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Abstract— We consider private information retrieval (PIR) of
a single file out of K files from N non-colluding databases with
heterogeneous storage constraints m = (m1, · · · , mN). The aim
of this work is to jointly design the content placement phase
and the information retrieval phase in order to minimize the
download cost in the PIR phase. We characterize the optimal PIR
download cost as a linear program. By analyzing the structure
of the optimal solution of this linear program, we show that,
surprisingly, the optimal download cost in our heterogeneous
case matches its homogeneous counterpart where all databases

have the same average storage constraint µ = 1

N

�
N

n=1
mn.

Thus, we show that there is no loss in the PIR capacity due
to heterogeneity of storage spaces of the databases. We provide
the optimum content placement explicitly for N = 3.

Index Terms— Private information retrieval (PIR), uncoded
caching, heterogeneous cache sizes, capacity.

I. INTRODUCTION

THE problem of private information retrieval (PIR), intro-

duced in [1], has attracted much interest in the infor-

mation theory community with leading efforts [2]–[6]. In the

classical setting of PIR, a user wants to retrieve a file out of

K files from N databases, each storing the same content of

entire K files, such that no individual database can identify

the identity of the desired file. Sun and Jafar [7] characterized

the optimal normalized download cost of the classical setting

to be D∗ = 1+ 1
N

+ · · ·+ 1
NK−1 . Fundamental limits of many

interesting variants of the PIR problem have been investigated

in [8]–[53].

A common assumption in most of these works is that

the databases have sufficiently large storage space that can
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accommodate all K files in a replicated manner. This may not

be the case for peer-to-peer (P2P) and device-to-device (D2D)

networks, where information retrieval takes place directly

between the users. Here, the user devices (databases) will

have limited and heterogeneous sizes. This motivates the

investigation of PIR from databases with heterogeneous stor-

age constraints. In this work, we aim to jointly design the

storage mechanism (content placement) and the information

retrieval scheme such that the normalized PIR download cost

is minimized in the retrieval phase.

Reference [36] studies PIR from homogeneous storage-

limited databases. In [36], each database has the same limited

storage space of µKL bits with 0 ≤ µ ≤ 1, where L is the

message size (note, perfect replication would have required

µ = 1). The goal of [36] is to find the optimal centralized

uncoded caching scheme (content placement) that minimizes

the PIR download cost. [36] shows that symmetric batch

caching scheme of [54] for content placement together with

Sun-Jafar scheme in [7] for information retrieval result in

the lowest normalized download cost. [36] characterizes the

optimal storage-download cost trade-off as the lower convex

hull of N pairs ( t
N

, 1 + 1
t

+ · · · + 1
tK−1 ), t = 1, · · · , N .

Meanwhile, the content assignment problem for heteroge-

neous databases (caches) is investigated in the context of coded

caching in [55]. In the coded caching problem [54], the aim

is to jointly design the placement and delivery phases in order

to minimize the traffic load in the delivery phase during peak

hours. Reference [55] proposes an optimization framework

where placement and delivery schemes are optimized by solv-

ing a linear program. Using this optimization framework, [55]

investigates the effects of heterogeneity in cache sizes on the

delivery load memory trade-off with uncoded placement.

In this paper, we investigate PIR from databases with

heterogeneous storage sizes (see Fig. 1). The nth database

can accommodate mnKL bits, i.e., the storage system is

constrained by the storage size vector m = (m1, · · · , mN ).
We aim to characterize the optimal normalized PIR download

cost of this problem, and the corresponding optimal place-

ment and optimal retrieval schemes. We focus on uncoded

placement as in [36] and [55].

Motivated by [55], we first show that the optimal normalized

download cost is characterized by a linear program. For the

achievability, each message is partitioned into 2N−1 partitions

(the size of the power set of [N ], denoted P([N ])). For

every partition, we apply the Sun-Jafar scheme [7]. The linear
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Fig. 1. PIR from databases with heterogeneous storage sizes.

program arises as a consequence of optimizing the achievable

download cost with respect to the partition sizes subject to

the storage constraints. For the converse, we slightly modify

the converse in [36] to be valid for the heterogeneous case.

These achievability and converse proofs result in exactly the

same linear program, yielding the exact capacity for this PIR

problem for all K , N , m. Interestingly, this is unlike the

caching problem in [55] with no privacy requirements, where

the linear program is only an achievability, and is shown to

be the exact capacity only in special cases.

By studying the properties of the solution of the linear

program, we show that, surprisingly, the optimal normalized

download cost for the heterogeneous problem is identical to

the optimal normalized download cost for the corresponding

homogeneous problem, where the homogeneous storage con-

straint is µ = 1
N

PN

n=1 mn for all databases. This implies that

there is no loss in the PIR capacity due to heterogeneity of stor-

age spaces of the databases. In fact, the PIR capacity depends

only on the sum of the storage spaces and does not depend on

how the storage spaces are distributed among the databases.

The general proof for this intriguing result is a consequence

of an existence proof for a positive linear combination using

the theory of positive linear dependence in [56] (and using

Farkas’ lemma [57] as a special case) for the constraint set of

the linear program. As a byproduct of the structural results,

we show that, for the optimal content assignment, at most two

consecutive types of message partitioning exist, i.e., message

Wk should be partitioned such that there are repeated partitions

over i databases and at most one more repeated partitions

over i + 1 databases for some i, where i ∈ {1, · · · , N}.

While for general N we show the existence of an optimal

content placement that attains the homogeneous PIR capacity,

for N = 3, we provide an explicit (parametric in m) optimal

content placement.

II. SYSTEM MODEL

We consider PIR from databases with heterogeneous sizes;

see Fig. 1. We consider a storage system with K i.i.d.

messages (files). The kth message is of length L bits, i.e.,

H(W1, · · · , WK) = KL, H(Wk) = L, k ∈ [K] (1)

The storage system consists of N non-colluding databases.

The storage size of the nth database is limited to mnKL bits,

for some 0 ≤ mn ≤ 1. Specifically, we denote the contents of

the nth database by Zn, such that,

H(Zn) ≤ mnKL, n ∈ [N ] (2)

The system operates in two phases1: In the placement phase,

the data center (content generator) stores the message set in

the N databases, in such a way to minimize the download cost

in the retrieval phase subject to the heterogeneous storage con-

straints. The placement is done in a centralized fashion [54].

