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Abstract -Techniques from,coding theory are applied to study rigor- 

ously the capacity of the Hopfield associative memory. Such a memory 

stores n -tuple of + 1’s. The components change depending on a hard- 

limited version of linear functions of all other components. With symmet- 

ric connections between components, a stable state is ultimately reached. 

By building up the connection matrix as a sum-of-outer products of m 

fundamental memories, one hopes to be able to recover a certain one of 

the no memories by using an initial n-tuple probe vector less than a 

Hamming distance n/2 away from the ftindamental memory. If WI funda- 

mental memories are chosen at random, the maximum asympotic value of 

m in order that most of the no original memories are exactly recoverable is 

n/(2log n). With the added restriction that every one of the m fundamen- 

tal memories be recoverable exactly, rrl can be no more than n/(4log n) 

asymptotically as n approaches infinity. Extensions are also considered, in 

particular to capacity under qnantization of the outer-product connection 

matrijr. This quantized memory capacity problem is closely related to the 

capacity of the quantized Gaussian channel. 

I. INTRODUCTION TO NEURAL NETWORKS 

I N A VERY influential recefit article, Hopfield [l] intro- 
duced a powerful new kind of associative or content- 

addressable memory based on his studies of collective 
computation in neural networks. For a review of earlier 
work, see [2] and [3]. Hopfield has demonstrated em- 
pirically that the associative memory as a network is very 
attractive for many applications, but as yet a good theoret- 
ical understanding of its behavior has not been found. We 
have discovered techniques for rigorously analyzing “Hop- 
field memories,” which we introduce in this paper. The 
techniques used are quite reininiscent of coding theory, 
especially iandom coding and sphere hardening. Before we 
relate the theory of Hopfield memories to information and 
coding theory, however, let us explain the tie with netirobi- 
ology, which is quite direct. There are many other poten- 
tial applications as well. 
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Neuroanatomical models of brain functioning have 
proved fertile ground in the development of efficient sys- 
tems of associative memory. Neural network models based 
upon mathematical idealizations of biological memory 
typically consist of a densely interconnected dynamical 
cellular cluster [4]. The processing nodes in such a struc- 
ture are the neurons, and the neuronal interconnections are 
through the medium of linear synaptic conduits. Describing 
the instantaneous state of a neural network to be the 
collective states of each of the individual neurons (firing or 
nonfiring) in the system then leads to a characterization of 
the dynamics of the system as a motion in time through 
the state space of the system. In this form, then, the 
mathematical abstraction of neural function leads to a 
consideration of a finite state automaton with specified 
state transition rules. Other dynamical systems much akin 
to neural networks in this regard include the Ising spin 
glass models (cf. [5], for instance), and cellular automata 

(cf. Fl). 
We consider an associative structure based upon such a 

neural net. The model neurons we consider are simple 
bistable elements each being capable of assuming two 
values: - 1 (off) and + 1 (on). The state of each neuron 
then represents one bit of information, and the state of the 
system as a whole is described by a binary n-tuple if there 
are n neurons in the system. We assume that the neural net 
is (possibly) densely interconnected, with neuron i trans- 
mitting information to neuron j through a linear synaptic 
connection Tij. The neural interconnection weights Tj are 
throughout considered to be fixed; i.e., learning of associ- 
ations has already taken place, and no further synaptic 
modifications are made in the neurobiological interpreta- 
tion. The connection matrix is also assumed to be symmet- 
ric with zero diagonal in almost all this paper. 

The schema of Fig. 1 illustrates a typical example of the 
structure that we envisage for our associative memory 
thought of as a neural network. A five-neuron densely 
interconnected neural network is shown. The circles repre- 
sent neurons, and the directed lines represent the direction 
of interneural information flow through the corresponding 
synaptic weight Tj. The instantaneous state of the system 
depicted is (x,, x2, x3, x4, xs) = (1, - l,l, - 1, - 1). Thus x 
is called the state vector. The Tj need not be symmetric at 
this point but are symmetric for all the rigorous results of 
this paper. 
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Fig. 1. Five-neuron densely interconnected neural network. 

Logical computation in the network takes place at each 
neural site by means of a simple threshold decision rule, as 
shown in Fig. 2. Each neuron evaluates the weighted sum 
of the binary states of all the neurons in the system; the 
new state of the neuron is - 1 if the sum is negative, and 
+ 1 if the sum (equals or) exceeds zero. (In this and what 
follows we almost always assume a threshold of zero.) 
Specifically, if x = (xi, xZ; + ., x,) is the present state of 
the system (with xj = + 1 being the state of the jth neu- 
ron), the new state xi of the ith neuron is determined by 
the rule 

Fig. 3 shows the conceptual process of getting from an 
initial vector x (with all components known or guessed) to 
a memory. The length n is 8 in the figure. The initial state 
vector x is called a probe, for it is used to probe the 
memory. 

-+?-7--+3++-???-7+7> 

PROBE 

Fig. 3. Associative memory basket. 

? CAN BE GUESSED 
OR DISABLED 

In this paper, we will discuss two modes of changing 
x + x’. In synchronous operation, each of the n neurons 
simultaneously evaluates and updates its state according to 
rule (1.1). In asynchronous operation, the components of 
the current state vector x are updated one at a time 
according to (Ll), to produce a new state vector. The one 
component i chosen to be updated is selected from among 
the n indices i with equal probability l/n, independently 
of which components were updated previously and of what 
the values of the probe vector were before and after 
update. 

In this neural network model, the linear synaptic weights 
provide global communication of information, while the 
nonlinear logical operations essential to computation take 
place at the neurons. Thus, in spite of the simplicity of the 
highly stylized neural network structure that we utilize, 
considerable computational power is inherent in the 
system. The implementation of models of learning (the 
Hebbian hypothesis [7]) and associative recall [7]-[13], and 
the solution of complex minimization problems [14], [15] 
using such neural networks is indicative of the computa- 
tional power latent in the system. 

CONDUCTANCES Jj ‘Ti POSSIBLY ~0) 

1 1 

\ 
LENGTH - n REGISTER 

OF 1’1s (PROBE REGISTER) 

THE MATRIX T IS THE MEMORY; T IS SYMMETRIC 

AND O-DIAGONAL 

Fig. 2. Model connections. 
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The central features of such associative computational 
systems are 1) the powerful highly fanned-out distributed 
information processing that is evidenced as a natural con- 
sequence of collective system dynamics; 2) the extreme 
simplicity of the individual processing nodes; and 3) the 
massive parallelism in information processing that accrues 
from the global flow of information, and the concurrent 
processing at the individual neural sites of the network. To 
recapitulate, keynotes of such neural network structures 
include a high degree of parallelism, distributed storage of 
information, robustness, and very simple basic elements 
performing tasks of low computational complexity. 

We now specialize to a consideration of neural associa- 
tive nets. We define memory in a natural fashion for these 
systems. We typically require that vectors x that are 
memories in the state space of the neural network be fixed 
points of the system. Specifically, if the binary n-vector is 
a memory, then for each neuron i = 1,. * . , n, 

xi=sgn/ c qixij* (1.2) 
\j=l -1 

(We shall later see that this is independent of whether we 
have the asynchronous or synchronous models.) However, 
in the structure of association, it is a desideratum that the 
stored memories are also attractors, i.e., they exercise a 
region of influence around them so that states which are 
sufficiently similar to the memory are mapped to the 
memory by repeated iterates of the system operator. 

In essence, then, we shall require that if the probe, i.e., 
the initial state of the neural network, is “close” to a 
memory, then the system dynamics will proceed in a 
direction so that the numerical network settles in stable 
state centered at the memory, or (not considered much in 
this paper) at least close to it. Here we use the Hamming 
distance as the natural similarity measure between two 
states in the binary n-space under consideration. It turns 
out that anything less than n/2 away will work in many 
situations. 

With this interpretation, our memory corrects all (or 
most of) the errors in the initial probe vector. We can thus 
think of the associative memory as a kind of decoder for a 
code consisting of the m fundamental memories as code- 
words. However, the codes will, as we shall see, have very 
low rates and hence find limited or specialized use for 
channel coding. We can also think of an associative mem- 
ory as a basket of m memories, as in Fig. 3. Fig. 4 shows 
the time history of the probe register contents. 

The incorporation of sequences of associations and 
memory within the neural network structure that we con- 
sider now naturally raises two issues: the nature of the 
memory encoding rule by means of which a desired struc- 
ture of associations can be programmed into the network, 
and the capacity of the resultant system to recall the stored 
memories with some measure of error correction. Note 
that with the nature of the thresholding operations fixed, 
the only flexibility that we have to realize different neural 
networks is in the choice of the synaptic weights or con- 

$4 

/ PROBE REGISTER CbNTENTS 

Fig. 4. Schematic representation of state space of eight-neuron neural 
network. 

nections qj. The memory encoding rule is, in essence then, 
an algorithm for the appropriate choice of weights Tj. 

We now give a road map to the rest of the paper. 
Section II discusses the sum-of-outer products connection- 
matrix construction basic to all the results of the paper 
and the construction upon which current implementation 
plans are based. Section III gives a brief survey of other 
possible connection matrices that may produce higher 
capacity but seem much harder to build. Section IV gives a 
concrete example where m = 3 memories of length n = 5 
are stored but with imperfect recall properties. 

Next, Section V discusses various kinds of memory 
stability. The radius of attraction around fixed points is 
introduced. Some possible modes of convergence to a fixed 
point are described. The classical energy minimization 
argument that shows that we always arrive at a fixed point 
in the asynchronous model is presented. In Section VI, we 
introduce the concept of asymptotic capacity when we 
choose fundamental memories at random. There are three 
concepts of capacity defined here, only two of which are 
the basis of rigorous results in this paper. Next, the prob- 
lem of the existence of extraneous memories is mentioned 
with references to some existing results. We also give here 
a simplified heuristic derivation of a particular important 
instance of one of our main results. A key conjecture 
stated here, proved in Section VIII, is that the number of 
CTijxi(a) sums which fail to be correct (with appropriate 
m,n) obeys a Poisson distribution. Here xca) is one of the 
m fundamental or original memories used to construct the 
sum-of-outer products connection matrix Tij. “Correct” 
means that the sum equals x!*). 

Section VII provides motivating material and lemmas 
for the key rigorous hard lemmas of Section VIII. One key 
lemma reviewed in Section VII is the “large deviation” 
version of the central limit theorem. Another is a quantita- 
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tive form of truncated inclusion and exclusion needed to 
prove the Poisson distribution conjecture mentioned above. 

Section VIII contains two long hard lemmas, the first of 
which translates the large-deviation lemma of Section VII 
into our context. The second lemma derives an asymptotic 
independence result for row sum failures, needed to prove 
the Poisson result. The Big Theorem of Section IX then 
has a short proof, given all the lemmas of Sections VII and 
VIII. The theorem derives the capacity (corresponding to a 
coding theorem and its converse) when we want what 
amounts to immediate (one-step) convergence in the syn- 
chronous model, starting from any probe vector no more 
than pn away from a fundamental memory, 0 I p <l/2. 
Two possible capacity definitions result in capacities dif- 
fering. by a factor of two. The larger capacity is obtained 
when we are allowed to fail to converge for a small 
fraction (approaching 0 as the memory length n ap- 
proaches co) of the m fundamental memories. 

