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Alternative splicing allows for the expression of multiple RNA and protein isoforms from

one gene, making it a major contributor to transcriptome and proteome diversification in

eukaryotes. Advances in next generation sequencing technologies and genome-wide

analyses have recently underscored the fact that the vast majority of multi-exon

genes under normal physiology engage in alternative splicing in tissue-specific and

developmental-specific manner. On the other hand, cancer cells exhibit remarkable

transcriptome alterations partly by adopting cancer-specific splicing isoforms. These

isoforms and their encoded proteins are not insignificant byproducts of the abnormal

physiology of cancer cells, but either drivers of cancer progression or small but significant

contributors to specific cancer hallmarks. Thus, it is paramount that the pathways

that regulate alternative splicing in cancer, including the splicing factors that bind to

pre-mRNAs and modulate spliceosome recruitment. In this review, we present a few

distinct cases of alternative splicing in cancer, with an emphasis on their regulation

as well as their contribution to cancer cell phenotype. Several categories of splicing

aberrations are highlighted, including alterations in cancer-related genes that directly

affect their pre-mRNA splicing, mutations in genes encoding splicing factors or core

spliceosomal subunits, and the seemingly mutation-free disruptions in the balance of

the expression of RNA-binding proteins, including components of both the major (U2-

dependent) and minor (U12-dependent) spliceosomes. Given that the latter two classes

cause global alterations in splicing that affect a wide range of genes, it remains a

challenge to identify the ones that contribute to cancer progression. These challenges

necessitate a systematic approach to decipher these aberrations and their impact

on cancer. Ultimately, a sufficient understanding of splicing deregulation in cancer is

predicted to pave the way for novel and innovative RNA-based therapies.
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SPLICING IS AN EVOLUTIONARY CONSERVED AND ESSENTIAL
STEP IN GENE EXPRESSION IN EUKARYOTES

Most genes in eukaryotes contain intervening sequences (introns) that disrupt the expressed
sequences (exons). Introns in eukaryotes are much longer (median size ∼1,000 bp but can
be >100,000 bp) compared to exons (median size ∼120 bp), making introns the major
contributors to the sequence of genes. After transcription, in order for the expressed transcript
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(pre-mRNA) to become a suitable message for downstream
processes such as translation of the encoded protein, the pre-
mRNA from any multi-exon gene has to undergo extensive
processing to remove the introns by an extraordinary molecular
machine, the spliceosome. Given their large size, introns add
a long time, sometimes hours, to the transcription process of
genes in eukaryotes. Thus, introns present a conundrum as
their transcription, just to be spliced out and degraded, seems
to be a wasteful process both in terms of the time it takes to
transcribe them and the energy consumed in their transcription
as well as their removal and degradation. In addition, the
splicing process needs to be extremely efficient as well as be
executed with high fidelity. Efficiency is required to make sure
all introns are removed from the pre-mRNA on time and in
a coordinated manner. Fidelity is of paramount importance
because joining exons with any mistake of even one base could
have catastrophic effects on the reading frame. Furthermore, the
cis-sequences or splice sites at the boundaries of each intron
are too simple, sometimes degenerate and highly redundant
outside the actual splice sites to serve alone as efficient landmarks
for spliceosome assembly. Taken together, these features of
introns and splicing in general make the presence of introns
in eukaryotes counterintuitive. However, introns are not simply
extra sequences that are removed by splicing, but rather have
several advantages such as coupling multiple RNA processing
events for higher gene expression efficiency as well as regulation
and providing a checkpoint for quality control of the mRNA.
They also allow any gene that harbor them to have a tremendous
capacity for diversification through the process of alternative
splicing. Thus, it is likely that the advantages of harboring introns
outweigh the disadvantages as their presence in eukaryotic
genomes and to some extent their position in the genes are highly
conserved (Fedorov et al., 2002; Rogozin et al., 2003), in some
cases between humans and the plant Arabidopsis thaliana.

DIVERSIFICATION OF TRANSCRIPTOMES
BY ALTERNATIVE SPLICING

The advent of high-throughput sequencing has uncovered the
fact that most multi-exon genes in eukaryotes undergo at least
one event of alternative splicing (Pan et al., 2008), generating two
or more distinct mRNAs from the same gene, with the number of
alternatively spliced transcripts potentially staggering for some
genes. Interestingly, many such transcripts are expressed in a
tissue-specific manner, at specific developmental stage, or in a
disease-specific manner (Castle et al., 2008; Wang et al., 2008).
While the function of some of these alternative transcripts
is not always immediately interpretable or even recognized,
a plethora of work indicates that alternatively spliced exons
are translated and tend to encode important domains in the
encoded polypeptide (Kalsotra and Cooper, 2011; Ellis et al.,
2012; Weatheritt et al., 2016; Tapial et al., 2017). This suggests
an evolutionary conserved molecular design for transcriptome
diversificationwithout the need to expand the genome that would
require creating genes that are homologous to existing ones that
serve similar yet distinct functions (Nilsen and Graveley, 2010).

