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Plant immune response is fascinating due to the complete absence of a humoral

system. The adaptive immune response in plants relies on the intracellular

orchestration of signalling molecules or intermediates associated with

transcriptional reprogramming. Plant disease response phenomena largely

depend on pathogen recognition, signal perception, and intracellular signal

transduction. The pathogens possess specific pathogen-associated molecular

patterns (PAMP) or microbe-associated molecular patterns (MAMP), which are

first identified by pattern recognition receptors (PRRs) of host plants for

successful infection. After successful pathogen recognition, the defence

response is initiated within plants. The first line of non-specific defence

response is called PAMP-triggered immunity (PTI), followed by the specific

robust signalling is called effector-triggered immunity (ETI). Calcium plays a

crucial role in both PTI and ETI. The biphasic induction of reactive oxygen species

(ROS) is inevitable in any plant-microbe interaction. Calcium ions play crucial

roles in the initial oxidative burst and ROS induction. Different pathogens can

induce calcium accumulation in the cytosol ([Ca2+]Cyt), called calcium signatures.

These calcium signatures further control the diverse defence-responsive

proteins in the intracellular milieu. These calcium signatures then activate

calcium-dependent protein kinases (CDPKs), calcium calmodulins (CaMs),

calcineurin B-like proteins (CBLs), etc., to impart intricate defence signalling

within the cell. Decoding this calcium ionic map is imperative to unveil any plant

microbe interplay and modulate defence-responsive pathways. Hence, the

present review is unique in developing concepts of calcium signature in plants

and their subsequent decoding mechanism. This review also intends to articulate

early sensing of calcium oscillation, signalling events, and comprehensive

mechanistic roles of calcium within plants during pathogenic ingression. This

will accumulate and summarize the exciting roles of calcium ions in plant

immunity and provide the foundation for future research.
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Highlights
Fron
• Plant-microbe interaction is the pioneer field of study in plant

science as it is directly related to crop productivity and

global food security.

• Interesting findings summarizing plant immunity are

popping up each day, developing new ideas and concepts.

• Calcium signalling is the paramount event in any plant biotic

ingression.

• The development of calcium signature and decoding of these

signalling interfaces is the intricate signal transduction

machinery.

• The concept of “calcium signature” and pathogen-specific

concentration gradient is necessary to understand the

signalling events properly.

• The present review not only tries to comprehend the “calcium

signature” concept but also elaborately focuses on the

different levels of decoding machinery of this signature in

plants.

• More interestingly, the crosstalk of different signalling

pathways is elaborated in this review which is essential to

develop inherent effective resistance response. ROS and

calcium signalling is intricately associated with one another.

The emerging signalling overlap between MAPK and

calcium is documented in this study also.
1 Introduction

Plants cells are the storehouse of different ions in an aqueous

milieu. The chemistry of life depends on the dynamic changes of this

intracellular anion and cation level. The fundamental functionality

of the cell depends primarily upon the proton, H+, and other

cations. The cellular metabolism and associated enzyme action

solely depend upon the specific pH of the cell (Kader and

Lindberg, 2010). Along with the H+ and other cations, calcium

(Ca2+) is an enormously crucial bivalent cation with varying plant

utilities. These Ca2+ ions have structural, nutritional, and stress-

inductive functions (Thor, 2019). The cell wall integrity incessantly

depends upon the Ca2+ for cross-linking, thus providing principal

storage of Ca2+ ions in plants (Hepler and Winship, 2010). Besides,

Ca2+ can also be stored in mitochondria, chloroplast, and vacuoles.

The apoplast also plays a pivotal role in the calcium cycle in plants

(He et al., 2021). The primary source of intracellular calcium is the

soil, and unlike the most available cation, it is challenging to prevail

against calcium deficiency in soil (White and Broadley, 2003).

Calcium uptake difficulties may occur due to several greenhouse

conditions, temperature stress, drought, chelation, etc. The Ca2+

deficiency, although rare but detrimental when it appears. The

symptoms include stunted growth, black spots, and an unusually

bushy appearance. Excess fertilisation may also cause Ca2+

deficiency and is usually identified in young leaf tips,
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characterised by the “bull-whipping” or “buggy-whipping”

phenotype in maize (Wang et al., 2020). Besides nutritional and

structural roles, Ca2+ is an essential secondary messenger in cellular

signalling events. Ca2+ perturbations are inevitable in any biotic or

abiotic stress response (Saijo and Loo, 2020; Yadav et al., 2022). In

response to stress, Ca2+ concentration is spiked within the cell

cytosol. The concentration of Ca2+ within cell cytosol is maintained

by different classes of calcium influx and efflux protein (Bose et al.,

2011). The Ca2+ ions thus accumulated in the cytosol in any plant-

microbe interaction may directly control the cellular redox

homeostasis or act as a second messenger to regulate calcium ion-

dependent gene expression (CDGE) (Cao et al., 2022). Different

cellular and stress responses can generate unique and precise

calcium spikes in cytosol called “calcium signatures” (McAinsh

and Pittman, 2009). The cell wall, apoplast, vacuoles, and different

cell organelles participate in this calcium flow. This collective Ca2+

concentration is then sensed by different calcium-sensing proteins,

e.g., calcium-dependent protein kinase (CDPKs), calcium

calmodulins (CaMs), calcineurin B-like proteins (CBLs),

calreticulin, etc. (Gao et al., 2019). The specific calcium signature

has then become decoded by these calcium sensors and transduced

into specific downstream signalling. The reactive oxygen species

(ROS) generation is directly associated with intracellular Ca2+ in

plants (Marcec et al., 2019; Singh et al., 2022). Further, CDPKs

targeted different defence-responsive proteins to impart resistance

response. Integrating other signalling modules and hormonal

signalling is also connected with the calcium signalling pathway

(Trotta et al., 2014). The present review focus on comprehensive

calcium signalling in plant-microbe interaction, in which the

“calcium signature” concept, sensing, and decoding mechanism of

the calcium concentration pool is also elaborated. The obvious

imbrication of Ca2+-ROS signalling and emerging cross-talk

between the Ca2+-MAP kinase (MAPK) cascade is also

documented in connection to biotic ingression.
2 Plant-microbe interaction: a
needle in a haystack

The absence of humoral immunity in plants and sole

dependence on adaptive immunity is governed by myriad

pathogen-specific proteins and their cognate receptors in host

cells. Plant immunity is best described by the intellectual “Zig-

Zag model” proposed by Jones and Dangl (Jones and Dangl, 2006).