The user (retriever) has no access to the data center. Here,

we focus on uncoded placement as in [36], [55], i.e., file Wk

can be partitioned as,

Wk =
[

S⊆[N ]

Wk,S (3)

where Wk,S is the set of Wk bits that appear in the database

set S ∈ P([N ]), where P(·) is the power set. H(Wk,S) =
|Wk,S |L, where 0 ≤ |Wk,S | ≤ 1. Under an uncoded place-

ment, we have the following message size constraint,

1 =
1

KL

K
X

k=1

H(Wk) =
1

KL

K
X

k=1

X

S⊆[N ]

H(Wk,S) =
X

S⊆[N ]

αS

(4)

where αS = 1
K

PK

k=1 |Wk,S |. In addition, we have the

individual database storage constraints,

mn ≥
1

KL
H(Zn) =

X

S⊆[N ],n∈S

αS , n ∈ [N ] (5)

In the retrieval phase, the user is interested in retrieving Wθ ,

θ ∈ [K] privately. The user submits a query Q
[θ]
n to the nth

database. Since the user has no information about the files,

the messages and queries are statistically independent, i.e.,

I(W1:K ; Q
[θ]
1:N) = 0 (6)

The nth database responds with an answer string, which is a

function of the received query and the stored content, i.e.,

H(A[θ]
n |Q[θ]

n , Zn) = 0, n ∈ [N ] (7)

1We differentiate between two types of communication in this model: First,
the joint content placement: This occurs in the initial prefetching phase, where
the data center stores parts of the messages in the databases. This interaction
occurs before the PIR phase and is done in the downlink direction (from the
data center to the databases). After completing the prefetching phase, the role
of the data center ceases to exist. The second communication occurs in the PIR
phase, where the user communicates solely with the databases (via submitting
queries) to privately retrieve the desired message. In this phase, the user and
the databases do not contact the data center. Note that we assume that the
N databases are privacy-believing entities in that they are trustworthy in the
sense they do not exchange the queries among themselves or with the data
center. Hence, it is implicitly assumed that there is no uplink communication
between the databases and the data center. Consequently, although there is
joint coordination between the data center and the databases, this coordination
does not imply that these databases are necessarily colluding.
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To ensure privacy, the query submitted to the nth database

when intended to retrieve Wθ should be statistically indistin-

guishable from the one when intended to retrieve Wθ0 , i.e.,

(Q[θ]
n , A[θ]

n , W1:K) ∼ (Q[θ0]
n , A[θ0]

n , W1:K), θ, θ0 ∈ [K] (8)

where ∼ denotes statistical equivalence.

The user needs to decode the desired message Wθ reliably

from the received answer strings, consequently,

H(Wθ|Q
[θ]
1:N , A

[θ]
1:N ) = o(L) (9)

where
o(L)

L
→ 0 as L → ∞.

An achievable PIR scheme satisfies constraints (8) and (9)

for some file size L. The download cost D is the size of the

total downloaded bits from all databases,

D =

N
X

n=1

H(A[θ]
n ) (10)

For a given storage constraint vector m, we aim to jointly

design the placement phase (i.e., Zn, n ∈ [N ]) and the retrieval

scheme to minimize the normalized download cost D∗ = D
L

in the retrieval phase.

III. MAIN RESULTS

Theorem 1 characterizes the optimal download cost under

heterogeneous storage constraints in terms of a linear program.

The main ingredients of the proof of Theorem 1 are introduced

in Section IV for N = 3, and the complete proof is given in

Section V for general N .

Theorem 1: For PIR from databases with heterogeneous

storage sizes m = (m1, · · · , mN ), the optimal normalized

download cost is the solution of the following linear program,

min
αS≥0

N
X

`=1

X

S:|S|=`

αS

�

1 +
1

`
+ · · · +

1

`K−1

�

s.t.
X

S:|S|≥1

αS = 1

X

S:n∈S

αS ≤ mn, n ∈ [N ] (11)

where S ∈ P([N ]).
Theorem 2 shows the equivalence between the optimum

download costs of the heterogeneous and homogeneous prob-

lems. The proof of Theorem 2 is given in Section VI.

Theorem 2: The normalized download cost of the PIR prob-

lem with heterogeneous storage sizes m = (m1, · · · , mN ) is

equal to the normalized download cost of the PIR problem

with homogeneous storage sizes µ = 1
N

PN

n=1 mn for all

databases, i.e., D∗(m) = D∗(m̄), where m̄ is such that

m̄n = µ, for n = 1, · · · , N .

Remark 1: Theorem 2 implies that the storage size asym-

metry does not hurt the PIR capacity, so long as the placement

phase is optimized. This is unlike, for instance, access asym-

metry in the case of replicated databases [37]. This is also

unlike, as another instance, non-optimized content placement

even for symmetric database sizes [53].

Remark 2: Stronger than what is stated, i.e., the equiva-

lence between heterogeneous and homogeneous storage cases,

Theorem 2 in fact implies that the optimal download cost

in (11) depends only on the sum storage space
PN

n=1 mn.

Thus, any distribution of storage space within the given sum

storage space yields the same PIR capacity. In particular,

a uniform distribution (the corresponding homogeneous case)

has the same PIR capacity. Hence, there is no loss in the

PIR capacity due to heterogeneity of storage spaces of the

databases.

IV. REPRESENTATIVE EXAMPLE: N = 3

We introduce the main ingredients of the achievability and

converse proofs using the example of N = 3 databases.

Without loss of generality, we take K = 3 in this section.

A. Converse Proof

We note that [36, Theorem 1] can be applied to any

storage constrained PIR problem with arbitrary storage

Z1:N . Hence, specializing to the case of N = 3 (and

K = 3) with i.i.d. messages and uncoded content leads

to [36, eqn. (39)],

D ≥L +
4

27

3
X

k=1

H(Wk) +
11

108

3
X

i=1

3
X

k=1

H(Wk|Zi)

+
17

54

3
X

i=1

3
X

k=1

H(Wk|Z[3]\i) + o(L) (12)

Using the uncoded storage assumption in (3), we can further

lower bound (12) as,

D ≥L+
4

27

X

S⊆[1:3]
|S|≥1

3
X

k=1

|Wk,S |L+
11

108

3
X

i=1

X

S⊆[1:3]\i

|S|≥1

3
X

k=1

|Wk,S |L

+
17

54

3
X

i=1

3
X

k=1

|Wk,{i}|L + o(L) (13)

=L +
2

3

X

S⊆[1:3]
|S|=1

3
X

k=1

|Wk,S |L +
1

4

X

S⊆[1:3]
|S|=2

3
X

k=1

|Wk,S |L

+
4

27

X

S⊆[1:3]
|S|=3

3
X

k=1

|Wk,S |L + o(L) (14)

Normalizing with L, taking the limit L → ∞, and using the

definition αS = 1
K

PK

k=1 |Wk,S | lead to the following lower

bound on the normalized download cost D∗,

D∗ ≥1 + 2
X

S⊆[3]
|S|=1

αS +
3

4

X

S⊆[3]
|S|=2

αS +
4

9

X

S⊆[3]
|S|=3

αS (15)

=3
X

S⊆[3]
|S|=1

αS +
7

4

X

S⊆[3]
|S|=2

αS +
13

9

X

S⊆[3]
|S|=3

αS (16)

where (16) follows from the message size constraint (4).

We further lower bound (16) by minimizing the right hand

side with respect to {αS}S⊆[3] under storage constraints. Thus,
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the solution of the following linear program serves as a lower

bound (converse) for the normalized download cost,

min
αS≥0

3(α1 + α2 + α3) +
7

4
(α12 + α13 + α23) +

13

9
α123

s.t. α1 + α2 + α3 + α12 + α13 + α23 + α123 = 1

α1 + α12 + α13 + α123 ≤ m1

α2 + α12 + α23 + α123 ≤ m2

α3 + α13 + α23 + α123 ≤ m3 (17)

where variables {αS}|S|=1 are {α1, α2, α3}, which represent

the content stored in databases 1, 2 and 3 exclusively; variables

{αS}|S|=2 are {α12, α13, α23}, which represent the content

stored in databases 1 and 2, 1 and 3, and 2 and 3, respec-

tively; and variable {αS}|S|=3 is {α123}, which represents

the content stored in all three databases simultaneously.