Alternative splicing is a term used to collectively refer to
several splicing events. As shown in Figure 1, there are various
distinct forms of alternative splicing, including alternative exons
(cassette exons: skipped/included whole exons), retained introns,
and alternative 5′ and 3′ splice sites (5′ ss and 3′ ss). There
are also several less obvious alternative splicing events that are
tightly coupled to and could be a consequence of transcription
regulation such as alternative first and last exons. Nevertheless, all
these events are well documented in eukaryotes with remarkable
impacts on transcriptome diversification. One class of alternative
splicing, intron retention, is often overlooked because it is
interpreted as a splicing mistake that lead to an intron not being
spliced out. While this might be true in several cases, a lot of
evidence points to intron retention being regulated to control the
expression of genes post-transcriptionally. In fact, cancer cells
of all types are characterized by high levels of retained intron,
leading to a higher diversity of their transcriptomes compared to
normal cells (Dvinge and Bradley, 2015).

Intron retention and its regulation are obvious in a class of
introns referred to as minor or U12 introns, which are conserved
in almost all eukaryotes. Unlike the vast majority of introns in
cells, which rely on the canonical spliceosome that is composed of
U1, U2, U4, U5, and U6 snRNPs for their splicing, minor introns
utilize a less abundant and seemingly less efficient spliceosome
that is made of U11, U12, U4atac, U5, and U6atac snRNPs.
Around 800 minor introns in the human genome are embedded
in genes that function in signal transduction and information
relay, cell cycle control and DNA damage repair (Turunen et al.,
2013). We previously showed that hundreds of U12 introns are
extremely conserved and are used as molecular switches that
provide rapid control of gene expression that does not depend
on transcription of new pre-mRNA especially when the gene
product is needed instantaneously such as when cells are under
stress (Younis et al., 2013). Given the functions of the genes that
host minor introns, it is likely that they are regulated in a similar
fashion in cancer.

MECHANISMS OF SPLICING REGULATION

It is of note that some documented alternative splicing events
constitute only a small fraction of the processed mRNA that
are expressed at any given time. While this suggests that such
alternative splicing events represent the expected biological noise
of a process that is extremely active in cells, we argue that these
events are tightly regulated and serve significant roles in various
cell types and tissues. More specifically, the low abundance of
these events in one cell type could have evolved to be so because
the encoded protein from these specific splicing isoforms have
a cell type- or condition-specific function. In addition, some of
these events are only expressed at a high level when cells are faced
with certain environmental conditions, such as stress, in when
the specific splicing isoform becomes absolutely required (Younis
et al., 2013). Thus, exhaustive searches are now needed to identify
these conditions in which these isoforms become abundant and
their function more significant. Finally, some disease tissues
show enrichment of these events, suggesting specific functions.
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FIGURE 1 | Alternative splicing as a source of diversification. A schematic diagram that depicts the various types of alternative splicing events that potentially exist in

cells.

This infers that the abundance of specific alternatively spliced
transcripts as well as the choice of the specific alternative splicing
events for a given pre-mRNA are under tight regulation. This
regulation is dictated by both cis-elements in the pre-mRNA
itself and trans-factors such as RNA binding proteins (RBPs).
The fact that the human genome encodes for thousands of
RBPs, of which a big fraction functions in RNA splicing and its
regulation strongly supports the notion that alternative splicing
is not random but rather a highly regulated process and a key
step in gene expression regulation.

Splicing factors historically have been classified into hnRNPs,
which typically suppress splicing, and SR proteins, which tend
to have a positive role in splicing regulation. However, a more
thorough analysis of the function of any given hnRNP or SR
protein quickly reveals that they do not always conform to these
classifications. The ultimate role of an RBP in splicing regulation
depends on multiple factors. These include the strength and
context of its binding sites on the pre-mRNA in addition to
either competitive or cooperative binding of multiple RBPs on
or around the regulated exon or intron. This combinatorial
regulation makes it very hard to predict the splicing outcome
of reduced or increased binding of a single splicing factor in
normal or diseased cells. Another complication is that a splicing
factor is likely to regulated pre-mRNA splicing of other splicing

factors in endless feedback loops and complex networks. A better
approach to understand the regulation of alternative splicing
in a given condition requires a systems biology approach in
which the expression status and targets of multiple if not all
RBPs be assessed to start building these networks of co-regulated
pathways.