This model gets enormous popularity (>350K accesses and > 12000

citations as of December 2022) because it is the first to describe

plant immune response comprehensively. According to this model,

the pathogen bears some signature chemical compounds, e.g., flg22

(flagellin protein), elf18 (N terminal elongation factor Tu) from the

bacterial pathogen, chitin from the fungal pathogens those acts as

the recognition molecules for the pathogen, called pathogen-

associated molecular pattern (PAMP) or microbe-associated

molecular pattern (MAMP). These PAMPs/MAMPs have cognate

receptors in the host cell surface, e.g., FLS2 for the flg22, called

pattern recognition receptors (PRRs). PAMP-PRR interaction leads
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to the first phase of immune response in the “Zig-zag” system,

which is characterised by a transient increase in reactive oxygen

species (ROS), Ca2+ influx, and activation of some transcription

modulators (Gupta et al., 2013). This phenomenon is called PAMP-

triggered immunity (PTI). The second phase of plant immunity is

more robust and specific to the pathogen types than the more

generalised PTI. During ETI (effector-triggered immunity),

pathogens released specific toxins identified and detoxified by the

different classes of receptors and resistance genes (R). The effector-

binding proteins are members of highly diversified nucleotide-

binding leucine-rich repeat receptors (NLRs) in plants. This

immune response may further develop priming or immunogenic

memory by diverse modes of action (Bhar et al., 2021). The

discovery of the different classes of PAMPs/MAMPs, PRRs, NLR,

etc., and the gradual enumeration of their mode of action

progressively faded proper distinction between PTI and ETI

(Thomma et al., 2011). The leucine-rich repeats (LRR) proteins

present in the host cell surface are of two types, receptor-like

proteins, RLPs, and receptor-like kinases, RLKs. The LRR usually

interacts with extracellular immunogenic patterns (ExIPs)

(previously discussed, PAMPs/MAMPs and any molecules

capable of activating the autophosphorylation module of the

LRRs) and recruit LRR-RLK-BAK1. In contrast, RLPs interact

with the suppressor of BIR1‐1 (SOBIR1) to instigate downstream

immunogenic pathways (Van Der Burgh et al., 2019). Hence,

recently it has been argued that plant immunity is better classified

as extracellularly triggered immunity (ExTI) and intracellularly

triggered immunity (ITI) (van der Burgh and Joosten, 2019). The

primary immune response is then radiating into a multitude of

signal transduction and intracellular cross-talk to develop

sustainable resistance responses in plants.

The above section describes the general biphasic induction of

plant immunity and their different components as elaborated by the

classical “zig-zag model”. It also concludes the transition of PTI and

ETI towards ExTI and ITI in the modern era of plant immunity.
3 The concept of “calcium signature”

Calcium is an important signalling intermediate in plants. This

simple bivalent cation has enormous utility and function within

plants, from developmental purpose to stress response (DeFalco

et al., 2023). The calcium production, its cytosolic concentration

[Ca2+] Cyt, and subsequent decoding mechanism determine the fate

of the signal transduction. The [Ca2+]Cyt and the judicial transporter

system control the entire network. The specific cytosolic or

organellar calcium concentration may instigate distinct sets of

signalling intermediates to perform specific functions. Such Ca2+

concentration is called “calcium signature”. In the polarised cell

growth in root hairs and pollen tubes, the calcium channels are

localised in the tip cells and activate the CNGC (cyclic nucleotide-

gated channels) and GLR (glutamate receptors) class of calcium

channels (Tian et al., 2020). The six members, mainly CNGC 7,

CNGC 8, CNGC 9, CNGC 10, CNGC 16 & CNGC 18, are highly

expressed in the tip cells in Arabidopsis (Frietsch et al., 2007; Tunc-

Ozdemir et al., 2013a; Tunc-Ozdemir et al., 2013b). Similarly, plant-
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microbe interaction causes Ca2+ spike and oscillation in the cytosol,

whereas nuclear spike is observed in symbiotic interactions (Tian

et al., 2020). Prolonged Ca2+ influx and intermediate oscillation are

observed in systemic response in plants (Aldon et al., 2018). Instead,

recently, it was observed that in response to flg22, systemic tissue

does not impose rapid induction of calcium oscillation but rather

calcium-dependent downstream signalling instigated in Arabidopsis

thaliana (Eichstädt et al., 2021). Uncontrolled production of

calcium, overactivation of calcium channels, or autoregulated

calcium influx may negatively affect the plant immune system

and cause inappropriate defence response. The negative role of

calcium due to overproduction is mainly controlled by AtCPK28,

CNGC 2, and CaM-binding transcriptional factor 3 (CaMTA3) in

the case of Arabidopsis thaliana (Yuan et al., 2017). It was evident

that the BONZAI1 protein interacts with autoinhibitory domains of

autoinhibited calcium ATPase10 (ACA10) and ACA8 of the plasma

membrane and regulates the cytosolic calcium signatures. The

aca10 and bon1 mutants exhibited autoimmune phenotype in

Arabidopsis thaliana, and constant increase in cytosolic calcium

leads to impaired stomatal closure in response to pathogens (Yang

et al., 2017). The calcium concentration in the shoot tissue oscillates

between 0.1% to 5% of the total dry weight of the plants (Jose, 2023).

During the uninduced situation, the Ca2+ concentration in the

cytosol remains in a steady state of 0.1mM, which is achieved by the

diverse calcium channels, e.g., Ca2+-ATPases and H+/Ca2+

antiporters (Thor, 2019). During the stress response, this Ca2+

concertation gradually increases within the cytosol by coming

down the concentration gradient from the apoplast or vacuolar

storage. The apoplastic Ca2+ concentration usually remains 10000-

fold more than that of cytosol (Nomura and Shiina, 2014).

