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The candidate proto-oncogene bcl-3 encodes a protein that shares structural features with IKB-~ and other 

proteins that bind to members of the Rel protein family. Here, we show that in contrast to the inhibitory 

activity of IKB-a, the bcl-3 gene product superactivates NF-KB p50 homodimer-mediated gene expression both 

in vivo and in vitro. BCL-3 protein can, as well,  selectively associate with p50 homodimers in the presence of 

D N A  containing a KB motif. These results strongly suggest that BCL-3 can act as a transcriptional coactivator, 

acting through DNA-bound pS0 homodimers. 
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The candidate proto-oncogene bcl-3 was identified by 

the cloning of chromosomal breakpoints from chronic 

lymphocytic leukemia cells containing a t(14;19) trans- 

location (Ohno et al. 1990). bcl-3 expression is activated 

by translocation without apparent alteration of the en- 

coded protein structure. The deduced primary structure 

of BCL-3 contains seven repeats of an -30-amino-acid 

motif (ankyrin repeat) found in several other proteins 
(Nolan and Baltimore 1992). These include erythrocyte 

ankyrin, a cytoskeletal protein; yeast cell cycle regula- 

tory proteins, such as cdclO and SWI6; and the trans- 

membrane receptors notch, TAN1, and int-3. 
The closest relatives of BCL-3 are proteins that affect 

the activity and intracellular localization of NF-KB. IKB- 
oL, a protein encoded by MAD-3 cDNA (Haskill et al. 

1991), has five full copies of the ankyrin motif in a pat- 

tern very similar to that found in BCL-3 (Nolan and Bal- 

timore 1992). It inhibits the DNA binding of NF-KB and 

sequesters it in the cytoplasm (Baeuerle and Baltimore 

1988a). NF-KB is a protein of two subunits, p50 and p65, 

both of which are related in structure to the rel oncogene 

protein (Nolan and Baltimore 1992). IKB has the highest 

affinity for the p65 subunit (Baeuerle and Baltimore 

1989). Like BCL-3, the IKB-~/protein has seven ankyrin 

motifs (Inoue et al. 1992a; Liou et al. 1992). It is the 

carboxyl half of the p105 NF-KB-1 precursor of the p50 
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subunit, as well as an independent protein in some lym- 

phoid cells (Liou et al. 1992). A close relative of NF-KB-1, 

NF-KB-2 pl00, also has an IKB-~/-related carboxyl termi- 

nus (Neri et al. 1991; Schmid et al. 1991). 

BCL-3 is functionally related to, but distinct from, 

IKB-~ in that it preferentially interacts with the p50 sub- 

unit of NF-KB (Wulczyn et al. 1992) and both proteins 

colocalize to the nucleus (Nolan et al. 19931, whereas the 
primary target for IKB-c~ is the p65 subunit of NF-KB and 

the complex is found in the cytoplasm. Also, the amino 

acids flanking the ankyrin repeats of IKB-~ and BCL-3 
differ markedly. The latter, but not the former, contains 

proline-rich regions in its amino and carboxyl termini 
and a serine-rich carboxy-proximal region. Because the 
ankyrin repeat domain is implicated in protein-protein 

interactions, these unique regions might have effector 

roles in the nucleus. In previous work, however, it was 

found that BCL-3 protein produced by bacteria [Wulczyn 

et al. 1992) or insect cells (Nolan et al. 1993) inhibits the 

DNA-binding activity of NF-KB p50, suggesting that it 

has an inhibitory role. 

pS0 homodimers [KBF-1, (p50)2] are detected in the nu- 

cleus of some cells as a binding activity specific for a site 

within the major histocompatibility complex (MHC) 

class I (H-2) gene enhancer. The detection of KBF-1 and 

the expression of the H-2 gene is highly correlated (Burke 

et al. 1989; Isra61 et al. 1989). In vivo, competition ex- 

periments have demonstrated that the factor interacting 

with the H-2 KB site activates MHC gene expression 

(Baldwin and Sharp 1987; Isra61 et al. 1987). However, 

recent transient transfection experiments using chlor- 

amphenicol acetyltransferase (CAT) as a reporter failed 
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to show significant trans-activation by cDNA-mediated 

pS0 expression (Schmid et al. 1991; Schmitz and Bae- 

uerle 1991; Beg et al. 1992). More recently, while our 

study was in progress, Franzoso et al. (1992) reported that 

BCL-3 acts as an antagonist of p50 that strongly inhibits 

KB motif-dependent CAT gene expression. 

In the following experiments, we employed a transient 

transfection system using luciferase as reporter of KB- 

regulated transcription. Contrary to the previous results 

(Schmitz and Baeuerle 1991; Franzoso et al. 1992), we 

observed that p50 activates gene expression both in vivo 

and in vitro and that BCL-3 can superactivate in a p50- 

dependent manner. Furthermore, BCL-3 protein pro- 

duced in mammalian cells associated with p50 which 

was bound to a KB oligonucleotide in vitro. These results 

strongly suggest that BCL-3 does not function solely as 

an inhibitor but, rather, that it can act as a transcrip- 

tional coactivator for (p50)2. 