Next, we show that the lower bound expressed as a linear

program in (17) can be achieved.

B. Achievability Proof

In the placement phase, let |Wk,S | = αS for all k ∈ [K].
Assign the partition Wk,S to the set S of the databases for all

k ∈ [K]. To retrieve Wθ privately, θ ∈ [K], the user applies

the Sun-Jafar scheme [7] over the partitions of the files.

The partitions Wk,1, Wk,2, Wk,3 are placed in a single

database each. Thus, we apply [7] with N = 1, and download

K(|Wk,1| + |Wk,2| + |Wk,3|)L = 3(α1 + α2 + α3)L (18)

The partitions Wk,12, Wk,13, Wk,23 are placed in two data-

bases each. Thus, we apply [7] with N = 2, and download
�

1 +
1

2
+

1

22

�

(|Wk,12|+|Wk,13| + |Wk,23|)L

=
7

4
(α12 + α13 + α23)L (19)

Finally, the partition Wk,123 is placed in all three databases.

Thus, we apply [7] with N = 3, and download
�

1 +
1

3
+

1

32

�

|Wk,123|L =
13

9
α123L (20)

Concatenating the downloads, file Wθ is reliably decodable.

Hence, by summing up the download costs in (18), (19) and

(20), we have the following normalized download cost,

D

L
= 3(α1 + α2 + α3) +

7

4
(α12 + α13 + α23) +

13

9
α123

(21)

which matches the lower bound in (17) and is subject to the

same constraints. Hence, the solution to the linear program in

(17) is achievable, and gives the exact PIR capacity.

C. Explicit Storage Assignment

In this section, we solve the linear program in (17) to find

the optimal storage assignment explicitly for N = 3. To that

end, we denote β` =
P

S:|S|=` αS , i.e.,

β1 = α1 + α2 + α3 (22)

β2 = α12 + α13 + α23 (23)

β3 = α123 (24)

We first construct a relaxed optimization problem by sum-

ming up the three individual storage constraints in (17) into a

single constraint. The relaxed problem is,

min
βi≥0

3β1 +
7

4
β2 +

13

9
β3

s.t. β1 + β2 + β3 = 1

β1 + 2β2 + 3β3 ≤ ms (25)

where we define the sum storage space ms = m1 +m2 +m3.

Plugging β1 = 1 − β2 − β3,

min
β2,β3≥0

3 −
5

4
β2 −

14

9
β3

s.t. β2 + β3 ≤ 1

β2 + 2β3 ≤ ms − 1 (26)

Since (26) is a linear program, the solution lies at the

boundary of the feasible set. We have three cases depending

on the sum storage space ms.

a) Regime 1: When ms < 1: In this case, the second

constraint in (26) requires β2 + 2β3 < 0, while we must have

β2, β3 ≥ 0. Hence, there is no feasible solution for the relaxed

problem and thus the original problem (17) is infeasible as

well.

b) Regime 2: When 1 ≤ ms ≤ 2: In this case, the con-

straint β2+β3 ≤ 1 is not binding. Hence, the solution satisfies

the second constraint with equality, β2 +2β3 = ms−1, which

is non-negative in this regime. Thus, (26) can be written in an

unconstrained manner as,

min
β3≥0

3 −
5

4
(ms − 1−2β3) +

14

9
β3

= min
β3≥0

17

4
−

5

4
ms +

17

18
β3 (27)

The optimal solution for (27) is β∗
3 = 0 and therefore β∗

2 =
ms−1. From the equality constraint β1+β2+β3 = 1, we have

β∗
1 = 2−ms. Next, we map the solution of the relaxed problem

in (26) to a feasible solution in the original problem in (17).

From (24), a∗
123 = β∗

3 = 0. Thus, at the boundary of the

inequality set of (17), we have,

α1 + β2 − α23 = m1

⇒ α1 + ms − 1 − α23 = m1

⇒ α1 − α23 = 1 − (m2 + m3) (28)

α2 + β2 − α13 = m2

⇒ α2 + ms − 1 − α13 = m2

⇒ α2 − α13 = 1 − (m1 + m3) (29)

α3 + β2 − α12 = m3

⇒ α3 + ms − 1 − α12 = m3

⇒ α3 − α12 = 1 − (m1 + m2) (30)

Depending on the sign of 1−(mj+mk), where j, k ∈ {1, 2, 3},

we have different content assignments. The common structure

of (28)-(30) is αi − αjk = 1 − (mj + mk). We assign

αi = αjk + 1 − (mj + mk) if mj + mk ≤ 1 and αjk =
αi − 1 + (mj + mk) otherwise. This ensures that αS ≥ 0
for all S ⊆ [1 : 3]. Using these assignments, we have sub-

cases depending on the sign of 1−(mj +mk). We summarize
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TABLE I

EXPLICIT CONTENT ASSIGNMENT FOR N = 3 (m1 ≥ m2 ≥ m3

WITHOUT LOSS OF GENERALITY)

explicit content assignment for these cases in Table I, where

we take m1 ≥ m2 ≥ m3 without loss of generality, to reduce

the number of cases to enumerate. With these solutions,

the optimal normalized download cost in this regime is,

D∗ =
17

4
−

5

4
ms =

17 − 15µ

4
(31)

where µ = m1+m2+m3

3 = ms

3 corresponds to the average

storage size.

c) Regime 3: When 2 ≤ ms ≤ 3: In this case, the solu-

tion of (26) is at the intersection of the constraints β2+β3 = 1
and β2 + 2β3 = ms − 1. Hence, we have β∗

2 = 3 − ms and

β∗
3 = ms−2, which are both non-negative in this regime. From

the equality constraint β1 + β2 + β3 = 1, we have β∗
1 = 0.

Next, we map the solution of the relaxed problem in (26) to

a feasible solution in the original problem in (17). From (22),

β∗
1 = 0 implies α∗

1 = α∗
2 = α∗

3 = 0. From (24), β∗
3 = ms − 2

implies α∗
123 = ms −2. At the boundary of the feasible set of

(17), we have,

α1 + α12 + α13 + α123 = m1

⇒ α1 − α23 + β2 + β3 = m1 (32)

α2 + α12 + α23 + α123 = m2

⇒ α2 − α13 + β2 + β3 = m2 (33)

α3 + α13 + α23 + α123 = m3

⇒ α3 − α12 + β2 + β3 = m3 (34)

Plugging β∗
2 + β∗

3 = 1 and α∗
i = 0 for i ∈ {1, 2, 3} leads to

the following content assignment,

α∗
23 = 1 − m1, α∗

13 = 1 − m2, α∗
12 = 1 − m3 (35)

With these solutions, the optimal normalized download cost

in this regime is,

D∗ = 3 −
5

4
β2 −

14

9
β3 =

85

36
−

11

36
ms =

85 − 33µ

36
(36)

This solution is also shown in Table I.

V. OPTIMAL DOWNLOAD COST FOR THE

GENERAL PROBLEM

In this section, we give the proof of Theorem 1, i.e., show

the achievability and the converse proofs for the PIR problem

with heterogeneous databases, for general N , K , m.