Section X uses our prior lemmas to extend the capacity 
results of Section IX, to the case we are currently inter- 
ested in for building memories. This is where we do not 
demand direct convergence, only eventual convergence. 
We suggest that the factor (1 - 2~)~ can be removed, where 
we probe with a vector with pn errors. This is not yet fully 
rigorous. The capacities then are (asymptotically in n) 
n/(2log n) or n/(4log n) depending as above on whether 
we allow a finite number of exceptional memories or not. 
The radius of attraction is any pn, p -C l/2, but how large n 
must be depends on how close p is to l/2. Section X also 
discusses some possible implementation variations, includ- 
ing quantizing the qj. This turns out to reduce capacity by 
the same amount as quantizing detector outputs in the 
infinite-bandwidth Gaussian channel. 

Section XI summarizes all of what we have done and 
discusses open problems. The most important one is the 
case where we allow a fraction en of the n components to 
be wrong after the stable point is reached. It is conjectured 
(nearly proven) that the capacity is then asymptotic to cn 
where c is a constant behaving like 1/(21oge-‘) as e 
approaches 0. This behavior is consistent with our n/(2 
logn) result. We conclude Section XI and the paper with 
an explanation of why it may be very hard to derive a 
rigorous asymptotic expression for the expected number of 
fixed points, extraneous or otherwise. 

II. OUTERPRODUCTCONSTRUCTION 

In this paper we deal almost exclusively with the mem- 
ory encoding rule specified by Hopfield in [l], and for- 
mulate a rigorous answer to the simple question: What is 
the capacity of the Hopfield neural network structure for 
information storage? We will make the intuitive notion of 
capacity more precise later. We now turn to the Hopfield 
encoding rule. 

Let x = {x(l), xc*), . . . , x cm)} be an m-set of n-dimen- 
sional binary (k 1) column vectors, which are to be stored. 
We shall call these m vectors the (fundamental) memories. 
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How large m can be is the subject of this paper. For each 
memory xCa) we form the n X n matrix (superscript T 

denotes transpose to a row vector) 

where I, denotes the n X n identity matrix. (For some of 
our results, we can subtract gI,,, 0 5 g I 1.) Thus T, is just 
the outer product of xc”) with itself, except that O’s are 
placed on the diagonal. Now the Hopfield connection ma- 
trix for the set of m memories {x(l), + . . , ~(~1) is defined 
as 

T= 5 T, 
a=1 

T= f (x@))((x@))~-I~). (2.1) 
a=1 

This is the sum-of-outer products. We assume that once T 
has been calculated, all other information about the xca) 
will be “forgotten.” This is an important point to note 
when we have to add another memory to the list of things 
to be remembered, that is, when we have to learn. 

Information retrieval works as follows. We are given an 
n dimensional + 1 vector x = (xi, x2; . ., x,) (called as 
before the probe), and wish to find the stored memory xca) 
which is closest to x in Hamming distance, using only the 
connection matrix T and neural network iteration as above. 
Hopfield’s asynchronous algorithm for doing this is to 
update the components of x randomly and independently 
one at a time using the rule (1.1); i.e., replace the ith 
component of x (i is random) with the sign ( f 1) of the 
i th component of the vector TX. For any symmetric con- 
nection matrix T, such as the one here, Hopfield showed 
(see Section V) that in asynchronous operation, this pro- 
cess is convergent. This means that starting with any 
probe vector x, one will always reach a fixed vector, i.e., a 
vector y = (y,, y2,. . . , y,) such that 

y = sgn(Ty). 

This outer product scheme has often been proposed and 
used in the literature [l], [2], [9], [12], [16]. In [l], Hopfield 
investigated the model with asynchronous dynamics and 
demonstrated that associative recall of chosen data was 
quite feasible with a measure of error correction. Nakano 
[9] coined the term “associatron” for the technique and 
demonstrated that, with synchronous dynamics, a time 
sequence of associations with some ability for recall and 
error correction could be obtained. The conditions under 
which long-term correlations can exist in memory have 
been investigated by Little [12] and Little and Shaw [16] 
utilizing a synchronous model. 

We first make it plausible that the memories be stable 
(at least in a probabilistic sense). Assume that one of the 
memories xCa) is the initial state of the system. For each 
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i=l,. . ., n, we have 

[Tx’@)]~ = 5 qjxja’ = t f x~(~)x~~)x~~) 

j=l j=l /3=1 

j#i 

= (n --1)x!*) + C C xjB)xj8)x(u). (2.2) 
/3#a j#i 

Now assume that the memories are random, being gener- 
ated as a sequence of mn Bernoulli trials. We find that the 
second term of (2.2) has zero mean (actually zero condi- 
tional mean, given xc”)), and (conditional) variance equal 
to (n - l)(m -l), while the first term is simply (n - 1) 
times (the sign of) xl*). (The m fundamental memories 
xca) are thus approximately eigenvectors of the linear 
transformation T, with approximate eigenvalue n. We 
shall have more to say about this at the end of Section V.) 

The second term in (2.2) is comprised of a sum of 
(m - l)( n - 1) independent random variables taking on 
values + 1; it is hence asymptotically normal. Thus the 
component x te) will be stable only if the mean to standard 
deviation raho given by (n - 1)l12/(rn - 1)112 is large. 
Thus, as long as the storage capacity of the system is not 
overloaded, i.e., m < n in a way to be made precise, we 
expect the memories to be stable in some probabilistic 
sense. Section VI exploits this point of view in an argu- 
ment, still nonrigorous at this point, given in some detail. 

Note that the simple argument used above seems to 
require that m = o(n). The outer product algorithm hence 
behaves well with regard to stability of the memories 
provided that the number of memories m is small enough 
compared to the number of components n in the memory 
vectors. (The m = o(n) result is, however, a little unfor- 
tunate. We shall provide some relief to this in Section XI.) 

III. ALTERNATIVE CONNECTION MATRIX 
CONSTRUCTIONS 

The sum of outer products construction is the one we 
shall be subsequently concerned with in this paper. How- 
ever, there are other possible connection matrices that one 
could think of that might have the m fundamental mem- 
ories as fixed points. These constructions involve requiring 
that the fundamental memories be exactly ordinary eigen- 
vectors of the connection matrix with positive eigenvalues. 
Then they will certainly be fixed points. Let the memories 
x(U) be eigenvectors of T with positive eigenvalues Xc*). 
Then 

sgn (( Tx(“‘)i) = sgn ( X(OL)xja)) = x!*). 

Thus the fundamental memories xca) will be fixed points. 
An issue we do not consider in this paper is that of 

nonsymmetric connection matrices T. These of course do 
occur in actual neural networks. Our energy minimization 
argument of the next section fails for arbitrary matrices. In 
fact, fixed points need not even exist, and various kinds of 
orbital behavior can occur. However, it seems that a great 
deal of symmetry is not needed before behavior imitating 

the symmetric case occurs. All that may be necessary is a 
little symmetry, such as a lot of zeros at symmetric posi- 
tions in the matrix. This seems to correspond to what often 
occurs in real neural nets, where many neurons are not 
connected to each other at all. We hardly discuss nonsym- 
metric connection matrices in this paper. 

Our construction of the Hopfield model above has com- 
ponents changing one at a time, with no memory. We 
referred to this as the asynchronous model. One could also 
think of changing all the components at once, which we 
have called the synchronous model. The asynchronous model 
modified to provide some short-term effect of previous 
states may share aspects of both models. The capacity 
results of this paper in any case apply to both the asyn- 
chronous and synchronous models and are stated both 
ways. We will see one minor difficulty with the synchro- 
nous model in the next section-a fixed point need not 
always be reached in the synchronous model. However, 
(1.2) shows that a fixed point in one model is a fixed point 
in the other if the connection matrix is the same. 

Further, we would not expect that the synchronous and 
asynchronous cases are very different, for we shall see that 
as we “home in” on the correct fundamental memory, very 
few components actually change anyway, synchronous or 
asynchronous, so it hardly matters whether we change 
them all at once. Also, the heuristic argument we gave 
providing a signal-to-Gaussian-noise ratio of approxi- 
mately \ln/m is insensitive to whether we change one 
component at a time or all at once. 

All things considered, we suspect that our capacity 
results do not change if a little “memory” is put into the 
synapses. By this we mean that a change in the ith 
component at time 0, say, depends, perhaps probabilisti- 
tally, on some function of a generalized average of the last 
k values T.jxj[ -s], 1 IS I k. Here we use x[ -s] to be 
the value of the state vector x taken s units in the past, 
that is, just prior to the sth previous (potential) change of 
a component. 

There has been some other recent work on the capacity 
of the Hopfield associative memory. In [17], Abu-Mostafa 
and St. Jacques showed, using a hyperplane counting 
argument familiar from pattern recognition, that the 
capacity of a memory of length n is at most n. Here 
“capacity” is used in the fairly weak sense that the m 

memories we want to store have to be fixed points, but 
need not have any radius of attraction greater than zero. 
Any symmetric zero-diagonal connection matrix was al- 
lowed with zeros down the diagonal. An arbitrary threshold 
ti (instead of zero) was allowed for the i th component, so 
that the memory evaluates 

n 

sgn 

! I 

1 T.jxj - ti 

j=l 

jti 

for 15 i I n, where x is the current state vector. Capacity 
m means here that every set of m potential fundamental 
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memories { ,ca), 1 I (Y I m} that we wish to store has to 
have an associated symmetric zero-diagonal connection 
matrix T = (Tij) and threshold vector t = (ti) such that 
each x(a) is a fixed point. However, the argument of [17] 
would work just as well if we only required that almost 
every set of m fundamental memories be fixed with some 
T, t; the bound is the same and not larger in an asymptotic 
sense. This bound would thus cover our case of random 
sets of mn vectors. So n certainty seems an upper bound 
on our capacity. 

That is, if we require that every single m-set of n-tuples 
be fixed, then the upper bound on capacity is indeed n. 
However, if we relax our requirements to a probabilistic 
bound, it turns out [18] that the correct upper bound on 
capacity is 2n. Specifically, we require that the probability 
that a random m-set not be storable as the fixed points of 
some connection matrix approach 0 as n approaches infin- 
ity for the 2n-capacity result. Finally, in Section XI, we 
briefly mention allowing the final stable state to have a 
(small) fraction c of its components different from the 
desired fundamental memory. Whether and how much this 
increases the upper bound n of [17] for the outer product 
connection matrix it is too early to tell, but we do seem to 
get linear capacity with our model in this relaxed case. 

Is there any way that we can attain this capacity n 
asymptotically? Reference [19] makes it extremely credible 
that we can, even with some positive radius of attraction, 
by the proper choice of symmetric matrix T and zero 
threshold vector t. (However, T will not be zero-diagonal 
but rather can even have negative diagonal elements. This 
negative diagonal may invalidate the argument of Section 
V that the memory always settles down to a stable point.) 
Earlier we saw that in the sum-of-outer products construc- 
tion, the fundamental memories were approximately eigen- 
vectors with eigenvahtes approximately n. In [19], the 
matrix T is one of several natural choices which have the 
m = n fundamental memories ,ca), assumed linearly inde- 
pendent, as they will be with high probability, exactly as 
their n eigenvalues. 