Results 

BCL-3 synergistically activates gene expression 

with p50 in vivo 

Various laboratories have reported that in cotransfection 

experiments, the p50 subunit of NF-KB activates tran- 

scription poorly from KB-driven reporter constructs 

while p65 activates well (Schmitz and Baeuerle 1991; 

Beg et al. 1992). However, we found that in vitro (p50)2 is 

an excellent transcriptional activator on certain KB sites 

and that (p65)2 is not an especially good activator (Fujita 

et al. 1992). We have therefore reinvestigated the activity 

of these regulators in a cotransfection system using a 

luciferase reporter system rather than the previously uti- 

lized CAT system. Luciferase protein is detectable at 

very low levels (De Wet et al. 1987) and is intrinsically 

unstable, whereas the CAT assay is less sensitive and the 

protein is more stable. Thus, luciferase activity should 

reflect the instantaneous concentration of its mRNA 

rather than measuring the protein that accumulates over 

many hours as is assayed by CAT. 

We transfected into mouse L929 cells a luciferase re- 

porter gene along with effector constructs encoding var- 

ious NF-KB-related proteins. The reporter contained a 

simple promoter from the [3 interferon (IFN-[3) gene (Fu- 

jita et al. 1987), along with three upstream KB sites. The 

KB motif studied first was that from the immunoglobulin 

K gene {IgK), which responds in vitro about equally to p50 

and p65. With increasing concentration of either effector 

plasmid, there was an increasing synthesis of luciferase 

(see Fig. 1A, bars 4 and 7; other data not shown). If the 

reporter lacked KB sites, p50 was unable to stimulate. It 

is evident that p50 is an activator of transcription on an 

IgK KB motif. 

We then investigated whether BCL-3 would affect the 

response to p50. We compared it with IKB-~, an inhibitor 

known to interact with p65. Expression of BCL-3 or IKB 

alone had little effect on reporter gene expression (Fig. 

1A). Coexpression of p50 with the reporter gave the ex- 

pected stimulation, and BCL-3 augmented that simula- 

tion further {Fig. 1A). Because Franzoso et al. {1992} had 

previously reported quite different results with the 

NTera-2 cell l ine--a human embryonic carcinoma cell 

that lacks endogenous NF-KB-related proteins--we ex- 

amined the behavior of our reporter and expression plas- 

mids in that cell line. A similar activation of the lu- 

ciferase reporter gene by p50 was observed in these cells, 

as well as perhaps a greater BCL-3 augmentation {Fig. 

1B). In L929 cells, p65 also stimulated, but BCL-3 gave no 

augmentation and IKB repressed the activation by either 

p50 or p65 {Fig. 1A). The opposing effects of BCL-3 and 

IKB on p50-mediated activation were particularly clearly 

demonstrated in titrations of the effector plasmid {Fig. 

1C). The inhibitory effect of IKB in vitro and in vivo to 

(p65)2 or p50/p65 is well documented (Baeuerle and Bal- 

timore 1989; Nolan et al. 1991; Beg et al. 1992), but this 

is the first demonstration that gene activation mediated 

by p50 can be inhibited by IKB under certain conditions. 

Whereas the p50-IKB interaction is not evident by mo- 

bility shift assay unless a large excess of IKB is added 

{Liou et al. 1992), this result is consistent with the find- 

ing that p50 homodimer can be coimmunoprecipitated 

(Inoue et al. 1992b) and sequestered in cytoplasm by ec- 

topic expression of IKB {Beg et al. 1992). 

Franzoso et al. {1992) used a reporter containing natu- 

ral HIV LTR in their assay and showed that this con- 

struct is activated by BCL-3 in the presence of p50 and 

p65. We tested a similar HIV LTR luciferase construct as 

reporter {Fig. 1D). The reporter is little activated either 

by p50 or BCL-3 alone; however, it is dramatically acti- 

vated by coexpression of both. Thus, the synergism seen 

with synthetic KB constructs can be reproduced using a 

more physiological regulatory DNA sequence. 

Physiologically, p50 is processed from precursor p105 

by proteolytic removal of its carboxyl region {Blank et al. 

1991). Transfection of a p105 expression plasmid in hu- 

man kidney cell line 293 and mouse L929 cells resulted 

in an accumulation of p50 as well as its precursor, as 

evidenced by Western blotting {data not shown). Trans- 

fection of a p 105 expression plasmid into L929 cells gave 

no detectable stimulation of luciferase, but BCL-3 was 

able to activate transcription just as it could with direct 

p50 expression {Fig. 2A). This shows that physiologically 

processed p50 can participate in gene activation syner- 

gistically with BCL-3. The lack of direct activation by 

p105 could be the result of the level of p50 derived by 

cleavage. 

Our findings contrast with those reported by Franzoso 

et al. {1992). They found that coexpression of p65 is pre- 

requisite for BCL-3 to activate gene expression and in- 

terpreted the result as indicating that p65 is the true 

activator and BCL-3 acts by removing inhibitory {p50)2. 

