~2 ×

The capacity of hydrogenotrophic anaerobic bacteria to compete for traces of hydrogen depends on the redox potential of the terminal electron acceptor*

Ralf Cord-Ruwisch¹, Hans-Jürgen Seitz², and Ralf Conrad²

¹ Laboratoire de Microbiologie, ORSTOM, Université de Provence, 3 Place Victor-Hugo, F-13331 Marseille Cedex 3, France ² Fakultät für Biologie, Universität Konstanz, Postfach 5560, D-7750 Konstanz, Federal Republic of Germany

Abstract. The effect of different electron acceptors on substrate degradation was studied in pure and mixed cultures of various hydrogenotrophic homoacetogenic, methanogenic, sulfate-reducing, fumarate-reducing and nitrate-ammonifying bacteria. Two different species of these bacteria which during organic substrate degradation produce and consume hydrogen, were cocultured on a substrate which was utilized only by one of them. Hydrogen, which was excreted as intermediate by the first strain (and reoxidized in pure culture), could, depending on the hydrogen acceptor present, also be used by the second organism, resulting in interspecies hydrogen transfer. The efficiency of H₂ transfer was similar when methanol, lactate or fructose were used as organic substrate, although the free energy changes of fermentative H₂ formation of these substrates are considerably different. In coculture experiments nitrate or fumarate > sulfate > CO_2/CH_4 > sulfur or $CO_2/acetate$ were the preferred electron acceptors, and an increasing percentage of H₂ was transferred to that bacterium which was able to utilize the preferred electron acceptor. In pure culture the threshold values for hydrogen oxidation decreased in the same order from $\leq 1,100$ ppm for homoacetogenic bacteria to about 0.03 ppm for nitrate or fumarate reducing bacteria. The determined H2-threshold values as well as the percentage of H₂ transfer in cocultures were related to the Gibbs free energy change of the respective hydrogen oxidizing reaction.

Key words: Interspecies H2-transfer - H2-threshold - Sulfate-reduction - Nitrate-reduction - Methanogenesis -Competition for H_2 – Gibbs free energy change – Thermodynamics - Electron acceptor

Hydrogen is a key intermediate during degradation of organic matter in anaerobic biotic environments (Hungate 1967; Zehnder 1978; Bryant 1979; Wolin 1982). H₂ is consumed by methanogenic, sulfate-reducing, and homoacetogenic bacteria. Members of these bacterial groups are able to grow chemolithotrophically with H_2 as sole energy source. Thereby they compete for H2 that has been excreted by fermentative bacteria. Since H₂ concentrations are usually extremely low in anaerobic environments (Strayer and Tiedje 1978; Robinson et al. 1981; Lovley et al. 1982;

* Parts of this work (grant to R C-R) was supported by the European Community (ST2A-0022)

Offprint requests to: R. Cord-Ruwisch

30 JUIN 1989

Conrad et al. 1985, 1986; Novelli et al. 1987) microorganisms are outcompeted for H₂ by others which more effectively utilize traces of H₂. Competition for H₂ between sulfate-reducing and methanogenic bacteria has been thoroughly investigated in the past. It has been shown that sulfate reducing bacteria are able to outcompete the CO₂ reducing methanogenic bacteria for hydrogen because of their higher affinity and higher growth yield (Winfrey and Zeikus 1977; Abram and Nedwell 1978a, b; Kristiansson et al. 1982; Lovley et al. 1982; Lovley and Klug 1983; Lupton and Zeikus 1984; Robinson and Tiedje 1984). However, the question remained why sulfate-reducing bacteria are enabled to exhibit higher affinities for H₂ than methanogenic bacteria (Kristiansson et al. 1982). Recently the threshold concentration for H₂ rather than kinetic parameters has been discussed as the factor determining the outcome of competition for traces of hydrogen (Lovley 1985; Ward and Winfrey 1986). According to this model, the successful organism keeps the H₂ partial pressure below the level that is necessary to allow H₂ oxidation by competitors. Sulfate-reducing bacteria should therefore have lower H₂ threshold levels than methanogenic bacteria. In fact, it has been demonstrated that thresholds of hydrogen oxidation were about one order of magnitude lower in sediments which contained sulfate besides bicarbonate as electron acceptor (Lovley et al. 1982).

However, presently it is unknown which factors affect the magnitude of H₂ threshold concentrations in pure or defined mixed cultures. Beside the catalytic properties of the hydrogenases which catalyze hydrogen oxidation, the Gibbs free energy change of the total reaction, including reduction of the terminal electron acceptors may also be of importance.

Hydrogenotrophic anaerobes, such as chemolithotrophic homoacetogens and sulfate reducers do not only consume H₂ but also produce H₂ (Hatchikian et al. 1976; Tsuji and Yagi 1980; Traoré et al. 1981; R. Cord-Ruwisch, M. Rousset, R. Conrad, unpublished work) when metabolizing organic substrates. Methanogens produce H2 when growing on CO (O'Brien et al. 1984) or formate (Tzeng et al. 1975) and just recently it has been demonstrated that H_2 is even produced during acetate cleavage by Methanosarcina barkeri (Lovley and Ferry 1984; Phelps et al. 1985; Krzycki et al. 1987; Boone et al 1987) and during homoacetogenesis on methanol (Cord-Ruwisch and Ollivier 1986; Heijthuijsen and Hansen 1986). By testing different representatives of homoacetogenic, sulfidogenic, and methanogenic bacteria (Cord-Ruwisch 1986; R. Cord-Ruwisch, M. Rousset, R. Conrad, unpublished work) we have recently shown that H_2 is in general a minor but significant product during

ORSTOM Fonds Documentaire

Cote : B

Nº: 26560 ex 1

М

P 151

Here we show that the threshold concentration of hydrogen is predominantly dependent on the redox potential of the terminal electron acceptor, and that H_2 is transferred from one facultatively hydrogenophilic bacterium to another one, if the latter is able to more effectively utilize the traces of H_2 due to the thermodynamically more favourable electron acceptor.