Alternatively, chloroplast, another calcium storehouse, maintains

steady-state Ca2+ concentrations. The “resting concentration” of

Ca2+ within stroma is 150nM, whereas the same in the thylakoid

lumen is 15mM, which means the calcium is sequestered within the

lumen in uninduced condition (Johnson et al., 1995; Nomura and

Shiina, 2014). The spike of the intracellular Ca2+ levels was observed

in response to any stress and biotic ingression. This precise balance

is governed by well-orchestrated transporters and a Ca2+ buffering

system (Demidchik et al., 2018) (Figures 1, 2).

The above section describes the specific concentrations of Ca2+

within the plant cell in response to specific stress. This specific

concentration of Ca2+ is designated as the “calcium signature”. The

intracellular “calcium signature” has been achieved by coordinating

the influx/efflux channels of different intracellular organelles. They

possess extraordinary roles in plant development and stress

response. The opposing roles of Ca2+ have also been elaborated.
4 The role of calcium in
plant-microbe interaction

4.1 Calcium channel

In plants, Ca2+ is exchanged by different channel proteins, e.g.,

cyclic nucleotide-gated channels (CNGCs), ionotropic glutamate

receptors (GLR), two-pore channel 1 (TPC1), annexins, and several
frontiersin.org
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types of mechanosensitive channels. In Arabidopsis, about 150

cation transporters have been reported to date (Mäser et al.,

2001), among them 20 are the CNGC class of Ca2+ transporters

(Tian et al., 2020). These class of Ca2+ transporters are usually

located to plasma membrane which senses intracellular levels of

cyclic nucleotides monophosphates (cNMPs), e.g., adenosine 3′,5′-
cyclic monophosphate (cAMP) and guanosine 3′,5′-cyclic
monophosphate (cGMP) and controls the Ca2+ levels to

transduce different signalling events. In this function,

phosphodiesterase (PDEs) enzymes play a crucial role in

regulating intracellular cNMP levels (Duszyn et al., 2019). As

discussed, PAMP-PRR interaction is the hallmark of any plant-

microbe interplay. CNGC2 and CNGC4 were known to induce ETI

response by activating ROS generation in Arabidopsis in response to

flg22, the universal PAMP of bacterial pathogens (Tian et al., 2020).

The hypersensitive response (HR) mediated cell death is observed

as a part of the ETI response in Arabidopsis and is regulated by

CNGC2. CNGC2/defence, no death1 (DND1) was reported to

regulate intracellular nitric oxide levels that controls the defense

response. The cngc2/dnd1mutants showed no accumulation of Ca2+

and thus exhibited no HR (Ali et al., 2007). Complementation and

mutant analysis demonstrated that CNGC11 and CNGC12 are also

involved in programmed cell death in response to pathogenesis in a

caspase (VPE, vacuolar processing enzyme) dependent nature
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(Urquhart et al., 2007). It has recently been observed that

CNGC20 also plays a critical role in plant immunity, interacting

with CNGC19 and BOTRYTIS INDUCED KINASE1 (BIK1). The

ENHANCED DISEASE SUSCEPTIBLITY1 (EDS1) controls ETI;

the eds1 mutants restore disease resistance when CNGC20 is

overexpressed (Zhao et al., 2021).

The GLR-type Ca2+ receptors are also common in plants which

share structural similarities with animal ionotropic glutamate

receptors. In Arabidopsis, 20 GLR-type Ca2+ transporters have been

reported (Lam et al., 1998; Lacombe et al., 2001), andmost of them are

known to have developmental functions. It was observed that GLR3.1

and GLR3.5 directly control Ca2+ uptake in cells and regulate ROS

production when activated with a physiological concentration of L-

methionine (L-Met) (Kong et al., 2016). H+/amino acid symporters

maintain the optimal glutamate concentration required for the action

of GLR3.3. Along with the glutamate, there are six amino acids, e.g.,

glycine, alanine, serine, asparagine, and cysteine, as well as the

tripeptide glutathione (g-glutamyl-cysteinyl-Gly), was also found to

be potent agonists to GLR3.3; which indicates interaction of GLR3.3

and amino acids in the rhizosphere region to control intracellular Ca2+

concentrations (Qi et al., 2006). Althoughmost of the functions ofGLR

transporters are restricted to developmental functions, genome-wide

functional studies have recently reported some of the soybean GLRs in

response to stress (Jia et al., 2022). In an independent study, it was
FIGURE 1

The schematic diagram showing intracellular calcium signalling in response to plant-microbe interaction. PAMP/MAMP, pathogen-associated
molecular pattern/microbe-associated molecular pattern; PRR, pattern recognition receptors; CNGCs, cyclic nucleotide-gated channels; GLR,
ionotropic glutamate receptors; TPC1, two-pore channel 1; MSP, mechanosensitive protein channels; CDPKs, calcium-dependent protein kinases;
CaMs, calcium calmodulins; CMLs, CaM like proteins; CBLs, calcineurin B like proteins; SA, salicylic acid; JA, jasmonic acid; SIPK, salicylic acid
induced protein kinase; WIPK, wound-induced protein kinase; ROS, reactive oxygen species.
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observed that exogenous treatment of Glu can induce an immune

response in Arabidopsis by activating PTI-responsive genes (BIK1,

BKK1, BAK1, CERK1, PBL1, etc.), LYSIN-MOTIF RECEPTOR-LIKE

KINASE 5 (LYK5) (which is a chitin receptor) and salicylic acid

biosynthetic genes (SID2) (Goto et al., 2020).

The two-pore channel 1 (TPC1) is the dimeric membrane

channel predominantly located in the vacuole of plants and is

responsible for maintaining vacuolar Ca2+ levels (Demidchik et al.,

2018). This group of Ca2+ channels is called the “slow vacuolar”

(SV) channel, and one single member of this gene is found in

Arabidopsis (Peiter et al., 2005). Not much work has been done on

TPC1 concerning plant-microbe interaction, but their role in Ca2+

transport across tonoplast membranes has been confirmed in

Arabidopsis through a cross-species complementation study

(Dadacz-Narloch et al., 2013). TPC1 maintained the optimal

cytosolic Ca2+ by sequestering excess calcium in vacuoles to

prevent ROS-mediated HR and programmed cell death in

plant cells.