A. General Achievability Proof

In this section, we show the achievability for general N

databases and K messages. Let D̃` denote the optimal nor-

malized download cost for the PIR problem with ` replicated

databases [7] storing the same K messages, which is achieved

using Sun-Jafar scheme [7],

D̃` = 1 +
1

`
+ · · · +

1

`K−1
(37)

We partition the messages over all subsets of [1 : N ], such

that |Wk,S | = αS for all k ∈ [1 : K]. Using this partitioning,

the subsets S such that |S| = 1 correspond to a PIR problem

with 1 database and K messages. Hence, by applying the

trivial scheme of downloading all these partitions, we down-

load D̃1|Wk,S |L = KαSL bits. For the subsets S such that

|S| = 2, we have a PIR problem with 2 databases and

K messages. Therefore, by applying Sun-Jafar scheme [7],

we download D̃2|Wk,S |L = (1 + 1
2 + · · · + 1

2K−1 )αSL bits,

and so on. This results in total normalized download cost

of
PN

`=1

P

S:|S|=` αSD̃`. The optimal content assignment

is obtained by optimizing over {αS}S:|S|≥1 subject to the

message size constraint (4), and the individual storage con-

straints (5). Thus, the achievable normalized download can be

written as the following linear program,

min
αS≥0

N
X

`=1

X

S:|S|=`

αS

�

1 +
1

`
+ · · · +

1

`K−1

�

s.t.
X

S:|S|≥1

αS = 1

X

S:n∈S

αS ≤ mn, n ∈ [N ] (38)

where S ∈ P([1 : N ]).
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B. General Converse Proof

In this section, we show the converse for general N data-

bases and K messages. The result in [36, Theorem 1] gives a

general lower bound for a PIR system with N databases and

K messages and arbitrary storage contents Z1:N as

D∗ ≥1 +

N
X

n1=1

λ(N − n1, 1)

n1
+

N
X

n1=1

N
X

n2=n1

λ(N − n1, 2)

n1n2

+ · · · +
N

X

n1=1

· · ·
N

X

nK−1=nK−2

λ(N − n1, K − 1)

n1n2 · · ·nK−1
(39)

where λ(n, k) is given by,

1

KL
(

K−1
k

)(

N
n

)

X

|K|=k

X

|N |=n

X

j∈[K]\K

H(Wj |ZN ,WK) (40)

For uncoded placement, we have,

H(Wj |ZN ,WK) = H(Wj |ZN ) =
X

S:|S|≥1

|Wj,S |L (41)

The simplifications in [36], which are intended to deal with

the nested harmonic sum, can be applied to the heterogeneous

storage as well. Thus, the following lower bound in [36, (77)]

is a valid lower bound for the normalized download cost for

the heterogeneous problem,

D∗ ≥ 1 +
N

X

`=1

�

N

`

�

	

D̃` − 1



x` (42)

where

x` =
1

K
(

N
`

)

K
X

k=1

X

S:|S|=`

|Wk,S | (43)

Substituting (43) in (42) leads to,

D∗ ≥ 1 +

N
X

`=1

�

N

`

�

	

D̃` − 1

 1

K
(

N
`

)

K
X

k=1

X

S:|S|=`

|Wk,S |

(44)

= 1 +
N

X

`=1

X

S:|S|=`

	

D̃` − 1



αS (45)

= 1 +

N
X

`=1

X

S:|S|=`

αSD̃` −
N

X

`=1

X

S:|S|=`

αS (46)

=

N
X

`=1

X

S:|S|=`

αS

�

1 +
1

`
+ · · · +

1

`K−1

�

(47)

where the last step follows from the message size constraint.

This settles Theorem 1 by having shown that both achiev-

ability and converse proofs result in the same linear program

which is given in (11).

VI. EQUIVALENCE TO THE HOMOGENEOUS PROBLEM

We prove Theorem 2, which implies an equivalence between

the solution of (11) with heterogeneous storage constraints m

and the solution of (11) with homogeneous storage constraint

µ = 1
N

PN

n=1 mn for all databases. To that end, let βn =
P

S:|S|=n αS as before. By adding the individual storage size

constraints in (11), we write the following relaxed problem,

min
βn≥0

N
X

n=1

βnD̃n

s.t.

N
X

n=1

βn = 1

N
X

n=1

nβn ≤ ms (48)

where ms =
PN

n=1 mn, as before, is the sum storage space

and D̃n is defined in (37). The solution of the relaxed problem

is potentially lower than (11), since the optimal solution

of (11) is feasible in (48). Note that the relaxed problem

(48) depends only on the sum storage space ms and the

number of databases N . Therefore, the corresponding relaxed

problem is the same for all distributions of the storage space

among databases under the same ms, including the uniform

distribution which results in the homogeneous problem. Thus,

in order to show the equivalence of the heterogeneous and

homogeneous problems, it suffices to prove that the optimal

solution of (48) can be mapped back to a feasible solution

of (11).

We write the Lagrangian function corresponding to (48) as,

L =

N
X

n=1

βnD̃n − γ

N
X

n=1

βn + λ

N
X

n=1

nβn −
N

X

n=1

µnβn (49)

The optimality conditions are,

D̃n − γ + nλ − µn = 0, n ∈ [N ] (50)

We have the following structural insights about the relaxed

problem. The first lemma states that, in the optimal solution,

there are at most two non-zero βs.

Lemma 1: There does not exist a subset N , such that |N | ≥
3 and βn > 0 for all n ∈ N .

Proof: Assume for sake of contradiction that there exists

N such that |N | ≥ 3. Hence, µn = 0 for all n ∈ N . From

the optimality conditions in (50), we have,

γ = D̃n + nλ, n ∈ N (51)

This results in |N | independent equations in 2 unknowns (γ

and λ), which is an inconsistent linear system if |N | ≥ 3.

Thus, we have a contradiction, and |N | can be at most 2.

The second lemma states that if two βs are positive, then

they must be consecutive.

Lemma 2: If βn1
> 0, and βn2

> 0, then n2 = n1 + 1.

Proof: Assume for sake of contradiction that βn1
> 0,

βn2
> 0, such that n2 = n1 + 2, and that βn0

= 0 where
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n0 = n1 + 1. Then, from the optimality conditions, we have,

D̃n1
− γ + n1λ = 0 (52)

D̃n0
− γ + (n1 + 1)λ − µn0

= 0 (53)

D̃n2
− γ + (n1 + 2)λ = 0 (54)

Solving for µn0
leads to,

µn0
= D̃n0

−
1

2
(D̃n1

+ D̃n2
) (55)

Since Dn is convex in n, we have D̃n0
≤ 1

2 (D̃n1
+ D̃n2

),
which implies µn0

≤ 0, which is impossible since Lagrange

multiplier µn0
≥ 0, and from Lemma 1, µn0

6= 0. Thus,

we have a contradiction, and we cannot have a zero β between

two non-zero βs.

The third lemma states that having ms an integer leads to

activating a single β only.

Lemma 3: βj = 1 and βn = 0 for all n 6= j if and only if

ms = j < N , where j ∈ N.