However, in the system described here, ectopic p65 ex- 

pression is not required and expression of both p50 and 

BCL-3 are required for maximal gene expression. The 

p50 protein is not encoded as such but derives by prote- 

olysis from a p105 precursor {Blank et al. 1991), and dif- 

ferent laboratories have made different p50 constructs by 

truncating a p l05-encoding plasmid at particular places. 

In certain reports {Beg et al. 1992; Franzoso et al. 1992), 
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Figure 1. Effect of BCL-3 and IKB on KB 
motif-dependent gene activation in vivo. 
(A) L929 cells were transfected with a re- 
porter plasmid (p-55IgKLuc, 0.5 ~g) and ef- 
fector plasmids (each 0.05 gg). (1) No ef- 
fector; (2)pGDMBCL3; (3)pCDMIKB; (4) 
pCDM50; (5) pCDM50 + pCDMBCL3; 
(6) pCDM50 + pCDMIKB; (7) pCDM65; 
(8) pCDM65 + pCDMBCL3; (9) pCDM65 
+ pCDMIKB. In all of the cotransfection 
experiments, total amounts of plasmid 
were kept constant by adding the vector 
without insert. (B) NTera2 cells were 
transfected with reporter plasmid (p- 
55IgKLuc, 3 ~g) and effector plasmids ( 1 ~g 
each). Error bars represent s.E. from tripli- 
cate transfection results. (1) No effector; 
(2) pCDMBCL3; (3) pCDMS0; (4) 
pCDMS0 + pCDMBCL3. (C) L929 cells 
were transfected with p-55IgKLuc {0.5 p,g) 
and indicated amounts of pCDMBCL3 (E]) 
or pCDMIKB (0). (D) L929 cells were 
transfected with pHIVLTRLuc (0.5 ~g) and 
effector plasmids (0.05 ~g each). (1) No ef- 
fector; (2)pGDMBCL3; (3)pCDMS0; (4) 
pCDMBCL3 + pCDM50. Error bars in A, 
C, and D represent S.E. from quadrupli- 
cated transfection trials. 

pS0 was expressed from a cDNA truncated by digestion 

with the restriction enzyme XbaI to give a 503-amino- 

acid protein [p50XbaI, which directs synthesis of an ap- 

parently 60-kD polypeptide in L929 cells (T. Fujita et 

al., unpubl.)]. In our laboratory pS0 was produced from a 

plasmid truncated at an FspI site (Fujita et al. 1992) to 

produce a protein of 401 amino acids that migrates co- 

incidently with authentic p50. We compared as activa- 

tors our pS0, p50XbaI, and p52, a protein closely related 

to p50 (Fig. 2B). p50, p50XbaI, and p52, respectively, ac- 

tivated the reporter gene moderately; however, only pS0 

and p52 superactivated with BCL-3. Because p50 and 

pSOXba are accumulated in similar amounts in trans- 

fected L929 cells (data not shown), the failure of p50Xba 

to cooperate with BCL-3 is likely attributable to its ex- 

tended length, compared with that of p50. The magni- 

tude of activation by p52 and p50 was comparable in 

repeated experiments (data not shown). Thus, it is clear 
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why Franzoso et al. (1992) were unable to see synergism 

of their p50 and BCL-3, but it is not apparent why they 

did not see activation with p50. 

An expression plasmid for a mutant  BCL-3, lacking the 

unique amino- and carboxy-terminal regions (ABCL-3) 

was constructed. ABCL-3 was expressed in the nucleus 

in L929 cells (data not shown) but failed to superactivate 

with p50 and was even inhibitory to the activation by 

p50 (Fig. 2C). Thus, the amino- and carboxy-terminal 

regions of BCL-3 are needed for coactivation with p50 

and might contain transcriptional activation sequences. 

Without these sequences, BCL-3 acts as an inhibitor. 

Association of BCL-3 with p50, which is bound 

to KB moti f  DNA 

It was reported previously that a bacterially expressed 

polypeptide corresponding to a truncated human BCL-3 

(289 amino acids of the full-length 454 amino acids) 

(Wulczyn et al. 1992), as well as murine BCL-3 produced 

by a baculovirus system (Nolan et al. 1993), inhibited 

binding of p50 to KB motif DNA. These results appear 

inconsistent with the trans-activation as described here. 

The amino acid sequences flanking the ankyrin repeat 

are unique, highly conserved between human and 

mouse, and contain multiple potential phosphorylation 

sites that may modify the function of the wild-type pro- 

tein. Therefore, we expressed the full-length mouse 

BCL-3 and ABCL-3 protein in human kidney cell 293 

cells and further tested their properties. Transfection of a 

BCL-3 expression plasmid into 293 cells caused an accu- 

mulation of BCL-3 protein detectable by Western blot- 

ting with anti-BCL-3 rabbit serum {Fig. 3, lane 3). Cells 

transfected with either empty vector or a p50 expression 

plasmid did not accumulate BCL-3 [Fig. 3, lanes 1,21. 