DEREGULATION OF ALTERNATIVE
SPLICING IN CANCER

All data to date indicate that alternative splicing is a well-
designed process that is tightly regulated in order to produce
a network of alternatively spliced transcripts, which we refer
to in this review as the splice-ome (spliceome). Work in the
last two decades have moreover showed that the spliceome is
significantly altered in disease states, such as cancer (Reviewed
in, David and Manley, 2010; Chabot and Shkreta, 2016; Scotti
and Swanson, 2016). In fact, every hallmark of cancer can
be represented by several examples of proto-oncogenes, tumor
suppressor genes, or other genes whose splicing is altered
to produce isoforms that are needed for the transformation
process (Oltean and Bates, 2014). In this review, we do not
aim to provide a comprehensive list of all the cancer-related
abnormal alternative splicing events, but rather highlight a few
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TABLE 1 | Selected examples of genes with cancer-related alternatively spliced isoforms.

Gene name protein product Alterations in cancer-related functions

due to alternative splicing

Cancer-related alternative splicing References

TP53/p53 Reduced anti-proliferative response to

stress.

Reduced tumor suppression

◦ Alternative 1st exon

◦ Intron 9 retention

◦ Intron 9 cryptic exon inclusion

◦ Intron 2 retention

◦ Cassette Exon 8

◦ Intron 7 alternative 5′ ss

Surget et al., 2013

Bcl2l1/BclX Apoptosis regulator:

Anti-apoptotic (BCL-XL )

Pro-apoptotic (BCL-XS)

◦ Intron 2 alternative 5′ ss Paronetto et al.,

2016

CASP2/Caspase 2 Apoptosis regulator:

Anti-apoptotic (Casp2S)

Pro-apoptotic (Casp2L)

◦ Cassette Exon 9 Jang et al., 2014

AIMP2/Aimp2 Apoptosis regulation:

Anti-apoptotic (AIMP2-DX2)

Pro-apoptotic (AIMP2-full length)

◦ Cassette Exon 2 Choi et al., 2011

BIN1/ Myc

box-dependent-interacting

protein 1 (Bin1)

Reduced tumor suppression and

apoptosis regulation

◦ Cassette Exon 12a

◦ Cassette Exon 13

Anczuków et al.,

2012

TERT/telomerase reverse

transcriptase

Reduced replicative senescence

Loss of telomerase activity in α,β, γ

deletion isoforms

◦ Intron 5 alternative 3′ ss (α deletion)

◦ Cassette Exons 7-8 (β deletion)

◦ Cassette Exon 11 (γ deletion)

◦ Combinations of α,β, and γ deletions

Liu et al., 2017

CD44/CD44 antigen Imbalanced regulation of cell division,

migration and adhesion

◦ Cassette Exon 18

◦ Cassette Exon v6

◦ Cassette Exons v8-10

◦ Cassette Exons v4-5

◦ Cassette Exons v4-7

Prochazka et al.,

2014

IRF3/Interferon regulatory factor

3

Reduced cell growth inhibition

Reduced cellular senescence through p53

activation

◦ Cassette Exon 2

◦ Cassette Exon 3

◦ Cassette Exon 6

◦ Combination of Exons 2,3, and 6

skipping

Li et al., 2011

RAC1/Ras-related C3

botulinum toxin substrate 1

Reduced cell growth and cell cycle

regulation

Reduced cell-cell adhesion formation and

contact inhibition

◦ Cassette Exon 3b Singh et al., 2004;

Radisky et al.,

2005

STAT3/Signal transducer and

activator of transcription 3

Dominant negative regulation of

transcription (STAT3β)

◦ Intron 22 alternative 3′ ss Caldenhoven

et al., 1996;

Zammarchi et al.,

2011

CDH11/Cadherin11 Enhances invasion when the splice

isoform (with unique intracellular domain)

is expressed with WT Cadherin 11

◦ Intron 13 alternative (incomplete)

splicing

Feltes et al., 2002

FGFR2/Fibroblast growth factor

receptor 2

Promotes EMT and metastasis ◦ Mutually exclusive exon 8 (IIIb) or 9 (IIIc) Wagner et al.,

2003; Zhao et al.,

2013;

Abou-Fayçal et al.,

2017

KLF6/Krüppel-like factor 6 Antagonism of tumor suppressor activity ◦ Intron 2 alternative 5′ ss

◦ Cassette Exon 3

DiFeo et al., 2009

MST1R/Macrophage-

stimulating protein receptor or

RON (Recepteur d’origine

Nantais)

