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THE CARATHIODORY-FEJR METHOD FOR REAL RATIONAL
APPROXIMATION*

LLOYD N. TREFETHENt AND MARTIN H. GUTKNECHTt

Abstract. A "Carath6odory-Fej6r method" is presented for near-best real rational approximation on
intervals, based on the eigenvalue (or singular value) analysis of a Hankel matrix of Chebyshev coefficients.
In approximation of a smooth function F, the CF approximant R cr frequently differs from the best
approximation R* by only one part in millions or billions. To account for this we show here under weak
assumptions that if F is approximated on I-e, e], then as e -*0, IIF-R*II-O(e "+"+1) while IIRCr-R*II
O(e3m+2n+3). In contrast, the latter figure would be O(e ’’/"+2) for the Chebyshev economization
approximant of Maehly or the Chebyshev-Pad6 approximant of Gragg. It follows that as e 0, best
approximation error curves approach the real parts of m + n + 1-winding rational functions of constant
modulus to within O(e3m+2’t+3). Numerical examples are given, including applications to e on [-1, 1] and
e-" on [0, az). For the latter problem we conjecture that the errors in (n, n) approximation decrease with
each n by a ratio approaching a fixed constant 9.28903 ...
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Introduction. The purpose of this paper is to describe and analyze a new analytical
method for near-best rational Chebyshev approximation on an interval, which we call
the Carath6odory-Fej6r (CF) method, that is based on an eigenvalue analysis of a
Hankel matrix of Chebyshev coefficients. The CF method achieves an extraordinary
degree of optimality in approximating many smooth functions. Let R* be the best
(Chebyshev) approximation of rational type (m, n) on [-1, 1 to a continuous function
F(x), let Rc be the corresponding CF approximation, and let E*= I[F-R*I[ and
Ecr= IF-RrlI be the associated errors. Then Table 1 shows how close Er and E*
turn out to be for the case F(x)= e x. Such extremely strong agreement demands
explanation. In this paper it is shown that if a smooth function F(x) satisfying a simple
normality condition is approximated on [-e,e], then Ilgr-R*ll=O(e 3"+2"+3) as
e - 0 (Thm. 6). As a corollary it is also shown that to the same order as e 0, F-R *

TABLE
Errors in best and CF approximation of e on [-1, 1] by rational

functions of type (n, n ), 0 <= n <-_ 4

(m, n) E* E-E * (approx.)

(0, 0) 1.1752 10-4

(1, 1) 2.0970 (-2) 10-6

(2,2) 8.6900(-5) 10-12

(3, 3) 1.5507 (-7) 10-20

(4, 4) 1.5381 (-10) <10-27

* Received by the editors October 6, 1981, and in revised form April 26, 1982.
t Courant Institute of Mathematical Sciences, New York University, New York, New York 10012. The

research of this author was supported in part by a Hertz Foundation Fellowship and in part by Office of
Naval Research Contract N00014-75-C-1132.

Seminar fiir A ngewandte Mathematik, Eidgen6ssische Technische Hochschule, 8092 Zurich,
Switzerland.

420



CARATHODORY-FEJR METHOD, REAL RATIONAL APPROXIMATION 421

equals the real part of an (m + n + 1)-winding rational function of constant modulus
(i.e., of a quotient of finite Blaschke products) on the complex unit circle (Thm. 7).

Before describing the method in 1, we will make some fairly extensive historical
remarks, because there are various earlier papers with connections to CF approxima-
tion, but they are scattered and not well known. In outline, the present real, rational
CF method is connected to complex rational CF approximation on the unit disk, but
the connection is not at all trivial, and it has not been seen before. The CF method
is also related to earlier real approximation work by Lam and Elliott, but it extends
their technique in two ways. First, it works for arbitrary m and n, not just m => n. As
is often the case with near-best approximation methods [17], the extension to m < n
is the most difficult point. Second, it is asymptotically much more accurate.

Our research on CF approximation began with the study of error curves in
approximation of analytic functions on the complex unit disk. If r*(z) is the best
approximation of type (m, n) to f(z) on Izl =< 1, it turns out that the error curve
(/-r*)(Izl 1) often approximates extremely closely a perfect circle about the origin
of winding number m + n + 1. This phenomenon for polynomial approximation was
discussed by Trefethen in [40], where by an analysis based on the Carath6odory-Fej6r
theorem [2], [5], it was shown that in best approximation on the disk Izl_-< the error
curve is circular to O(e 2"/3) as e 0. By means of an extension of the CF theorem
due originally to Takagi [19], [37] and generalized by Adamjan, Arov, and Krein [1],
this result was extended to O(e 2"+2n+3) for rational approximation in [41]. At the
same time Gutknecht found that the CF technique could be transplanted by the

-1Joukowski map x (z +z from Izl 1 to x [-1, 1], and the resulting real CF
method was analyzed for polynomial approximation in [21]. The present paper
completes this series by presenting and analyzing asymptotically a CF method for
real, rational approximation. However, this paper can be read independently.