Materials and methods

ه ه ه

-31

Bacteria. The following bacterial strains were obtained from the German Collection of Microorganisms (DSM); Desulfovibrio fructosovorans strain JJ (DSM 3604), Desulfovibrio desulfuricans strain ESSEX (DSM 642), Desulfovibrio vulgaris strain G6 (as isolated from the defined syntrophic association with Syntrophus buswellii, DSM 2612TB), Methanobrevibacter arboriphilus (DSM 744), Methanobrevibacter smithii (DSM 861), Methanococcus vannielii (DSM 1224), Methanobacterium formicicum (DSM 1535). Methanospirillum hungatei (DSM 864), Sporomusa acidovorans (DSM 3132), Sporomusa sphaeroides (DSM 2875), Wolinella succinogenes (DSM 1740). Desulfobulbus elongatus and Methanospirillum SK 6 were kindly donated by Dr. Samain, INRA, Lille, France and Dr. F. Widdel, University of Urbana, Illinois, USA, respectively. *Desulfovibrio* vulgaris strain Hildenborough was obtained from Dr. C. Hatchikian, CNRS-Marseille, France. Acetobacterium carbinolicum and Acetobacterium woodii strain NZ Va 16 were kindly provided by B. Eichler and R. Bache, University of Konstanz, FRG, respectively. Sporomusa termitida isolated from termite hindguts, was kindly donated by Dr. Breznak, Michigan State University, E-Lansing, USA.

Medium and growth conditions. The anaerobic, bicarbonate buffered, sulfide-reduced freshwater medium, as described for fatty acid degrading sulfate-reducing bacteria (Widdel and Pfennig 1984) was modified by adding 1-3 mM acetate (as carbon source) and by omitting sulfate. For coculture experiments and for pure cultures with Acetobacterium woodii, Wolinella succinogenes and Sporomusa species 0.05% yeast extract was added. Electron donors and acceptors were added from sterile anaerobic stock solutions. If not otherwise stated, their final concentrations were (in mmol/ 1): fructose 10; lactate 20; methanol 20; formate 40; sulfate 20; nitrate 10; fumarate 60; caffeate 5; sulfite 10; thiosulfate 20; sulfur as powder in excess. All chemicals used were of reagent quality.

Threshold experiments. H₂-thresholds were determined in cultures grown heterotrophically on organic electron donors or chemolithotrophically on H₂. In heterotrophically grown cultures H₂ was produced and consumed during organic substrate degradation until a nearly constant H₂ concentration, i.e. the threshold, was reached after depletion of the organic substrate. In H₂-grown cultures, the gas phase was replaced by H₂-free N₂/CO₂ (80/20) and pressurized with N₂ to 1 bar overpressure. A limiting amount of H₂ (giving about 10,000 ppm) was added and the oxidation of H₂ was

followed until a threshold was reached. The H₂-threshold measurements were carried out at $28-34^{\circ}$ C using 120 ml serum bottles with 80% gas phase of H₂- and O₂-free N₂/CO₂ (80/200) mixtures. Throughout the experiments the cultures were rapidly stirred or shaken to ensure equilibrium of gas concentrations between the liquid phase and the gas phase. Hydrogen partial pressures were determined by analyzing gas samples taken from the headspace and correcting for the headspace pressure measured with a needle manometer.

Analytical methods. Methane and alcohols were determined by gas chromatography as described by Cord-Ruwisch et al. (1986). Sulfide was determined spectrophotometrically as colloidal CuS (Cord-Ruwisch 1985). Organic acids and fructose were analyzed by HPLC (Cord-Ruwisch et al. 1986). Hydrogen was measured with a H₂ analyzer based on the HgO-Hg conversion technique (Seiler 1978; Seiler et al. 1980), and with the commercial H₂ analyzer (RGD2 & RGA2) of Trace Analytical, Stanford, CA, USA. The detection limit for H₂ was 0.01 ppm.

Competition experiments. All coculture experiments were carried out at 34°C with 10% freshly grown inoculum taken during the exponential growth phase of the respective pure cultures. Bacteria were grown on methanol lactate or fructose with or without a second bacterial strain which was unable to utilize the organic substrate but was able to use H_2 as electron donor which was eventually excreted by the first strain. The second bacterial strain was able to utilize electron acceptors which were added but could not be used by the first strain. The H₂-producing and H₂ consuming reactions studied are summarized together with the standard Gibbs free energies per mol of H₂ formed or utilized and the redox potentials under standard conditions and pH 7 (Table 1). The fermentation balances of the cocultures were determined after the organic substrate was utilized by measuring the degradation products (acetate, ethanol) and the reduced electron acceptors. The stoichiometry of the H2producing reactions listed in Table 1 allowed to calculate the amount of reducing equivalents transferred (presumably as H_2) from one strain to the other.