Increased cell motility and invasion ◦ Exon 11 skipping with Exon 5 and 6

Inclusion

◦ Exon 5 and 6 skipping with Exon 11

Inclusion

◦ Exon 5, 6, and 11 skipping

◦ Exon 6 skipping and Exon 5 inclusion

◦ Partial Exon 5 and 6 splicing

Zhou et al., 2003;

Eckerich et al.,

2009; Chakedis

et al., 2016

(Continued)
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TABLE 1 | Continued

Gene name protein product Alterations in cancer-related functions

due to alternative splicing

Cancer-related alternative splicing References

VEGFA/Vascular endothelial

growth factor A

Enhanced pro-angiogenic function ◦ Cassette Exons 6 and 6b

◦ Cassette Exon 7 and 7b

◦ Alternative Intron 6 5′ ss

◦ Alternative Intron 6 3′ ss

◦ Cassette Exon 8

Pritchard-Jones

et al., 2007;

Harper and Bates,

2008

CASP8/Caspase-8 Reduced tumor suppression and

pro-apoptotic activity

◦ Cassette Exon 8

◦ Alternative Exon 8 and 9 splicing (136

bp insertion between exon 8 and 9)

Mohr et al., 2005;

Olsson and

Zhivotovsky, 2011

FAS/Tumor necrosis factor

receptor superfamily member 6

Loss of Pro-apoptotic activity ◦ Cassette Exon 6

◦ Cassette Exon 8

◦ Intron 5 retention

van Doorn et al.,

2002; Schwerk

and

Schulze-Osthoff,

2005; Tejedor

et al., 2015

MCL1/Induced myeloid

leukemia cell differentiation

protein (Mcl-1)

Anti-apoptotic ◦ Cassette Exon 2 Shieh et al., 2009

MDM2/E3 ubiquitin-protein

ligase (Mdm2)

Reduced p53 binding

Enhanced tumor progression.

◦ Skipping of Exons 4-9

◦ Skipping of Exons 4-11

◦ Skipping of Exons 5-9

◦ >40 isoforms

Bartel et al., 2002

GLS/Glutaminase Deregulation of glutamate metabolism ◦ Intron 15 retention leading to cleavage

and polyadenylation in Intron 15 and an

isoform lacking the canonical last 4

exons.

van den Heuvel

et al., 2012

LDHC/L-lactate dehydrogenase

C chain

◦ Metabolic rescue in tumor cells

◦ Deregulation of cellular energetics

◦ Cassette Exon 3

◦ Skipping of Exon 3-4

◦ Skipping of exons 3, 6, and 7

◦ Cassette Exon7

Koslowski et al.,

2002

MAX/ Protein max Promotion of cell proliferation through

enhanced glycolytic metabolism

◦ Cassette Exon 2

◦ Cassette Exon 5

Babic et al., 2013

PKM/ Pyruvate kinase PKM ◦ Tumor specific metabolism via

◦ PKM2 (fetal isoform with Exon10

inclusion)

◦ Mutually exclusive Exons 9 and 10 Chen et al., 2010;

Zhang and

Manley, 2013

CCND1/ G1/S-specific

cyclin-D1

Promotes cell proliferation ◦ Intron 4 retention leading to cleavage

and polyadenylation in Intron 4 and an

isoform lacking the canonical last exon

Paronetto et al.,

2010

EGFR/ Epidermal growth factor

receptor

Oncogene ◦ ALternativer splicing of a combination of

Exons9a, 10,16, or 17

◦ Skipping of Exon 2-7

◦ Skipping of Exons 2-22

◦ …

Abou-Fayçal et al.,

2017

PTEN/ Phosphatidylinositol

3,4,5-trisphosphate

3-phosphatase and

dual-specificity protein

phosphatase (Pten)

Reduced tumor suppression ◦ Intron 3 retention

◦ Intron 5 retention

◦ Inclusion of partial Intron 5

◦ Inclusion of partial Intron 3

◦ Inclusion of 5′ end of intron H between

Exons 8 and 9

◦ Alternative splicing of the end of intron 5

to splicing acceptor site within intron E

Agrawal and Eng,

2006; Okumura

et al., 2011

that exemplify a deregulated splicing program in cancer that is
not a byproduct of the cancer phenotype but a driving force
in cancer development and maintenance (Table 1). We thus
discuss four main categories of splicing aberrations: (1) Cancer-
specific splicing alterations in oncogenes and tumor suppressor
genes. (2) Cancer-specific mutations in splicing factors. (3)

Changes in upstream signaling pathways that deregulate splicing
factors. And (4) aberrations in spliceosomal components that
are linked to cancer. The involvement of alternative splicing in
the 10 hallmarks of cancer has been reviewed elsewhere (Sveen
et al., 2016). Here we summarize some of these changes to
point to the fact that the cancer phenotype in several cancer
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types is heavily reliant on altering one or several splicing
choices.