The Joukowski transplantation has previously been applied for near-best real
approximation by Frankel, Gragg, and Johnson [14], [17], who derived a Chebyshev-
Pad6 approximation on [-1, 1] based on Pad6 expansions at x 0. This Chebyshev-
Pad6 approximation is related to, but not the same as, the earlier rational economiz-
ation fraction of Maehly [6, p. 178], [17]. Our fraction might be called the Chebyshev-
CF approximant, for it fits directly into the framework of Gragg and his colleagues.
Indeed, corresponding to their Fourier-Pad6 and Laurent-Pad6 approximations, one
can develop Fourier-CF and Laurent-CF approximations for real periodic and com-
plex meromorphic functions, respectively [19]. In general the CF approximations will
be more complicated but, for smooth functions, much closer to optimal.

In the area of real rational approximation, various ideas have appeared previously
that are related to the CF method. Eigenvalues of Hankel matrices were used half a
century ago for estimating the error of the best approximation and for solving certain
special problems exactly by Bernstein, Achieser, and Mirakyan; see [31, p. 166] and
[2, App. D] for references. The use of such a device for near-best approximation was
apparently first proposed by Darlington in 1970 [10] for the real polynomial case,
and the first (and only previous) extension to rational near-best approximation is due
to Lam and D. Elliott in 1972 [12], [27], [28]. The connection between the CF method
and approximation on the disk was first pointed out in the excellent dissertation of
Hollenhorst [25] (for the polynomial case), and this was also the first work to contain
error estimates. Further related contributions have also been made by C. Clenshaw,
G. H. Elliott [13], A. Reddy, and A. Talbot [38], [39].

One of our own contributions in previous papers [21], [40], [41] has been to
connect CF methods with the Carath6odory-Fej6r theory and the related results of
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Takagi and Adamjan, Arov, and Krein. This makes it possible to fill various theoretical
gaps. A second innovation in our papers has been that by means of arguments related
to strong uniqueness, we apply results of the CF method to get estimates on the
behavior of the best approximation itself. In our view, the CF idea is not just a method
for generating near-best approximations, but a theory that should reveal hitherto
unrecognized properties of real and complex Chebyshev approximation and of the
relation between the two.

As mentioned above, the present paper also differs from the work of Lam and
Elliott in two practical ways. First, our method applies for arbitrary m and n, rather
than just rn -> n. The idea behind this extension is derived from an example by Talbot
[38]. Second, its asymptotic order of accuracy on small intervals is O(E 3m+2n+3) rather
than O(e2"/2n/3). This is more than just an improvement in degree, for there appears
to be a maximum possible order of accuracy that CF methods can attain, due to an
intrinsic limitation on how regular the behavior of best approximation error curves
is. Whereas the Lam and Elliott method is not optimal in this respect, we believe that
ours probably is.

Our arguments proceed in two steps. First, one shows that the CF method yields
an error curve that nearly equioscillates; this implies Ecr E*. Second, one shows by
an argument related to strong uniqueness or Lipschitz continuity of best approxima-
tions that this behavior further implies R cr R *. All of our estimates are asymptotic,
pertaining only to the interval I-e, e] in the limit e-0. (Equivalently, one could
consider increasingly smooth functions F(ex) on the fixed interval [-1, 1].) This is
effectively the same limit considered in the past in various papers on Chebyshev
approximation, notably [29], [34] for real polynomial, [7], [30], [43] for real rational,
[32] for complex polynomial, and [42] for complex rational approximation. Where
these papers obtain one term of an asymptotic expansion of the best approximation
(two, in the case of [34]), the CF method gets many.

Ideas related to the CF method are currently attracting much attention in the
theories of digital filtering, control, and linear systems. This work has been mainly
stimulated by the paper of Adamjan, Arov, and Krein [1], and is being carried
out by (among others) M. Bettayeb, A. Bultheel, P. Dewilde, Y. Genin, S. Kung,
and L. Silverman. See the book by Kailath [26] for some references, and also
[20].

1. The Carath6odory-Fej6r method. Let the unit disk and circle be denoted
D={z: Izl<l} and OD={z: Izl=l}, let OD + be the upper semicircle
{z: Im z >_- 0}, and let I [-e, e ]. Let II" I1" II0 , etc. be the corresponding supremum
norms, but let [1" be an abbreviation for II" I1. In what follows x will always denote
a real and z a complex variable; upper case letters will be used for functions of x and
lower case for functions of z.

We begin with a real function F(x) that is continuous on/ and with a pair of
fixed integers m, n -> 0. Let V,,, be the set of rational functions of type (m, n) with
real coefficients, and let R*(x) denote the best approximation to F on I out of
(R* exists and is unique; see [2], [6], or [31].) For any finite M_->0, F possesses a
partial Chebyshev expansion

M

(1.1) F(x) FM(x)+GM(x) akTk(X/e)+GM(X),
k=O

with Tk denoting the kth Chebyshev polynomial, where the prime indicates that the
term with k 0 should be multiplied by 1/2. Here ak is defined by the inner product
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[6, p. 117]

2I dx
ak F(x)Tk(X/e)/e2 x2.