Results

Coculture experiments

In pure culture, the homoacetogenic bacterium Sporomusa acidovorans produced 0.75 mol acetate from oxidation of 1 mol of methanol by using CO₂ as electron acceptor (Cord-Ruwisch and Ollivier 1986). However, when cocultured with hydrogen consuming anaerobes, S. acidovorans reduced much less CO₂ to acetate and instead allowed growth of the hydrogenotrophes present, by transfer of reducing equivalents (Table 2).

This transfer occurred with more than 90% efficiency when S. acidovorans was cocultured with fumarate, sulfate or nitrate-reducing H₂ oxidizers (Table 2). In this case S. acidovorans oxidized methanol, presumably to CO_2 , but did not form acetate, while the cocultured bacterium reduced sulfate to sulfite (*Desulfovibrio* sp.), nitrate to ammonium (*Wolinella succinogenes*), or fumarate to succinate (*W. succinogenes*) in almost stoichiometric amounts. Since the cocultured hydrogenotrophic bacteria were unable to oxidize

2	50
Э	22

Reactions			⊿G°′ [kJ/mol H₂]	E°′ [mV]
H_2 -producing reactions $C_6H_{12}O_6 + 4H_2O$		$2 \text{ CH}_3 - \text{COO}^- + 2 \text{ HCO}_3^- + 4 \text{ H}^+ + 4 \text{ H}_2$	-51.5	-681
$CH_3 - CHOH - COO^- + 2 H_2O$ $CH_3OH + 2 H_2O$		$CH_3 - COO^- + HCO_3^- + H^+ + 2 H_2 + HCO_3^- + H^+ + 3 H_2$	-2.0 + 7.7	424 374
H ₂ -consuming reactions				
$4 H_2 + 2 HCO_3^- + H^+$		$CH_3 - COO^- + 4 H_2O$	-26.1	-279
$H_2 + S^o$	\leftrightarrow	$HS^- + H^+$	-27.8	-270
$4 H_2 + HCO_3 + H^+$		$CH_4 + 3 H_2O$	-33.9	-238
$4 H_2 + SO_4^{2-} + H^+$		$4 H_2 O + HS^-$	-38.0	-217
$4 H_2 + S_2 O_3^2$	\leftrightarrow	$2 \text{ HS}^- + 3 \text{ H}_2\text{O}$	-43.5	
$3 H_2 + SO_3^{2-}$	\leftrightarrow	$HS^{-} + 3 H_2O$	-57.2	-118
H_2 + caffeate	\leftrightarrow	Hydrocaffeate	-85.5ª	+ 29
$H_2 + fumarate$		Succinate	-86.2	+ 32
$4 H_2 + NO_3^- + 2 H^+$	\leftrightarrow	$\rm NH_4^+$ + 3 H ₂ O	-149.9	+363

Table 1. Overview of reactions studied and of their Gibbs free energies and redox potentials under standard conditions

Values calculated from Thauer et al. (1977). E^{ov} of the couples accepting electrons from H₂ was calculated relative to the redox potential of H₂ (-414 mV)

^a Estimated from Grbić-Galić (1985)

Table 2. The effect of different hydrogen consuming bacteria on CO_2 reduction to acetate by *Sporomusa* species degrading methanol, fructose or lactate

Organic substrate	Strain I	Strain II	Electron accept. II	Electron accept. II reduced per mole substrate oxidized	Acetate pro- duced from CO_2 -reduction	Transfer of H₂ [%] to strain II
Methanol Methanol Methanol Fructose	Sporomusa acidovorans	Methanosprill. Desulfovibrio Wolinella Desulfovibrio	CO ₂ sulfate nitrate sulfate	0.27 methane 0.69 sulfide 0.73 ammonium 0.94 sulfide	0.41 0.00 0.00 0.00 ^a	36-55 92-100 97-100 94-100
Methanol Methanol Lactate	Sporomusa sphaeroides	Desulfovibrio Wolinella Wolinella	sulfur fumarate fumarate	0.24 sulfide 2.75 succinate 1.73 succinate	0.57 0.00 0.00 ^b	

All values given in mol per mol substrate degraded. Transfer of hydrogen was calculated from the relative amount of electron acceptor II reduced as well as from the deficit of acetate produced from CO_2

^a 1.88 mol acetate produced/mol fructose were considered to originate from fructose degradation

^b 0.95 mol acetate produced/mol lactate were considered to originate from lactate degradation

methanol they apparenty were able to "pull" reducing equivalents presumably as H_2 , from the methanol-degrading *Sporomusa*. The same observation was made when fructose served as electron donor or with *Sporomusa sphaeroides*, degrading lactate, in the presence of the mentioned hydrogenotrophs. CO₂-reducing methanogens or sulfur reducing *Desulfovibrio* only "pulled" 8-40% of the total reducing equivalents produced as H_2 by the *Sporomusa* species. Similar results were obtained when *Acetobacterium woodii* served as H_2 producing bacterium.

