic fea-

tures. For each supervised analysis, it calculates the

coefficient values associated with each genomic feature

while limiting the number of predictors in the model to

ensure the selected model is general.

To confirm each supervised comparison, we used 10-

fold cross validation to identify the set of genes/miRs/

proteins that minimized the average mean-squared error

on each testing set. The resulting coefficients from the

regularized regression were used to rank genomic/prote-

omic features by their association with clinical attributes.

The features were scored proportionally to their ranks

and the score of each gene is the sum of all scores of its

selected features. Nonparametric bootstrap resampling

was used to assess the robustness of the set of top-

ranked genes to changes in the training data as has been

previously validated. The complete data set was

resampled with replacement up to 2,000 times and the

elastic-net regression was recomputed for each bootstrap

data set. Features that are consistently selected by the

bootstrap regression have high rank and low variance.

Genes that are highly ranked for individual category of

genetic aberration (e.g. mutations) or show high ranks

among multiple different genomic assays are the most

robust.

Lists of clinically relevant genes for the 25 cancer types

were identified from elastic-net analysis. The number of

candidate genes associated with clinical stage ranged from

zero (ESCA) to 48 (THCA), with an overall average of

13.6 across the 16 cancer types. The number of miRs asso-

ciated with clinical stage ranged from 0 (BRCA, ESCA,

HNSC, KICH, LUAD, PAAD, STAD) to 46 (KIRP) with an

average of 7.1. Finally, the number of proteins associated

with clinical stage ranged from 0 (ACC, BRCA, LUAD,

LUSC, STAD, KICH, LIHC) to 23 (KIRC) with an average

of 3.4. A total of 199 gene-oriented, 111 miR-oriented,

and 45 protein-oriented top candidates were found when

analyzed with clinical stage. To directly query these candi-

dates, the user types in the name of the genes/miRs/pro-

teins of interest or by selecting pre-defined icons (see

Utility and Discussion).

We provided statistical significance for genes, miRs,

and proteins—among 10-fold cross validation of elastic-

net analysis—for P-values <0.01. After identifying the

candidate list from elastic-net analysis, we tested each

candidate individually with the null hypothesis that there

is no difference in a selected genomic feature between

two groups by a clinical parameter with Bonferroni
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correction. Fisher’s exact test was used to assess signifi-

cance for mutation and copy number data, while a

Mann–Whitney–Wilcoxon Test was used to assess sig-

nificance among RNA-Seq, methylation, miR-Seq, and

RPPA data. As an example, our integrative elastic-net ana-

lysis identified 107 genes associated with clinical stage in

STAD. We focused on the candidate gene HEATR3 with

the null hypothesis that there is no difference in copy

number changes of HEATR3 between early and advanced

stage. We conducted a Fisher’s exact test using a 2 × 2

contingency table with four numbers: (1) number of sam-

ples with amplified HEATR3 in stage I and II, (2) number

of samples without amplified HEATR3 in stage I and II,

(3) number of samples with amplified HEATR3 in stage III

and IV, and (4) number of samples without amplified

HEATR3 in stage III and IV. To apply Bonferroni correc-

tion, we multiplied the P-value of HEATR3 by 107, which

was the number of tests for this specific analysis. The can-

didate genes were ones that had a corrected P-value less

than 0.01. Among the 107 genes initially identified, only

24 had a corrected P-value less than 0.01. A link to down-

load the list of full candidates selected by elastic-net ana-

lysis is still available (http://genomeportal.stanford.edu/

pan-tcga/data_download).

This list may guide users to select targets for experi-

ment validation. As an example, there are 24 genes asso-

ciated with clinical stage in STAD. If users have a list of

genes they are interested in, and seven of them are on

our list, it is better to validate own genes of interest

using our higher-ranked genes. Statistically speaking, a

genetic alteration in a higher-ranked gene has a greater

influence on clinical parameters than alterations in

lower-ranked genes. Without any prior genes of interest,

it may be better to validate experiments with the

highest-ranked genes, such as top-ranked HEART3. The

P-value is an indicator of how significantly these gen-

omic features distinguish between limited and advanced

stage cancer. If the user is interested in expression levels,

NTPX1 is the highest-ranked gene with regards mRNA

expression.

Database schema

All processed data mentioned above was migrated to a

structured MySQL relational database from source-

formatted files. The data were migrated using a combin-

ation of bash scripts and Rails rake tasks. The web appli-

cation was written in Ruby on Rails, which is well suited

for a relational backend database. We categorized the

data according to the type or level of elastic-net analysis

that was conducted. This included high-level clinical

summaries, outcome summaries, and multiple other ta-

bles correlating samples, genes, proteins, miRs, and clin-

ical parameters.