Our fundamental transplantation is the map

(1.2) x(z)=e Re z =1/2e(z +z-a),
a bijection of OD + onto I, which for x I, z OD leads to the formula

(1.3) T(x/e)=(z +z-).
In particular, let us set a_ a and define

M M

(1.4a) M (Z) a,z ’, f+(z) 5-’. a,z ’,
k=-M k m-n+1

(1.4b) f(z)
akz

k

n-m-1

akz
k =rn-n+l

if m _-> n,

ifm <n.

Then

Ft(x 1/2ft (z [fa +(z -a) +fO(z)]"
The idea of the CF method is to first appr.oximate the analytic function f+ on OD

by considering an infinite-dimensional space V,,, in which a best approximation can
be found exactly, then derive from this a near-best approximation Rc to F on I. Let
V,, be the set of functions that can be written with real coefficients in the form

(z)= dkz ez

where the terms of negative degree in the numerator converge to a bounded analytic
function in [z[ > 1 and the denominator has no zeros in D I..J OD. Let H be the real
symmetric Hankel matrix

am-n+l arrt-n+2 aM

H am-n. +2

o

(A Hankel matrix is a matrix with aij ali+il.) Let

H=UAU 7"

be a real orthogonal eigenvalue decomposition of H--i.e., U, A are square real
matrices with A diag (A 1, ’, At/,_,,) and U is orthogonal (UT U-a). We assume
the eigenvalues are ordered by absolute magnitude" [A al -> IA21-->" -> [At+,-,,[. (IfH
had complex coefficients it would become clear that a singular value decomposition
rather than an eigenvalue decomposition is most appropriate, but since H is real
symmetric, the two are the same here except for the possibility of negative signs.) Let
A abbreviate A,+a and let (Ul, ", lgM+n-m)T be the corresponding right eigenvector,
namely the (n + 1)st column of U. The following result was proved by Carath6odory
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and Fej6r in 1911 for the polynomial case n 0 [5], extended to rational approximation
by Takagi in 1924 [37], and generalized further by Adamjan, Arov, and Krein in
1971 [1]. A presentation and partial proof can be found in [41]. A full discussion of
degenerate cases will be given in [19].

THEOREM 1. f+ has a unique best approximation * on OD out of Qmn, which is
given by

(1.6a) f+- t:* b,

where

(1.6b)

The error is

AzMU +" + UM+,,-,,Z
b(z)

UM+n-m -1-" "]-U Z

M+n-m-1

M+n-m-1

[If+-  *110o I,
and the error curve (f+-Y*)(OD) is a perfect circle about the origin whose winding
number is m + n + 1 if Ihn I> [hi> JAn+21.

The function b is h times a quotient of finite Blaschke products, which is why
f+-Y* maps OD onto a circle, and the optimality of Y* for the complex approximation
problem can be seen to follow from this by Rouch6’s theorem. Now this optimality
is not of use to us. However, let us transplant to I by defining

(1.7a) / (X) 21-[*(Z -"/$(Z-1) ....fO(z )],

or by (1.5) and (1.6a),

(1.7b) (x) b (z) b

Then by (1.5) again,

(1.8) FM(x) --/ (x) Re b (z),

and if b has winding number m + n + 1, it follows that FM--/ equioscillates on I at
m +n +2 points e =Xo>Xl>" ">Xm+n+l

(1.9) IIF, -11, -IA I, (FM --/)(x.)= (-- 1)iA.
If/ belonged to V,,n, this equioscillation would imply/ R* and IAI E*, and we
would have solved our original approximation problem (forFM) exactly. Unfortunately,
this is in general not the case. (The main exception occurs whenM m + 1, and this
gives rise to some of the examples of Achieser, Talbot, and others mentioned in the
Introduction.) But the key to the CF method is that for smooth functions F, R turns
out be very close to

Let q Yk=ogzk denote the normalized denominator of t*--the polynomial of
degree Oq <-n with constant term go* 1 whose zeros are the finite poles of Y* lying
outside OD. Define

O(x) =q(z)q(z-’)/-,
where z is the scalar q(i)q(-i), inserted to make Q(x) have constant term 1. Note
that Q(x)= Iq(z)12/ >0 on I. Now since

f+(z) b (z) *(z) 0 (z

hence since Oq <-_ n and fM -f+= O(z"-n),

(1.11) fM(z)-b(z)= O(z
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Let us consider the Laurent series with respect to 0D of the product

(1.12) 1 (x )O(x 1/2[fM(Z b (z b (z-1)]q(z )q(z-)/".