Growing on lactate plus sulfate, *Desulfovibrio vulgaris* allowed 24-30% transfer of reducing equivalents (as H₂) to *W. succinogenes* reducing NO₃⁻ which is the energetically more favourable electron acceptor than sulfate. However, no H₂ was transferred to *Methanospirillum hungatei* or *S. sphaeroides* using an electron acceptor which is energetically less favourable than sulfate (Table 3). When replacing sulfate by elemental sulfur, which is the energetically less favourable electron acceptor *Desulfovibrio vulgaris* no longer produced sulfide but transferred all reducing equivalents to *W. succinogenes* (Table 3). Cocultures of sulfur-reducing *D. vulgaris* with CO_2 reducing *S. acidovorans* or *M. hungatei* resulted in reduction of both electron acceptors (Table 3).

In the absence of external electron acceptors Desulfovibrio fructosovorans strain JJ ferments 2 mol fructose to 1 mol succinate, 1 mol acetate, and 1 mol ethanol (Cord-Ruwisch et al. 1986). Only traces of hydrogen (7,600 ppm) were produced during this fermentation. In the presence of sulfur or sulfate D. fructosovorans also used these external electron acceptors and produced sulfide instead of ethanol or succinate. External electron acceptors such as sulfate or sulfur apparently were competing for reducing equivalents with the internal electron acceptors such as acetylaldehyde or fumarate. The same shift of electron flow away from the formation of the fermentation products ethanol and succinate was observed when the activity of hydrogen consuming bacteria allowed the use of protons as external electron sink by coupling by oxidation of fructose via interspecies H_2 transfer to CO_2 or NO_3^- reduction (Table 4). The amount of H₂ transferred to the accepting systems was correlated to the free energy change of the oxidation of H_2 with the electron acceptor used. Virtually all reducing

Electron acceptor I	Strain II	Electron accept	H_2 trans-		
		Electron acceptor II	Strain I (sulfide)	Strain II	 ferred [%] to strain II
Sulfate	Methanospirillum	CO ₂	0.47	0.0	0
Sulfate	Sporomusa sphaeroides	CO ₂	0.51	0.0	0
Sulfate	Wolinella	nitrate	0.35	0.12 ammonia	24 - 30
Sulfur	Methanospirillum	CO_2	0.73	0.30 methane	60-64
Sulfur	Sporomusa acidovorans	CO_2	0.34	0.37 acetate ^a	74-83
Sulfur	Ŵolinella	nitrate	0.0	0.46 ammonia	92-100

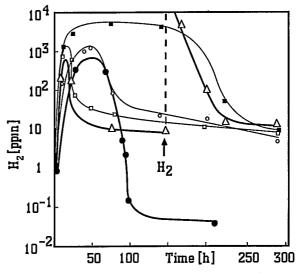
Table 3. The effect of different hydrogen consuming bacteria on sulfide production by *Desulfovibrio vulgaris* strain G6 during lactate degradation

Values given in mol per mol lactate degraded

^a Corrected by considering of 1 mol acetate produced per mol of lactate

 Table 4. Effect of different external hydrogen acceptors on the reduction of internal electron acceptors (ethanol and succinate production)

 by Desulfovibrio fructosovorans during the growth on fructose. Values are given in mol per mol fructose degraded


External H ₂ -sink		Acetate	Ethanol	Succinate	External hydrogen acceptor reduced	H ₂ transfer to external H ₂ -sink
Without		0.4	0.3	0.8		0.0
Sulfur		1.1	0.2	1.0	$1.0 H_2S$	1.0
Sulfate		1.9	0.0	0.0	$1.0 H_2 S$	4.0
Sporomusa sphaeroides	(CO_2)	2.4	0.1	1.0	0.4 acetate	1.6
Methanospirillum hungatei	(CO_2)	1.2	0.0	0.3	0.7 CH₄	2.8
Wolinella succinogenes	(NO_3^2)	1.7	0.0	0.1	1.2 NH_{4}^{+}	4.0

equivalents of fructose were used to reduce sulfate or nitrate if present as external electron acceptor, whereas only part of the electrons were used to reduce CO_2 or sulfur as external H_2 sink. In the latter case, internal electron acceptors generated during fermentation of fructose apparently were preferred and succinate and ethanol were excreted as reduced products of fructose oxidation.

Pure culture experiments

The results of the coculture experiments suggested that the efficiency of competition between the strains depended on their capacity to oxidize low concentrations of hydrogen. Therefore, the threshold values of hydrogen oxidation were measured in pure cultures of the individual strains used for the coculture experiments and compared to the threshold values of other strains of homoacetogenic, methanogenic and sulfate-reducing bacteria. Figure 1 shows the partial pressures of H₂ in cultures of Desulfovibrio desulfuricans growing on lactate with different electron acceptors. H_2 was intermediarily formed during lactate degradation similar as shown by previous experiments (Hatchikian et al. 1976; Tsuji and Yagi 1980; Traoré et al. 1981; Lupton et al. 1984) but was degraded until a certain threshold value was reached. These threshold H₂-mixing ratios were about 5-25 ppm when sulfate, thiosulfate, sulfite or sulfur served as the only electron acceptor (Fig. 1). With nitrate, however, which is an energetically much more favourable electron acceptor than sulfate (see Table 1) hydrogen was oxidized down to mixing ratios 100-fold lower (0.02-0.03 ppm, Fig. 1).