This is in contrast to the observation that overexpressed 

p65 induces an accumulation of its target molecule, 

IKB-~ (Scott et al. 1993). The BCL-3 protein was produced 

as a broad band consisting of multiple species [Fig. 3, 

lanes 3,71. This is likely the result of phosphorylation, 

because phosphatase treatment converted the pattern 

into a nearly homogeneous, faster-migrating species {Fig. 

3, lane 8). In contrast, ABCL-3 was expressed as sharp 

band {-35 kDI, and its mobility was unchanged after 

phosphatase treatment (Fig. 3DI. Thus, it is likely that 

the clustered serine and threonine residues in BCL-3, 

which were removed by truncation, are sites of phosphor- 

ylation. 

The stimulation by BCL-3 in the transfection experi- 

ments suggested that it might bind to pS0 to form a 

ternary complex with DNA. To test this idea, we incu- 

bated NF-KB p50 or p65 proteins with BCL-3 protein and 

a biotinylated KB motif DNA. Resulting complexes were 

purified by streptavidin-agarose column chromatogra- 

phy [Materials and methods). After washing the column 

with five bed volumes of binding buffer, the bound pro- 

Figure 2. Effect of mutated pS0 and BCL-3 on coactivation. (A) Naturally processed p50 can coactivate with BCL-3. L929 cells were 
transfected with 0.5 ~g of p-55IgKLuc, 0.05 ~g of pEVRF105 {a p105 expression vector), and indicated amounts of pCDMBCL3. 
Stimulation by BCL-3 expression plasmid alone (0.12 ~g) was 1.2-fold. (B) An artifically processed long p50 (p50Xba) failed to coactivate 
with BCL-3. L929 cells were transfected with 0.5 p,g of p-55IgKLuc and effectors (0.05 ~g). (1) No effector; (2) pCDM50; {3) pCMV50Xba; 
(4) pRSVp52; (5J pCDMBCL3; (6) pCDM50 + pCDMBCL3; (7) pCMVSOXba + pCDMBCL3; (8) pRSVp52 + pCDMBCL3. (C) A mu- 
tant BCL-3 (ABCL-31 failed to coactivate with p50. L929 cells were transfected with 0.5 ~g of p-55IgKLuc and effectors {0.05 ~g). (1) No 
effector; (2) pCDM50; (3) pCDMBCL3; (4) pCDMABCL3; (5) pCDM50 + pCDMABCL3; (6) pCDM50 + pCDMABCL3. Error bars 
represent 2.E. from quadruplicated transfection trials. 
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Figure 3. Expression of mouse BCL-3 in human 293 cells. 293 
cells (3 x 1 0  6 cells) were transfected with expression plasmids 
(10 wg): pCDM8 (1,4); pCDM50 (2,5); pCDMBCL3 (3,6,7,8); and 
pCDMABCL3 (9,10). Cell lysates corresponding to l0 s cells 
were analyzed by SDS-PAGE and Western blotting using anti- 
BCL-3 rabbit serum (A,C,D) or anti-pS0 rabbit serum (B). Ly- 
sates containing BCL-3 and ABCL-3 (7,9) were treated with acid 
phosphatase (1.0 units) prior to SDS-PAGE (8,10). 

teins were eluted, resolved by SDS-PAGE, and analyzed 

by immunoblotting using an anti-BCL-3 antibody (Fig. 

4). BCL-3 did not bind to the KB motif DNA by itself 

(lane 4), but in the presence of (p50)2 it was recovered in 

a complex associated with DNA (lane 6). Ternary com- 

plex formation was observed using both IgK and H-2 KB 

motifs, p65 homodimers or p50/65 heterodimers tested 

under the same conditions failed to interact with BCL-3, 

although these proteins were efficiently retained on im- 

munoglobulin KB motif DNA, or H-2 KB motif DNA, as 

shown by immunoblotting using anti-p50 and anti-p65 

antibodies (data not shown). These results demonstrate 

that BCL-3 can specifically associate with (p50)2 while 

the homodimer is bound to a KB motif in DNA. 

We attempted to demonstrate the ternary complex by 

mobility shift assay using the same protein preparations 

as in the previous experiment. However, the mobility of 

the p50-DNA complex was identical in the presence or 

absence of BCL-3. Also, our anti-BCL-3 antibody failed to 

affect the mobility of the pS0--DNA complex when 

BCL-3 was added. Presumably BCL-3 dissociates from 

the complex during the electrophoretic analysis. Re- 

cently, Bours et al. (1993) demonstrated significant ter- 

nary complex formation composed of p50, BCL-3, and KB 

motif DNA under their EMSA conditions. Interestingly, 

under the same conditions, BCL-3 does not inhibit bind- 

ing of p50 to DNA. This is consistent with our observa- 

tion that mammalian BCL-3 exhibited a moderate inhib- 

itory effect on p50 DNA binding only when > 10x molar 

excess of BCL-3 was added, whereas insect cell-derived 

BCL-3 was clearly highly inhibitory to pS0 DNA binding 

{Nolan et al. 1993; T. Fujita et al., unpubl.). This is pre- 

sumably attributable to the altered modification of pro- 

teins in insect versus mammalian cells (H6ss et al. 1990; 

also see Discussion). 