Web implementation

The resulting data is queried, processed, and made view-

able through a Ruby on Rails web application; Rails 4.0.

Bootstrap is currently used for the front-end framework.

The web application is hosted on Linux Ubuntu 10.04,

Apache 2.2.14, with Passenger 4, Ruby 1.9.3. To provide

a visual summary of data, Highcharts—a JavaScript

charting library—was used to generate different types of

charts and graphs on web pages. Each chart is dynamic-

ally generated (no charts are hard coded) using data

returned from queries in the Rails controllers. These

data are sorted, filtered, and processed, and in some

cases statistical formulation is applied. The data are then

passed on to the chart code by html5 data attributes to

Highcharts. This enables the data to be rendered in page

views. Some pages have multiple charts dynamically dis-

played, made possible with Ruby code in the Rails view

templates.

Utility and discussion
The Cancer Genome Atlas Clinical Explorer is a clinic-

ally oriented summary of genomic/proteomic data orga-

nized by cancer type or clinical parameters. Its interface

enables users to query TCGA data in multiple ways

(Fig. 2). First, users can search for clinically relevant

gene/protein/miRs identified by elastic-net analysis. Sec-

ond, users can query a gene, miR, or protein in subcat-

egories of a selected clinical parameter in a chosen

cancer of interest. Third, users can test a specific gene

for results supporting the two-hit hypotheses.

As an indicator of the robustness of our results, we

found that for the molecular subclass HER2-positive

breast cancers, ERRB2 and HER2 were identified as top

predictors from gene-oriented and protein-oriented ana-

lysis respectively. As an additional test regarding the

overlapping correlations, we compared our study to a

previous TCGA study focused on GBM [27]. We used

110 GBM samples from the TCGA for elastic-net analysis

regarding GBM subtype. The TCGA study had more

samples but limited clinical annotation, thus restricting

the number of samples from which we could conduct our

supervised analysis based on clinical parameters. When

we used our elastic-net analysis using only one class of

genomic aberration (e.g. mutation alone, copy number

alone), our results were highly concordant with the results

of the TCGA study in terms of molecular subclass.

We used only one genomic feature to facilitate a direct

comparison with the TCGA results. When we used only

the CNV data, our supervised analysis of the proneural

molecular subclass compared to all others identified

OR51E2 and OR52E4 (chr 11p15) as the second and

third ranked candidates; CDK4 was the 17th highest

ranking CNV. This result is concordant with the TCGA

study results regarding this molecular subclass. When
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we used only the mutation data, our supervised analysis

of mesenchymal subclass identified IDH1 and TP53 as

the first and second ranked candidates. Again, this result

overlaps with the TCGA results. When we used copy

number data, our supervised analysis of the classical

subclass revealed EGFR as the top ranking candidate, a

result that is concordant with the TCGA study. For the

mesenchymal subclass, our results were concordant with

TCGA in that we identified NF1, CDH18, and RB1 as

the top, tenth, and 18th candidates, primarily using mu-

tation data, and NF1 was also seen prominently in terms

of somatic CNV. As the clinical annotation is extended

to more GBM samples, we anticipate that our approach

will identify more of the genes found in the original

study and place them in the context regarding their as-

sociation with clinical parameters.

Search for clinically relevant genes/miRs/proteins

As noted previously, the first search capability allows users

to search by the genes/miRs/protein name (Fig. 2ai). Once

a gene, protein, or miR is entered into the search window,

a new page will display clinical parameters associated with

Fig. 2 The Cancer Genome Atlas Clinical Explorer homepage. The web interface provides three different ways of navigating TCGA data. a Users

can inquire about the clinical relevance of specific genes, miRs, or proteins identified by elastic-net analysis. This is done by entering the (i) gene

name, (ii) cancer type, or (iii) clinical parameter. b Users can examine if a somatic alteration behaves differently between categories in a clinical

parameter and in a cancer type. c Users can investigate how a genetic event affects another alteration in a selected cancer type using the two-hit

hypotheses test
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their molecule of interest. For example, entering TP53 will

display the clinical parameters associated withTP53 across

all cancer types as identified by elastic-net analysis

(Fig. 3a). In this search, users can also see the frequency of

mutations and copy number changes on TP53 across all

cancer types located in separate tabs labeled “Fre-

quency-Mutation” and “Frequency-Copy Number.” Sort

functions for each column allows users to visualize that

TP53 is most frequently mutated, amplified, or deleted

in OV, HNSC, and KICH respectively. A P-value is pro-

vided as well to enable users to sort based on statistical

significance.