Figure 2 shows similar experiments with *A. woodii* growing on hydrogen as electron donor and with or without

Fig. 1. Time course of hydrogen production and consumption during and after lactate degradation by *Desulfovibrio desulfuricans* Essex with different external electron acceptors. Concentrations are given in the Materials and methods section: \bullet Nitrate, \triangle sulfate, \Box thiosulfate, \bigcirc sulfite, \blacksquare sulfur

caffeate as additional electron acceptor (Bache and Pfennig 1981; Tschech and Pfennig 1984). The final H_2 threshold was much lower with caffeate than with CO_2 as electron acceptor, again indicating that the energetically more favourable electron acceptor allows the utilization of lower H_2 concentrations. Similar H_2 threshold concentrations

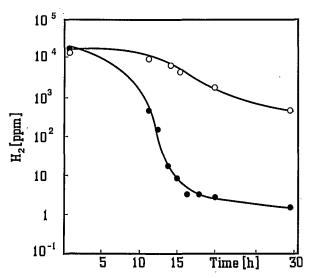


Fig. 2. Time course of hydrogen oxidation by Acetobacterium woodii with CO_2 and CO_2 + caffeate as terminal electron acceptor. Two cultures were grown on H_2/CO_2 (80/20) and on H_2/CO_2 + caffeate [5 mM], respectively. After the end of growth H_2 (ca. 10,000 ppm) was added to both cultures and caffeate [1 mM] to one of them. $\bigcirc CO_2$, $\bigoplus CO_2$ + caffeate

were reached, however, with W. succinogenes and Desulfovibrio desulfuricans which both are able to oxidize H₂ by the reduction of fumarate to succinate or nitrate to ammonia (Table 5).

Table 5 summarizes the H_2 -thresholds that were measured for the individual H_2 -oxidizing reactions by using various strains of bacteria. The results indicate that there is a systematic trend from relatively high (ca. 1,000 ppm H_2) to very low (ca. 0.03 ppm H_2) threshold concentrations with increasing Gibbs free energy changes of the H_2 -consuming reaction.

Discussion

Our results show that two bacterial species could compete in coculture for an organic substrate although one of them was unable to utilize the substrate in pure culture. This is most probably due to the fact that small amounts of H₂ are produced during the degradation of the substrate by the first species and that both species compete for the excreted H_2 . This results in an interspecies H₂ transfer as soon as the second bacterium has a similar or higher H₂ utilizing efficiency than the first one. The efficiency of transfer of reducing equivalents was paralleled by the efficiency to utilize H₂ down to low threshold concentrations and dependent on the energetics of the H2-utilizing reaction. Hence, electron acceptors with increasing redox potentials resulted in decreasing H₂ thresholds and increasing H₂ transfer to those bacterial species which were able to utilize the energetically more favourable electron acceptor. This interspecies communication via H2 appears to be independent of the H₂ producing reaction, as similar results were obtained with methanol, lactate and fructose as organic substrates. These substrates are distinguished by the Gibbs free energy and thus by the ease of H₂ liberation during substrate degradation.

The degradation of a substrate can be accomplished in syntrophy by one bacterium oxidizing the substrate by reducing protons and the other bacterium oxidizing H₂ by reducing a suitable electron acceptor (McInerney and Bryant 1980; Wolin 1982; Mah 1982; Schink 1987). Recently it has been shown that methanol-utilizing homoacetogens completely transferred the reducing equivalents generated during substrate oxidation to H₂-utilizing sulfate reducers (Cord-Ruwisch and Ollivier 1986; Heijthuijsen and Hansen 1986). The interspecies H₂-transfer took place although the homoacetogen was not able to conserve energy for growth during oxidation of methanol. Interspecies H2-transfer was even observed in cocultures of sulfate-reducing Desulfovibrio with the acetate utilizing Methanosarcina as H₂ donor (Phelps et al. 1985). Methanosarcina apparently produced less CH₄ from the methyl group of acetate when an H₂-accepting bacterium was present that was able to "pull" reducing equivalents by energetically favourable H_2 -uptake reaction. In this case the two electron acceptors in competition for reducing equivalents were apparently the methyl group of acetate and sulfate (via proton reduction to H_2). Our results are in line with these observations, indicating that reducing equivalents are utilized by those metabolic reactions which allow the higher yield of energy.

Our results further indicate that H_2 -transfer may be brought about by reaching a lower H_2 -threshold concentration when the H_2 -utilizing reaction is thermodynamically more efficient. This supports our view (R. Cord-Ruwisch, M. Rousset, R. Conrad, unpublished work) that facultatively hydrogenotrophic bacteria communicate by means of a particular range of H_2 concentration (H_2 -buffer) that is maintained within the ecosystem as long as the availability of electron donors and acceptors is maintained, i.e., the thermodynamic conditions of H_2 utilization are constant.