Annexins are the large group of calcium-sensing proteins in the

cytosol of eukaryotic cells and are mainly absent in prokaryotes.

The first discovered annexin is called “synexin” (now called annexin

A7) in humans (Mirsaeidi et al., 2016). Although plant annexins

differ significantly from animal annexins, they are involved in Ca2

+-dependent association with plasma membrane phospholipids

(Demidchik et al., 2018). The eight annexin-encoding genes had

been reported in Arabidopsis, among them annexin 1 (ANN 1),

which transported Ca2+ in a ROS-dependent manner (Davies,

2014). The MtANN1 was upregulated in the early time points of

infection in Medicago truncatula against root-inhabiting bacteria

Rhizobium meliloti infection (de Carvalho Niebel et al., 1998). The

role of PsANN4 and PsANN8 in symbiotic interaction was also

recently established in Peas (Pisum sativum) (Pavlova et al., 2021).
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The role of annexins in symbiotic interaction was further confirmed

in common beans (Phaseolus sp), where downregulation of

Phaseolus annexin genes was associated with impaired infection

and nodulation (Carrasco-Castilla et al., 2018). Although out of the

scope of this article, recently, the role of annexins in plant-insect/

plant-parasitic interaction was also evident where interestingly,

annexins play a pivotal role in Ca2+ mediated signalling and

defence response (Gupta and Roy, 2021; Hundacker et al., 2022;

Onofre et al., 2022).

Membrane tension and osmolarity-dependent Ca2+ transport

have also taken place by some mechanosensitive ion channels.

These channels are primarily classified into mechanosensitive-like

channels (MSLs), mechanosensitive ‘Mid1-complementing activity’

channels (MCAs), and mechanosensitive piezo channels (Hamilton

et al., 2015). These channel proteins have diverse structural

variability, e.g., mitochondria-chloroplast MSLs were reported to

have five transmembrane domains assembled in heptamers,

whereas plasma membrane MSLs have six transmembrane

domains assembled in tetramers (Hamilton and Haswell, 2017).

MSL 10 demonstrated resistance to bacterial pathogen,

Pseudomonas syringae in Arabidopsis thaliana by inducing

controlled ROS and activating SID2, PAD4, EDS1, and NDR1

(Basu et al., 2022) (Figure 1 and Table 1).
4.2 Calcium sensors: The decoding
of calcium signature and
downstream signalling

4.2.1 EF hand motifs
Different classes of Ca2+ sensor proteins sense the calcium

influx or spike within the cell cytosol. These proteins sense the
A B

DC

FIGURE 2

The protein-protein interaction network generated using STRING (version 11.5) online server using Arabidopsis CDPK1, CaMK4, CAM8 and CBL1. The
details of interacting partners are summarised in Supplementary Excel 1 and 2. The molecular structure of calcium-binding EF-hand motifs is also
depicted from different reported protein data bank (PDB) structures. (A) CDPK of Arabidopsis (2AAO) reported by Chandran et al. (2006); (B) CaM7
(5A2H) of Arabidopsis thaliana reported by Kumar et al. (2016); (C) SOS2 interacting with SOS3 (2EHB), CBL of Arabidopsis thaliana reported by
Sánchez-Barrena et al. (2007); and (D) calmodulin, CML (1UP5) from chicken reported by Rupp et al. (1996).
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TABLE 1 A list of plant-microbe interaction studies revealing calcium signalling plays a crucial role.

Sl.
No.

Name of
the plant

Name of the
pathogen

Methods of
study

Disease/interaction Signalling pathways modulated References

1 Medicago
truncatula

Rhizobium Knock out mutation Nodulation/Symbiosis RBOHs, CDPKs etc. (Yu et al.,
2018)

2 Strawberry Botrytis cinerea RNA Seq
transcriptomics

Gray mould disease CDPKs and MAPKs (Xiong et al.,
2018)

3 Arabidopsis
thaliana

Sclerotinia
sclerotiorum (Lib.)

Quantitative disease
resistance (QDR)
response

CNGCs, CDPKs, CaM, CaMK, CRKs etc. (Wang et al.,
2019)

4 Vitis vinifera Lasiodiplodia
theobromae

Dual RNA Seq CDPKs, LRR, LRKs etc. (Gonçalves
et al., 2019)

5 Gossypium
hirsutum

Begomoviruses Cotton leaf curl Multan
beta satellite (CLCuMB)

Calcium signalling and Gh-CML11 (Kamal et al.,
2019)

6 Triticum
aestivum L.

Rhizoctonia
cerealis

Transcription assays,
Virus-induced gene
silencing (ViGS),
subcellular
localization

Sharp eyespot TaCML36, Chitinase 1, PDF35, PR17C, the
ethylene response factor etc.

(Lu et al.,
2019)

7 Crop plants Begomovirus Genome wide (Gnanasekaran
et al., 2019)

8 Citrus
sinensis

Arbuscular
mycorrhizal fungi
(AMF)

Genome-wide
identification and
expression analysis
(GWIEA)

Association CDPKs (Shu et al.,
2020)

9 Leifsonia xyli
subsp. xyli
(Lxx)

Saccharum
officinarum L.

Transcriptomics Sugarcane ratoon stunting
disease (RSD)

CDPKs, Zinc finger proteins, NBS LRR etc. (Zhu et al.,
2021)

10 Lens culinaris
Medik.

Rhizoctonia
bataticola

RNA-Seq Dry root rot CDPKs, CaMKs, LRR-RLKs, ROS, MAPKs,
SA/JA etc.

(Mishra et al.,
2021)

11 Panicum
miliaceum L.

Sporisorium
destruens

RNA-Seq Smut disease CDPKs. And calcium signalling (Jin et al.,
2021)

12 Nicotiana
tabacum

Phytophthora
nicotianae

Comparative
transcriptome (RNA
Seq)

Root rot, crown rot, fruit
rot, and leaf and stem
infections

RLP/RLK, CNGC, CDPKs, MAPKs etc. (Meng et al.,
2021)

.13 Medicago
sativa L.