By (1.11) and the definition of q, [fM(z)--b(z)]q(z)q(z-)/z must be analytic outside
OD except for a pole of order at most rn at o, and therefore all terms of order greater
than m in the Laurent series of (1.12) are due to b(z-)q(z)q(z-)/z. By symmetry,
all terms of order less than -m are due to b(z)q(z)q(z-)/z. Hence, if we define

M+n

(1.13a) f(z)=b(z)q(z)q(z-)/z E lkZ k,

M+n

(1.13b) ,T= E fkZ k, (,’ z , z , z

then the function

P(x) [h,(z)q (z)q(z-)/ -/;(z)-/;(z-)]
is a polynomial of degree rn in x. If we further set

P(x)cs B’(x)=[(’’(z)+F’’(z-)]’(1.14a) RZ(x ....x----r,
then we obtain

B(x)
(1.14b) t (x) R(x) +

O(x)
hence

(1.15) I (x)O(x) R]Q(x)+ O(T,+x(x)).

We will call R e V,,, the type 1 or Maehly type CF approximation of F, because
as in Maehly’s generalization of Pad6 approximation (cf. [6, p. 118] and [17]),
truncation of higher-order terms in R is done after multiplying through by the
denominator Q. There is a second, probably superior way to truncate R, namely by
using a Chebyshev-Pad6 kind of approximation with fixed denominator Q. That is,
one may take the type 2 or Gragg type CF approximant as

ez(x)
(1.16a) Rz (x)=Q(x)

with P2 defined by the condition

(1.16b) / (x) RzZ(x)+ O(T,,,+x(x)).

One could go further, in complete analogy with the Chebyshev-Pad6 approximation
defined by Gr
One could go further, in complete analogy with the Chebyshev-Pad6 approximation
defined by Gragg, and define a third type of CF approximation by permitting the
denominator of R to be free as well as the numerator. However, one might then
end up with a fraction having a pole on /. For this reason, and on the basis of
numerical experiments and the analogy with the Chebyshev-Pad6 situation, we believe
that R is the best of these three possibilities, and from now on we will drop the
subscripts and assumeR-R.

To obtain the polynomial P (----P) satisfying (1.16), one proceeds as follows. Let, /3, and 3’ denote the kth Chebyshev coefficients of /(x), P(x), and 1/O(x),
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respectively. Then the coefficients {ilk} satisfy the Toeplitz system of equations

Since 1/O(x)> 0 on I, the infinite symmetric Toeplitz matrix (3’ii-sl)i.=- is known
to be positive definite [18], and hence the principal submatrix appearing in (1.17) is
positive definite also, hence nonsingular. Moreover, since this submatrix is symmetric
about its anti-diagonal, a symmetric right-hand-side (fk) leads to a symmetric solution
(/), as indicated in (1.17). Indeed, in practice one may reduce (1.17) to a system of
size m + 1 instead of 2m + 1. Consequently, P is always well defined by (1.16).

In summary, here is the real rational (type 2) CF approximation method. We
have indicated four points at which a numerical implementation can naturally be based
upon the Fast Fourier Transform. For further information on uses of the FFT in
complex analysis, see [22]. The FFT method indicated for the polynomial factorization
of Step 4 is that proposed in [22, 3.2]; see also [41].

Step 1. Given F, find its Chebyshev coefficients a0," ’, aa4 for some largeM (FFT).
Step 2. Construct the Hankel matrix H and find its (n + 1)st eigenvalue (in absolute

value) and eigenvector.
Step 3. Find the Laurent series on the circle of the rational function b(z) defined by

(1.6b) (FFT). Subtract this plus its conjugate from lt(z) to obtain the Cheby-
shev coefficients {k} or R (x) by (1.7b).

Step 4. Factor the denominator of (1.6b) to obtain the polynomial q(z) and construct
Q(x) from (1.10) (FFT). Find the Chebyshev coefficients {/k} for 1/Q(x)
(FFT).

Step 5. Determine the polynomial P(x) satisfying (1.16) by solving (1.17), and define
Rcf P/Q.

Step 6. To get a bound on Eor-E*, examine how close the error curve of R cr comes
to equioscillating.

Remark. This somewhat obscure construction of R can be made much more
transparent in the case m =>n. The theory of complex CF approximation.shows that

* in Theorem 1 is close to V,n, and for m -> n, (1.7a) then implies that R is close to
V,, also. See [46].

2. Asymptotic results tot small intervals. The basis of our results for small
intervals is the theory worked out in [41] for complex approximation on small disks.
For these results a normality assumption is needed. Let F be given, and let M >-

3m + 2n + 2 be a fixed integer.
ASSUMPTION m. The Mth derivative ofF(x) exists and is Lipschitz continuous at

x =0. Moreover, ifF(x)=Y.=okX k +O(xt+l), with k =--0 lor k <0, then
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Equivalently, the Padg approximation ofF of type (m, n) has a full n finite poles--see
[23, Thms. 7.5e-/] and [16, 3].

The nonvanishing of this Hankel determinant is a standard assumption that
appears also, for example, in [42], [43], and 1-31, p. 170]. For many functions, including
e x, it is satisfied for all (m, n).