BCL-3 activates transcription by p50 in vitro 

The above results prompted us to test the function of 

BCL-3 as a transcriptional activator in vitro. The 293 

cell-derived BCL-3 and a control extract from mock- 

transfected 293 cells were partially purified by mono Q 

chromatography (Materials and methods}. HeLa cell nu- 

clear extract, which is devoid of detectable amounts of 

p50, p65 (Fujita et al. 1992), and BCL-3 proteins (deter- 

mined by Western blotting; data not shown), was sup- 

plemented with partially purified BCL-3 or a control 

preparation and used for transcription reactions (also free 

of p50 and p65 as shown by immunoblotting; data not 

included). A mixture of a reference template (containing 

only a TATA box) and a test template (containing three 

tandem repeats of a KB motif) were first reacted with 

varying amounts of the NF-KB subunits on ice and then 

transcribed in HeLa cell nuclear extract with or without 

added BCL-3 (Materials and methods). Transcripts were 

detected by primer extension and quantitated using a 

PhosphorImager: Their values were normalized to the 

reference transcript. The IFN-[3 KB motif, shown previ- 

ously to be activated poorly by p50 homodimer in vitro, 

was significantly further activated by the addition of 

BCL-3 (Fig. 5B). Addition of BCL-3 alone (Fig. 5B, ordi- 

nate) did not increase transcription. Transcriptional ac- 

tivation by p65 homodimers was not affected by BCL-3 

(Fig. 5A), consistent with the finding that BCL-3 does not 

associate with (p65)2 (Fig. 4). Similarly, activation by 

p50/65 heterodimers was not affected by BGL-3 (Fig. 5C), 

which also failed to interact with p50/65 in vitro (Fig. 4). 

Figure 4. BCL-3 specifically associates with p50 bound 
to KB motif DNA. Insect cell-derived NF-KB subunits (1 
pmole) were mixed with 293 cell-derived BCL-3 (1.2 
pmole), and biotinylated DNA probe containing three 
copies of the KB motif from the IgK gene {1.2-pmole 
sites) was incubated in different combinations. Proteins 
bound to DNA were separated out by streptavidin-aga- 
rose column chromatography. The bound fractions 
were size ffactionated by electrophoresis in SDS, and 
the presence of BCL-3 was determined by Western blot- 
ting using a rabbit anti-BCL-3 serum. The additions to 

individual samples are indicated. 
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Figure 5. In vitro, BCL-3 activates a KB 
motif-containing promoter synergistically 
with p50. Templates containing three tan- 
dem repeats of the IFN-B KB motif (A,B), 
the IgKB motif (C,D), or the H-2 KB motif 
(E) were first reacted with the indicated 
amounts of purified recombinant p65 (A), 
p50 (B,D,E) or p50/65 (C). The templates 
were then transcribed using HeLa cell nu- 
clear extract supplemented with partially 
purified control fraction {[~) or BCL-3 frac- 
tion (O). Original autoradiographs are 
shown above each panel: Control (bottom 
set) or plus BCL-3 {top set). Primer exten- 
sion products for test transcripts (bottom 
band) and reference transcripts (top band) 
are seen as described previously (Fujita et 
al. 1992). The amounts of NF-KB subunits 
added were 0, 74, 220, and 670 fmoles 
(from left to right). 

BCL-3 also augmented p50-dependent transcription on 

immunoglobulin and H-2 KB sites (Fig. 5D, E). Because 

the H-2 KB site is the one activated most efficiently by 

(p50)~, the further stimulation by BCL-3 produced the 

highest level of in vitro activity that we have observed 

using NF-KB-related proteins (Fig. 5E). The two- to three- 

fold activation by BCL-3 was approximately that ob- 

served in vivo (Fig. 2). These in vitro results again con- 

firm that BCL-3 has properties distinct from those of 

IKB-e~, which acts as a strong inhibitor of transcription in 

vitro (Kretzschmar et al. 1992; T. Fujita, G.P. Nolan, 

H.-C. Liou, M.L. Scott, and D. Baltimore, unpubl.). 

D i s c u s s i o n  

BCL-3, a transcriptional coactivator 

We find that BCL-3 can be a transcriptional coactivator, 

in direct contrast to the inhibitory function of the related 

IKB-~ protein. In the presence of (p50)2, but not by itself 

or with pS0/p65 or (p65)2, BCL-3 forms a ternary com- 

plex with DNA and stimulates transcription. We also 

find that (p50)2 is itself an activator; BCL-3 superstimu- 

lates its activity by two- to threefold. Transfection ex- 

periments and in vitro analyses give congruent results. 

Recently, Bours et al. (1993) reported similar findings 

that BCL-3 can directly coactivate with p52. 

Our findings with BCL-3 are reminiscent of earlier 

work on the herpes virus coactivator, VP16. That pro- 

tein, too, is inactive alone but binds in a ternary complex 

with Oct-1 and stimulates transcription as a conse- 

quence of a highly acidic trans-activation domain 

(Tanaka et al. 1988). VP16 interacts with both Oct-1 and 

the DNA in the complex; we have no indication that 

BCL-3 interacts with DNA. 