The thermodynamic conditions do not only depend on the nature of the redox couple but also on the concentrations of the electron donor H₂ and of the different electron acceptors. Hence, the low solubility of elemental S° as electron acceptor may explain why sulfur-reducing bacteria competed less efficiently with homoacetogenic and methanogenic bacteria for reducing equivalents, so that the latter species were able to pull 60-80% of the reducing equivalents from sulfur-reducing but not from sulfate-reducing Desulfovibrio. Similarly, the fermentative disproportionation of fructose by *Desulfovibrio fructosovorans* was partially replaced by reduction of external sulfur or sulfate, or by transfer to H₂-utilizing homoacetogens and methanogens, although the reduction of intracellularly generated fumarate to succinate should be energetically more favorable. The intracellular fumarate concentrations were most probably too low to compete for reducing equivalents with the high concentrations of external electron acceptors. This is in accordance with the observation that fumarate was used in addition to sulfate as electron acceptor when the electron donor H_2 was saturating, but were used instead of sulfate, when H₂ concentrations were low (unpublished work).

Nitrate is used as electron acceptor for respiratory nitrate ammonification by *Wolinella succinogenes* (Bokranz et al. 1983) and *Desulfovibrio desulfuricans* (Seitz and Cypionka 1986). Both bacteria showed the highest efficiency to use low concentrations of H_2 and to pull reducing equivalents from other facultative hydrogenotrophic bacteria in the

 Table 5. Effect on electron acceptor on the threshold of H_2 in different hydrogenophilic bacteria growing on organic substrates or H_2 .

 Values given are means of at least duplicate experiments. Reproducibility was about $\pm 50\%$

Electron acceptor oxidized/reduced	· · · · · · · · · · · · · · · · · · ·		H ₂ [ppm]	
CO ₂ /acetate	Sporomusa acidovorans	methanol	430	
	Sporomusa termitida	H ₂	830	
	Acetobacterium woodii	H ₂	520	
	Acetobacterium carbinolicum	H ₂	950	
Sulfur/sulfide	Desulfovibrio fructosovorans JJ	lactate	24	
	Desulfovibrio desulfuricans Essex	lactate	10	
	Wolinella succinogenes	H ₂	5	
CO ₂ /CH ₄	Methanospirillum hungatei	formate	25	
	Methanospirillum hungatei	H_2	30	
	Methanobrevibacter smithii	H_2	100	
	Methanobrevibacter arboriphilus	H_2	90	
	Methanobacterium formicum	H_2	28	
	Methanococcus vannielii	H_2	75	
Sulfate/sulfide Desulfovibrio fructosovorans JJ		lactate	12	
Desulfovibrio vulgaris Hildenborough		lactate	19	
Desulfovibrio vulgaris G6		lactate	16	
Desulfovibrio desulfuricans Essex		lactate	8	
Desulfovibrio desulfuricans Essex		H_2	9	
Desulfobulbus elongatus		lactate	13	
Sulfite/sulfide	Desulfovibrio desulfuricans Essex	lactate	6	
Thiosulfate/sulfide	niosulfate/sulfide Desulfovibrio desulfuricans Essex		7	
Caffeate/hydrocaffeate	Acetobacterium woodii	H_2	3	
Fumarate/succinate	Wolinella succinogenes	H ₂	0.02	
	Desulfovibrio fructosovorans JJ	fumarate	0.9 ª	
Nitrate/ammonia	Desulfovibrio desulfuricans	lactate	0.03	
	Desulfovibrio desulfuricans	H ₂	0.03	
	Wolinella succinogenes	H ₂	0.02	

^a D. fructosovorans disproportionates fumarate to acetate and succinate, so that fumarate as electron acceptor may become limiting at the end of growth rather than H_2

presence of an organic electron donor. Even sulfate reduction was partially outcompeted by nitrate ammonification. It has earlier been shown that sulfate reduction in sediments may be inhibited upon addition of nitrate. This effect has been explained by the toxicity of eventually produced intermediates (nitrite) (Hukelikian 1943; Jenneman et al. 1986). However, the inhibitory effect of nitrate may as well be explained by successful competition for H_2 as important intermediate of organic matter degradation similar as the inhibitory effect of sulfate on methane production was explained (Winfrey and Zeikus 1977; Abram and Nedwell 1978a; Kristiansson et al. 1982).

14

Our results confirm the general validity of the concept that H_2 -consuming reactions with better energetics dominate in mixed cultures and presumably also in the environment. Our results further indicate that the level of the H_2 threshold concentration apparently is not limited by the first step, the oxidation of H_2 catalyzed by hydrogenases but by the redox potential of the terminal electron acceptor: Whereas H_2 -threshold concentrations were markedly different for different electron acceptors, they appear rather similar for the same electron acceptor even if different bacterial strains with different hydrogenases and other enzyme activities were tested.

It is unknown, whether the terminal electron acceptor may affect the kinetic properties (K_m, μ_{max}) of the H₂ consumption reaction. It has been calculated that the rate of organic substrate degradation in H_2 -syntrophic cocultures is dependent on the efficiency of the H_2 consumer to use low concentrations of H_2 (Powell 1984, 1985; Archer and Powell 1985). In light of these calculations our observations suggest that the terminal electron acceptor may be the limiting factor for the rate of substrate degradation. This is in accordance with the observation that syntrophic cocultures grow more rapidly with sulfate reducers than with methanogens as H_2 scavengers (Boone and Bryant 1980; Mountfort and Bryant 1982; McInerney et al. 1981). The relation of rates of substrate degradation to the presence of different electron acceptors and for different H_2 scavenging bacteria is presently studied in our laboratory.

Acknowledgements. We thank Dr. Jean-Louis Garcia for providing laboratory facilities (ORSTOM-Marseille) and for supporting this work.