The current version of the portal only displays infor-

mation about candidate molecules (i.e. genes, miRs, or

proteins) from elastic-net analysis. Warning messages

will appear if data are not available in the current ver-

sion. For example, the warning message “this gene was

included for elastic-net analysis, but no association with

clinical parameters was found” will appear when a user

selects a gene that was included in analysis, but not

identified as having a relevant association by the elastic-

net algorithm. Alternatively, “this gene was not included

for elastic-net analysis” indicates that a user has selected

a gene that was not included in the analysis. However,

the frequency of mutation and CNV by cancers will be

provided. Users will view a warning message, “target

name not recognized, please try another target name” if

they have entered a gene name that does not exist.

The second search parameter in the top search panel

queries by cancer type (Fig. 2aii). This allows users to se-

lect a cancer of interest from a drop-down menu. Once

the cancer type is selected, the user can visualize all

clinical parameters that are associated with the selected

cancer (Fig. 3b; example of COADREAD). In addition,

this high-level summary window shows the number of

candidates identified by elastic-net analysis for each

Fig. 3 Query results page – clinically relevant genes, miRs, or proteins. a The search results page when TP53 is entered in the search panel

(Fig. 2ai) and the explorer website has retrieved data using elastic-net analysis. b The search results page for a specific cancer type; COADREAD is

selected from the drop-down menu (Fig. 2aii) and this action retrieves results about COADREAD. This includes summary tables for genes, miRs,

and proteins potentially associated with ten clinical parameters in COADREAD. Each clinical parameter table displays the number of candidates

(gene, miRs, and proteins) and the number of samples used in each analysis. Categorical clinical parameters list subtypes beneath the clinical

parameter title; each subtype, when selected, displays a more complete summary table including number of candidates (gene, miRs, and proteins)

and the number of samples used in each analysis. c The search results page when clinical stage is selected from drop-down menu (Fig. 2aiii). Results

are displayed for summary tables across all of the cancers. Each clinical stage table displays the number of candidates (gene, miRs, and proteins) and

the number of samples used in each analysis
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clinical parameter as well as the total number of samples

used for analysis. By clicking on a gene, miR, or protein,

users will be directed to an outcome summary page. For

example, when a user clicks on “genes” under MSI, the

list of genes that are associated with MSI will be dis-

played in this outcome summary page (Fig. 4). The user

has the option to download the relevant information via

a download button.

The final search capability in the top search panel per-

mits users to query clinical parameters of interest

(Fig. 2aiii). Once a clinical parameter is selected from the

drop-down menu, a high-level summary page provides a

visualization of the number of clinically relevant genes,

miRs, or proteins across all cancer types (Fig. 3c; example

of clinical stage). From this high-level summary page, the

user simply locates the table for the cancer of interest, and

then clicks on the gene, miR, or protein. Afterwards, the

user is directed to an outcome summary page—it may be

noted that this outcome summary page can be reached

through different search functions as described earlier.

The outcome summary page offers a variety of useful

information (Fig. 4). First, the diagram at the upper right

corner shows the distribution of samples by subtype for

the clinical parameter currently selected (Fig. 4; example

of MSI in colorectal cancer). This diagram, as well as all

other figures, can be saved in PNG, JPEG, PDF, or SVG

formats by clicking the icon. Second, clinically relevant

genes are listed by rank. As previously described, higher-

rank genes contribute more to the selected clinical par-

ameter by the supporting genomic platform as derived

from elastic-net analysis [25]. In general, genes that are

highly ranked for individual category of genetic aberra-

tion (e.g. mutations) or across different genomic assays

are the most robust and correlate well with other stud-

ies, as we noted previously. A blue down arrow—“direct

association”—indicates that as the degree of the pre-

dictor increases, the outcome increases after controlling

for other significant predictors. Likewise, a red upward

arrow—“inverse association”—means that as the level of

predictor decreases, the outcome increases.

Users can also click an individual gene name, which will

direct them to a gene summary page (Fig. 5). The gene

summary page of MLH1 displays CNV (Fig. 5a), mutation

(Fig. 5b), and mRNA expression levels (Fig. 5c; RNA-Seq

displayed, RNA array not displayed). The tabs located

above each graph enable users to view different genomic

features (copy number, mutation, RNA array, and RNA-

Seq) for the gene and parameters selected (Fig. 5a–c).

Fig. 4 Outcome summary page for clinical stage in COADREAD (colorectal cancer) is reached by selecting a candidate (gene, miR, or protein).