In addition to the’ negative-diagonal possibility men- 
tioned above, the constructions of [17] also have the poten- 
tial difficulty that if we want to add a new memory (if we 
have m < n already stored), we need to do a new com- 
plicated calculation involving all the mn components of 
all the original m memories to compute the new T. In the 
sum-of-outer products construction, we only need to know 
the previous entries themselves, which is no extra burden. 
In the case of the quantized sum-of-outer products con- 
struction discussed in Section X, we have to remember all 
the mn components of the .(a) (or all the n(n - 1)/2 
sums-of-outer products before quantization) to compute 
the new T when an (m + 1)st memory is to be added. 

In spite of this additional complication, the construc- 
tions of [17] could be very important. This is because of 
the small capacities we have derived in this paper, which 
behave like n/2log n (or like n/4 log n with a slightly 
stronger requirement on the convergence). While we do 
later propose (see Section XI) that a constant asymptotic 

to 1/21og(l/c) times n can be achieved if we allow the 
final stable state to have a fraction c of errors, 1/21og(l/c) 
is fairly small compared to 1 for small e. 

IV. EXAMPLES 

The first three sections have all been rather abstract. As 
a simple example, suppose n = 5 and that we wish to store 
the three fundamental memories 

X(‘)=(+++++y XL(+--+-)T 

X(3) = (- + - - -)‘* 

Then we have 0 + + + + 

+ - + + 0 

and so finally 

-11 31 

Now suppose we are given the probe vector x = 
(+ - - + +)‘, at distance 1 from xc2). To update x, we 
compute TX: 

Tx=(+4,-3,+4,+4,-2)T. 

Thus if we hard-limit TX using the rule (l.l), that is, limit 
all its components to t 1, only the third and fifth compo- 
nents of x will change. Let us assume asynchronous oper- 
ation. It we select the third component to change, the new 
probe will be 

x’=(+,-,+,+,+y. 

Now we compute TX’: 

TX’= (+6,0, +4, +6, +4)7 

Here we find (recall our convention sgn(0) = +) that the 
signs of the components of TX’ are all positive. We see 
that we will ultimately have to change the second compo- 
nent of the probe to + 1, reaching x(l). Now x(l) is fixed: 

TX(‘)= (4,0,6,4,6)T 

and the sgn of all five components of TX(‘) is +l. We 
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reach x(l) as a fixed point starting from x if we change the 
third component first. However, x(i) is at distance 2 from 
x whereas xc2), the “correct” memory, is only at distance 1 
from x. We have converged to an incorrect memory. 

On the other hand, if we had decided to update the fifth 

component of x first, the new probe vector would have 
been 

xI=(+,--,--,+,-y-, 
and then we would have obtained 

TX’= (+2, -3, -2, +2, -2)7 

i.e., no changes in sign in x’, so that we would have 
converged to the “correct” memory (+ , - , - , + , -)T, the 
memory closest to the initial probe x. 

This example partially illustrates the possible problems 
with Hopfield’s retrieval algorithm. If we begin with a 
probe x, the resulting fixed point a) may not be one of the 
memories or, if it is, b) it may not be the nearest memory. 
The study of the convergence behavior of Hopfield’s al- 
gorithm is very complex indeed; a simpler question is, 
When are the memories themselves fixed points? This is 
plainly an important question, since a memory which is 
not a fixed point can never be exactly “recalled” by the 
algorithm. In our example, all three fundamental memories 
do happen to be fixed, since 

TX(‘)= (+4,0, +6, +4, +6)T 

sgn TX(‘) = (+++++y=x(l) 

TX(~)= (t-2, -3, -2, +2, -2)= 

sgnTXc2)= (+ - - + -)T=X(2) 

TX(~)= (-6,0, -4, -6, -4)T 

sgnTX(3)=(-+---)T=~(3). 

V. STABILITY 

We want the fundamental memories to be in some sense 
recoverable. A weak sense for this is that they at least be 
fixed points under the x -+ x’ = sgn TX mapping. Here we 
observe that fixed point means the same thing in the 
synchronous and asynchronous cases. However, this is not 
very useful, for merely being able to remember that every- 
thing is right when you are given everything at once could 
hardly be called an associative memory. 

We want some error-correcting or “pull-in” capability. 
In this paper we generally assume a “forced choice” model 
in which, if some components are not known, they are 
guessed and are right half the time. Thus, if we know 20 
percent of the n components of a memory exactly and 
guess the other 80 percent with error probability l/2, this 
is like knowing 20 percent + (l/2) X 80% = 60 percent cor- 
rectly. 

One thing one could think of doing is to “clamp” any 
certainly known components xi to their known + 1 values. 
This means that they are not allowed to change at all; 
XI = xi at every change, regardless of (sgn Tx)~. However, 

clamping turns out not to increase capacity. What happens 
is that “right” components xi would have almost never 
changed anyway. We discuss this in a little more detail in 
Section VIII. So throughout this paper, we let all compo- 
nents, those we may be sure about and those not, change. 

We now suppose that we know at least (1- p)n of the 
components when we probe the memory, so that pn (or 
fewer) are wrong. (Here 0 I p <l/2.) We do not know 
which pn are wrong. We would still like the memory to 
settle down to the correct, i.e., closest, fundamental mem- 
ory. We would then call the largest possible such pn the 
radius of attraction as in Fig. 5. The picture is misleading, 
though. In Hamming space, m disjoint spheres of radius 
< n/2 cover very little of the total probability, if m is not 
large, and almost all the probability is concentrated near 
the boundary of the sphere. 

WITH 2” n-TUPLES 

Fig. 5. Radius of attraction in Hamming space. Almost all points in 
almost all spheres stabilize at center of sphere, which is closest funda- 
mental memory. 

Such a property provides a true associative capability. 
For example, if we have convergence to the correct mem- 
ory when p = 0.45, then all we need know correctly is any 
ten percent of the n components. We guess the other 0.9n, 
and get 0.45n right. This, plus our O.ln right to begin with, 
gives 0.55n correct, or only 0.45n wrong, and we get 
convergence to the correct memory. 

There are at least three possibilities of convergence for 
the asynchronous case, two of which occur in this paper 
(see Fig. 6). First, the sphere of radius pn may be directly 
or *onotonically attracted to its fundamental memory 
cenl: C, meaning that every transition that is actually a 
ch> : 8 :..e in a component is a change in the right direction, 
as ; : i Fig. 6(a). (Alternatively, the synchronous version goes 
to I!,“; fundamental memory center in one step.) Second, 
wit1 high enough probability but not probability 1, a 
random step is in the right direction, as in Fig. 6(b). After 
eno lgh steps, the probe has with high probability come 
ver: close to its fundamental memory center, so that then 
all .ubsequent changes are in the right direction, i.e., we 
are then directly attracted. (For the synchronous case, this 
implies two-iteration convergence.) 

The third mode of convergence, which does not occur in 
this paper except by allusion, does not correspond to 
anything obvious in the synchronous case. In this mode, 
components can change back and forth during their 
sojourn, but at least on the auerage get better, i.e., are more 
likely to be correct after a change than before. After a 
finite number of changes, the system settles down to a 



468 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-33, NO. 4, JULY 1987 

STATE SPACE 

Fundamental 
Memory 

Probe 

(4 

(b) 

I I 

(4 
Fig. 6. Representation of various types of convergence 

fixed point, as we know it must, and this fixed point is 
either the correct memory or not too far from it, say within 
cn, as in Fig. 6(c). 

All this presupposes that there are fixed points and that 
we wind up at one. In [l], Hopfield showed that for any 
symmetric connection matrix T, starting anywhere, we 
always reach a fixed point in the asynchronous model. He 
did this by observing that the “energy” 

- c c iyjxixj 
i j 

does not increase for each model-forced coordinate change, 
or alternatively, the inner product or correlation 

is nondecreasing as the state x goes through a model 
trajectory. Let us derive this here. 

Say coordinate i, of the current probe vector is due for 
a possible change. Then 

(5.1) 

The correlation changes by 

AC=C’-C= e T,,j(Axi,)xj+ i Z&xi.(Axi,) 
j=l i=l 

+ &,( Axi,)‘. (5.2) 

Here Axi, = xi6- xi,. (Note that we are not assuming 
7& = 0; Toi, 2 0, 1 I i, 2 n, is enough.) 

Continuing, we see from (5.2) and the symmetry of T 
that 

since we have assumed that the diagonal elements of T are 
nonnegative. If xi6= xiO, there is nothing to prove. If 
xi6 < xiO, then xi,= +l, xiO= -1, and so from (5.1), 

A= cl$x,<O. (5.4) 

Also, in this case Axio= -2, and 

AC 2 (2).(-2).(A) > 0. (5 *5) 

Finally, if x:, > xi, then xi, = - 1, xi6 = + 1, and from (5.1) 

(5.6) 

Here 

Axi,= +2, 

so 

ACr2.2.AkO. (5.7) 

We see that the correlation C of x with TX is nonde- 
creasing under the asynchronous component changes 
forced by the Hopfield model. Since C is bounded by 
CiCj]qj], a finite maximum of C is ultimately reached on 
each trajectory. Such an x is not necessarily a fixed point, 
because A can be 0 in (5.6), so that AC can be 0 in (5.7). 
However, the only changes that have AC = 0 involve xi, = 
- 1, xi0 = + 1. After a finite number (possibly zero) of 
these - 1 to +l changes with C staying the same (of 
course at most n changes), no more changes are possible. 
We finally do reach a fixed point in the asynchronous case. 

We shall now indicate why there is a region of attraction 
around the fundamental memories in both the asynchro- 
nous and synchronous cases. As a consequence, fixed 
points will exist even in the synchronous model with high 
enough probability to make our desired results true. The 
double sum in (2.2) has zero mean. With m = o(n), the 
standard deviation is ((m - l)( n - 1))li2 = o(n). Hence, 
from (2.2) we see that as n + cc, the m fundamental 
memories xca) are approximate eigenvectors of the linear 
transformation T, with the same m-fold degenerate ap- 
proximate eigenvalue n -,l. 

In fact, with high probability the maximum eigenvalue 
of T is essentially n - 1. For consider any vector x in the 
space orthogonal to the m fundamental memories. For 
such a vector, we then have 

(TX) i = 2 qjxj = i 5 ~i(~)xj(~)x~ 
j=l j=l a=1 

j#i 

= - f (x!“))2Xi = - E xi. (5.8) 
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This, being a sum of m random independent & 1 random 
variables xi, is of order &t with high probability. Thus all 
vectors orthogonal to the m memories come close to lying 
in the null space of T. Since T is symmetric, its other 
n - m eigenvectors lie in the space orthogonal to the xc”). 
Hence their eigenvalues must be nearly zero. We expect 
these other eigenvalues to be small compared to the maxi- 
mum approximate eigenvalue n - 1. 