Here is the main result from [41] that we require:
THEOREM 2. LetFsatisfy Assumption A, and for each e > O, let* be the extended

best approximation in r,,, of the function f+ defined by (1.4a). Then for all suciently
small e, b =f+-Y* has winding number exactly m + n + 1 on OD, it approximates a
monomial according to

(2.1) (f+ ;*)(z) Az"+"+’(1 + O(s))

uniformly on OD, and its Laurent coefficients on OD satisfy

(2.2a) b [O(e)]zm+2"+2- Yk -<_ m + n + 1

uniformly in k. In addition, the coefficients of the denominator q of* satisfy

(2.2b) g =O(e ) (0_-<k _-<n).

Proof. It can be seen that as e -> 0, {a} and {a} are related by

121-1kl8 Itl Itl/l
ak alk + O(e ), -M =< k =<M

(cf. [21, Lemma 3.3]), hence since a 0 for k < 0,

(2.3) a a21-e k + O(e +1), -M _-<k _-<M.

Now if the O(e +1) term were zero, the extended approximation problem for f+ would
21- k,be that of approximating Ykoa (ez) and for this the theory of [41] applies.

From [41, Lemmas 4.1, 4.3 and 4.4] one would obtain (2.2b), (2.2a), and (2.1),
respectively, on the basis of Assumption A. In fact the term O(e /1) is not zero, but
it is of size O(e) relative to the terms just considered. This is enough to make the
arguments of [41] still go through; we omit the details. In particular, Assumption A
and (2.3) imply that for all sufficiently small e, the corresponding Hankel matrix made
up of coefficients a will also have nonzero determinant.

We will need a lemma on the behavior of the denominators of R ce and R*. Let
us write

RCe=p/o, R*=P*/O*,

where P and P* are polynomials of degree at most m, and O and O* are polynomials
of degree at most n with constant terms 1.

LEMMA 3 (Cf. [41, Lemma 6.1]). As e + 0,

(2.4a) O 1 + O(e),

(2.4b) O* 1 + O(e),

and hence

(2.4c) OO* 1 + O(e)

uniformly on I.
Proof. Equation (2.4a) follows from (2.2b). Equation (2.4b) is a corollary of the

known fact [7], [43] that as e -+ 0, R * approaches coefficientwise the Pad6 approximant
Re V,,, whose normalized denominator, having coefficients independent of e,
obviously satisfies O 1 + O(e) uniformly on I as e --> 0. (In fact [7] and [43] show
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R * R p for [0, e ], not I-e, e ]. However, C. Chui of [7] assures us that the result also
holds for the latter problem (private communication, September 1981).)

We now show that from Theorem 2 it follows that F-R c equioscillates at
m + n + 2 points on I to within O(E3rn+2n+3). Let {z} be the set of (2m + 2n + 2)th
roots of unity on aD /, and let {x ]’} be the corresponding set of Chebyshev abscissae
for I, xr

e Re z.
THEOREM 4. Let F satisfy Assumption A, and for each e > O, let R cr be its CF

approximation out of V,,. Then for all sufficiently small e, there is a set of points
e x0> xl >" > x,,+,+l -e satisfying

(2.5) x =x( + o())

at which

(2.6) IlV-RCrll-sgn A (-1)(F-ge)(x) O(E3m+2n+3).

Proof. Let {zi} be the set of rn + n + 2 points on OD + at which f+-Y* is real,
numbered in counterclockwise order from z0 1 to Zm+,+l --1, and take xj e Re zj.
The bound (2.5) follows from (2.1). By (1.9), FM-/ exactly equioscillates on the set
{xj} with error [h [, so to prove (2.6), it is enough to show

(2.7) IIF-F.II o( ’+="+)

and

(2.8)

The first bound follows from the Lipschitz continuity statement of Assumption A. To
establish (2.8), we observe that from (1.13a) and (2.2a, b), we have

This implies by (1.13b),

b" [O(e)]="+:z"+=-’ Vk _-< m + 1.

/R O(e 3m+2n+3),

From this and (1.14) and (2.4a) it follows that the analogue of (2.8) holds for type 1
CF approximation"

(2.9) II/ -R rll o(+="+).
Now /R has terms only of degree <--m- 1, each of order O(e"+z"+), and from
(1.10) and (2.2b) it is straightforward to see further that the Chebyshev coefficients
of 1 /O (x) satisfy

From these facts and (1.14) it follows that the degree-m part of the Chebyshev series
of/-Rf has magnitude O(E3m+2n+4). In other words, if the fl-coeflicient vector for
P1 is inserted in the left hand side of (1.17), then that system is satisfied up to an
error of magnitude O(E3m+2n+4). But as e 0, the matrix in (1.17) approaches the
identity, so it follows that the coefficients of Px agree with those ofP up to O(e3m+2n+4).
By a final application of (2.4a), this implies

IlRe-Rell O(E 3m+2n+4)
and with (2.9) this yields (2.8). [-!
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Thus the error curve of Rc equioscillates up to O(E3m+2n+3). By the de la VallOe
Poussin theorem for rational approximation [31, Thm. 98], this implies

COROLLARY. AS e --> 0

R ell- ]IF-R *11
and

We wish to show further that IIRe-R*ll=O(e3"+z"+3). Now by definition

IIF-R*II IIF-RrII, so (2.6) implies that at the m + n + 2 points {xi}, Rr-R* must
satisfy an alternating sequence of constraints