References

- Abram JW, Nedwell DB (1978a) Inhibition of methanogenesis by sulfate reducing bacteria competing for transferred hydrogen. Arch Microbiol 117:89-92
- Abram JW, Nedwell DB (1978b) Hydrogen as a substrate for methanogenesis and sulfate reduction in anaerobic saltmarsh sediment. Arch Microbiol 117:93-97

- Archer DB, Powell GE (1985) Dependence of the specific growth rate of methanogenic mutualistic cocultures on the methanogen. Arch Microbiol 141:133-137
- Bache R, Pfennig N (1981) Selective isolation *Acetobacterium woodi* on methoxylated aromatic acids and determination of growth yields. Arch Microbiol 130:255-261
- Bokranz M, Katz J, Schröder J, Roberton AM, Kröger A (1983) Energy metabolism and biosynthesis of *Vibrio succinogenes* growing with nitrate or nitrite as terminal electron acceptors. Arch Microbiol 135:36-40
- Boone DR, Bryant MP (1980) Propionate-degrading bacterium, Syntrophobacter wolinii sp. nov. gen. nov., from methanogenic ecosystems. Appl Environ Microbiol 40:626-632
- Boone DR, Menaia JAGF, Mah RA (1987) Effects of hydrogen pressure during growth and effects of pregrowth with hydrogen on acetate degradation by *Methanosarcina* species. Appl Environ Microbiol 53:83-87
- Bryant MP (1979) Microbial methane production-theoretical aspects. J Anim Sci 48:193-201
- Conrad R, Phelps TJ, Zeikus JG (1985) Gas metabolism evidence in support of the juxtaposition of hydrogen-producing and methanogenic bacteria in sewage sludge and lake sediments. Appl Environ Microbiol 50:595-601
- Conrad R, Schink B, Phelps TJ (1986) Thermodynamics of H₂consuming and H₂-producing metabolic reactions in diverse methanogenic environments under *in situ* conditions. FEMS Microbiol Ecol 38:353-360
- Cord-Ruwisch R (1985) A quick method for the determination of dissolved and precipitated sulfides in cultures of sulfate-reducing bacteria. J Microbiol Meth 4:33-36
- Cord-Ruwisch R (1986) Facultative and partial interspecies hydrogen transfer-competition for reducing equivalents. In: Dubourguier HC, Albagnac G, Montreuil J, Romond C, Sautiere P, Guillaume J (eds) Biology of anaerobic bacteria. Elsevier, Amsterdam, pp 16-22
- Cord-Ruwisch R, Ollivier B (1986) Interspecific hydrogen transfer during methanol degradation between Sporomusa acidovorans and hydrogenophilic anaerobes. Arch Microbiol 144:163-165
- Cord-Ruwisch R, Ollivier B, Garcia J-L (1986) Fructose degradation by *Desulfovibrio* sp. in pure culture and in coculture with *Methanospirillum hungatei*. Curr Microbiol 13:285-289
- Gribić-Galić D (1985) Fermentative and oxidative transformation of ferulate by fermentatively anaerobic bacteria isolated from sewage sludge. Appl Environ Microbiol 50:1052-1057
- Hatchikian EC, Chaigneau M, LeGall J (1976) Analysis of gas production by growing cultures of three species of sulfate-reducing bacteria. In: Schlegel HG, Gottschalk G, Pfennig N (eds) Microbial production and utilization of gases. Goltze, Göttingen, pp 109-118
- Heijthuijsen JHFG, Hansen TA (1986) Interspecies hydrogen transfer in co-cultures of methanol utilizing acidogens and sulfatereducing or methanogenic bacteria. FEMS Microbiol Ecol 38:57-62
- Hukelikian H (1943) Effects of the addition of sodium nitrate on sewage hydrogen sulfide production and BOD Reduction. Sewage Works J 15:255-259
- Hungate RE (1967) Hydrogen as an intermediate in the rumen fermentation. Arch Mikrobiol 59:158-164
- Jenneman GE, McInerney, Knapp RM (1986) Effect of nitrate on biogenic sulfide production. Appl Environ Microbiol 51: 1205-1211
- Kristiansson JK, Schönheit P, Thauer RK (1982) Different K_s values for hydrogen of methanogenic bacteria and sulfate reducing bacteria: an explanation for the apparent inhibition of methanogenesis by sulfate. Arch Microbiol 131:278-282
- Krzycki JA, Morgan JB, Conrad R, Zeikus JG (1987) Hydrogen metabolism during methanogenesis from acetate by *Methanosarcina barkeri*. FEMS Microbiol Lett 40:1193-1198
- Lovley DR (1985) Minimum threshold for hydrogen metabolism in methanogenic bacteria. Appl Environ Microbiol 49:1530-1531

Lovley DR, Ferry JG (1984) Production and consumption of H_2 during growth of *Methanosarcina* spp. on acetate. Appl Environ Microbiol 49:247-249 L (# 4

¥ ...