The above suggests that there is a domain or basin of 
attraction around each fundamental memory, with high 
probability one that contains a sphere of radius nearly 
n/2, or at least most of the sphere. That is, most probe 
vectors in the Hamming spheres of some positive radius 
about most of the fundamental memories will reach the 
fundamental memory at the center of the sphere as a stable 
or fixed point, in both the asynchronous and synchronous 
models, if there are not too many fundamental memories 
at the start. (If there are too many fundamental memories, 
they will not even be fixed points themselves.) The funda- 
mental memory is reached from within the spheres, too, 
because wrong components merely add to the noise, not 
changing the qualitative behavior of the path of the state. 
Thus nearby memories are brought to the fundamental 
memory, which is a fixed point. We shall spend much of 
the rest of the paper making this heuristic argument as 
precise and rigorous as we can. 

VI. CAPACITY HEURISTICS 

Our capacity will be a rate of growth rather than an 
exact number as in traditional channel capacity in infor- 
mation theory. Here we choose m = m(n) memories at 
random, where n is the number of components or the 
length of a memory. “At random” means - 1 and + 1 are 
equally likely, although imbalance may (it turns out) pro- 
vide somewhat greater capacity with the sum-of-outer 
products construction. A preprocessor that compresses 
memories for a more efficient nonassociative representa- 
tion would produce equal probabilities of l/2. We will not 
further study the unequal case here. 

We are given fixed p, 0 I p -C l/2, and ask for the 
largest rate of growth m(n) as n + cc so that we still can 
recover the fundamental memory within pn of a probe. 
That memory is unique with high probability if m is not 
too large, as the following well-known argument shows, 
and as also follows from the results in this paper. The 
probability that a given vector is within pn of a random 
vector x(l) is exceedingly small for p <l/2. Since our m 
fundamental memories are chosen independently, the 
probability that the given vector is close to two of the xa is 
much smaller still. 

We are allowed to fail with small probability, so “re- 
cover” means “with probability approaching 1 as n -+ CO .” 
All our results have the property that if the rate of growth 
is exceeded by any fraction 1+ E with c > 0, then instead 
of having what we want happen with probability ap- 
proaching 1, it happens with probability approaching 0, 

just as for the word error probability in Shannon theory 
when we try to exceed channel capacity. 

Two cases are distinguished in this paper. First, with 
high probability, euery one of the m fundamental mem- 
ories may be fixed, almost its entire pn-sphere being 
directly attracted. Second, and this is a weaker concept, 
with high probability almost every memory is good, as 
above, but not necessarily euery memory. It turns out that 
this weakening essentially doubles capacity. 

A case not formally considered here, but which we hope 
to treat elsewhere, permits some of the components to be 
wrong at the end, but the fraction approaching zero. This 
still weaker concept appears to change the rate of growth 
of capacity from a constant times n/log n to a (small) 
constant times n. We shall say more about this in Section 
VIII. 

We are going to prove later in this paper that if direct 
attraction is desired and all the fundamental memories 
must be recallable correctly, the capacity is (all logs natu- 
ral) 

(1-2P)2n/logn. 
4 

If we can have a small fraction of exceptional fundamental 
memories the capacity is, as we said above, doubled. If we 
are allowed the second type of convergence, where we can 
make a few wrong moves but still get close enough to the 
fundamental memory so that we then have direct conver- 
gence, then (for any fixed p, 0 -C p < l/2) we get rid of the 
factor (1 - 2~)~ above. (However, we do not have a rigor- 
ous proof of this extension.) This improvement is im- 
portant when we want to recover long memories, being 
sure of only a small fraction. For then, as we saw in the 
last section, p is close to l/2. 

We saw in the previous section that any symmetric 
connection matrix T leads in the asynchronous model to a 
stable point, an “energy” minimum or correlation maxi- 
mum. With T being the sum-of-outer-products matrix, we 
hope that the fixed point, and one will essentially certainly 
be reached, is in fact that closest fundamental memory. 
(Of course, we hope the fundamental memories themselves 
are fixed.) The above capacity results determine when we 
can expect this good situation with high probability. In 
any case, these results show that, in the case of direct 
convergence, the pn-spheres around all the fundamental 
memories (or around almost all, if we are in the doubled- 
capacity small-fraction-of-exceptional-fundamental-mem- 
ories case) are almost entirely free of these extraneous 
fixed points. We shall have a little more to say about 
extraneous fixed points in Section X. 

We shall now present a simplified heuristic derivation of 
capacity. Without loss of generality, we assume that the 
first memory x (l) has all positive components: x(l) = 
(+ + .** + ). We model the n( m - 1) components of the 
remaining (m - 1) memories as i.i.d. f 1 (probability l/2 
each) random variables. We are interested in the probabil- 
ity that x(l) is a fixed point of the retrieval algorithm, i.e., 
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that the components of TX(‘) are all positive. To this end, 
note that (using the notation of Section II) 

(x(l)):= (Tlxyi+ f*(Tkxqi 

= s; + zi 

where si is the “signal” and zi is the “noise.” Since x(l) is 
all +‘s, we have 

sj=n-1. 

Our assumptions about the components of x(*); . ., xc”‘) 
imply (in the zero-diagonal case) that the noise term zi is a 
sum of (m - 1) i.i.d. random variables, each with mean 0 
and variance n - 1. Hence if n is fixed and m is large, the 
normalized noise zi/ (n - l)( m - 1) approaches a stan- 
dard normal random variable. It follows then that the 
probability that the ith component of (x(n) will be nega- 
tive will be approximately 

l 
-(n -1) 

’ J(n -l)(m -1) 
]=@(-/q-Q(E) 

where 

Q(z) = & /me-r2’2 dt. 
z 

Thus the expected number of negative components in 
(x(l))’ is approximately nQ(m). 

So far our analysis has been fairly rigorous, but now we 
must defer some fairly difficult calculations and assert that 
with suitable restrictions, the number of negative compo- 
nents in (x(l))’ is approximately Poisson. Given this, it 
follows that the probability of no negative components, 
i.e., the probability that x(l) is indeed a fixed point, is 
given approximately by the expression 

a=W{ -nQ( E)}. 

Now suppose we require that this probability be a fixed 
number very near 1, say ,8 = 0.999999. Then inverting the 
preceding expression we get 

i 

n 

Q F) 

a 
=- 

m n’ 

where a = - log p. This means that 
n 

m= 

[ 01 

Q-1 ” *’ 

n 

However, for small positive values of 
- dm, and so, since a is fixed, 

x we have @‘-l(x) 

n 

m-z$ 

It follows then, modulo our temporarily unproved 
Poisson assumption, that for any value of /3 (the desired 
probability of having a given memory fixed) not equal to 0 
or 1, the maximum number of memories that can be stored 
in a Hopfield matrix is asymptotically at most n/(2log n). 
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If asymptotically more than this number are stored, the 
memories will almost surely not even be fixed points, and 
we will later show that if fewer than this number times 
(1-2~)~ are stored, not only will they almost surely be 
fixed points, but also the retrieval algorithm will almost 
surely converge to the best memory for almost any initial 
probe which is at distance not more than a constant p (less 
than l/2) times n away from a fundamental memory. 

In the foregoing, we have implicitly allowed a small 
fraction of the m fundamental memories to be excep- 
tional; that is, they are not fixed points. If we want all m 

fundamental memories to be fixed, it will turn out that we 
have to cut m in half asymptotically as n becomes large. 
Also, the probe will go directly to the fundamental mem- 
ory in only one synchronous step when we cut m by 
(1 - 2p)‘, whereas before the probe was initially pn or less 
away from a fundamental memory and 0 I p <l/2. 

VII. PREPARATIONFORTHEFORMALRESULTS 

We have had a number of motivation and plausibility 
agreements thus far. The reader may even be willing to 
believe that some of our claimed results are probably true. 
We will make good our claims by proving some rigorous 
results in the next two sections. Here, we review some 
known preliminary lemmas needed for the delicate argu- 
ments of Section VIII, which contain essentially all the 
difficult rigorous mathematics. Lemma A displays a known 
good uniform estimate for the probability that the sum of 
N independent + 1 random variables takes on a particular 
integer value not too far from the mean sum. The estimate 
is just the probability of the approximating normal over 
that interval of length 1 which is centered on the targetted 
deviation from the mean. It is a “large-deviation” theorem 
in that the integer need only be within o(YV~‘~) of the 
mean if the k 1 random variables are unbiased. 

In Lemma B, Lemma A is used to get a good known 
uniform asymptotic expression for the cumulative distribu- 
tion of a sum of N independent +l random variables, 
valid for the same large deviations as Lemma A. The 
approximation is of course the usual normal distribution 
valid for small deviations. Lemma B’ is the strong form of 
the large-deviation central limit theorem of [20, p. 195, 
prob. 141. This is precisely the version we will need, 
although exponent (l/2) + e for any e > 0 would be enough, 
rather than the stronger d(N314) result we invoke. 

Lemmas A, B, and B’ are basically known results on 
sums of independent f 1 random variables. Lemma C is 
known as Bonferroni’s inequality [20, p. 1101 but is also 
repeated here for completeness. 

Lemma A: Let xi;.-, xN be independent random vari- 
ables with 

xj = 
i 

1, Pv 
0, Prq=l-p 

where 0 < p ~1, and let 
N 

z= c xj. 
j=l 
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As N + cc, let the integer k vary so that 

Ik - Npl <B(N) = o(N*‘~). (7-l) 

(o( N314) works if p = 4 = l/2, the case we are mainly 
interested in.) Then 

(7.2) 
as N + cc, uniformly for all k satisfying (7.1). 

Proof: See [20, ch. VII, sec. 61. 

Lemma B: Under the hypotheses of Lemma A, if the 
real number u varies as N + cc so that 

Iu - Np1-c B(N) = o(N”~), 

or o( N 3/4) if p = q = l/2, then 

Pr(z 2 U) - 
+&j ~:,-,exp (- &) dt’ (7’3) 

Proof: See [20, ch. VII, sec. 6; prob. 14, p. 1951. 

Lemma B’: If 5 is the sum of N independent random 
variables, each + 1 with probability l/2, and u = o( N 3/4), 
then as N+ cc, 

Pr(S 2 u) - 

Proof: Lemma B applies here, with z = (5 + N )/2, 
p =1/2, u = (u + N)/2. Hence 

Pr(lI u) = Pr(z I u) - 

Replacing t by itd?? leads to the claimed formula. This 
proves Lemma B’, which also appears as [20, prob. 14, p. 
1951. 

Lemma C is, as mentioned, an instance of Bonferroni’s 
inequality. 

Lemma C: Let A,, . . . , A,,, be measurable subsets of a 
probability space. For 1 I k I N, let uk be the sum of the 
probabilities of all sets formed by intersecting k of the 
A,; . ., A,: 

(I/( = c Pr(AjlnAj2f7 ..a nAj,). 
j, < j, < . < jk 

Then for every K, 1 I K I N, 

Pr(A,UA,U .-. UA,) = f (-l)“-lek+(-l)KEK 
k=l 

(7.4) 

where E, 2 0. 

Proof: Consider a point which lies in exactly L of the 
Aj, 12 L I N. On the left, this point is counted only once. 

On the right, it is counted exactly times in each uk 

with k I L, for a total contribution of 

mly;L)(-l)*-ij ;) 

(l-(l-l)L=l, KrL 

= \l-(-l)K(LiI) lsK<L. 