(2.10) -sgn h (- 1)i(R R *) (xi) ,
where O(e3m+2n+3). Does this imply that Rr-R * is small? In fact it does, and
this question was taken up directly in the paper on rational approximation on small
intervals by Maehly and Witzgall [30, Lemma 4.6]. However, for our needs (2.10)
can be reduced to a similar set of constraints on a polynomial instead of a rational
function, which will be easier to deal with. Let us write

P P* PO*-P*ORC-R *
Q Q* QQ*

and let S denote PO*-P*O, a polynomial of degree at most m + n. Then by (2.4c),

(2.11) Rf-R * =S(1 + O(e))

uniformly on It as e 0. Therefore (2.10) leads to the sequence of m + n + 2 constraints

(2.12) -sgn X (-1)S(x) <- rt

for some new r/= 0@3"+2"+3). We want to deduce that [ISII O(e3"+"+3).
This is a commonly occurring problem in approximation theoretic proofs. If {xi}

were a fixed set of points (i.e., not dependent on e), then the argument that would
be required is the key step in proofs of strong uniqueness or Lipschitz continuity for
polynomial Chebyshev approximation. Essentially the same reasoning for this has
appeared in (at least) papers of Freud [15], Maehly and Witzgall [29], and Cline [8];
Maehly and Witzgall even give a figure illustrating (2.12) graphically. For a general
discussion see [6]. In our application the near-alternation points are not fixed, but by
(2.5) they are close to Chebyshev abscissae for small e, hence uniformly separated
from each other. This uniform separation is what is needed to make the argument go
through, and the same is the case for applications to strong uniqueness and Lipschitz
continuity [11], [24].

LEMMA 5 (Cf. [21, Thm. 2.1]). Let S(x) be a real polynomial of degree at most Ix
on It. Suppose there exist Ix + 2 points e >- Xo> x >" > x,+ >= -e at which

(2.13) (- 1)iS(xi) _-< ,/

for some 1 >- O, and suppose that x. e cos4 with

(2.14) J
tx + 1 =ix (2ix + 1)

for some 6 < 1. Then

(2 Ilsll <= (2ix + 1)
1-8
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Proof. S(e cos b) is a trigonometric polynomial of degree/z in b, so by Bernstein’s
inequality [6, p. 91], one has

cos b)

If (x} are the Chebyshev points xf e cos (fTr/(/x + 1)), then this bound together
with (2.13) and (2.14) implies

(2.16)

where

Now according to a computation of Cline in [8, 4], (2.16) implies

Ilsll-< (2ix + 1).(2.17)

Therefore

Ilsll (2 + 1) n +2tz + 1]
=(2/x + 1)r/+allsll,

hence (2.15).
Lemma 5 provides all that is needed to prove our first main theorem"
THEOREM 6. Let F satisfy Assumption A, and for each e > 0 let R cr and R* be

its CF and Chebyshev approximations in V,,,. Then as e -+ O,

[[RC-R *[1 O(e "+z"+3).

Proof. Applying Lemma 5 to (2.12) with/x m + n gives

The result follows from (2.11). gl

Together with (2.8) Theorem 6 implies

(2.18) IIR*-II-- O(E3m+2n+3)
We can interpret this as a statement about the geometry of optimal error curves,
analogous to the theorems in [40] and [41] showing that error curves in complex
Chebyshev approximation are close to perfect circles:

THEOREM 7. Let F satisfy Assumption A Then for all sufficiently small e, there
exists a rational function b (z that is analytic in 1-< ]z] < oo except for at most n poles
and has constant modulus and winding number m + n + 1 on OD, satisfying

II(F-R*)(x)-Re b (z)ll

Proof. Follows from (1.8), (2.7), and (2.18) I-1
Theorems 6 and 7 are the extensions to rational approximation of results given

in Theorem 3.4 of [21]. Theorem 3.5 of that paper also proves analogous estimates
for m -+ oo on a fixed interval, but we have not extended these results.

If F satisfies Assumption A, then IIF-R*I[ has size 0@ "+"+1) but not o(e "+"+1)
as e +0. Relative to this scale, therefore, our results have strength 0@2"+"+2). It
appears that these orders are best possible, except that in the case n 0, a certain
"bonus" cancellation makes it possible to increase 3m + 3 to 3m +4 in Theorems 6
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and 7 (but not in the estimate on IAlin the corollary to Theorem 4). See the proof
of [21, Lemma 3.2] for details.