- Lovley DR, Klug MJ (1983) Sulfate reducers can outcompete methanogens at freshwater sulfate concentrations. Appl Environ Microbiol 45:187-192
- Lovley DR, Dwyer DF, Klug MJ (1982) Kinetic analysis of competition between sulfate reducers and methanogens for hydrogen in sediments. Appl Environ Microbiol 43:1373-1379
- Lupton FS, Zeikus JG (1984) Physiological basis for sulfate-dependent hydrogen competition between sulfidogens and methanogens. Curr Microbiol 11:7-12
- Lupton FS, Conrad R, Zeikus JG (1984) Physiological function of hydrogen metabolism during growth of sulfidogenic substrates. J Bacteriol 1959:843-849
- Mah RA (1982) Methanogenesis and methanogenic partnerships. Phil Trans R Soc Lond B297:599-616
- McInerney MJ, Bryant MP (1980) Review of methane fermentation fundamentals. In: Wise DL (ed) Fuel gas production from biomass. Chemical Rubber Co. Press, West Palm Beach, pp 20-46
- McInerney MJ, Bryant MP, Hespell RB, Costerton JW (1981) Synthrophomonas wolfei gen. nov. sp. nov., an anaerobic synthrophic, fatty acid-oxidizing bacterium. Appl Environ Microbiol 41:1029-1039
- Mountfort DO, Bryant MP (1982) Isolation and characterization of an anaerobic syntrophic benzoate degrading bacterium from sewage sludge. Arch Microbiol 133:249-256
- Novelli PC, Scranton MI, Michener RH (1987) Hydrogen distributions in marine sediments. Limnol Oceanogr 32:565-576
- O'Brien JM, Wolkin RH, Moench TT, Morgan JB, Zeikus JG (1984) Association of hydrogen metabolism with unitrophic or mixotrophic growth of *Methanosarcina barkeri* on carbon monoxide. J Bacteriol 158:373-375
- Phelps TJ, Conrad R, Zeikus JG (1985) Sulfate-dependent interspecies H₂ transfer between *Methanosarcina barkeri* and *Desulfovibrio vulgaris* during coculture metabolism of acetate or methanol. Appl Environ Microbiol 50:589-594
- Powell GE (1984) Equalisation of specific growth rates for syntrophic associations in batch culture. J Chem Tech Biotechnol 34B:97-100
- Powell GE (1985) Stable coexistence of syntrophic associations in continuous culture. J Chem Tech Biotechnol 35B:46-50
- Robinson JA, Tiedje JM (1984) Competition between sulfate-reducing and methanogenic bacteria for H_2 under resting and growing conditions. Arch Microbiol 137:26-32
- Robinson JA, Strayer RF, Tiedje JM (1981) Method for measuring dissolved hydrogen in anaerobic ecosystems: applications to the rumen. Appl Environ Microbiol 41:545-548
- Schink B (1987) Principles and limits of anaerobic degradation: environmental and technological aspects. In: Zehnder AJB (ed) Environmental microbiology of anaerobes. Wiley, New York, in press
- Seiler W (1978) The influence of the biosphere on the atmospheric CO and H_2 cycles. In: Krumbein WE (ed) Environmental biogeochemistry and geomicrobiology, vol 3. Ann Arbor Science Publ, Ann Arbor, MI, pp 773-810
- Seiler W, Giehl H, Roggendorf P (1980) Detection of carbon monoxide and hydrogen by conversion of mercury oxide to mercury vapor. Atmos Technol 12:40-45
- Seitz H-J, Cypionka H (1986) Chemolithotrophic growth of *Desulfovibrio desulfuricans* with hydrogen coupled to ammonification of nitrate. Arch Microbiol 146:63-67
- Strayer RF, Tiedje JM (1978) Kinetic parameters of the conversion of methane precursors to methane in hypereutrophic lake sediment. Appl Environ Microbiol 36:330-340
- Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100-180
- Traoré SA, Hatchikian EC, Belaich JP, LeGall J (1981) Microcalorimetric studies of the growth of sulfate-reducing bacteria. Energetics of *D. vulgaris* growth. J Bacteriol 45:191-199

- Tschech A, Pfennig N (1984) Growth yield increase linked to caffeate reduction in *Acetobacterium woodii*. Arch Microbiol 137:163-167
- Tsuji K, Yagi T (1980) Significance of hydrogen burst from growing cultures of *Desulfovibrio vulgaris*, Miyazaki and the role of hydrogenase and cytochrome c_3 in energy producing system. Arch Microbiol 125:35-42
- Tzeng SF, Bryant MP, Wolfe RS (1975) Factor 420-dependent pyridine nucleotide-linked formate metabolism of *Methano*bacterium ruminantium. J Bacteriol 121:192-196
- Ward DM, Winfrey MR (1986) Interactions between methanogenic and sulfate-reducing bacteria in sediments. Adv Aquat Microbiol 3:141-179
- Widdel F, Pfennig N (1984) Dissimilatory sulfate- or sulfur-reducing bacteria. In: Krieg NR, Holt JG (eds) Bergey's manual of

systematic bacteriology. Williams & Wilkins, Baltimore London, pp 663-679

- Winfrey MR, Zeikus JG (1977) Effect of sulfate on carbon and electron flow during microbial methanogenesis in freshwater sediments. Appl Environ Microbiol 33:275-281
- Wolin MJ (1982) Hydrogen transfer in microbial communities. In: Bull AT, Slater JH (eds) Microbial interactions and communities. Academic Press, London, pp 475-543
- Zehnder AJB (1978) Ecology of methane formation. Water pollution Microbiol 2:349-376

Received June 9, 1987/Accepted November 9, 1987