CANCER-SPECIFIC SPLICING
ALTERATIONS IN ONCOGENES AND
TUMOR SUPPRESSOR GENES

Some of the earliest and most studied examples of alternative
splicing events that lead to isoforms amiable for cancer are
in genes involved in apoptosis such as the members of the
Bcl2 family and several caspases. For example, intron 2 of the
Bcl2L1 gene, which encodes the Bcl-X protein, is alternatively
spliced. More specifically, the spliceosome has a choice between

two 5
′

splice sites (5
′

ss) for intron 2. Depending on which

5
′

ss is chosen, the mRNA produced could be large (Bcl-XL),
which encodes a Bcl-X protein with anti-apoptotic function,
or small (Bcl-XS), encoding a Bcl-X protein that is missing an
essential BH domain and is pro-apoptotic. Another example is
Caspase 2 pre-mRNA splicing, whereas the spliceosome faces a
choice of including exon 9, generating a caspase 2L mRNA or
skipping exon 9, leading to the caspase 2S isoform. The large
isoform encodes the pro-apoptotic Casp2L protein, whereas the
anti-apoptotic Casp2S protein is encoded by the short isoform.
Given that cancer cells are resistant to cell death by apoptosis,
they need to ensure the production of Bcl-XS and/or Casp2L.
In the absence of mutations in Bcl2L1 and Caspase 2 genes
that would affect splice sites or other cis-elements leading to
Bcl-XS and Casp2L production, cancer cells reprogram the
splicing machinery and/or splicing factors that bind to these
pre-mRNAs to ensure that the cancer-specific isoforms are
enriched.

Several tumor suppressor genes undergo alternative splicing
in cancer that leads to either complete or partial loss of
function. For example, complex alternative splicing of TP53,
which encodes the p53 protein, generates several isoforms with
significant impact on the protein function (Surget et al., 2013).
Once activated, by DNA damage for example, p53 can induce
cell-cycle arrest in either the G1 or G2 phase of the cell cycle.
p53 can also activate Growth Arrest and DNA Damage 45
(GADD45), which regulates cell-cycle arrest in the G2/M phases.
Thus, the presence of a functional p53 is essential for the multiple
cell cycle checkpoints that allow cells to repair DNA damage or
commit to apoptosis. Some of the protein products from the
TP53 splicing isoforms are dominant negative, and since p53
acts as a tetramer, the production of these dominant negative
subunits, even at low level, can have dramatic effects as they act
as poison subunits. Four isoforms of these p53 transcripts are
depicted in Figure 2.

Interestingly, even tumor viruses take advantage of
alternative splicing to produce oncoproteins that cause host
cell transformation. For example, the production of the two
Human Papilloma Virus (HPV) oncoproteins E6 and E7 in
patient tissues, which are encoded by one pre-mRNA, depends
on alternative splicing. Briefly, unspliced transcripts (that is, the
intron is retained) produce the E6 mRNA (and ORF) whereas
complete splicing of the pre-mRNA produces the E7 mRNA and

ORF. Other transcripts including E6∧E7 or E6∗III are generated
due to alternative 3′-splice usage (Graham and Faizo, 2017).

These few examples underscore the capacity of alternative
splicing to produce two or more proteins from a single gene
that could have completely opposite functions with major
consequences on cell fate and the transformation process.

CANCER-SPECIFIC MUTATIONS OR
ALTERATIONS IN SPLICING FACTORS

Given that cancer cells do reprogram the spliceome, it is
not surprising that splicing factors are common targets for
deregulation in this disease (Dvinge et al., 2016). These include
ESRP1 and ESRP2 (Warzecha et al., 2009), hnRNP A1, hnRNP
A2, hnRNPA2/B1, hnRNPH, hnRNP K, and hnRNPM (Moran-
Jones et al., 2009; David et al., 2010; Golan-Gerstl et al., 2011;
Lefave et al., 2011; Xu et al., 2014; Gallardo et al., 2015), PRPF6
(Adler et al., 2014), PTBP1(Izaguirre et al., 2012), QKI (Zong
et al., 2014), RBFOX2 (Shapiro et al., 2011), RBM4, RBM5,
RBM6, and RBM10 (Bonnal et al., 2008; Fushimi et al., 2008;
Shapiro et al., 2011; Izaguirre et al., 2012; Bechara et al., 2013;
Wang et al., 2014; Hernández et al., 2016), as well as SRSF1,
SRSF2, SRSF3, SRSF6, and SRSF10 (Karni et al., 2007; Anczuków
et al., 2012; Tang et al., 2013; Jensen et al., 2014; Zhou et al., 2014;
Kim et al., 2015).