Fusarium
proliferatum L1

RNA seq Root rot CDPKs, CIPKs, ROS etc. (Zhang et al.,
2022b)

14 Apple (Malus
sp.)

Valsa mali Transcriptomics Valsa canker CNGC and CDPKs (Wang et al.,
2022)

15 Arabidopsis
thaliana

PAMPs Plant-microbe
interaction

PTI CAM-BINDING PROTEIN 60-LIKE G
(CBP60g), CALCIUM-DEPENDENT
PROTEIN KINASE5 (CPK5), TOUCH 3
(TCH3) CALMODULIN (CAM) 1/4/6 and
CPK4/5/6/11 etc.

(Sun et al.,
2022a)

16 Poa pratensis
L.

Blumeria graminis
(DC.) Speer

RNA-Seq Powdery mildew Glutamine synthetase, CDPKs etc. (Sun et al.,
2022b)

17 Arabidopsis
thaliana

pathogen Biotic stress Calcium-CaM-AtSR1 interaction module. (Yuan et al.,
2022)

18 Arabidopsis
thaliana

Pseudomonas
syringae and
Botrytis cinerea

Loss of function
mutation and
transient
overexpression.

Blast and rot Calcium signalling and MAPK signalling (Bai et al.,
2022)

19 Citrus Penicillium
digitatum and P.
italicum

Favoured fungal growth,
sporulation, virulence,
and environmental stress
tolerance of the pathogen.

PiCaMK1 (CaMK of the pathogen) (Li et al., 2022)

(Continued)
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Ca2+ ion through a helix-loop-helix domain called EF-hand motifs.

This structure was first reported in “parvalbumin”, a calcium-

binding protein found in the muscle cells of human beings

(Kretsinger and Nockolds, 1973). As the charged molecule, Ca2+

interacts with the negatively charged aspartate and glutamate

residues in EF-hand motifs (Falke et al., 1994). The seven ligands

bind the Ca2+ ions in pentagonal bipyramid geometry within the

EF-hand motif (La Verde et al., 2018). The proteins consist of either

D-x-D motifs in each of their EF-hands or D-x3-D motifs in the

first and second hand, which bind the calcium (Mohanta et al.,

2019). Among the four major classes of calcium sensors in plants,

calcium-dependent protein kinases (CDPKs) and calcium

calmodulins (CaMs) contain D-x-D motifs, whereas, CaM-like

proteins (CMLs) hold D-x3-D motifs. The calcineurin B-like

proteins (CBLs) are the only class of plant Ca2+ sensors bearing

three EF-hands with characteristics V-F-H-P-N, D/E-x-D, and D-x-

E-E motifs (Mohanta et al., 2015) (Figure 2).

4.2.2 Calcium-dependent protein kinases
CDPKs are the most diverse group of calcium sensors present in

plants. More explicitly, CDPKs can further be classified into five

different types, (i) Ca2+ dependent protein kinases, which are

technically CaM independent (CDPKs); (ii) CDPK-related protein

kinases (CRKs); (iii) CaM dependent protein kinases (CaMKs);

(iv) Ca2+/CaM-dependent protein kinases (CCaMK); (v) SOS3/CBL

interacting protein kinases (SIPKs/CIPKs) (Tuteja and Mahajan,
Frontiers in Plant Science 07
2007). In Arabidopsis, 34 different types of CDPKs have been

reported, with most of them containing four EF-hand motifs

within their domain structure. Some members may contain three

EF-hands, e.g., CPK3/7/10/14/19/23/32; others contain variable two

to three EF-hands, e.g., CPK13/25 (Cheng et al., 2002). The activity

of the CDPKs largely depends upon intracellular Ca2+

concentration. Generally, in low intracellular calcium, the

autoinhibitory domain binds with the kinase domain of the

CDPKs, hence, restricting the target protein phosphorylation

activity of the CDPKs. When the intracellular Ca2+ concentration

spikes, EF hands bind with these calcium ions, and the kinase

domain remains free, activating the target phosphorylation

(Harmon et al., 1994; Harper et al., 1994). The full-length

paralogs of barley (Hordeum vulgare) CDPKs, CDPK 3, and

CDPK 4 were noticed to inhibit entry of powdery mildew-causing

fungus Blumeria graminis when expressed in Nicotiana

benthamiana (Freymark et al., 2007). The calcium sensors, in a

majority of the cases, cause HR-mediated cell death by inducing

ROS in the infected cells. The ectopic expression of the CaM

domain was known to induce ROS in tomato protoplast by

activating NADPH oxidase (Xing et al., 2001). The binding assay

using host-selective toxins and non-host-selective toxins against

Alternaria solani revealed that CDPK1 and CDPK 2 bind with them

and inhibit NADPH oxidase-dependent ROS production. This

demonstrates the interesting mechanism of pathogen action

(Furuichi, 2020). RNA-seq analysis reveals that calcium-
TABLE 1 Continued

Sl.
No.

Name of
the plant

Name of the
pathogen

Methods of
study

Disease/interaction Signalling pathways modulated References

20 Oryza sativa Xanthomonas
oryzae pv.
oryzicola (Xoc)

Transcriptomics
(RNA Seq)

Bacterial leaf streak Ethylene, JA, SA, MAPK and calcium
signalling.

(Tang et al.,
2023)

21 Plant-microbe or
plant symbiotic
interaction

Pathogenesis/symbiosis CDPKs, CIPKs, CaMKs, RBOHs, ROS
signalling, salicylic acid (SA), pathogenesis-
related protein 1 (PR1), and negative regulation
of Ca2+ signalling.

(Yuan et al.,
2017)

22 Arabidopsis
and
Nicotiana
benthamiana
etc.

Plant-microbe or
plant symbiotic
interaction

Pathogenesis/symbiosis The role of calcium signalling in plant-microbe
interplay and plant developmental events.

(Evangelisti
et al., 2014)

23 Fungal and
microbial
pathogens

RLKs and CDPKs (Barka et al.,
2023)

24 Plant biotic
interactions

Plant-microbe interaction,
beneficial or harmful

CaMs, CMLs, CDPKs etc., in immunity,
mutualism; positive and negative regulation of
plant immunity.