3. Numerical examples. The CF method is not difficult to implement numerically,
and the techniques we have used are described in [41, 7]. In outline, we rely heavily
on the fast Fourier transform as indicated here at the end of 1, and use EISPACK
routines based on Sturm sequencing for the eigenanalysis of Step 2. The bottleneck
is the eigenvalue computation, which takes time O(M3), for unfortunately no way is
known to take advantage of the Hankel structure of H. Ideally one wants M to be
large enough so that the Chebyshev coefficients ak for k >M are negligible, hence
Ft =F. For most of the examples considered below, such as those involving e x, this
is achieved withM 35, leading to computation times on the order of 0.1 sec on our
IBM 370/168. With F(x) Ixl, on the other hand,M 120 is only barely large enough
to get approximations with m, n _-< 2 accurately, and the computation time increases
to 2 sec. Thus the CF method is not only more accurate, but also much faster if the
function to be approximated is smooth. For certain high-precision numbers below we
have resorted to quadruple precision.

In general the CF method will yield an approximation satisfying

and by the de la Vall6e Poussin result one has

(3.1) Ein <-E* <-Er,
where

Ein min I(F-Rr)(x)l,

with the minimum taken over that set of m + n + 2 nearly alternating points which
maximizes its value. In our experiments R cr and h were computed to close to machine
precision, and by means of a minimization routine (FMIN, by Richard Brent), E cr

and E(in were also found to this accuracy (Step 6). The quantity not so precisely
known is E*, for we do not have a high-accuracy rational Chebyshev approximation
routine at hand. Therefore in what follows we report [hi rather than E*.

As a first example, let us give more details related to ex. Table 2 shows the
eigenvalue ]h[ in approximation on [-1, 1] for 0 <- m, n _-< 3. Each digit known to agree
with the corresponding digit of E* after both are rounded has been underlined. In
most cases this knowledge is based on (3.1). The agreement is excellent, and we
believe that it will get steadily better as m, n - oo in any fashion. (The table leaves
some doubt as to whether this is true for, say, m 0 and n oo, but further experiments

TABLE 2.
The eigenvalue [hi in CF approximation to e on [-1, 1] for various (m, n). Underlined digits are known to
agree with corresponding digits of E*, after rounding. Doubly underlined digits agree with the conjectured

limit formula (3.2) of Meinardus.

m=0 m=l m=2 m=3

n=0 1.1961 (-0) 2.787994 (-1) 4.5017 38776 (-2) 5.5283 70108 71194 (-3)

n=l 2.1724(-1) 2.096982(-2) 1.789066755(-3) 1.34612336920018(-4)

n=2 3.5288 (-2) 1.677017 (-3) 8.6899 91075 (-5) 4.3991 63371 96896 (-6)

n=3 4.5235 (-3) 1.239861 (-4) 4.2766 46704 (-6) 1.5506 69053 97117 (-7)
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show that by type (0, 9), five significant digits can be underlined, and the number is
growing with n.) This example relates to a conjecture of Meinardus [_31, p. 168] which
proposes that as m, n oo,

m!n!
(3.2) E’(e)=2+’(m +n)!(m +n + 1)!

(1 +o(1)).

At this writing the conjecture is unproved, but it is known to be valid up to a constant
factor [4], [33] of less than 40. The double underlinings in Table 2 mark digits where
(3.2) agrees with IA I, and it is evident that IAlis much closer to E* than (3.2) is. This
suggests that it might be possible to resolve the Meinardus conjecture by means of
the CF method. (Chebyshev-Pad6 approximation, it turns out, is not strong enough
[17].) Two key proofs would be enough to settle the issue:

(i) Ihl=E*,,,(l+o(1))asm, n oo,
(ii) IA satisfies (3.2) as m, n oo.

Unfortunately, these claims are not at all easy to establish, and the Meinardus
conjecture will probably we proved true before long by some simpler technique.
Nevertheless, it would be very interesting to know that asymptotically, best approxima-
tion errors agree with the eigenvalues of an infinite Hankel matrix of Chebyshev
coefficients.

Incidentally, it is likely that for the problem of complex approximation of e on
the unit disk, formula (3.2) holds with the factor 2"/n removed. Saff [44] has established
such a result for the limit n const, m oo. The best approximation errors computed
in [41, Table 3] by the complex CF method show that the agreement of this conjecture
with exact best approximation errors for m, n -< 3 is about as close as in the real case.
The disappearance of the power of 2 is natural in the light of (2.3).

Table 3 shows some results of the CF method for functions besides e x. In each
case Ix is given for approximation of type (0, 1), (1, 1) and (2, 1) on [-1, 1], with
underlinings as before. Evidently CF approximation really works, even for as low a
degree as (1, 1). It is apparent that it performs relatively poorly for Ix I, and this is not
surprising in view of the nondifferentiability of this function.

TABLE 3.
The eigenvalue IAI in CF approximation of types (0, 1), (1, 1) and (2, 1) to various functions on

[-1, ]. Underlined digits are known to agree with corresponding digits ofE*.