The pie chart displays distribution of samples by subtype for the clinical parameter currently selected. This panel shows a table of clinically relevant

genes listed by rank and each associated genomic aberration associated with that gene for the clinical parameter and cancer type. For COADREAD

and MSI, the gene MLH1 is top ranked. The color codes of these platforms indicate that MLH1 often shows decreased gene expression (downward blue

arrow) and increased methylation (red upward arrow)
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The companion summary table to the right of the

graph displays percentiles for each clinical parameter

and genomic category—the sample numbers will only be

displayed if the user selects “View Sample Counts Table.”

Expression data from RNA-Seq, or RPPA are displayed

by box plot and, as a result, summary tables show mini-

mum, first quartile, median, third quartile, and max-

imum instead of percentiles.

Profiling a gene, micro RNA, or protein by clinical

parameter and cancer type

The middle search panel allows users to query by gene/

miR/protein in a specific cancer with one selected clinical

parameter (Fig. 2b). This profiling function requires three

inputs including a gene/miR/protein, a cancer type, and a

clinical parameter of interest. For example, a user can de-

termine the difference in PIK3CA mutation frequency in

stomach cancer between patients with EBV infections and

patients without EBV infections. To answer this question,

users type PIK3CA in the gene/miR/protein search box,

select STAD for cancer type in the drop-down menu, se-

lect EBV presence in the clinical parameter drop-down

menu, and click submit (Fig. 6a). A query results page

shows the distribution of CNV, the frequency of muta-

tions, and other available genomic/proteomic profiles be-

tween EBV-positive and EBV-negative samples (Fig. 6b;

copy number, Fig. 6c; mutation). As indicated by the

search results, 16.4 % of the EBV-negative samples have

Fig. 5 Gene summary page for MLH1 as a candidate gene associated with MSI. This is reached by selecting a gene, miR, or protein listed in the

outcome summary page (Fig. 4). Genomic profile tabs include a the status of copy number variation, b mutation frequency, and c mean expression

levels based on RNA-Seq. Genomic profile tabs vary depending on category (gene, miR, or protein), clinical parameter, and cancer type being

scrutinized. Tables to the right of the genomic profile graphs display percentiles or quartiles of genomic values for each category in a clinical parameter
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mutations on PIK3CA while 83.3 % of EBV-positive sam-

ples harbor the same mutation (Fig. 6c). Again, the user

has the option to use the download button to download a

list of relevant genes.

Test two-hit hypotheses

Finally, the bottom search panel called “Two-hit hypoth-

esis test” enables users to explore the relationship be-

tween two genomic/proteomic profiles of their choosing

(Fig. 2c). This function also allows users to examine how

genetic changes affect their corresponding transcrip-

tome/proteome. For example, if a user wishes to know

how many samples have TP53 CNVs overlapping with

TP53 mutations in colorectal cancer, a user selects TP53

with copy number for the first target and TP53 with mu-

tation for the second target (Fig. 7a). Once submitted,

the query result page provides a graph showing the dis-

tribution of CNV of TP53 between samples with TP53

mutations and samples without TP53 mutations (Fig. 7b).

This is also summarized in table format (table not dis-

played). Finally, by selecting RNA-Seq for the first target

and mutation for the second target (Fig. 7c; example of

TP53), the results page will show expression levels by

mutation status of the selected candidate gene/miR/pro-

tein (Fig. 7d; example of TP53). The genomic/proteomic

profile for a second target, which splits samples into

groups, is limited to mutation and copy number; it is

not feasible to split samples by setting an arbitrary cutoff

Fig. 6 Query and results pages – gene, miR, or protein in a specific cancer type and one clinical parameter. a An input query window shows the

selections of PIK3CA (gene), STAD (cancer type), and EBV present (clinical parameter). Results of genomic profile tabs are shown for (b) copy number

variation of PIK3CA between EBV-infected and EBV-uninfected samples and (c) mutation frequency between EBV-infected and EBV-uninfected samples.

Genomic profile tabs vary depending on search parameters. Tables to the right of the genomic profile graphs display percentiles for each clinical

parameter and genomic value category. This example shows the frequency of PIK3CA mutations: 16.4 % of the EBV-negative samples have mutations

compared to 83.3 % of EBV-positive samples
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for expression levels. For future updates, we plan to allow

users to input their own cutoff to realize the differences

above and below cutoffs of their first target sample.