(Aldon et al.,
2018)

25 Medicago
and other
leguminous
plants

Plant -Rhizobium
interaction

Symbiosis Interplay between CNGC15a, b, c, DMI1, Ca2
+-ATPase 8, CCaMK and NOD factors. The
regulatory mechanism of CaM-CCaMK-
DELLA-CYCLOPS complex.

(Yuan et al.,
2022)

26 Rhizobium-
legume symbiosis
(RLS) and
arbuscular
mycorrhizas (AM)

Plant-microbe interaction Common symbiotic pathway (CSP) regulating
CCaMK, MCA8 calcium as an intermediate
signalling ion. It also incorporates CYCLOPS
as a common substrate.

(Genre and
Russo, 2016)
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dependent HR response and salicylic acid were induced in pear

suspension culture upon infection with an ascomycete pathogen,

Valsa pyri (Duo et al., 2022). The induction of different classes of

CDPKs was analysed by a genome-wide identification study in wild

strawberries (Fragaria vesca) under different biotic stress factors

(Xiong et al., 2022) (Figure 1). A total of 19 CDPKs (namely

FvCDPK1 to FvCDPK19) were identified in Fragaria vesca,

among which seven, i.e., FvCDPK1, FvCDPK4, FvCDPK7,

FvCDPK15, FvCDPK17, FvCDPK18, and FvCDPK19 were

upregulated upon pathogenic infection (Xiong et al., 2022).

4.2.3 Calcium calmodulins
Calmodulins are small (17kDa), acidic proteins with globular

subunits in the apoplast, cytosol, endoplasmic reticulum, and

nucleus of plant cells (Tuteja and Mahajan, 2007). The CaM

proteins contain two EF-hands in each globular domain separated

by flexible a helix and are highly conserved across the plant group

(Luan et al., 2002). The four EF-hands can bind four Ca2+, and

different calmodulin sensing proteins operate downstream

signalling. Calmodulin alone and activating other calmodulin-

sensing proteins may instigate different physiological responses.

Recently, it was observed that CaM binding protein CBP60g family

were activated in response to both fungal (Magnaporthe oryzae) and

bacterial pathogens (Xanthomonas oryzae). In rice there are 15

genes in CBP60 gene family, among them OsCBP60g-3,

OsCBP60g-4, OsCBP60a and OsSARD-like1 were constantly

upregulated (Kumari et al., 2022). In Arabidopsis, CBP60g plays a

crucial role in immunity by directly interacting with Arabidopsis

SYSTEMIC ACQUIRED RESISTANCE DEFICIENT 1 (SARD1)

and ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1)

dependent autoimmunity (Huang et al., 2021). The genome-wide

analysis of the calmodulin-binding transcription activator

(CAMTA) gene family was identified in Peach (Prunus persica L.

Batsch) with varied developmental as well as stress functions (Yang

et al., 2022). The CAMTA gene family is also known to induce an

SA-dependent resistance pathway. It was observed that

transcription activator AtSR1/CAMTA3 binds with the “CGCG

box” of the NPR1 gene and activates SA-mediated pathogenesis-

related (PR) protein expression. Recently it was observed that

Triticum turgidum ssp durum (durum wheat) PR proteins

TdPR1.2 has a CaM binding domain and are activated by

TdCaM1.3 (Ghorbel et al., 2021) (Figure 1).

4.2.4 CaM-like proteins
CMLs are another class of Ca2+ sensing proteins having an extra

148 amino acid sequence than CaM proteins and share minimum

similarities with CaMs (Tuteja and Mahajan, 2007). CMLs are a

highly unique class of sensor relay protein in plants with only 15%

sequence similarities. These proteins contain two to six Ca2+

binding EF-hands motifs having a myriad of functions from

developmental to stress response in plants (Vadassery et al.,

2012). CMLs are more active against insect attack in plants; e.g., a

wide array of CMLs was reported to be upregulated in soybean

(Glycine max) in response to Spodoptera litura (cutworm) (Yadav

et al., 2022). CML8 exhibited resistance against Pseudomonas
Frontiers in Plant Science 08
syringae in Arabidopsis thaliana in the SA-mediated PR1

activation pathway. Although the detailed mechanism is

unknown, PAMP (e.g., flg22, elf18) could not induce CML8

within Arabidopsis, indicating they probably induce resistance in

the ETI pathway (Zhu et al., 2017). On the contrary, in tomatoes,

Solanum lycopersicum CML 55 (SlCML55) was reported to control

PR gene activation negatively, and thus, silencing lines of SlCML55

exhibited greater tolerance towards oomycetes pathogen,

Phytophthora capsici (Zhang et al., 2022a) (Figure 1).

4.2.5 Calcineurin B-like proteins
CBLs and CBL interacting protein kinases (CIPKs) are another

essential, relatively new class of plant calcium sensors with 10 CBLs

and 25 CIPKs in Arabidopsis (Tuteja and Mahajan, 2007). In maize,

12 CBLs genes have been identified, and most of them are reported

to involve in abiotic stress tolerance. Conversely, CIPKs are

comparatively more abundant in plants than CBLs. In

Lagerstroemia indica (crape myrtle belonging to the family

Lythraceae), the genome-wide analysis revealed 37 CIPKs recently

(Yu et al., 2022). Although most of the functions of CBLs and CIPKs

are drought, salinity, and other abiotic stress tolerance, the

emerging role of these in biotic stress response is also coming up

(Plasencia et al., 2021). The rice OsCIPK14 and OsCIPK15 were

upregulated in response to PAMP treatment and showed resistance

by activating ROS-mediated HR and cell death (Kurusu et al., 2010).