F(x) IAI: (0, 1) IAI’ (1, a) Ixl’ (2, 1)

Ixl 4.483 (-1) 4.4827 (-1) _1.1359 (-1)
6x 5.397 (-1) 5.3970 (-1) 1.9257 (-1)

x/l.l-x 2.238 (-1) 1.6331 (-2) 2.9709 (-3)
arctan (x) 8.312 (-1) 4.7889 (-2) 4.7889 (-2)
1/F(x + 1) 4.041 (-1) 1.1955 (-1) 2.1045 75498 (-2)
e 2.172 (-1) 2.0970 (-2) 1.7890 66755 (-3)
log (x + 3)/2 1.598 (-1) 8.6079 41336 (-4) 4.9591 1561392 (-5)

Now let us confirm that the asymptotic orders of accuracy predicted in 2 are
valid, and sharp. Table 4 shows IAI and ECf-ECfrnin in (1, 1) approximation of e on h
for e 1, 1/2,...,. With each factor of 2 reduction in e, we expect Ix lto decrease
by approximately 2"+"+1 8, and ECf-ECfmin to decrease by approximately 23m+2n+3
256. The table confirms these predictions. Such asymptotic behavior, however, is
dependent on the smoothness of F. With F(x)= Ix I, for example, cutting e in half is
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equivalent to dividing F by 2, and therefore the effect will be to cut A and Ect-Ein
exactly in half, no matter what m and n are. Thus for F(x)= Ix there is nothing to
be gained by shrinking the interval, although the CF method still improves if m and
n are increased.

TABLE 4.
Type (1, 1) approximation of e on I-e, e for various e.

e IX] Ratio Ec Ein Ratio

2.097 (-2) 2.03 (-6)
2.605 (-3) 8.04 9.18 (-9) 221
3.255 (-4) 8.00 3.73 (-11) 246
4.069 (-5) 8.00 1.47 (-13) 253
5.086 (-6) 8.00 5.77 (-16) 255

Our final example is associated with some further conjectures about asymptotic
degree of approximation. In a paper of Cody, Meinardus, and Varga [9], the problem
of approximating e -t on the semi-infinite interval [0, o) was studied. They proved
that in rational approximation of type (0, n) or (n, n), the error decreases geometrically
as n , but did not determine an asymptotic rate of decrease. For approximation
of type (0, n), they gave numerical results that suggested the limiting behavior

lim (E0*n) 1/n 3

and this equality was later proved valid by A. Sch6nhage [35]. For approximation of
type (n, n), their numerical results reported for n -< 14 suggest to us

n+l,n(3.3) lim (E*..)/"= lim
E +1 1

noo noO E,,* 9.28. .’

and a limit 1/9 has also been conjectured [45]. But no result of this kind has been
established.

Despite appearances, this problem can be approached by the CF method. The
function

1-x
t--

l+x
maps [0,] bijectively onto [-1, 1], inducing a one-to-one correspondence between
rational functions R (t) and R (x) in V,,. Under this transplantation an equioscillating
curve on one domain maps to an equioscillating curve on the other, and as a con-
sequence it can be shown that the given problem is equivalent to the problem of
approximating

(x-1)/(x+l)F(x)=e

on [-1, 1], which can be treated by the CF method. (For justification see the theory
of [3]; this transplantation only works when m n.) Here F is C on [-1, 1], but
analytic only on (-1, 1], so its Chebyshev series decreases faster than any polynomial
but not geometrically. We tookM 200, leading to truncated terms lal< 10-=3 for
k >M, and calculated eigenvalues in quadruple precision on the IBM 370/168. This
gave us h,+l for 0 =< n _-< 18 accurate to many places, and for n => 5, ]hi agrees with
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the value E* reported by Cody, Meinardus and Varga to all four places that they
give. We have little doubt that =E*(1 +o(1)) as n.

On the basis of these numbers we conjecture

E.*n B

for some constants A .656, B 9.28903. The evidence is summarized in Table 5.
Remarkably, in the course of this writing Sch6nhage [36] has independently conjec-
tured that (3.3) approaches a limit

3 1
(2-4) 9.28547

In fact he proves that lim inf (En*,) 1/" is at least two-thirds of this value. The closeness
but inequality of these two conjectured limits is striking.

TABLE 5.
Eigenvalues ]A] in (n, n) approximation of exp ((x 1)/(x + 1)) on [-1, 1] for various n. This is equivalent
to approximation of e-’ on [0, ). Digits agreeing with the values of E* given by Cody, Meinardus, and
Varga [9] have been underlined. (The results of [9] were given to four places and for n <= 14 only.) The ratio

appears to approach a limiting value 9.28903

Ratio Richardson extrapolant

0 .fi60172(-0)
.668057(-1) 8.38508

2 .735558(-2) 9,08232 9.31473
3 .799452(-3) 9.20078
4 .865210(-4) 9.23998 9.29253
5 .934574(-5) 9.25779
6 .100845(-5) 9.26740 9.28961
7 .108750(-6) 9.27316
8 ,117227(-7) 9.27689 9.28920
9 .126329(-8) 9.27944
10 .136112(-9) 9.28127, 9.28910
11 .146631(-10) 9.28262
12 .157946(-11) 9.28364 9.28905
13 .170119(-12) 9.28444
14 .183217(-13) 9.28507 9.28904
15 .197314(-14) 9.28558
16 .212485(-15) 9.28600 9.28904
17 .228815(-16) 9.28635
18 .246392(-17) 9.28664 9.28903
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