Proof: From the optimality conditions, we have,

D̃j − γ + jλ = 0 (56)

D̃n − γ + nλ − µn = 0, n 6= j (57)

Substituting γ from (56) into (57) leads to,

(D̃n − D̃j) + (n − j)λ = µn ≥ 0 (58)

Since j < N , we can choose an n > j. Then, (58) implies,

λ ≥
D̃j − D̃n

n − j
(59)

Since D̃n is monotonically decreasing in n, we have λ ≥

c > 0 for some positive constant c =
D̃j−D̃n

n−j
. Since λ >

0, the inequality
PN

n=1 nβn ≤ ms must be satisfied with

equality. To have a feasible solution for the two equations
PN

n=1 βn = 1 and
PN

n=1 nβn = ms, we must have ms = j

and βj = 1.

The fourth lemma gives the solution of the relaxed problem

for non-integer ms.

Lemma 4: For the relaxed problem (48), if j−1 < ms < j,

then β∗
j−1 = j − ms and β∗

j = ms − (j − 1).
Proof: From Lemma 1, at most two βs should be positive.

From Lemma 3, exactly two βs should be positive, as ms is

not an integer here. From Lemma 2, the positive β should be

consecutive, and because of continuity, we must have βj−1 >

0 and βj > 0. Thus, on the boundary, we have,

βj−1 + βj = 1 (60)

(j − 1)βj−1 + jβj = ms (61)

Solving these equations simultaneously results in β∗
j−1 = j −

ms and β∗
j = ms − (j − 1).

Thus, Lemmas 1-4 establish the structure of the relaxed

problem: First, since 0 ≤ mn ≤ 1 for all n, we have 0 ≤
ms ≤ N . If 0 ≤ ms < 1, then there is no PIR possible. If ms

is an integer between 1 and N , then only one β is positive and

it is equal to 1. For instance, if ms = j, then βj = 1. In this

case, only one type of α with j subscripts is positive. If ms is

a non-integer between 1 and N , then two βs are positive. For

instance, if j − 1 < ms < j, then βj−1 and βj are positive

and equal to j−ms and ms +1− j, respectively. In this case,

two types of αs with j − 1 and j subscripts are positive.

Finally, to show the equivalence of the original linear pro-

gram in (11) and the relaxed linear problem in (48), we need

to show that a feasible (non-negative) solution of (11) exists

for every optimal solution of (48). That is, the optimal βs

found in solving (48) can be mapped to a set of feasible αs

in (11). We note that, we have shown this by finding an explicit

solution for the case of N = 3 in Section IV-C. We give

an alternative proof for the case of N = 4 using Farkas’

lemma [57] in Appendix A. In the following lemma, we give

the proof for general N by using the theory of positive linear

dependence in [56].

Lemma 5: There exists a feasible (non-negative) solution

of (11) corresponding to the optimal solution of the relaxed

problem in (48).

Proof: Since the inequality in the constraint set of the

relaxed problem (48) is satisfied with equality, the N inequal-

ities in the constraint set of the original problem (11) should

be satisfied with equality as well. We know from Lemmas 1-4

that only two βs will be positive, therefore, their expressions

in terms of the corresponding αs will give two more equations.

Assuming that i < ms < i + 1, we have β∗
i = i + 1 − ms

and β∗
i+1 = ms − i; βi is a sum of

(

N

i

)

αs and βi+1 is a sum

of
(

N
i+1

)

αs. Thus, we have (N +2) equations in
(

N
i

)

+
(

N
i+1

)

variables; and, we need to show that a feasible solution to

these linear equations exists.

We denote this linear system of equations as Aα = b where

α is the vector of αS , i.e., content assignments, and b is

the vector of mi and βi, i.e., storage constraints and relaxed

problem coefficients, i.e.,

α =
h

αS1
1

αS2
1

· · · α
S
(N

i )
1

αS1
2

αS2
2

· · · α
S
( N

i+1)
2

iT

(62)

where

|Sj
1 | = i, j ∈

�

1, 2, · · · ,

�

N

i

��

(63)

|Sj
2 | = i + 1, j ∈

�

1, 2, · · · ,

�

N

i + 1

��

(64)

and

b =
�

m1 m2 · · · mN βi βi+1

�T
(65)

Now, A, an (N + 2) ×
	

(

N
i

)

+
(

N
i+1

)




matrix of zeros and

ones, has the following properties:

1) Every column of the matrix is unique.

2) First
(

N
i

)

columns have i 1s and N − i 0s in their first

N rows. Last two elements of these columns are all 1s

and all 0s, respectively.

3) The remaining
(

N
i+1

)

columns have i + 1 1s and N − i−
1 0s in their first N rows. Last two elements of these

columns are all 0s and all 1s, respectively.

4) First three properties imply that, in the first N rows of

the matrix, every permutation of i 1s and N − i 0s exist
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in the first
(

N

i

)

columns; and every permutation of i + 1

1s and N − i − 1 0s exist in the next
(

N
i+1

)

columns.

To clarify the setting with an example, consider N = 4 and

1 < ms < 2. In this case, we have β∗
1 = 2 − ms and β∗

2 =
ms − 1. Corresponding to β1, we have

(

4
1

)

= 4 αs, which are

α1, α2, α3, α4 which sum to β1 = 2 − ms. Corresponding to

β2, we have
(

4
2

)

= 6 αs, which are α12, α13, α14, α23, α24, α34

which sum to β2 = ms − 1. Thus, we have the α vector:

α =
�

α1 α2 α3 α4 α12 α13 α14 α23 α24 α34

�T

(66)

the b vector:

b =
�

m1 m2 m3 m4 2 − ms ms − 1
�T

(67)

and the A matrix:

A =

















1 0 0 0 1 1 1 0 0 0
0 1 0 0 1 0 0 1 1 0
0 0 1 0 0 1 0 1 0 1
0 0 0 1 0 0 1 0 1 1
1 1 1 1 0 0 0 0 0 0
0 0 0 0 1 1 1 1 1 1

















(68)

Note, in the first 4 rows of A, in the first 4 columns we have

all possible vectors with only one 1, and in the remaining

6 columns we have all possible vectors with two 1s.

To prove the existence of a feasible solution for Aα = b,

we show that b is always a positive linear combination of

columns of A. From the first statement of [56, Theorem 3.3],

we note that if we can find a column of A, for instance u,

such that for all v that satisfy bT v > 0, we have uT v > 0;

then b is a positive linear combination of the columns of A.

Note that, from the last property of A, if we can find such a

column, then we can find an S ⊆ {1, · · · , N} that satisfy one

of the following inequalities and vice versa:

X

j∈S,|S|=i

vj + vN+1 > 0 (69)

X

j∈S,|S|=i+1

vj + vN+2 > 0 (70)

where

v =
�

v1 v2 . . . vN+2

�T
(71)

First, we order the variables vi and mi, i ∈ {1, · · · , N}
among themselves in the decreasing order and we define m0

i

and v0i, i ∈ {1, 2, . . . , N} such that,

v01 ≥ v02 ≥ · · · ≥ v0N (72)

m0
1 ≥ m0

2 ≥ · · · ≥ m0
N (73)

Then, we have the following series of inequalities for all v

that satisfy bT v > 0:

0 <

N
X

j=1

mjvj + (i + 1 − ms)vN+1 + (ms − i)vN+2 (74)

≤
N

X

j=1

m0
jv

0
j + (i + 1 − ms)vN+1 + (ms − i)vN+2 (75)

≤
i

X

j=1

v0j + (ms − i)v0i+1 + (i + 1 − ms)vN+1

+ (ms − i)vN+2 (76)

≤
i

X

j=1

v0j + max{v0i+1 + vN+2, vN+1} (77)

where in (74), we use Lemma 4 and insert the values of βi and

βi+1, and in (75) we use the rearrangement inequality [58].