The latter equality is proved by induction on k using 

starting from K = 1, for which L = 1 - ( - l)( L - 1). Hence 
if we define the random variable X by 

(03 LIK x= 
L>K, 

then (6.4) is true with 

E,= E(X) 20. 

(See also [20, p. 1101.) This completes the proof of 
Lemma C. 

VIII. KEY RIGOROUS LEMMAS 

Let xc’), I =1,-e ., m, be a set of m vectors (fundamen- 
tal memories) of n components (xl’), . . ., xi’)); this n is 
the number of neurons in the Hopfield memory. Here all 
the mn components x!‘) are independent random variables 
with values + 1, each with probability l/2. We form as 
before (see (2.1)) the matrix T = (I;.,), the sum of outer 
products: 

where g = 0 or 1 (we even could consider 0 I g I 1). The 
case g = 1 is the prior construction with zeros down the 
diagonal. The case g = 0, where we do not zero the diago- 
nal, is included below as well. The notation is the same as 
in the preceding sections, but the choice of subscripts and 
superscripts is slightly different, due mainly to the preva- 
lence of triple and quadruple products of the x ‘s. 

Consider the transformation x + x’, where 

x;=sgn(Fqkxk). 

Here we can ignore the case where we must take sgn(0) 
since that event is of very low probability. The m vectors 
x(‘) are all fixed under this transformation if each of the 
mn sums 

sj” = c I;kq)xp, j=l;-.,n, 
k 

are positive (synchronous fixed point, and, as previously 
observed, the same as asynchronous fixed point). We are 
interested in the number of these vectors which are fixed 
when n + 00, with m -+ 00 chosen appropriately as a func- 
tion of n. More generally, as before for 0 < p < l/2, we are 
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interested in the number of these vectors xc’) whose Ham- 
ming sphere of radius pn is directly attracted almost 
entirely to the central vector, which is then of course a 
fixed point. As before, this means that every component 
which changes at all, changes in the right direction, or, in 
synchronous operation, the central memory is reached in 
one step. 

First let us consider the case p = 0. By symmetry, the 
probability of a row sum violation of the jth component 
for the Zth fundamental memory x(l), 

p,=Pr(S,(‘)<O), 

is independent of the values of both j and 1. Using the 
expression of qk, then, we have 

The product of the x’s here is + 1 if r = I or k = j or both. 
Hence 

Sj’) = n + (1 - g)m - 1 + C C xJ’)xi’)xj(r)xf). 
r+lk#j 

Each term in the double sum contains the factor xf), 
which occurs in no other term. These factors are mutually 
independent. Hence the (m - 1). (n - 1) terms of the sum 
are independent k l’s, each taking value (+ 1) with prob- 
abil$ l/2. Denoting this sum by zj’), we have 

pi=Pr(Sj’)<O)=Pr[z$‘)<-(n+(l-g)m-l)]. 

tfw 

In the general case, 0 5 p < l/2, we proceed in much the 
same way. Consider spheres of radius pn (the radius is 
assumed for notational convenience to be an integer in 
what follows) centered at an xca). The center xc”) will of 
course still be fixed. The attraction condition is easily 
expressible. As we can see, the errors mean that the mn 
values 5’:‘) are each to be decreased by 2pn, because there 
are exactly pn errors. Thus, denoting (1 - 2p)n by n,,, we 
are interested in the probability 

p,=Pr(S:‘)<O) =Pr[zj’)< -(n,+(l-g)m-l)]. 

(8-2) 

If 5”‘) < 0 with pn errors with high probability, then 
indeed almost the entire sphere of radius pn is attracted to 
its center xc’), which is still of course fixed. For if Sj’[) 2 0 
with pn errors with high probability, then all the more 
strongly S/“) > 0 with high probability if there are fewer 
than pn errors. 

Lemma 1 to follow applies the large-deviation lemma 
(B’) to the situation we are now faced with. The result is an 
asymptotic expression for pl, the probability that a par- 
ticular row sum is violated. This agrees with what we 
would get by a naive application of the central limit 
theorem. 

Lemma I: For 0 I p <l/2, as n --) co, if m = o(n) and 
m 2 C(n), where C(n)/& + co, then the probability p1 

of a component changing in the wrong direction, i.e., 

becoming wrong when it was right before the change, if the 
current state has pn errors, is given by 

p,=Pr(S!‘)<O) 

-~~exp[-(~+(l-2p)(l-g))]. (8.3) 

(Here nlr, = n(l- 2p)*.) This p1 is an upper bound to the 
probability of a component changing in the wrong direc- 
tion when there are at most pn errors in the current state. 

Proof: We can apply Lemma B’ to the random vari- 
able z!‘) in (8.2) with 

J 

N= (m -l)(n -1) 

u=-[n,+(l-g)m-11. 

The hypotheses there are satisfied since m 2 C(n). Hence 

( 

n,+(l-g)m-1 

‘l-’ J(m-l)(n-1) i ’ 

Since 

n,+(l-g)m-1 

J(m -l)(n -1) - v-i 
t (1-2p)+o3 

as n += cc, we can use the asymptotic formula for the 
left-hand tail probability of the Gaussian distribution 

and so 

Using m/n + 0 and m 

[ 

(n,+(l-g)m-l)* 
- 

2(n -l)(m -1) 1 ’ 

/fi-,ca, we have 

2(n -l)(m -1) 
=~+(l-2p)(l-g)+o(l). 

Hence (8.3) follows if there are pn errors. If there are 
fewer than pn errors, then the “signal” portion np + 
(1- g)m -1 of (8.2) is increased and Pr(S’/“) < 0) is 
decreased from its value when there are pn errors, i.e., p1 
is an upper bound to the probability of a step in the wrong 
direction anywhere in the sphere of radius pn. This 
proves Lemma 1. 

It is clear from foregoing discussions that uniformity 
holds in the following sense. If m, 2 m, then the p1 

corresponding to m, is at least as large as the pi corre- 
sponding to m, provided p < l/2. (This is slightly easier to 
see in the g = 1 case.) The idea is that for ml > m, the 
random variable z$‘) has more independent summands for 
ml than for m, hence it is more likely to be large negative. 
In fact, the distribution of the number of row sum viola- 
tions for m, lies below that for m-more violations are 
likely. 



MCELIECE et al. : CAPACITY OF HOPFIELD ASSOCIATIVE MEMORY 413 

The next lemma concerns the joint distribution of q 

sums, 

sy, h=1,2;..,q. 

There is a bipartite graph of q edges associated with this 
collection of sums. The vertices of the first type corre- 
spond to the values of j,,. The vertices of the second type 
correspond to the values of 1,. The edges are the connec- 
tions from j,, to I,, if the sum Sjlf”) occurs. 

The basic fact which makes this graph important is the 
following. If (and only if) this graph has no closed loops, 
then for any fixed k, r outside the range of the vertex sets 
(i.e., k # j,, j,, . . . , jq; r # I,, I,, . . aY I,), the q products 
y, = x~,)xL’~) are independent. This is true because the yh 
can be reordered so that each uses a vertex which has not 
occurred earlier and hence involves a new X. See Fig. 7, 
which shows the construction. Starting from the top left 
vertex, decompose the graph into connected chains from 
left to right to left to right, and continue in this way. After 
the first vertex on the left is done, drop to the next lower 
vertex which still has an edge from it not previously 
included, and continue. After this decomposition, incorpo- 
rate edges in the order they were generated. A new vertex 
is used each time because there is only one edge connect- 
ing a given vertex to another given vertex. Otherwise, loops 
would be created by adding an edge whose left and right 
vertices are already included. 

We can now state and prove Lemma 2. 
Lemma 2: Under the hypotheses of Lemma 1, if C(n) 

=n “, where 3/4 < u ~1, then for a state at Hamming 
distance pn from a fundamental memory xc’) the follow- 
ing asymptotic expression holds for any fixed q, provided 
the associated graph has no loops: 

Pr( Sjlll); * ., SP) < 0) - pf. (84 

If the Hamming distance is at most pn, pq is an asymp- 
totic upper bound on the probability in (8.4) at a random 
point within the Hamming sphere of radius pn about xc’), 
if the associated graph has no loops. 

Proof: This probability is unchanged if the subscripts 

.A,- - a9 jq are subjected to any permutation of 1,2,. . . , n, or 
the superscripts I,, - . . , I, are subjected to any permutation 
of 1,2; * *, m. Hence, to simplify the notation, we assume 
that these 2q numbers are all I q. 

For j, I 5 q, 

SF)=np+(l-g) m -l+ C C ~j:)~i~h)xj~~)~g) 
k f j,, r # Ih 

=n,+(l-g)m-l+~(h)+~(h) 
1 2 

where C$*) is the sum of the terms with both k 

(8.5) 

and r > q, 

and I$“) contains the other terms with r # I, k # j. 
Cl”’ contains (q - l)(n + m - q - 1) terms. As noted 

earlier, these terms are independent. We apply Lemma B’ 
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Fig. 7. Bipartite graph of j, and lh with fixed (k, r). 

to + Cl”) with N = (q - l)(n + m - q -l), u = - n(1/2)+r, 

where 0 < e <l/8. By the asymptotic formula for the error 
function, 

= o( ,-W) (8.6) 

where Cl is a positive constant. 

We now consider the sums Cih) for S’), h = 1,. . . , q. 
For each k > q, r > q, the factor 

Uk = ,!~h),pr,),!r) 
Jh Jh 
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runs through the components of a q-vector u as h varies. 
There are 24 possible vectors of this type { ui’)}, d = 

1; * . ,24. For each d let Md be the set of pairs (k, I) (with 
k,r>q) for which u=u cd) The Md are disjoint and so . 
partition the set of pairs (k, r). We have 

S!/h’ = np + (1 - g) 
Jh 

m -1f C’“‘+ 5 ~1~) 1 X!“. 

1 d=l (k,r)EMd 

(8.7) 

Let A, = 1 Mdl. Then X, can be written as the sum of the 
(n - q)( m - q) random variables 

1, (k,r) EMd 
0, (k r> @ Md, 

for k, r > q. The occurrence of the factors xj:) in the 
components of u guarantees that these q components are 
independent. Hence yA’i = 1 with probability 2-4, and 

A=E(A,)‘= c E($‘,) 
k,r’q 

= 2-q(n - q)(m - q). (8.8) 

To estimate the probability of large deviations from this 
average value, we need to break up the double sum over k 
and r into sums of independent random variables. Since 
the graph associated with (j,, Ih), h = 1; * a, q has been 
assumed to have no loops, for any fixed k, r > q the 
factors xi’h)xj;), h =l; . . , q are independent. Hence if we 
run through a set of values of (k, r) in which all the k’s 
are distinct and all the r’s are distinct, then all the 
components of all the corresponding u-vectors are inde- 
pendent, and the random variables y$‘l are independent. 

To get a set of values with k and Y distinct in a subsum 
of h,, we can take, for example, 

xd= i ‘d,k 

k=q+l 

with 
m 

x d,k = c YLgc*. 
r=q+1 

Here k* (which depends on k and r) is the unique number 
in the range q < k* I n with 

k* z k+ r(mod(n -4)). 

There are then n - q mutually independent X,,, in the 
sum defining X,. This is enough, as we now show. 