BCL-3 might increase the magnitude of transcription 

by (p50)2 through two mechanisms. First, the proline- 

rich regions in BCL-3 could provide activation domains 

as do those in the CTF/NF-1 and AP-2 factors (Williams 

et al. 1988; Mermod et al. 1989). Our finding that ABCL- 

3, which lacks the proline domains, failed to activate 

may be relevant to this. Second, p50, whose transcrip- 

tional activity is correlated to a specific protease-resis- 

tant conformation in vitro (Fujita et al. 1992), may be put 

into its active conformation more efficiently as a result 
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of association with BCL-3. These are not mutually ex- 

clusive notions. 

The observation that excess mammalian BCL-3 inhib- 

its DNA binding by (p50)2 (Nolan et al. 1993) suggests 

that the ternary complex is less stable than the p50- 

DNA complex. In vitro transcription results suggest that 

although less stable, this unit can participate in forming 

an active initiation complex resulting in a higher rate of 

transcription. 

Gene regulation by p50 and BCL-3 

Biologically, the individual NF-KB subunits have multi- 

ple specific functions. The classical NF-KB, p50/65, in 

most cell types is a dormant activator, held in the cyto- 

plasm, and in a non-DNA-binding state, by IKB-~ (Bae- 

uerle and Baltimore 1988a, b, 1989; Nolan and Baltimore 

1992). Upon cellular stimulation, the heterodimers are 

released from inhibition and move to the nucleus to ac- 

tively promote specific gene expression (Nolan and Bal- 

timore 1992). The (p50)2 form, and perhaps (p52)2 in 

some cells, detected in the nuclei of many cell types as 

KBF-1 (Isra61 et al. 1987), activates certain KB sites con- 

stitutively and should be subject to coactivation by BCL- 

3. Because the p50 homodimer has an extremely high 

affinity for DNA binding (Kd --5 pM) (Zabel et al. 1991; 

Fujita et al. 1992), as compared with other eukaryotic 

DNA-binding proteins (Kd --10--100 riM)(Chodosh et al. 

1986; Meisterernst et al. 1988; Harada et al. 1989; Cao et 

al. 1991), it might bind effectively to chromosomal DNA 

but not function as a strong activator. The coactivator 

BCL-3 could then easily recognize the bound (p50)2 and 

interact with it. It remains to be demonstrated whether 

BCL-3 can change DNA-binding sequence specificity of 

(p50)2. If this is the case, BCL-3 would participate in a 

more complex form of regulation. IKB-~/(Liou et al. 1992) 

can bind to (p50)2 and act as an inhibitor; how its regu- 

latory properties interact with those of BCL-3 remains to 
be determined. A (p65)2 form can readily be made in vitro 

and may exist in cells. Free (p65)2 can apparently up- 
regulate the synthesis of IKB-a, thus ensuring that it and 

NF-KB are maintained in their inactive state (Scott et al. 

1993). Finally, there are other Rel-related subunits--Rel 

itself, RelB, and the p52 derived from pl00 (NFKB-2)-- 

each of which can interact with the other Rel proteins, 

producing a panoply of potential regulatory interactions. 

Phosphorylation of BCL-3 and regulation 

The activities of BCL-3 differ from those of IKB-~. The 

interaction of IKB-a with (p65)2 and p50/65 heterodimers 

[and even (p50)2, albeit weakly] has two effects: It 

strongly impairs their DNA-binding ability, and it se- 

questers them in the cytoplasm. In short, the activity of 

IKB-a appears to be inhibitory. This may not be the 

whole story, however, because Morin and Gilmore 

(1992) reported that IKB and the carboxy-terminal seg- 

ment of p105 have activation domains as assayed in 

yeast cells. BCL-3 has two activities: one inhibitory and 

the other stimulatory. The inhibitory activity has been 

documented extensively (Franzoso et al. 1992; Wulczyn 

et al. 1992; Kerr et al. 1993; Naumann et al. 1993; Nolan 

et al. 1993): It involves a specific interaction with (p50)2 

or (p52)2 that prevents binding to DNA and even re- 

moves bound (p50)2 from DNA. Franzoso et al. (1992), 

however, have shown that the consequences can be 

stimulatory if the bound (p50)2 is removed from DNA 

and is replaced by p50/p65, which is a stronger activator. 

BCL-3 protein expressed in bacteria or insect cells shows 

the strong DNA-binding inhibitory effect specific to 

(p50)2. 
In vitro, however, mammalian cell-derived BCL-3 

binds to its target molecule, (p50)2, without dissociating 

it from DNA, and the BCL-3/p50 interaction activates 

transcription. The difference between the mammalian 

cell-derived BCL-3 and the inhibitory proteins from bac- 

teria and insect cells could be a result of post-transla- 

tional modification. H6ss et al. (1990) reported that SV40 

large T antigen produced in insect cells is altered in its 

phosphorylation as well as DNA-binding pattern. The 

critical serine residues responsible for binding to site II 

in the SV40 replication origin and down-regulation are 

underphosphorylated. In the case of insect cell-derived 

BCL-3, artificial removal of phosphate residues by phos- 

phatase treatment results in an inactivation of BCL-3 

(Nolan et al. 1993), suggesting that some phosphoryla- 

tion is required for interaction with (p50)2. It is likely 

that the function of BCL-3 protein can be regulated 

through phosphorylation of certain amino acid residues, 

making it a direct activator, an indirect activator, or even 

an inhibitor. If this is so, BCL-3 can play the sophisti- 

cated role of a double agent, depending on the needs of 

developmental processes or environmental conditions. 