We have (76) by using the fact that ms =
PN

j=1 mj is between

i and i+1, where each mj is a real number between 0 and 1,

and by redistributing the m0
j values where we maximize the

ones that are the coefficients of the largest v0j values. Next,

we observe that, (ms − i)v0i+1 + (i + 1 − ms)vN+1 + (ms −
i)vN+2 is the convex combination of v0i+1 + vN+2 and vN+1,

which results in (77). Hence, we have,

i
X

j=1

v0j + max{v0i+1 + vN+2, vN+1} > 0 (78)

for all v that satisfy bT v > 0. Finally, (78) shows that we can

always find S ⊆ {1, · · · , N} that satisfies either (69) or (70),

concluding the proof.

VII. CONCLUSIONS

We considered a PIR system where a data center places

available content into N heterogeneous sized databases, from

which a user retrieves a file privately. We determined the exact

PIR capacity (i.e., the minimum download cost) under arbi-

trary storage constraints. By showing the achievability of the

solution of a relaxed problem where all available storage space

is pooled into a sum storage space, by the original problem

with individual storage constraints, we showed the equivalence

of the heterogeneous PIR capacity to the corresponding homo-

geneous PIR capacity. Therefore, we showed that there is no

loss in PIR capacity due to database storage size heterogeneity,

so long as the placement phase is optimized.

APPENDIX A

ALTERNATIVE PROOF FOR LEMMA 5 FOR N = 4

Here, we give an alternative proof of Lemma 5 for N = 4
using Farkas’ lemma. We illustrate the general idea using the

example case 1 < ms < 2. Using Lemma 4, we have β∗
1 =

2 − ms and β∗
2 = ms − 1. We want to show the existence of

αi ≥ 0 and αij ≥ 0 for all i, j such that,

α1 + α12 + α13 + α14 = m1 (79)

α2 + α12 + α23 + α24 = m2 (80)

α3 + α13 + α23 + α34 = m3 (81)
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α4 + α14 + α24 + α34 = m1 (82)

α1 + α2 + α3 + α4 = 2 − ms (83)

α12 + α13 + α14 + α23 + α24 + α34 = ms − 1 (84)

This is a linear system with 10 unknowns and 6 equations in

the form of Ãα = b̃, where Ã is the coefficients matrix.

To show the existence of a non-negative solution, we use

Farkas’ lemma, which states that there exists a non-negative

solution α ≥ 0 that satisfies Ãα = b̃ if and only if for all

y for which ÃT y ≥ 0, we have b̃T y ≥ 0. We transform the

system of equations into the reduced-echelon form with:

Ã =









1 0 0 0 0 0 0 −1 −1 −1
0 1 0 0 0 −1 −1 0 0 −1
0 0 1 0 −1 0 −1 0 −1 0
0 0 0 1 −1 −1 0 −1 0 0
0 0 0 0 1 1 1 1 1 1









(85)

with

α =
�

α1 α2 α3 α4 α12 α13 α14 α23 α24 α34

�T

(86)

and

b̃ = [1−ms + m1 1 − ms + m2

1 − ms + m3 1 − ms + m4 ms − 1]T (87)

Hence, for any y, ÃT y ≥ 0 implies,

y1 ≥ 0 (88)

y2 ≥ 0 (89)

y3 ≥ 0 (90)

y4 ≥ 0 (91)

y5 ≥ y3 + y4 (92)

y5 ≥ y2 + y4 (93)

y5 ≥ y2 + y3 (94)

y5 ≥ y1 + y4 (95)

y5 ≥ y1 + y3 (96)

y5 ≥ y1 + y2 (97)

Now, we need to show b̃T y ≥ 0. We have the following for

b̃ ≤ 0 (the worst case):

b̃Ty

=(1−ms+m1)y1+(1 − ms + m2)y2+(1 − ms + m3)y3

+ (1 − ms + m4)y4 + (ms − 1)y5 (98)

≥m1y1+m2y2+(1−ms+m3)y3+(1 − ms + m4)y4 (99)

≥m1y2+m2y2+(1−ms+m3)y3+(1 − ms + m4)y4 (100)

≥m1y2+m2y2+(1−ms+m3)y2+(1 − ms + m4)y2 (101)

=(2 − ms)y2 (102)

≥0 (103)

where (101) follows from (88)-(97) taking into consideration

that 1 − ms + m3 ≤ 0 and 1 − ms + m4 ≤ 0.

REFERENCES

[1] B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan, “Private informa-
tion retrieval,” J. ACM, vol. 45, no. 6, pp. 965–981, Nov. 1998.

[2] N. B. Shah, K. V. Rashmi, and K. Ramchandran, “One extra bit of
download ensures perfectly private information retrieval,” in Proc. IEEE

Int. Symp. Inf. Theory, Jun. 2014.
[3] T. H. Chan, S.-W. Ho, and H. Yamamoto, “Private information retrieval

for coded storage,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT),
Jun. 2015.

[4] A. Fazeli, A. Vardy, and E. Yaakobi, “Codes for distributed PIR with
low storage overhead,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT),
Jun. 2015.

[5] R. Tajeddine and S. E. Rouayheb, “Private information retrieval from
MDS coded data in distributed storage systems,” in Proc. IEEE ISIT,
Jul. 2016.

[6] H. Sun and S. A. Jafar, “Blind interference alignment for private
information retrieval,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT),
Jul. 2016.

[7] H. Sun and S. A. Jafar, “The capacity of private information retrieval,”
IEEE Trans. Inf. Theory, vol. 63, no. 7, pp. 4075–4088, Jul. 2017.

[8] H. Sun and S. A. Jafar, “The capacity of robust private information
retrieval with colluding databases,” IEEE Trans. Inf. Theory, vol. 64,
no. 4, pp. 2361–2370, Apr. 2018.

[9] R. Tajeddine, O. W. Gnilke, D. Karpuk, R. Freij-Hollanti, C. Hollanti,
and S. E. Rouayheb, “Private information retrieval schemes for coded
data with arbitrary collusion patterns,” in Proc. IEEE Int. Symp. Inf.

Theory (ISIT), Jun. 2017.

[10] R. Tajeddine and S. E. Rouayheb, “Robust private information retrieval
on coded data,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jun. 2017.

[11] H. Sun and S. A. Jafar, “The capacity of symmetric private informa-
tion retrieval,” IEEE Trans. Inf. Theory, vol. 65, no. 1, pp. 322–329,
Jan. 2019.

[12] K. Banawan and S. Ulukus, “The capacity of private information
retrieval from coded databases,” IEEE Trans. Inf. Theory, vol. 64, no. 3,
pp. 1945–1956, Mar. 2018.