Apply Lemma B to Ad, k; here the N213-form of the 
lemma is necessary. Estimating both tails of the distri- 
bution separately and adding, we get 

Pr{/hd,k- 2-q(m-q)l>n’&i} =O(e-C2n2’) 

where C, is a positive constant. Here all we need is 
0 < E < a/6, which is true for c <l/8. This is because by 
Lemma B, we really need n’fi= B(N) to be o(m213) 
(where m is N). We have n < ml/“, 6 < m(‘/0)+(1/2), 
with (E/U) + (l/2) < 2/3 if c/a <l/6. We reach the fairly 

weak but still adequate conclusion that 

Pr(/X,-XI>n’+‘&) =O(r~e-~~“~‘) (8.9) 

since this inequality cannot be true unless at least one of 
the preceding (n - q) inequalities is true. The extra factor 
n in the 0 function does not hurt the bound; it merely 
means that later we shall have to take a slightly smaller C,, 
which we will still call C,. 

Let 

‘d= c Xh”. 

(k, r) E Md 

Because the Md are disjoint while the xl’) are indepen: 
dent, the zd are independent. We have 

Sp)=np+(l-g)m-l+C(h)+ 5 uid)zd. 
1 d=l 

Suppose that none of the inequalities of (8.9) occur. Then 

‘d- mn/2q. Also, the xl’) defining zd are conditionally 
independent, given that all the (k, r) entering the sum for 
zd are in Md. Hence we can use Lemma B’, even though 
the number of summands N there was deterministic, not 
random. The result is 

Pr ( Izd/ > n’Jmn) + 0( em’+*‘) (8.10) 

where C, is a positive constant. 
Let S be the set in the probability space consisting of 

the choice of m random independent fundamental mem- 
ories xc’) on which the following 24+l+ q inequalities 
hold: 

IX, -Xi5 nl+‘&, d=l;-.,2q 

lzdl < nL&, d=1;*.,24, 

I I 
F’“’ 5 ,m+f, h=l;**,q. (8.11) 

By (8.6), (8.9) and (8.10), letting Sdenote the complement 
of S in the probability space, 

Pr (S) = 0( Kc@“) 

for any positive C, less than min(C,, C,, C,). 
Consider 

n,+(l-g)m-l+CCh) 

S.p/fi = 
6 l 

+ ;, dd)g + ;l vjP)zd 

In S, the last sum is bounded by 

This follows from (8.11) and (8.8). Note that n2’/& = o(1) 
as n -+ cc, because 2~ < l/4 while m > n314. 



MCELIECE et (I/.: CAPACITY OF HOPFIELD ASSOCIATIVE MEMORY 475 

For the term Cl”), we have 

~=o(~)=o(+o) 

in S, and this can be absorbed into O(n2’/6). Hence in 
S we have 

,l,)/fi = n,+(l-g)m-1 29 

6 
+ c ulp’- 

dcl z +O $ . i 1 

We now define 

f,(b)=Pr s; E cd)%<- 
i 

n,+(l-g)m-1 

d=lvh $6 

G +b, 

the probability that we are in S and that the q indicated 
inequalities hold as well. Then the preceding equation, plus 
the fact that Pr(S) = O(e-c4”2’), gives 

fl( - An2’/J;;;) + O(e-@‘) < Pr(S,I’l); - a, Sp) < 0) 

< fl( An2’/\lj;;) + 0( e-C4n2t) (8.12) 

where A is some positive constant. 
Let A be the set of values of (Xi, * * -, x 29) that occur in 

S. Then 

f,(b) = c Pr(X,;.., b)f,(b; &,* * *, b> 
(X,,.‘.,X,1)Eh 

(8.13) 

where f2( b; X,, - . . , h24) is the conditional probability 

<-n,+(l-g)m--1 
6 

+b,h=l;.:,qlX,;..,X,4 

(8.14) 

Here b is the An2’/& of (8.12). Note that we are given 
the sizes X, of the 24 sets Md, 1 I d I 24, of the partition, 
rather than being given the partitions themselves. This is 
acceptable because our estimates of the probabilities will 
just depend on these sizes. We will use (8.13) to bound the 
fi( f b) terms in (8.12). 

then 

In S, Lemma A applies to each of the independent sums 
zd. (Here we need to reason much as in the derivation of 
(8.10) that the random number of terms in the sum of z 
gives the same bound as if the number of summands were 
truly deterministic.) The probability of (8.14) is a sum of 
probabilities over the set of lattice points of allowable 
values of zd in the region D(b) in 2q-dimensional space. 
Here “allowable” means that the integer value of zd can 
arise as a sum of + 1 values xf) for (k, r) E Md, i.e., the 
parity is right, the same as that of Md. The region D(b) is 

Let [i; . -, [2r be independent Gaussian random vari- 
ables with mean zero and variance 

Then F3(b; Xl;. ., X 29) is the probability that (El,. * *, [24) 
lies in D(b). Each of the inequalities (8.16) is violated by 
td with probability O(e-‘6”*‘), i.e., l&l > nC& only with 
probability O(e-C6’2’). Hence if we define the region 

defined by the 24 + q inequalities 

$$!J < - 
n,+(l-g)m-1 

6 +b, 

h=l;*., q; (8.15) 

Izdlsn’&, d=l;*-,2q. (8.16) 

The zd are as we have seen (conditionally) independent, so 
each individual 2q-tuple probability is the product of 24 
probabilities, one for each zd. These factors can be re- 
placed by integrals by Lemma A. Combining the integrals, 
we get a 2q-dimensional integral over a box. These boxes 
fit together to form a region A(b) which differs from D(b) 
only by the addition or deletion of points near the 
boundary. We get 

f,(b; A,,* - .> A,,) - F,(b; Xl;. ., A,,) (8.17) 

where 

~ = L,,). . . /fil &e-(ti12Ad)dtd. (8.18) 
d 

Since each zd varies by a range of length 2 over a box, 
the sums in (8.15) vary by 0(1/G) over a box. Hence 
for a suitable constant C, (depending only on q), 

-E,cA(b)cD 

where the sets E,, E, contain only points within distance 2 
of at least one of the hyperplanes bounding the region 
defined by (8.16). By Lemma B’, 

Pr((z,; - - , za9) E EJX,; . . , X2,) = 0( eCc6”‘), 

i =1,2. (8.19) 

Hence if we define 

F’(b; Xl,. . .,X29) 

, X2q + 0( e-c6n2’) 

< F,( b; A,,* * * , x29) 

+O(e-C6n2r). (8.21) 
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D,(b) by the inequalities 

h =l; * *, q, (8.22) 

then 

I;,@; &,-. ., $4 

= Pr [([,; * * ,524) 62 D,(b)] + o(e-cfq 

=Pr nh < - 
i 

n,+(l-g)m-1 

6 
+b,h=l;**,q 

I 

+ o( e-cq. (8.23) 

The q random variables n,, are normal with means zero 
and covariances 

eh~h’) = I? vlp’vp = 2%3,,!. 
d=l 

Hence they are independent and identically distributed, 
and 

‘. (8.24) 

To find the probability of (8.4), we can now proceed as 
follows. By (8.12), (8.13), (8.17), (8.21), and (8.23), we need 
to evaluate (8.24) for b = O(n2C/&r). Then we have 

,=2-q/2 _ n,+(l-g)m-l +b 

i 6 

n,+(l-g)m-1 

= -2-q’2 \/2-qm - q)(n - q) 
+ o( n”/&i) 

n,+(1-g)m-1 
=- 

J(n-d(m-4) 
+ O(n”‘/G) - - E 

since rr”/& = o(l). Also, by squaring, we see that 

x2= .[n,+(1-g)m-l]2 +. 

(n - d(m - 4) 

=$+2(1-2p)(l-g) 

+o ?+A+ 
i 

,2~+(1/2) 

n i m2 m . 

Since c <l/8, while u > 3/4 with m 2 n”, we see that 
n2E+(1/2)/m -+ 0 as n -+ cc. Also, m > n3j4 so n/m2 = o(1) 
as well; we also had m = o(n) so that m/n = o(1). The 
result is 

X~=~+2(1-2p)(l-g)+o(l). 

It follows that 

qx> _ & 

d- 

3 e-(n~/2m)-(1-2P)(“-g) - pl* 
P 

This is very much what we wanted to show. 
Retracing the above relations, we get from (8.13) 

flu4 - c Pr(X,; . ., x,+pq + o( 6-q 
(X,,...,X2’)EA 

= Pf+ O(e-C6”*~+ e-c4n’y* 

Then from (8.12), 

Pr (Sil1);. ., $4) <O] - pf’ O(e-=6”2c+ e-q. 

(8.25) 

Now by (8.3), i.e., Lemma 1, we have 

m q/2 

pf - const. ; 
i 1 

e-w2m,/m) 

m q/2 
i I > const. - e-M-Pm~l-” 
\nl 

If 2~ > 1- (I, the term pf in (8.25) is dominant and the 
lemma follows. This is true if we pick E > (1 - a)/2. Here 
3/4 < u < 1, so (1 - a)/2 is less than the previous upper 
bound l/8 on E. This proves Lemma 2 when there are pn 
errors. The upper bound in Lemma 1 takes care of the last 
part, when these are I pn errors. Lemma 2 is completely 
proved. 

Lemma 2 coupled with estimates to be derived in the Big 
Theorem in the next section proves that the number of row 
sum violations is asymptotically Poisson as n -+ cc. That is, 
for k 2 0 fixed, the probability of exactly k row sum 
violations is asymptotic as n * 00 to tke-‘/k!, where t = 
np, is the expected number of row sum violations, held 
essentially constant in the Theorem by proper choice of m 
as a function of n. 

IX. THE BIG THEOREM 

We now encapsulate the lemmas of the previous section 
in the Big Theorem. 

Theorem: As n -+ 00, t > 0 fixed, 0 5: p <l/2 fixed. 1) If 

m = (1-2p)2& l+ 
$loglogn +(1-2p)(l- g)+log(t&iG) + o 

log n 
(9.1) 

then the expected number of fundamental memories x ca), whose Hamming sphere of radius pn with the memory at the 
center is almost entirely directly attracted to the fixed center xca), is asymptotically me-‘. 2) If 

m = (1-2p)2L 
410g n 

l+ 
~loglogn+(1-2p)(l-g)-2log(l-2p)+log(8t\lZ;;) +. 1 

210g n HI logn ’ (9.2) 
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then the probability that almost all vectors within the 
Hamming spheres of radius pn around all the m funda- 
mental memories xca) are directly attracted to their fixed 
centers is asymptotically e- ‘. 

Proof: 1) Let there be pn errors in a state. We apply 
Lemma C to the n events Aj={S’)<O}, j=l;..,n. 
The hypotheses of Lemma 2 are trivially satisfied (the 
graph is a tree here and has no loops). Thus 

Pr(AjlnAj,n a.. nAj,) -pt. 

Since uk contains terms, 

‘k - 

Using (9.1) and (8.3) 

1 

npl 
-- 

&G &i 

Xexp{ -1ogn + iloglogn +log(t&)+ o(1) 

np, - t. 