In vivo function of BCL-3 

We have limited information about the expression of 

BCL-3 protein in vivo. Its mRNA is expressed in a wide 
variety of tissues and is particularly evident in spleen, 

liver, and lung. In the regenerating liver, a KB site-bind- 

ing factor called posthepatectomy factor (PHF) is highly 

induced without p50/65 induction (Tewari et al. 1992). 
Because PHF is reactive with anti-p50 antibody, BCL-3 
might be involved in the formation of PHF. 

Results that differ from other reports 

Our results differ from those of others, including Bours 

et al. (1992, 1993) and Franzoso et al. (1992), who failed 

to observe gene activation by p50 or synergism by p50 

and BCL-3. One possible explanation for this difference 

is the nature of the p50 proteins used. Our expression 

vector was designed to make 50-kD protein (amino acids 

1-401; Fujita et al. 1992), with an apparent molecular 

mass (by electrophoretic analysis) very similar to the en- 

dogenously processed p50 derived from overexpressed 

p105 in 293 and L929 cells (data not shown). Also, trans- 

fection of a p105 expression plasmid to L929 cells, which 

results in the expression of endogenously processed ma- 

ture p50, showed synergism with BCL-3 (Fig. 2A). Other 

1360 GENES & DEVELOPMENT 

 Cold Spring Harbor Laboratory Press on August 22, 2022 - Published by genesdev.cshlp.orgDownloaded from 

http://genesdev.cshlp.org/
http://www.cshlpress.com


bcl-3 encodes a coactivator 

studies have u t i l ized  a cons t ruc t  tha t  should  produce a 

s ignif icant ly  longer p50 (XbaI t runca t ion ,  amino  acids 

1-503; expected molecu la r  mass, >60  kD), inc lud ing  

those  studies tha t  failed to see ac t iva t ion  by p50 and 

BCL-3 (Beg et al. 1992; Franzoso et al. 1992). The  longer 

p50 is no t  processed to a proper size in vivo (T. Fujita et 

al., unpubl.)  and failed to cooperate  w i th  BCL-3 effi- 

c ien t ly  (Fig. 2B). Cell  l ine differences or pecul iar i t ies  of 

the t ransfec t ion  m e t h o d  are un l i ke ly  explanat ions  for 

the  different  resul ts  because we found a s imi lar  syner- 

g ism us ing  the  NTera-2 cell l ine tha t  was used by Fran- 

zoso et al. (1992) and fo l lowing the i r  protocol  (Fig. 2B). 

Because we showed tha t  a reporter  gene regulated by the 

HIV LTR was also coact ivated by p50 and BCL-3, i t  is 

un l i ke ly  tha t  the  reporter  used in our o ther  exper iments  

is peculiar .  In some of the publ i shed  cotransfect ions,  the 

level  of BCL-3 could be inappropr ia te  to reproduce syn- 

ergism wi th  p50 because m a m m a l i a n  BCL-3 added in 

excess over p50 can be inh ib i to ry  for D N A  binding (Fran- 

zoso et al. 1992; T. Fujita et al., unpubl.).  

M a t e r i a l s  and  m e t h o d s  

Construction of plasmids 

Reporter constructs with or without three tandemly repeated 

KB motifs upstream of a minimal IFN-J3 promoter [ -55  to + 19 

(Fujita et al. 1992)] were prepared from pBL, a plasmid contain- 

ing Photonius pyralis luciferase eDNA (De Wet et al. 1987) and 

the polyadenylation site from pSV2 (between HindIII and HincII 

sites of pBluescript KS + ). pBL was digested with Sinai and Hin- 

dIII, and the larger fragment was isolated. This fragment and a 

HindIII-SalI fragment (whose SalI end had been blunted) from 

p-55IgKcat (Fujita et al. 1992) were ligated to generate 

p-55IgKLuc, pHIVLTRLuc {originally p22Luc), containing the 

HIV-1 LTR upstream of the luciferase structural gene, was a 

kind gift of Dr. K. Saksela (The Rockefeller University, New 

York). pEVRF105 was constructed by cloning the p105 eDNA 

(Ghosh et al. 1990) into pEVRF1 (Matthias et al. 1989). 

pCDM50, pCDM65, pCDMBCL3, pCDMABCL3, and pCDMIKB 

were constructed by cloning the pS0 eDNA (from pVLp50; Fu- 
jita et al. 1992), the p65 eDNA (from pVLp65; Fujita et al. 1992), 

the mouse BCL-3 eDNA (Nolan et al. 1993), a portion of mouse 

BCL-3 (ABCL-3; spanning amino acids 104-352) and the IKB-a 

eDNA (Liou et al. 1992) into CDM8 {Seed 1987) downstream of 

the cytomegalovirus promoter. The p50Xba expression vector, 

pCMV50Xba, was a kind gift of Dr. S. Akira (Tokyo University, 

Japan). pRSVp49 was obtained from C.S. Duckett. 