Conclusions
The Cancer Genome Atlas Clinical Explorer facilitates

the clinical use of TCGA data by the broader cancer re-

search and clinical community by providing a simple

interface for exploring the clinically relevant associations

from TCGA genomic data sets. The search functions

provided by this application enhance the clinical utility

of TCGA data for biomedical scientist and clinicians. In

addition, the Cancer Genome Atlas Clinical Explorer

complements existing databases and webpages, such as

TCGA data portals, the UCSC Cancer Genomics

Browser [23], cBio portal [22], and Broad Firehose, by

providing clinically oriented summaries that are easily

accessible by a variety of devices including smart phones

and laptops.

The TCGA study is ongoing with a significant fraction

of samples lacking either genomic results or clinical

data. Our elastic-net analysis requires complete data

across all of the major genomic assay platforms and clin-

ical annotation; there remain many assay data sets that

are incomplete. In addition, some of the cancers are

under embargo. We are planning a major upgrade of the

portal when the TCGA has final results for all genomics

platforms and fully annotated clinical data, and this is

likely to occur in 2016. When TCGA results are fully

released, we anticipate a benefit from using the com-

pleted data sets for a final update. For example, the final

release of mutations from the exome data will provide a

perfect opportunity to provide comprehensive mutation

class and pathogenicity score assignment across all

TCGA samples.

Availability and requirements
Cancer Genome Atlas Clinical Explorer is accessible at

http://genomeportal.stanford.edu/pan-tcga. Data can be

utilized without any restriction with the citation of this

publication.

Additional files

Additional file 1: Table S1. List of patients with inconsistent clinical

outcomes. (XLSX 10 kb)

Additional file 2: Table S2. List of cancer genes by COSMIC and

TARGET. (XLSX 36 kb)

Additional file 3: Table S3. The number of genes selected from TCGA

studies by type of genetic alterations and cancer type. (XLSX 9 kb)

Additional file 4: Table S4. List of genes/miRs/proteins selected for

elastic-net analysis. (XLSX 160 kb)

Additional file 5: Table S5. List of genes that cannot be updated

properly. (XLSX 8 kb)

Additional file 6: Table S6. Conversion of clinical parameters into

integer values. (XLSX 9 kb)

Abbreviations

ACC: adrenocortical carcinoma; BLCA: urothelial bladder cancer; BRCA: breast

invasive carcinoma; CESC: cervical cancer; CNV: copy number variation;

Fig. 7 Query and results page – two-hit hypotheses test. a The input query window shows the selections of COADREAD (cancer type), TP53 copy

number (first target), and TP53 mutation (second target). b This panel shows the joint copy number status and mutation status for TP53—results

from the query input are shown in (a). c The input query window shows the selections of COADREAD (cancer type), TP53 RNA-Seq (first target),

and TP53 mutations from genomic sequencing (second target). d This panel shows the expression levels of TP53 in samples with and without

mutations as called from the query input shown in (c)
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COADREAD: colorectal adenocarcinoma; COSMIC: Catalogue of Somatic

Mutations in Cancer; EBV: Epstein–Barr virus; ERBB2: erb-b2 receptor tyrosine

kinase 2; ESCA: esophageal cancer; GBM: glioblastoma multiforme;

HER2: human epidermal growth factor receptor 2; HGNC: HUGO Gene

Nomenclature; HNSC: head and neck squamous cell carcinoma; JPEG: joint

photographic experts group; KICH: chromophobe renal cell carcinoma;

KIRC: kidney renal clear cell carcinoma; KIRP: papillary kidney carcinoma;

LAML: acute myeloid leukemia; LICH: liver hepatocellular carcinoma;

LGG: lower grade glioma; LUAD: lung adenocarcinoma; LUSC: lung

squamous cell carcinoma; MLH1: mutL homolog 1; miR: micro RNA;

MSI: microsatellite instability; NGS: next-generation sequencing; OV: ovarian

serous cystadenocarcinoma; PAAD: pancreatic ductal adenocarcinoma;

PCPG: pheochromocytoma and paraganglioma; PDF: portable document

format; PIK3CA: phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic

subunit alpha; PNG: portable network graphics; PRAD: prostate

adenocarcinoma; RPPA: reverse phase protein array; SKCM: skin cutaneous

melanoma; STAD: stomach adenocarcinoma; SVG: scalable vector graphics;

TCGA: The Cancer Genome Atlas; TGFBR2: Transforming growth factor, beta

receptor II; THCA: thyroid carcinoma; TP53: tumor protein p53; UCEC: uterine

corpus endometrioid carcinoma; UCS: uterine carcinosarcoma; WRN: Werner

syndrome, RecQ helicase.
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