Hence, taking K even in Lemma C, 

k~~~-l)k-1~~Pr(AlU~2U ... UA,) 

K-l 

< c (-l)*‘$. 
k=l 

For large K, these sums are both arbitrarily close to 
1 - e-‘. Hence 

Pr(A,UA,U *** UA,)-l-e-‘. 

This is the probability that a random element on the 
boundary of or within the Hamming sphere of radius pn 
around x(l) is not directly attracted to $1. It is also the 
probability that x(l) is not fixed. The expected number of 
vectors xca) that are not fixed is by symmetry m times the 
probability that x(l) is such a vector. Thus the expected 
number of these bad xca) is me-‘. Except for these, a 
random vector in the Hamming sphere about xc”l) is 
attracted to x(OL) with probability 1- e-‘. Since t can be 
made to approach 0, this proves case 1). 

2) The complement of the probability wanted here is 

Pr(A,UA,U ..a UA,), 

with N = nm, and the A, the events 5”” < 0. In applying 

Lemma C, uk has T 

(1 

terms. Most of these are asymptoti- 

cally pf by Lemma . We need to estimate the number 
and size of the exceptional terms corresponding to graphs 
with loops. 

Let the number G, = f 
i i 

of k-tuples of sums S>“) be 

decomposed into 

G,= c Gk(S) 
Sk0 

where Gk(0) is the number of terms whose graphs have no 

loops, and the Gk(.s), s 2 1, count the graphs with loops, in 
a way to be described. 

For each graph 3 with one or more loops, we suppose 
the edges (j,,, I,,) have a definite ordering, and associate a 
loop number s as follows. First, let (j;, I[) be the last edge 
of 9 which is in a loop. For s1 21, let $Yss, be the graph 
obtained from 9 by eliminating (j:, I;), 1s r 5 sr. If this 
graph has no loops, put s = s1 and stop. Otherwise, (j$ ZL1) 
is the last edge in 9X! which lies in a loop. Continue so 
that s is at last defined. Gk(.s) is then the number of 
k-tuples with loop number s. 

Now we estimate Gk(s) from above by the number of 
ways to pick k edges to form a graph with loop number s. 
Each edge can in general be picked in I N = mn ways, 
However, if the r th edge closes a loop, then j, and I, have 
values which have been used earlier, so this edge can be 
picked in at most (r - 1)2 < k2 ways. The last loop edge 
(ji, 1,‘) has subscript j,l which is used by a preceding edge 
whose superscript 1; is used by another preceding edge. 
This edge can be picked in fewer than km ways. Similarly, 
1: is the superscript of a preceding edge, which can be 
picked in fewer than kn ways. Finally, the set of s + 2 
“distinguished” edges can be picked from the set of k 

edges in at most k 

i 1 s+2 
ways. (These s + 2 distinguished 

edges are the s loop-closing edges plus the two preceding 
edges, one for j,l and one for Z;.) Hence for k > 0 and 
~21 we have 

< C(k).Nk-“-‘. 

Here C(k) is a constant depending only on k, not on s. 
We then have 

5 Gk(s) = O(Nk-2). 
s=l 

Decompose uk into 

‘k= c ‘k(‘h 
$20 

where uk(s) is the sum of the terms with loop number s. 
First, we have 

uk(“) - [( ;) - O(Nk-2)] P; 

by Lemma 2, hence 

‘k(O) - ;(NP’)~. 

From (9.2) 

NP, - t, 

tk 
uk(“) - F’ (9.4) 

For s 2 1, a graph with loop number s has associated 
with it a graph of k - s edges which has no loops. Lemma 
2 applies to the probability associated with this reduced 
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graph, and furnishes an upper bound for the term in ok(S). 
Hence 

uk(s) < C(k)Nk-“-‘p,k-” = O(N-‘). 

Combining this with (9.4), we get 

tk 
“k-2. 

From here, the proof proceeds as in case 1). This proves 
case 2) and completes the proof of the theorem. 

Thus, if we fix t at E, small, and use e-’ - 1- e, we see 
the following. 

1) The expected number of fundamental memories 1 - e, 
the Hamming sphere of which is directly attracted to its 
fixed center, is asymptotically at least m(1 - e) if 

m= (l-2pj2n 1+ :loglogn +. 

210g n i 

1 

HI logn a( logn 

(thus m = [(l- 2p)2/2](n/logn) works). That is, with the 
above m, the expected fraction e of the memories do not 
have 1 - < of their Hamming sphere of radius pn directly 
attracted. Thus, with high probability, all but fraction E 
actually do have 1- z of their Hamming sphere of radius 
pn directly attracted. 

2) The probability that there is even one of the m 
fundamental memories 1 - E the Hamming sphere of radius 
pn of which is not directly attracted is asymptotically at 
most z, if 

m= (1-2~)’ n 1+ 3oglokw+0 1 

4 log n ( logn HI ’ logn 

(thus m = ((1 - 2~)~/4)(n/log n) works). 
The converse is also true. 
1) If m > (1 -2p)2[n/(210gn)](l+ q) with TI> 0, then 

the expected number of fundamental memories 1 - n the 
entire Hamming sphere of radius pn of which is directly 
attracted is o(m). (In fact, very few of the elements of the 
spheres are directly attracted, as we shall see below.) 

Proof: The expected number of almost directly at- 
tracted spheres is (asymptotically) me-’ for any fixed t in 
(9.1). We can get m memories with such almost directly 
attracted spheres where 

m= (1-2p)’ $-$+ 11) 

from (9.1) with t = nq. The number of almost directly 
attracted Hamming spheres for large n is less than me-“’ 
= o(m). For any m’ larger than the above m, the o(m’), 
actually o(m), condition follows from the uniformity com- 
ments just after the proof of Lemma 1. The converse 
follows for case 1). 

2) If m 2 (1- 2p)2[n/(410g n)](l+ TJ) with n > 0, then 
the probability that almost all the Hamming spheres of 
radius pn are directly attracted to their fundamental mem- 
ories at the center can be made as small as we like by 
choosing n large depending on n. 

Proof: The same as for case l), with a t of n2q 
working in (9.2). The converse follows for case 2). 

Thus we see that for direct attraction of almost all of the 
Hamming spheres of radius pn, [(l -2p)2/2](n/log n), 
resp. [(l-2~)~/4](n/logn), are the right answers to the 
expected number, resp. probability, question. Trying to 
have asymptotically more fundamental memories causes 
the expectation, resp. probability, to go to 0, from origi- 
nally being nearly 1. 

However, we can say more for p > 0. If we try to get 
more then the m allowed by a factor of 1 + 11, any n> 0, 
we find the following. 

1) For almost every vector in the sphere of radius pn 
around almost every fundamental memory, direct attrac- 
tion fails. 

This is because almost all vectors in the sphere of radius 
pn are at distance from the center 2 pn(l- II), 11 small, 
the “shell.” We have also seen that almost all direct 
attraction fails with high probability for such a vector if 17 
is chosen small because of the decrease in “signal” from n 
to np = n(l-2~). Referring to (8.2), we see that direct 
attraction fails for almost all state vectors in the shell. 
Now there are dependencies between one vector in the 
shell and another, due to the xj”) xi’) x(‘) xf) terms. 
However, we can certainly say that the expected fraction of 
the vectors in the sphere of radius pn which fail is near 1 
for almost all the fundamental memories. So the prob- 
ability that almost all the vectors in the radius-pn sphere 
fail for almost all the fundamental memories must also be 
near 1. 

2) The provable analogy to the strengthened converse in 
1) above is this. If we try for too many fundamental 
memories, then with high probability almost every error 
pattern of weight < pn corresponds to a vector, within 
distance pn of some fundamental memory, which fails to 
be directly attracted. This is, however, of less interest than 
the strengthened converse of 1). 

X. EXTENSIONFORNONDIRECTCONVERGENCE 

So far we have only considered direct convergence. 
What if we allow an occasional wrong change? We can 
then try to get rid of the annoying (1 - 2~)~ factors, as 
follows. 

Choose a fixed small p’ > 0. Let m = (1 - 2~‘)~ 

[ n/2(or 4)log n], so that spheres of radius p’n are almost 
directly attracted. Let p close to l/2 be fixed. By Lemma 
1, the probability p1 that a change is in the wrong direc- 
tion is 

l-2p’ 1 
pl-C-----n 

l-2p &jQi 
-(l-2P)2/P2P’)2 + 0 as n 3 00. 

In the synchronous case, it seems clear what happens. 
After one iteration, only about np, components are wrong, 
with high probability. Since p1 can be made smaller than 
p’ by choosing n large, one more iteration plus our Big 
Theorem on almost direct attraction should get us to the 
required fundamental memory. Thus at most two synchro- 



MCELIECE et ai.: CAPACITY OF HOPFIELD ASSOCIATIVE MEMORY 

nous iterations should suffice. We now let p’ + 0, p fixed. 
This makes it plausible that the (1-2~)~ term can be 
dropped for any fixed p <l/2. (Of course, n becomes 
large as p *l/2.) 

In the asynchronous case, the removal of (1 - 2~)~ seems 
still true. Here, however, we must worry about temporarily 
wandering out of the pn-sphere, where the p1 asymptotic 
formula might not be valid. However, we can back off 
from p by a protective fixed fraction, say -q, small but 
> pl. This means we start no more than p(l- n) away 
from a fundamental memory and with high probability 
always stay in the pn-sphere in which the p1 estimate 
holds. The rest should follow as before. 

The result is that for any 0 < p <l/2 and c > 0, if 

m= (l--~)~ 
210gn 

then we expect that almost all of the pn-sphere around 
almost all the m fundamental memories are ultimately 
attracted to the correct fundamental memory. If 

m= (l-e)L 
410gn 

then with high probability almost all of the pn-sphere 
around all the fundamental memories are attracted. 

However, if we try to let 

m= (1+6)- 
210gn ’ 

then a vanishingly small fraction of the fundamental mem- 
ories themselves are even fixed points. If we try to let 

m= (l+6)lf_ 
410gn ’ 

then with probability near 1 there is at least one funda- 
mental memory not fixed. 

Thus it is indeed appropriate to say that the capacity of 
a Hopfield neural associative memory of n neurons with 
sum-of-outer product interconnections is m = n /(2 log n) 
if we are willing to give up being able to remember a small 
fraction of the m memories, and m = n/(4log n) if all 
memories must be remembered. This is for any radius of 
attraction pn, 0 I p <l/2, p fixed. We can get an arbi- 
trarily close ratio to these m and cannot beat them by any 
positive fraction. 

We now consider the possibility of having “don’t cares.” 
Suppose we have an initial probe in which we know a 
fraction /? of the memories, and know that we do not 
reliably know the other 1 - p. This is the “content address- 
ability” alluded to in Section I-from a small fraction of 
the n components, we want to recover the whole memory. 
Previously, we have been guessing the rest and getting half 
right by luck, so that we wind up with 

pn + (l-P)n = (1+/G 

2 2 

right. Except for the original /?n, we do not exactly know 
where the correct ones are. 