On the contrary, recently, in wheat, CIPK14 was demonstrated to be

negatively regulating resistance against rust fungi, Puccinia

str i i formis f . sp . tr i t ic i (Pst) (He et al . , 2022) . The

Chrysanthemum, CmCIPK23 was observed to regulate CmTGA1

and activated nitrogen uptake during root development (Liu et al.,

2022). The TGA transcription factors are also crucial for NPR1-

dependent PR1 activation. The role of this class of Ca2+ sensors in

pathogenesis needs further evaluation (Figure 1).
4.3 Ca2+−binding proteins
without EF-hands

There are some members of calcium sensors in plants that do

not possess any EF-hand motifs, e.g., phospholipase D (PLD),

annexins, calreticulin, and pistil-expressed Ca2+ binding protein

(PCP) (Tuteja and Mahajan, 2007). These calcium sensors also play

pivotal roles in intracellular signalling and defence response. PLDs

are highly expressed in response to pathogen attacks which

hydrolyses membrane lipids to generate phosphatidic acid (PA)

as a signalling intermediate. Phospholipase C (PLC), in contrast,

operates in concert with PLD, where membrane lipids are

hydrolysed to diacylglycerol (DAG), which produces PA by the

activity of DAG kinase (Wang, 2005). Recently, the role of PLDs in

symbiotic plant-microbe interaction was also revealed in some

plants (Pacheco and Quinto, 2022). Annexins are another class of

phospholipid-binding proteins that participate in abiotic and biotic

stress response in a Ca2+-dependent manner (Saad et al., 2020;

Gupta and Roy, 2021). The role of plant annexins in symbiotic

interplay is extremely prominent. The phylogenetic and structural
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analysis of annexins in Pisum sativum-rhizobium interaction has

been studied extensively (Pavlova et al., 2021). Calreticulin is the

Ca2+ binding molecular chaperon protein involved in Ca2+

homoeostasis in the endoplasmic reticulum (ER). CRT1/2 and

CRT3 are involved in pathogenesis signalling in Arabidopsis

thaliana (Qiu et al., 2012). The PCPs are pistil-specific calcium

sensors primarily involved in pistil growth and development. Their

role in plant-microbe interaction is still largely elusive.

The above section elaborates on the sensing mechanism of

intracellular Ca2+ signatures and the possible decoding mechanism

of that signature by myriad Ca2+-dependent intracellular signalling

transducers (Table 1). The Ca2+ oscillations in response to pathogen

attack and probable defence signalling involving calcium have also

been demonstrated.
5 The calcium and the ROS

As discussed earlier, pathogen-induced ROS production is

inevitable in plant-microbe interaction. Calcium is imperative in

connecting pathogen-associated signalling to ROS production and

downstream defence signalling (Marcec et al., 2019). The calcium-

ROS cycle is perpetuated in two cyclic events, Ca2+-induced ROS

production (CIRP) and ROS-induced Ca2+ release (RICR) (Gilroy

et al., 2014). The cellular ROS is principally produced by respiratory

burst oxidase homologue (RBOH)/NADPH oxidase. The RBOH in

plants is ubiquitously located and contains six highly conserved

domains. The C terminal region contains FAD and NADPH

hydrophilic domains and two heme groups, and the N terminal

domain contains two Ca2+ binding EF-hand motifs (Chu-Puga

et al., 2019). Ca2+ can directly bind with the EF-hand motif of the

RBOH to generate CIRP in plants. In Arabidopsis, in response to

PAMP, flg22, the receptor kinase activated botrytis induced kinase 1

(BIK1), which directly interacts with the EF-hand motifs of

NADPH oxidase to release ROS in the cytosol (Wan et al., 2019).

It was evident that phosphorylation in EF-hand motifs of NADPH

oxidase is the prerequisite for ROS production, as kinase inhibitors

significantly reduced the function (Kimura et al., 2012). The CBL1

and CBL9, along with the CIPK26, were also directly associated with

the phosphorylation of EF-hands of RBOHF in Arabidopsis (Drerup

et al., 2013). The direct role of MtCDPK5 in the phosphorylation of

MtRbohB, MtRbohC, andMtRbohD to generate ROS in response to

pathogenesis has also been demonstrated (Yu et al., 2018). Recently,

genome-wide analysis of CDPK genes has revealed different CDPK-

RBOH clusters in response to chilling stress in Peach (Zhao et al.,

2022); their details role in pathogenic stress tolerance needs to be

further clarified.

RICR is mediated by the direct action of ROS on the

hyperpolarisation of Ca2+ channels (Gilroy et al., 2014). Stelar K+

outward rectifier (SKOR) channel and Ca2+ sensitive annexins were

found to be directly influenced by the ROS (Garcia-Mata et al.,

2010; Richards et al., 2014). The annexin-induced Ca2+ elevation in

response to ROS is mediated by extracellular nucleotides (eATP or

eADP). The first reported eATP receptor Arabidopsis thaliana

DORN1 (Which does Not Respond to Nucleotides), coordinated

the ROS-induced Ca2+ balance in plants (Mohammad-Sidik et al.,
Frontiers in Plant Science 09
2021) (Figure 1). Hence, ROS may also act as the stress marker for

calcium signalling. In Arabidopsis thaliana, H2O2-INDUCED CA2+

INCREASES 1 (HPCA1) may act as prominent markers for ROS-

induced Ca2+ signalling. Similarly, Sucrose-non-fermenting-1-

related Protein Kinase 2.6/OPEN STOMATA 1 (OST1) is

required for the cell-to-cell transition of ROS (Fichman et al., 2022).

The above section summarises interesting signalling

perpetuation between Ca2+ accumulation and ROS production.

The cyclic events of CIRP and RICR in response to pathogenesis

have been demonstrated (Table 1).
6 MAPK signalling cascade and
Ca2+ signal overlap

CDPKs and MAPKs are both very much crucial for the defence

signalling pathway. Pathogen-induced intracellular ROS and Ca2+

signatures can induce calcium sensors and MAPK signalling

cascades. The parallel induction of these two pathways has raised

the question, is these two pathways independently operating or have

some common players? In animal pathophysiology, cross-talk

between these two pathways was evident in some cases, but in the

case of plants, the reports are intangible. If it has been analysed

minutely, the C terminal end of most of the CDPKs is highly

conserved, and only the N terminal end is variable containing N-

myristoylation and palmitoylation. In Arabidopsis, 27 out of 34

CDPKs showed these sites in the second position of their amino

acid series. These structures are required for subcellular localisation

and membrane attachment. A similar structure was also observed in

other Ca2+ sensors, e.g., CBLs and CIPKs. Whereas MAPKs were

largely devoid of such structure. Only four MAPKs out of 20 in

Arabidopsis showed N-myristoylation sites (Wurzinger et al., 2011).