The SR protein SRSF2, for example, is a splicing factor that
is commonly mutated in a collection of neoplastic diseases
or cancers of immature blood cells known as Myelodisplastic
Syndromes (MDS). Interestingly, mutations in SRSF2 that alter
its sequence specificity on its target pre-mRNAs are more likely
to be linked to MDS than nonsense mutations, indicating that
a gain-of-function (binding to differential pre-mRNA targets)
rather than loss-of-function of SRSF2 produces a new set
of alternatively spliced mRNAs that are relevant to MDS
development (Kim et al., 2015).

Of note, not all changes in splicing factors are due to
mutations in their encoding genes as mutation-free disruptions
in the repertoire of RNA-binding proteins (splicing factors)
due to the imbalance in their expression is emerging as a
common feature in many diseases including cancer. For example,
frequent upregulation of mutation-free SRSF2 is a driver in the
development of Hepatocellular Carcinoma (HCC) (Luo et al.,
2017). SRSF1, also a splicing factor, is itself an oncogene whose
expression is increased in cancers, including breast cancer (Das
and Krainer, 2014; Akerman et al., 2015; Anczuków et al.,
2015). These alterations in splicing factors, whether due to
mutations or altered expression, tend to have large effects on
cell phenotype as these splicing factors bind to and regulate
the splicing of hundreds of pre-mRNAs. Thus, cancer cells can
alter the splicing of a large number of genes by deregulating
a handful of splicing factors. While this might seem to be an
overkill, evidence does point to the fact that among the thousands
of changes, some have distinct and significant effects on the
transformation process. For example, SRSF2 mutants in MDS
lead to mis-splicing of hundreds of pre-mRNAs, but one of them,
the EZH2 pre-mRNA, encoding a transcriptional regulator that
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FIGURE 2 | TP53 pre-mRNA splicing has significant consequences on the gene product, p53 protein. A schematic diagram of p53 pre-mRNA shows 11 exons (red

boxes for canonical exons and blue boxes for cryptic intronic exon 9, i9) and 10 introns (gray lines). The size and shade of the exon indicate whether it is untranslated

region (narrow, light red) or coding (wide, dark red). The various domains and the exons encoding them are also indicated (adopted from Surget et al., 2013). These

are: Transactivation domains I and II (TAD I and TAD II), proline-rich region (PXXP), DNA-binding domain (DBD), nuclear localization signal (NLS), oligomerization domain

(OD), and negative regulation domain (NRD). A fully spliced mRNA containing the 11 canonical exons encodes for full length and functional p53 protein. Several

isoforms with various alternative first exons can be generated for p53 pre-mRNA. In this case, the first exon is what is usually exon 5 in the canonical transcript, leading

to the production of p53 protein lacking TADs, PXXP, and part of DBD. This truncated p53 is expected to be dominant negative. A similar protein can be encoded by

transcripts in which intron 2 is retained, leading to the usage of start codon in exon 4 rather than the canonical start codon in exon 2. On the other hand, retention of

intron 9 and/or inclusion of the cryptic intronic exon 9, i9, change the reading frame causing the loss of the encoded amino acids from exons 10 and 11. The resulting

p53 proteins lack OD and NRD. These truncated p53 proteins could compete with wild type p53 for DNA binding but are not functional as they cannot oligomerize.

is required for maintaining the repressed state of many genes
during hematopoiesis, stands out. Hematopoietic cells expressing
SRSF2 mutants show higher inclusion of a highly conserved
“poison” exon in the EZH2 mRNA, leading to degradation of the
mRNA by nonsense-mediated decay and loss-of-function of the
EZH2 gene (Kim et al., 2015).

hnRNP proteins also play their share in cancer progression.
For example, mis-regulation of a number of hnRNP proteins
have been linked to HCC tumor progression, whereas the
overexpression of hnRNP A1 in particular has been linked to
tumor invasion and metastasis (Zhou Z. J. et al., 2013). The
detailed contribution of the RNA splicing-dependent effects of
mis-regulation of many hnRNPs in cancer is still under intense
investigation by several laboratories and should shed some light
on mechanisms as well as potential novel therapeutic targets.

Of note here is that mutations in splicing factors in MDS
patients typically cause distinct and sometimes non-overlapping
splicing defects, suggesting an alternate underlying mechanism.