419 

We might be tempted to “clamp” the jh we know, not 
letting them change. However, from what we have seen, 
clamping does not really help. This is ,because most com- 
ponents wind up right after their first change anyway. 
Another idea might be to disable the (1 - P)n components 
we do not know, at least until they get assigned values in 
the asynchronous case or for one iteration in the synchro- 
nous case. That is, we would just use the components we 
are sure about to compute the component of x that is to 
change or be given a definite + 1 value for the first time. 
We would thus use 0 for a component we are not sure of in 
computing TX, where x is the probe vector. (We can as 
well clamp the correct /3n or not, as we choose, in the 
following discussion.) Does this help the asymptotic capac- 
ity of the Hopfield associative memory? 

The answer is “No” if we are interested in indirect 
convergence. This is because we have strong evidence that 
the n/2log n capacity works no matter how close we are 
to having half our components wrong in our initial probe. 
It is just that n has to be larger and larger for the 
asymptotic result to take over as we get closer and closer 
to half wrong. We may, and presumably will, get more 
actual capacity for usefully small values of n by disabling 
the components we do not know, but the asymptotic 
capacity does not change for fixed /3 by doing this. Of 
course, to provide this disabling capability (or a clamping 
capability) is a device fabrication complexity we may wish 
to avoid. 

If we are only interested in direct convergence (but we 
are not), the conclusion changes dramatically. The fraction 
p of components we have wrong in our initial probe is, as 
we have seen, 

1-P 
P= 

i-i 2 ’ 

so that 1-2~ = p. Here then the capacity is (the n/(4log n) 
case with no exceptional memories being similar) 

(l-2p)2$--& = J?- 
210g n 

if we do not disable the components we have merely 
guessed. What if we do disable? 

A little thought shows that the “signal” term for any of 
the n components drops to /3n from n, while the noise 
power (variance) drops to @zm, where there are m funda- 
mental memories. Thus the signal-to-noise (power) ratio 
becomes 

( S/N) disabled A (/3n)Z/pmn=/?i. 

We have seen that in the original analysis where choice 
was forced the signal-to-noise ratio was 

The signal-to-noise ratio goes up by the large factor of l//I 
if we disable the previously guessed components. Thus the 
direct-convergence capacity will go up by a factor of l//?, 
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to P[n/(2log n)]. For example, if /3 = 0.05, so that we 
know five percent of the n components to begin with, the 
forced-choice direct-convergence capacity is only five per- 
cent of the direct-convergence capacity when we disable 
the guessed components. 

We may, however, be interested in indirect rather than 
direct convergence in any memory we actually build. Also, 
the asymptotic capacity does not drop by forced choice 
although convergence may be speeded up. We have stated 
that providing a disabling capability may make fabrication 
more difficult. For these three reasons it is probably not 
necessary or desirable to disable the components we do 
not know. Merely assign random values such as the ones 
left over from the last time the memory was used. If, 
however, we have to give components values to begin with, 
which may in itself be a hardware complication, we may as 
well allow 0 values to be given by providing a switch-out 
capability. 

However, there is a great hardware simplification whose 
effect on capacity we ought to study. It involves just 
allowing Tij that are k 1 (0 or + 1 would be just as easy, 
and better). For then we only need connect input i to 
input j or not, with or without a sign-reversing switch. 
Thus, in the k 1 case (hard limiting), we would use 

(This Tj, however, does not have the incremental prop- 
erty; to add an (m + 1)st memory, we need to know the 
sum inside the sgn, not merely the value + 1 of sgn.) More 
generally, any (symmetric, for simplicity)’ nonlinearity 
instead of sgn could be studied, although the most im- 
portant nonlinearity for fabricators is probably the 0, + 1 
one. For this, we also need to set quantization thresholds. 

It turns out that the loss in memory capacity is by the 
same factor as is the channel capacity loss with nonlineari- 
ties on each symbol detection in the additive white Gauss- 
ian channel. The optimum thresholds are the same, too. 
For example, for (symmetric) hard limiting, the memory 
capacity drops with all definitions by the well-known 
factor of 2/n. For symmetric three-level (0, f l), the mem- 
ory capacity decreases by only a factor of 0.810 = 0.92 dB 
[21, prob. 4.16, p. 1031 if we choose the optimum symmet- 
ric null-zone thresholds of about kO.616 where there 
are m memories [22, pp. 401-4021. Thus about @(0.61)- 
@( - 0.61) = 2@(0.61) - 1 L 0.458 = 46 percent of the qj 
are 0. We only lose 19 percent of capacity by this optimum 
three-level quantization. 

We conclude that using a three-level symmetric connec- 
tion matrix is a good candidate for implementation if we 
can dispense with the incremental property in building up 
the Tj. (We might store the actual Cz=i,~j%,(~) off line in 
some data base.) When needing to store an additional 
memory x(” + ‘), we would compute whether we should 
change the q.j or not. We would then somehow change the 
few that needed changing or burn another memory chip. 

However, a rigorous proof of the foregoing results on 
nonlinearities requires a larger set of ideas than those 

introduced in Section VII. The finite symmetric quantizer 
turns out to be not too much harder to handle than what 
we have done rigorously in this paper. The general sym- 
metric nonlinearity seems much harder to handle, going 
beyond Section VII’s large-deviation lemmas, but for- 
tunately this general nonlinearity does not seem to be 
important practically. This work is still continuing. 

XI. SUMMARYAND PROSPECTUS 

We have seen that the (asymptotic) capacity m of a 
Hopfield associative memory of length n when it is to be 
presented with a number m of random independent rtl 
probability l/2 fundamental memories to store and when 
probing with a probe n-tuple at most pn away from a 
fundamental memory (0 I p <l/2) is 

1) 
(1-2p)2 n 

2 log n 

if with high probability the unique fundamental memory is 
to be recovered by direct convergence to the fundamental 
memory, except for a vanishingly small fraction of the 
fundamental memories; ~ 

2) 

(1-2~)~ n 

4 log n 

if, in the above scenario, no fundamental memory can be 
exceptional; 

n 
3) 210gn 

if 0 I p <l/2, p given, where some wrong moves are 
permitted (although two steps suffice), and we can have as 
above a small fraction of exceptional fundamental mem- 
ories; 

4 
n 

410gn 

if as above some wrong moves are permitted (although two 
synchronous moves suffice) but no fundamental memory 
can be exceptional. [3) and 4) were not rigorously proven.] 

In all of the above, we are required (with high probabil- 
ity) to arrive at the exact fundamental memory as the 
stable point with no components in error, in either the 
synchronous or asynchronous model. (The capacities are 
the same in either model.) 

We already mentioned in Section III for the asynch- 
ronous model that if the final stable n-tuple arrived at can 
have a fraction e of its components in error (as above, a 
few fundamental memories can be exceptional), then the 
capacity is instead linear in n, like cn (much as in [l]), 
where, for small C, c is asymptotic to 1/(210geP1). For 
e = 10e4, a more exact answer gives c = 0.0723. Thus, with 
0.0723n fundamental memories, a stable state is reached 
with only lop4 of the components wrong, if n is large 
enough depending on p, 0 I p <l/2 (here the probe has 
pn wrong components out of n to begin with). This work 
will be reported elsewhere [23]. Rigorous proofs turn out to 
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be harder here, and at this time, the result is not fully 
rigorous. A surprising result (Fig. 8) is that the stable point 
is essentially on the boundary of the radius-rn sphere even 
if we start inside the sphere, even at its center, the true 
memory. That is, errors are introduced if we probe with 
the true memory, but not too many errors. 

The final stable point can depend on 
exacfly where the probe was, but all stable 
points are at o distance from the center 
close to en in ratio, 

Fig. 8. Stable points on boundary starting inside or outside. 

Note that the n/(2logc-‘) result is consistent with our 
prior n/(2log n) result. For, if e were not constant but 
equal to l/n, we might naively expect an average of 
(l/n).n =l error in the final stable state, according to the 
theory we have just described. If e is still smaller, say 
e =l/(nlogn), then we expect (l/(n logn)).n =l/logn, 
very few errors, so the probability that the stable state we 
reach is correct will be high. This is our original criterion 
for a good memory. If we put E = l/(n log n) into our 
n/(2log e-l) capacity, we get a capacity of n/[2(log n + 
log log n)] - n /(2 log n), our ,previous result. 

We have mentioned extraneous fixed points earlier, that 
is, the fixed points that are not fundamental memories. 
Indeed, in the above linear-capacity result the only fixed 
points that matter are actually extraneous ones on or near 
the boundaries of the radius-en spheres around the funda- 
mental memories; very few of the original m memories 
will themselves be exactly fixed. 

The appearance of extraneous fixed points is not all 
understood. One thing that is rigorously known is the 
expected number of fixed points as a function of n if the 
symmetric connection matrix T with zeros down the diag- 
onal has as entries (in say the upper half-matrix) n(n - 1)/2 
independent identically distributed zero-mean Gaussian 
random variables as in a spin glass [24, p. 4451, [25]. The 
rigorous result is that the expected number of fixed points 
F, is asymptotic to the following: 

F, - (1 .0505)20,2874”. (11.1) 

We actually have the case of the sum-of-outer products 
connection matrix T based on m fundamental memories 
which are m independent Bernoulli probability-l/2 ran- 
dom n-tuples. The Tj are approximately Gaussian and 
pairwise independent. Nevertheless, this seems not to be 
enough to carry over the above asymptotic result rigor- 
ously to our case, even if m is a constant times n rather 
than a constant times n/logn. The difficulty is that we 
really need to consider an ever growing number of the qj 
at once. 

In fact, we expect that an exact carryover may not be 
quite true. In particular, let m = 1 and n be large. How 
many fixed points are there? The qj for i f j are given by 

(11.2) 

where x = (xi, x2; . ., x,) is the random _+l n-vector. A 
+ 1 vector y is fixed if for every i, 1 I i s m, 

n 

sgn C xixiyj = yi; 
j=l . 

j#i 

that is, for l<i<n, 

xisgn c xjyj=yi. 
j#i 

(11.4) 

We see that y = x and y = - x are both fixed, so there are 
at least two fixed points when m = 1, namely, x and - x. 

Now rewrite (11.4) as 

xisgn(x.y-x,y,)=y,, lliln. (11.5) 

If (x. y] 2 2, then sgn(x.y - xiyi) is independent of i, and 
y = f x. Using the convention sgn0 = +, as we have been 
when forced to make a choice, the same is true if x. y = + 1. 

The only cases to worry about are x .y = 0 and x * y = 
-1. If x.y=O, then 

Xi W(- XiYi) = Yi, lli_<n 

x,y,sgn( - xiyi) =l, l<iln, 

a contradiction because zsgn(- z) = - 1 if z = + 1. If 
x.y= -1, then 

xisgn(-1-xiyj) =y,, lliln 

xiyisgn(-1-x,y,) =l, l<iln. 

Here if yi = xi for some i, then sgn( - 2) = 1, a contradic- 
tion,soy=-xifx.y=-l(andn=l). 

So there are only two fixed points when m = 2. We 
expect that the number of fixed points F, is asymptotic to 
a constant times 2 to another constant times n power, but 
that other constant is, we believe, less than the 0.2874 of 
(11.1) for m growing only like a constant times n/log n. 
We have no idea yet as to how to proceed, other than 
perhaps to obtain lower bounds on the number of fixed 
points. With this class of problem we close the paper. 
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