The MAPKs are mostly cytosolic and influenced by different

secondary messengers. The membrane phosphatases were

reported to activate MAPKs in response to a myriad of

developmental cues. Protein phosphatases may be operative due

to the possible signalling overlap between CDPKs and MAPKs. The

integrated action of phosphatases and protein kinases (CDPKs,

MAPKs) in plant immunity is an emerging field of study in plant

immunology. The PAMP flg22, elf18, or chitin interacted with PRRs

fls2, EFR/BAK1 or LYK5/CERK1 simultaneously, which further

activates BIK1 integrating ROS mediated calcium signalling on the

one hand and MAPK signalling cascade on the other hand

(Erickson et al., 2022). The ectopic expression of truncated

Nicotiana tabacum CDPK2 lacking its regulatory autoinhibitory

domain and calcium binding domain can induce ROS-mediated

calcium signalling and inhibits MAPK-mediated stress signalling

(Ludwig et al., 2005). Although further insights are required,

current understanding indicates the overlap between Ca2+-

dependent kinase-MAPK pathways in controlling plant-

microbe interaction.

This section demonstrates a fascinating and emerging field of

plant immunology. The two most crucial signalling cascades in

plants, CDPKs, and MAPKs, may overlap in their intracellular

signal transduction (Table 1). Further in-depth studies have been

urgently necessitated to deliver more insight into this matter.
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7 Conclusion and future question

The plant-microbe interplay is classically distinguished into two

phases, PTI and ETI. There are many arguments regarding the distinct

partitioning of these immunogenic events in plants, as a clear

distinction is absent between PTI and ETI. Among many other

inevitable events in response to biotic ingression, perturbations of

calcium concentration in the cellular milieu and calcium-induced

signalling are paramount. The paradigm shift of calcium

concentration in cell cytosol from “resting concentration” is specific

to pathogens as well as conditions of the infection. This specific calcium

concentration in response to specific stress is defined as a “calcium

signature”. Several calcium sensors in plants carry out the exciting

phenomenon of decoding these calcium signatures. The CDPKs are the

major players in calcium-mediated signalling in plants. The ROS is in

integrated association with calcium signalling as “calcium-induced

oxidative burst” and “ROS-induced calcium influx” is well

documented in plant immunity. The study regarding integrating

other signalling pathways with calcium signalling is sparse. MAPK

signalling is another vital signalling cascade in plants against biotic

ingression. Although the indication of the overlap between MAPK

cascade and calcium signal is there, more work is still needed to solve

this signalling jigsaw. Detecting the precise cytosolic and organellar

concentration of calcium and decoding the same in response to specific

pathogen attacks is another urgent need to develop an ionic calcium

map in plants. Alternatively, more focus should be given to the

interconnection of calcium signalling with other signalling pathways.

Bridging the gap between organellar “calcium signature” and

overlapping signal transduction pathway in future research may bring

forthuseful information to develop sustainable resistance in cropplants.

Alongwith the positive roles of Ca2+ in plant-microbe interaction,more

focus on the opposing roles of the same on plant immunitymay help fill

up the lacunae in understanding the calcium signalling cascade in plants

upon different stress factors and developmental cues.
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The details of interacting partners after STRING (version 11.5) analysis using
Arabidopsis CDPK1, CaMK4, CAM8 and CBL1.
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The interaction nodes of CDPK1 and CBL1 as found in the co-expression

analysis using STRING (version 11.5).
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Co-expression analysis of CDPK, CaMK, CBL, CML observed in Arabidopsis

thaliana using STRING (version 11.5).
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Chu-Puga, Á., González-Gordo, S., Rodrıǵuez-Ruiz, M., Palma, J. M., and Corpas, F.
J. (2019). NADPH oxidase (Rboh) activity is up regulated during sweet pepper
(Capsicum annuum l.) fruit ripening. Antioxidants 8 (1), 9. doi: 10.3390/antiox8010009

Dadacz-Narloch, B., Kimura, S., Kurusu, T., Farmer, E. E., Becker, D., Kuchitsu, K.,
et al. (2013). On the cellular site of two-pore channel TPC 1 action in the poaceae. New
Phytol. 200 (3), 663–674. doi: 10.1111/nph.12402

Davies, J. M. (2014). Annexin-mediated calcium signalling in plants. Plants 3 (1),
128–140. doi: 10.3390/plants3010128

de Carvalho Niebel, F., Lescure, N., Cullimore, J. V., and Gamas, P. (1998). The
medicago truncatula MtAnn1 gene encoding an annexin is induced by nod factors and
during the symbiotic interaction with rhizobium meliloti. Mol. Plant-Microbe Interact.
11 (6), 504–513. doi: 10.1094/MPMI.1998.11.6.504

DeFalco, T. A., Moeder, W., and Yoshioka, K. (2023). Ca2+ signalling in plant biotic
interactions. Front. Plant Sci. 14, 200. doi: 10.3389/fpls.2023.1137001

Demidchik, V., Shabala, S., Isayenkov, S., Cuin, T. A., and Pottosin, I. (2018).
Calcium transport across plant membranes: mechanisms and functions. New Phytol.
220 (1), 49–69. doi: 10.1111/nph.15266

Drerup, M. M., Schlücking, K., Hashimoto, K., Manishankar, P., Steinhorst, L.,
Kuchitsu, K., et al. (2013). The calcineurin b-like calcium sensors CBL1 and CBL9
together with their interacting protein kinase CIPK26 regulate the arabidopsis NADPH
oxidase RBOHF. Mol. Plant 6 (2), 559–569. doi: 10.1093/mp/sst009

Duo, H., Yu, H., Sun, E., Zhao, D., and Zuo, C. (2022). RNA Sequencing reveals that
cell wall, Ca2+, hypersensitive response and salicylic acid signals are involved in pear
suspension cells responses to valsa pyri infection. Scientia Hortic. 305, 111422. doi:
10.1016/j.scienta.2022.111422
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