[13] H. Sun and S. A. Jafar, “Optimal download cost of private information
retrieval for arbitrary message length,” IEEE Trans. Inf. Forensics

Security, vol. 12, no. 12, pp. 2920–2932, Dec. 2017.

[14] H. Sun and S. A. Jafar, “Multiround private information retrieval:
Capacity and storage overhead,” IEEE Trans. Inf. Theory, vol. 64, no. 8,
pp. 5743–5754, Aug. 2018.

[15] Q. Wang and M. Skoglund, “Symmetric private information retrieval
for MDS coded distributed storage,” in Proc. IEEE Int. Conf. Com-

mun. (ICC), May 2017.

[16] Q. Wang and M. Skoglund, “Linear symmetric private information
retrieval for MDS coded distributed storage with colluding servers,” in
Proc. IEEE Inf. Theory Workshop (ITW), Nov. 2017.

[17] R. Freij-Hollanti, O. W. Gnilke, C. Hollanti, and D. A. Karpuk, “Private
information retrieval from coded databases with colluding servers,”
SIAM J. Appl. Algebra Geometry, vol. 1, no. 1, pp. 647–664, Jan. 2017.

[18] K. Banawan and S. Ulukus, “Multi-message private information
retrieval: Capacity results and near-optimal schemes,” IEEE Trans. Inf.

Theory, vol. 64, no. 10, pp. 6842–6862, Oct. 2018.

[19] K. Banawan and S. Ulukus, “The capacity of private information
retrieval from Byzantine and colluding databases,” IEEE Trans. Inf.

Theory, vol. 65, no. 2, pp. 1206–1219, Feb. 2019.

[20] Q. Wang and M. Skoglund, “Secure symmetric private information
retrieval from colluding databases with adversaries,” in Proc. 55th Annu.
Allerton Conf. Commun., Control, Comput., Oct. 2017.

[21] Y. Zhang and G. Ge, “A general private information retrieval scheme
for MDS coded databases with colluding servers,” 2017, arXiv:

1704.06785. [Online]. Available: https://arxiv.org/abs/1704.06785

[22] Y. Zhang and G. Ge, “Private information retrieval from MDS
coded databases with colluding servers under several variant models,”
2017, arXiv:1705.03186. [Online]. Available: https://arxiv.org/abs/1705.
03186

[23] R. Tajeddine, O. W. Gnilke, D. Karpuk, R. Freij-Hollanti, and
C. Hollanti, “Private information retrieval from coded storage systems
with colluding, Byzantine, and unresponsive servers,” in Proc. IEEE

ISIT, Jun. 2018.

[24] R. Tandon,“The capacity of cache aided private information retrieval,”
in Proc. 55th Annu. Allerton Conf. Commun., Control, Comput.,
Oct. 2017.

[25] M. Kim, H. Yang, and J. Lee, “Cache-aided private information
retrieval,” in Proc. 51st Asilomar Conf. Signals, Syst., Comput.,
Oct. 2017.

[26] Y.-P. Wei, K. Banawan, and S. Ulukus, “Fundamental limits of
cache-aided private information retrieval with unknown and uncoded
prefetching,” IEEE Trans. Inf. Theory, vol. 65, no. 5, pp. 3215–3232,
May 2019.

[27] S. Kadhe, B. Garcia, A. Heidarzadeh, S. El Rouayheb, and
A. Sprintson, “Private information retrieval with side informa-
tion,” 2017, arXiv:1709.00112. [Online]. Available: https://arxiv.org/abs/
1709.00112

Authorized licensed use limited to: University of Maryland College Park. Downloaded on July 28,2020 at 18:19:23 UTC from IEEE Xplore.  Restrictions apply. 



3416 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 6, JUNE 2020

[28] Z. Chen, Z. Wang, and S. Jafar, “The capacity of T-private informa-
tion retrieval with private side information,” 2017, arXiv:1709.03022.
[Online]. Available: https://arxiv.org/abs/1709.03022

[29] Y.-P. Wei, K. Banawan, and S. Ulukus, “The capacity of private
information retrieval with partially known private side information,”
IEEE Trans. Inf. Theory, vol. 65, no. 12, pp. 8222–8231, Dec. 2019.

[30] Y.-P. Wei, K. Banawan, and S. Ulukus, “Cache-aided private information
retrieval with partially known uncoded prefetching: Fundamental limits,”
IEEE J. Sel. Areas Commun., vol. 36, no. 6, pp. 1126–1139, Jun. 2018.

[31] Y.-P. Wei and S. Ulukus, “The capacity of private information retrieval
with private side information under storage constraints,” IEEE Trans.

Inf. Theory, early access, doi: 10.1109/TIT.2019.2953883.

[32] S. Li and M. Gastpar, “Single-server multi-message private information
retrieval with side information,” in Proc. 56th Annu. Allerton Conf.

Commun., Control, Comput. (Allerton), Oct. 2018.

[33] M. Mirmohseni and M. A. Maddah-Ali, “Private function retrieval,” in
Proc. Iran Workshop Commun. Inf. Theory (IWCIT), Apr. 2018.

[34] Z. Chen, Z. Wang, and S. Jafar, “The asymptotic capacity of private
search,” in Proc. IEEE ISIT, Jun. 2018.

[35] M. Abdul-Wahid, F. Almoualem, D. Kumar, and R. Tandon, “Pri-
vate information retrieval from storage constrained databases–coded
caching meets PIR,” 2017, arXiv:1711.05244. [Online]. Available:
https://arxiv.org/abs/1711.05244

[36] M. A. Attia, D. Kumar, and R. Tandon, “The capacity
of private information retrieval from uncoded storage con-
strained databases,” arXiv:1805.04104v2. [Online]. Available:
https://arxiv.org/abs/1805.04104v2

[37] K. Banawan and S. Ulukus, “Asymmetry hurts: Private information
retrieval under asymmetric traffic constraints,” IEEE Trans. Inf. Theory,
vol. 65, no. 11, pp. 7628–7645, Nov. 2019.

[38] K. Banawan and S. Ulukus, “Private information retrieval through
wiretap channel II: Privacy meets security,” IEEE Trans. Inf. Theory,
to be published. [Online]. Available: https://arxiv.org/abs/1801.06171

[39] K. Banawan and S. Ulukus, “Noisy private information retrieval: On
separability of channel coding and information retrieval,” IEEE Trans.

Inf. Theory, vol. 65, no. 12, pp. 8232–8249, Dec. 2019.

[40] Q. Wang and M. Skoglund, “Secure private information retrieval from
colluding databases with eavesdroppers,” in Proc. IEEE Int. Symp. Inf.
Theory (ISIT), Jun. 2018.

[41] Q. Wang, H. Sun, and M. Skoglund, “The capacity of private information
retrieval with eavesdroppers,” IEEE Trans. Inf. Theory, vol. 65, no. 5,
pp. 3198–3214, May 2019.

[42] H. Yang, W. Shin, and J. Lee, “Private information retrieval for secure
distributed storage systems,” IEEE Trans. Inf. Forensics Security, vol. 13,
no. 12, pp. 2953–2964, Dec. 2018.