Indeed, a recent study has uncovered that mutations on distinct
splicing factors in MDS commonly cause elevated R-loops,
replication stress, and activation of the ataxia telangiectasia and
Rad3-related protein (ATR)-Chk1 pathway (Chen et al., 2018).
These effects can lead to deregulated transcription pause release,
raising the possibility that the MDS phenotype is related to a
transcriptional defect rather than a splicing one.

CHANGES IN UPSTREAM SIGNALING
PATHWAYS THAT DEREGULATE SPLICING
FACTORS

In order to ensure that several splicing factors and other cellular
processes are deregulated, the signaling pathways that relay
extracellular signals to splicing factors are often targeted in
cancer. The SR protein family is often deregulated as the function
of SR proteins tightly depends on their phosphorylation status,
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which itself is regulated by upstream kinases. For example,
the splicing of the cassette exons in Caspase 9 pre-mRNA
is regulated by the splicing factor SRSF1 leading to either
caspase 9a or caspase 9b mRNAs. SRSF1 is itself phosphorylated
upon activation of multiple signaling pathways, including the
PI3K/AKT pathway. Since AKT signaling is often constitutively
activated in cancers, such as lung cancer, this leads to constitutive
phosphorylation of SRSF1 and deregulated expression of Caspase
9a/9b (Shultz et al., 2010). A similar pathway involving an AKT-
hnRNP U axis has also been shown to regulate Caspase 9a/9b
ratio (Vu et al., 2013). This deregulated Caspase 9a/9b ratio has
marked consequences on apoptosis and contributes to the ability
of cancer cells to resist cell death.

Interestingly, several key components of signaling pathways
that are typically deregulated in cancer can themselves be
alternatively spliced to produce cancer-specific isoforms. For
example, the inclusion of exon 6 in the pre-mRNA of the First
Apoptosis Signal (Fas) receptor produces an isoform that encodes
a membrane bound receptor that plays a key role in relaying
extracellular signal that lead to programmed cell death. On
the other hand, the Fas isoform with exon 6 being skipped
encodes a soluble protein that does not induce apoptosis upon
relevant signaling. Epidermal Growth Factor Receptor (EGFR),
Insulin Receptor (INSR), Receptor d’Origine Nantais (RON),
and Vascular Endothelial Growth Factor Receptor (VEGFR) are
among several receptor tyrosine kinases whose splicing is altered
in cancer leading to tumor progression or reduced response
to therapy (reviewed in, Abou-Fayçal et al., 2017). In the case
of VEGFR, one intron retention leads to the production of a
shorter and decoy receptor that is dominant negative (Kendall
et al., 1996; Vorlová et al., 2011). Similarly, alternative splicing
in EGFR pre-mRNA produces several isoforms, some of which
are dominant negative whereas others are constitutively active,
leading to enhanced tumorgenicity, migration and invasion
(Guillaudeau et al., 2012a,b; Piccione et al., 2012; Zhou M. et al.,
2013; Zhou Z. J. et al., 2013; Padfield et al., 2015).

ABERRATIONS IN SPLICEOSOMAL
COMPONENTS THAT ARE LINKED TO
CANCER

It is remarkable that loss-of-function mutations in core
components of the spliceosome are not compatible with
life, which speaks to the critical role the spliceosome plays
in all cells. However, components of the spliceosome can
be mutated without complete loss-of-function leading to
widespread alterations in splicing and disease.

Patients with MDS, chronic myelomonocytoic leukemia
(CMML), or chronic lymphocytic leukemia (CLL) acquire
mutations in the spliceosomal components SF3B1, SF1,
PRPF40B, and U2AF35 besides mutations in the splicing
factor SRSF2 and ZRSR2, a component of U11/U12 di-snRNP,
(Armstrong et al., 2018). Interestingly, SF3B1 and U2AF35
mutation tend to be missense mutations and mutually exclusive,
again suggesting that cells with severe aberrations in spliceosome
function are not viable (Armstrong et al., 2018). These mutations

are drivers in cancer and they strongly correlate with prognosis
and clinical phenotype.

On the other hand, several genetic diseases are linked
to mutations in core components of the spliceosome. These
include retinitis pigmentosa, a progressive neurodegeneration
of Rod photoreceptors in the retina, which is linked to
mutations in PRPF31, PRPF8, BRR2, PRPF4, or PRPF3. Spinal
Muscular Atrophy (SMA) is a severe neurodegenerative disease
caused by mutations in SMN1 gene, which encodes a protein
that functions in the biogenesis of spliceosomal snRNPs and
reduced SMN function in cells has been shown to lead to
widespread aberrations in splicing. Mutations in one of the
snRNA components of the minor spliceosome, U4atac, have
been identified and linked to severe mental retardation and
dwarfism, microcephalic osteodysplastic primordial dwarfism
type 1 (TALS/MOPD). Despite their low abundance in cells,
minor introns are highly conserved and serve as critical
molecular switches for the expression of genes that harbor
them (Younis et al., 2013). Some of these genes are bona
fide oncogenes and tumor suppressor genes, suggesting a role
for deregulating minor intron splicing in cancer (Unpublished
data).