Luciferase activity assay 

L929 cells were seeded 1 day before transfection (5 x lO s cells/ 

well in 24-well dishes). Transfection was performed by the 

DEAE--dextran protocol (Seed 1987). Total amounts of plasmid 

were kept constant by adding empty vector. After 48 hr, the 

culture medium was removed and cell lysis buffer was added 

(200 ~1; Luciferase Assay System, Promega). A portion of the 

extract (3 ~1) was reacted with luciferase substrate (27 ~1}. The 

luminescence was quantitated by a scintillation counter (Beck- 

man) in the single photon mode. Backgrounds from the sub- 

strate solution and the counter were -30,000 cpm. L929 cells 

transfected with reporter construct alone usually gave 100,000- 

1,000,000 cpm, which was taken as basal activity (onefold). 

NTera cells were transfected as described elsewhere (Bours et al. 

1992). Extracts (500 ~1) were prepared from 3 x 106 cells, and a 

portion (3 ~1) was subjected to luciferase reaction (above). 

Western blotting 

Western blotting was performed using 1 : 1000 diluted rabbit 

polyclonal antisera as primary antibody (Liou et al. 1992) and 

alkaline phosphatase-conjugated goat anti-rabbit antibody as 

secondary reagent. Phosphatase treatment was performed in 0.1 

M MES buffer (pH 6.0). 

BCL-3 production and purification 

293T cells were seeded 24 hr before transfection (3 x 106 cells/ 

5-cm dish). Cells were transfected with pCDMBCL3 by the cal- 

cium phosphate method. Fifteen hours after addition of DNA, 

the cells were washed and incubated further for 33 hr. Whole- 

cell extract was prepared with buffer D' (20 mM HEPES at pH 

7.9, 1 mM EDTA, 1 mM DTT, 10% glycerol, 0.1% NP-40), con- 

taining 400 mM NaC1, by vortexing briefly. The suspension was 

clarified by centrifugation (100,000g for 30 min), and the super- 

natant was diluted with buffer D' to a final NaC1 concentration 

of 50 mM. After removal of insoluble materials by centrifuga- 

tion (lO0,000g for 30 rain), the lysate was applied to an FPLC 

mono Q column. The column was washed with buffer D' con- 

taining 50 mM NaC1, and proteins were eluted by NaC1 gradient 

(50-1000 mM, in the same buffer). BCL-3 was reproducibly 

eluted at -100 mM NaC1 as detected by Western blotting using 

anti-BCL-3 antiserum. Control fractions were prepared identi- 

cally, except pCDMBCL3 DNA was omitted. The control and 

BCL-3 fractions were adjusted to 50 mM NaC1 by addition of 

buffer D'. The control lysate was negative for BCL-3 by Western 

blotting (data not shown). Protein species contained in the par- 

tially purified control and BCL-3 fractions were indistinguish- 

able after SDS-PAGE and Coomasie brilliant blue staining. 

Test for association of KB motif DNA, NF-KB subunits 
and BCL-3 

The probes used were double-stranded DNA oligonucleotides 

containing three tandem repeats of either the IgK or H-2 KB 

motifs {Fujita et al. 1992). The oligonucleotides were annealed, 
and their ends were filled in with Klenow DNA polymerase in 

the presence of a trace amount of [32p]dCTP, together with cold 

dCTP, dTTP, dGTP, and biotin-dATP (each 0.2 raM). About 

65% of the probe molecules were biotinylated (32.5% of the 

endsl. Reaction mixtures (50 ~1) containing combinations of 

biotinylated KB motif DNA (1.2 pmole), NF-KB subunits (1 

pmole), and 293-cell derived BCL-3 (crude, 1.2 pmole) in buffer 

D' were incubated at 4~ for 10 min and applied to a streptavi- 

din-agarose column (20-~tl bed). The column was washed with 

100 ~tl of buffer D' containing 50 mM NaC1. The bound proteins 

were eluted with SDS-PAGE sample buffer and subjected to 

Western blotting analysis, p50 and p65 homodimers and p50/65 

heterodimers were quantitated by Scatchard analysis using 

known amounts of KB motif DNA as probe. BCL-3 was quanti- 

tated by Western blotting using known amounts of insect cell- 

derived BCL-3 as standards. 

In vitro transcription 

In vitro transcription was performed as described previously, 

except that partially purified control or BCL-3 fraction tthe 

equivalent of 400 fmoles of BCL-3) was added. Test and refer- 

ence transcripts were quantitated as described previously (Fujita 
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et al. 1992). Transcription of test template by unsupplemented 

HeLa cell extract was taken as basal activity (onefold). 
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