[43] Z. Jia, H. Sun, and S. A. Jafar, “Cross subspace alignment and the
asymptotic capacity of X-secure T -private information retrieval,” IEEE
Trans. Inf. Theory, vol. 65, no. 9, pp. 5783–5798, Sep. 2019.

[44] C. Tian, H. Sun, and J. Chen, “Capacity-achieving private information
retrieval codes with optimal message size and upload cost,” IEEE Trans.

Inf. Theory, vol. 65, no. 11, pp. 7613–7627, Nov. 2019.

[45] R. Bitar and S. E. Rouayheb, “Staircase-PIR: Universally robust private
information retrieval,” in Proc. IEEE Inf. Theory Workshop (ITW),
Nov. 2018.

[46] S. Kumar, A. Graell I Amat, E. Rosnes, and L. Senigagliesi, “Private
information retrieval from a cellular network with caching at the edge,”
IEEE Trans. Commun., vol. 67, no. 7, pp. 4900–4912, Jul. 2019.

[47] S. Kumar, H.-Y. Lin, E. Rosnes, and A. Graell I Amat,
“Achieving maximum distance separable private information retrieval
capacity with linear codes,” IEEE Trans. Inf. Theory, vol. 65, no. 7,
pp. 4243–4273, Jul. 2019.

[48] Y.-P. Wei, B. Arasli, K. Banawan, and S. Ulukus, “The capacity
of private information retrieval from decentralized uncoded caching
databases,” Information, vol. 10, no. 12, p. 372, Nov. 2019.

[49] N. Raviv and I. Tamo, “Private information retrieval in graph based
replication systems,” in Proc. IEEE ISIT, Jun. 2018.

[50] S. Li and M. Gastpar, “Converse for multi-server single-message PIR
with side information,” 2018, arXiv:1809.09861. [Online]. Available:
https://arxiv.org/abs/1809.09861

[51] R. G. L. D’Oliveira and S. E. Rouayheb, “One-shot PIR: Refine-
ment and lifting,” arXiv:1810.05719. [Online]. Available: https://arxiv.
org/abs/1810.05719

[52] R. Tajeddine, A. Wachter-Zeh, and C. Hollanti, “Private informa-
tion retrieval over random linear networks,” 2018, arXiv:1810.08941.
[Online]. Available: https://arxiv.org/abs/1810.08941

[53] K. Banawan and S. Ulukus, “Private information retrieval from non-
replicated databases,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT),
Jul. 2019.

[54] M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,”
IEEE Trans. Inf. Theory, vol. 60, no. 5, pp. 2856–2867, May 2014.

[55] A. M. Ibrahim, A. A. Zewail, and A. Yener, “Coded caching for hetero-
geneous systems: An optimization perspective,” IEEE Trans. Commun.,
vol. 67, no. 8, pp. 5321–5335, Aug. 2019.

[56] C. Davis, “Theory of positive linear dependence,” Amer. J. Math.,
vol. 76, no. 4, p. 733, Oct. 1954.

[57] S. P. Boyd and L. Vandenberghe, Convex Optimization. Cambridge,
U.K.: Cambridge Univ. Press, 2004.

[58] G. Hardy, J. Littlewood, and G. Pólya, Inequalities (Cambridge Mathe-
matical Library). Cambridge, U.K.: Cambridge Univ. Press, 1988.

Karim Banawan (Member, IEEE) received the B.Sc. and M.Sc. degrees
(Hons.) in electrical engineering from Alexandria University, Alexandria,
Egypt, in 2008 and 2012, respectively, and the M.Sc. and Ph.D. degrees
in electrical engineering from the University of Maryland, College Park,
MD, USA, in 2017 and 2018, respectively, with his Ph.D. thesis on private
information retrieval and security in networks.

In 2019, he joined the Department of Electrical Engineering, Alexandria
University, as an Assistant Professor. His research interests include infor-
mation theory, wireless communications, physical layer security, and private
information retrieval. He was a recipient of the Distinguished Dissertation
Fellowship from the Department of Electrical and Computer Engineering,
University of Maryland, for his Ph.D. thesis work.

Batuhan Arasli (Student Member, IEEE) was born in Turkey, in 1996.
He received the B.Sc. degree (Hons.) in electrical and electronics engineering
from Bilkent University, Turkey, in 2018. He is currently pursuing the Ph.D.
degree in electrical engineering with the University of Maryland, College Park,
MD, USA. His current research interests include information theory, private
information retrieval, and distributed systems.

Yi-Peng Wei (Student Member, IEEE) received the B.Sc. degree in electrical
engineering from National Tsing Hua University, Taiwan, in 2009, the M.Sc.
degree from the Graduate Institute of Communication Engineering, National
Taiwan University, Taiwan, in 2012, and the Ph.D. degree in electrical
engineering from the University of Maryland, College Park, MD, USA,
in 2019, with his Ph.D. thesis on private information retrieval with side
information. In 2019, he joined Google as a Software Engineer.

Sennur Ulukus (Fellow, IEEE) received the B.S. and M.S. degrees in
electrical and electronics engineering from Bilkent University and the Ph.D.
degree in electrical and computer engineering from the Wireless Information
Network Laboratory (WINLAB), Rutgers University. She was a Senior
Technical Staff Member with the AT&T Labs Research. She is currently the
Anthony Ephremides Professor in information sciences and systems with the
Department of Electrical and Computer Engineering, University of Maryland,
College Park, where she also holds a joint appointment with the Institute
for Systems Research (ISR). Her research interests are in information theory,
wireless communications, machine learning, and signal processing and net-
works, with recent focus on private information retrieval, age of information,
distributed coded computation, energy harvesting communications, physical
layer security, and wireless energy and information transfer.

Dr. Ulukus received the 2003 IEEE Marconi Prize Paper Award in wireless
communications, the 2019 IEEE Communications Society Best Tutorial Paper
Award, an 2005 NSF CAREER Award, the 2010–2011 ISR Outstanding
Systems Engineering Faculty Award, and the 2012 ECE George Corcoran
Outstanding Teaching Award. She is a TPC Co-Chair of 2019 IEEE ITW,
2017 IEEE ISIT, 2016 IEEE Globecom, 2014 IEEE PIMRC, and 2011 IEEE
CTW. She was an Editor for the IEEE JOURNAL ON SELECTED AREAS

IN COMMUNICATIONS SERIES ON GREEN COMMUNICATIONS AND NET-
WORKING from 2015 to 2016, IEEE TRANSACTIONS ON INFORMATION

THEORY from 2007 to 2010, and IEEE TRANSACTIONS ON COMMUNICA-
TIONS from 2003 to 2007. She was a Guest Editor for the IEEE JOURNAL

ON SELECTED AREAS IN COMMUNICATIONS in 2015 and 2008, Journal

of Communications and Networks in 2012, and IEEE TRANSACTIONS ON

INFORMATION THEORY in 2011. She has been an Area Editor for the IEEE
TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING since
2016 and an Area Editor for the IEEE TRANSACTIONS ON WIRELESS

COMMUNICATIONS since 2019. She is a Distinguished Lecturer of the IEEE
Information Theory Society for 2018–2019. She is also a Distinguished
Scholar–Teacher of the University of Maryland.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on July 28,2020 at 18:19:23 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1109/TIT.2019.2953883