SYSTEMATIC APPROACHES FOR
IDENTIFYING SPLICING ABERRATIONS
THAT ARE LINKED TO CANCER

Genetic alterations or mutations in cancer patients that affect
the splicing of one gene are relatively easy to study, track, and
even propose therapeutic tactics based on fixing the splicing of
that one pre-mRNA. However, a major challenge emerges when
the alteration is in a splicing factor or core component of the
spliceosome as these lead to global (thousands) alterations in
splicing affecting a wide range of genes. Still more challenging
are cases where the expression of the splicing factors is altered
without an obvious underlying genetic mutation. Two of the
many challenges are: (1) identifying amongst the thousands
of splicing alterations those that significantly contribute to
cancer progression, and (2) therapeutically target the splicing
factors without having massive side effects that sometimes are
worse than the actual disease itself. In order to successfully
address these points, it is important to develop a systematic
and standardized approach to gain sufficient understanding of
splicing deregulation in cancer and their impact on cancer.

Before the advent of next generation sequencing of RNA
(referred to here as RNA-seq), transcriptome profiling to identify
global splicing changes relied mostly on Gene Expression Exon
Microarrays, that contain probes for almost all exons and many
introns. While these arrays were a major advance over traditional
microarrays with limited number of probes per gene, they tend
to be very hard to interpret and generate a lot of false positives
if not properly analyzed and replicated. Also, the lack of a large
number of probes in introns causes these microarrays to miss
a major category of splicing aberration that is intron retention.
Nowadays, the gold standard for transcriptome profiling that
includes both information on genome-wide expression level
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changes as well as splicing disruptions is RNA-seq. While this
method is both quantitative and qualitative, it has its own
challenges as well. As a start, generating the libraries for RNA-
seq from high quality RNA is expensive, tedious, and require
well trained personnel. The data generated is massive in size
(several gigabytes per sample) and requires powerful computing
machines for storage as well as analysis. The analysis itself
is a major bottleneck. Several off-the-shelf pipelines exist for
mapping raw reads and analysis of differential expression of
genes. However, these only scratch the surface and do not fully
take advantage of the wealth of data generated by any well-
designed RNA-seq experiment. For example, there are several
publicly available algorithms that attempt to identify splicing
alterations fromRNA-seq, but our personal experience with these
is that they all fail at capturing the real picture as most of
them use statistical models that are not suitable for biological
systems, leading to identification of an endless list of statistically
significant but small changes that have no or little impact on the
phenotype. Thus, many laboratories have opted for their own in-
house pipelines that are suited for their own analysis but remain
far from suited to apply globally. The major challenge in the
analysis of RNA-seq data does not detract from the fact that it
has been widely used to generate important databases of splicing
alterations in many cancers. The list of splicing aberrations in
cancer will grow and our understanding of the molecular basis of
these changes as well as their contribution to cancer will improve
tremendously in the coming years as our ability to standardize the
analysis pipeline improves. In fact, we propose that identifying
the right splicing isoforms can be so powerful, they should be
used as novel biomarkers for many cancer types and subtypes.

Once enough molecular understanding of the splicing
aberrations is gained and their impact on cancer is proven,

innovative RNA-based therapies are required to correct the
splicing alterations or induce splicing changes in cancer cells
that make them more susceptible to traditional chemotherapy.
Only recently, RNA-based therapies, which include a range
of mechanisms such as antisense oligonucleotides, RNAi, anti-
miRNA, miRNA mimics, aptamers, ribozymes, and others,
seemed far-fetched and unpractical. However, the recent success
of antisense oligonucleotides in correcting the splicing of exon
7 of SMN gene in SMA patients and its approval by the FDA
speaks to the power of such therapies. In order to start applying
such strategies to cancer, it is better to focus first on a few targets
with large effects on phenotype. For example, given the large
contribution of mis-splicing of genes involved in apoptosis on
the ability of cancer cells to resist cell death, these genes are the
low hanging fruit. In addition, it is noted that splicing alterations
would rarely be the sole driver in cancer progression, we thus do
not suggest the use of RNA-based therapies to overcome splicing
aberrations as an alternate to traditional therapies, but rather a
combination therapy for more effective treatment (we anticipate
the effects to be synergistic) with less unfavorable side effects.
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