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Centro de Álgebra da Universidade de Lisboa,
Av. Prof. Gama Pinto, 2,

1649-003 Lisboa,
Portugal

E-mails: vhf@fct.unl.pt, ggomes@cii.fc.ul.pt, mrj@fct.unl.pt

Abstract

In this note we consider various classes of monoids of transformations on a finite chain, in particular of
transformations that preserve or reverse either the order or the orientation. Being finite monoids we are
naturally interested in computing both their cardinals and their idempotent numbers. Fibonacci and Lucas
numbers play an essential role in the last computations.
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Introduction

Let Xn be a finite chain with n elements, say Xn = {1 < · · · < n}. We denote by PT n the monoid (under
composition) of all partial transformations of Xn. The submonoids of PT n of all full transformations and of
all injective partial transformations are denoted by Tn and In, respectively.

For general background on monoids, we refer the reader to Howie’s book [10]. Given s ∈ PT n, we denote
its domain by Dom(s) and its image by Im(s).

A transformation s in PT n is said to be order-preserving (resp., order-reversing) if x ≤ y implies xs ≤ ys
(resp., xs ≥ ys), for all x, y ∈ Dom(s).

Denote by POn the submonoid of PT n of all order-preserving partial transformations. As usual, we denote
by On the monoid POn∩Tn of all full transformations that preserve the order. Howie [9] calculated the cardinal
and the number of idempotents of On and later jointly with Gomes [8] determined the cardinal of POn. More
recently, using a different approach, Laradji and Umar [11, 12] also obtained these results as well as the number
of idempotents of POn. The injective counterpart of On is the inverse monoid POIn = POn ∩ In of all
injective order-preserving partial transformations, whose cardinal was first calculated by Garba [7] (see also
[2]). Obviously POIn and In have exactly the same idempotents, which are the 2n partial identities on Xn.

Wider classes of monoids are obtained when we take transformations that either preserve or reverse the
order. In this way, we get the submonoid PODn of PT n of all partial transformations that preserve or reverse
the order, as well as its submonoids ODn = PODn ∩ Tn and PODIn = PODn ∩ In, whose cardinals were
calculated by the authors in [4, 5].

Before mentioning a different class of transformation monoids, we require to recall some other definitions.

1This work was developed within the projects POCTI-ISFL-1-143 and PTDC/MAT/69514/2006 of Centro de Álgebra da Uni-
versidade de Lisboa, supported by FCT, FEDER and PIDDAC.
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Let a = (a1, a2, . . . , at) be a sequence of t (t ≥ 0) elements from the chain Xn. We say that a is cyclic (resp.,
anti-cyclic) if there exists no more than one index i ∈ {1, . . . , t} such that ai > ai+1 (resp., ai < ai+1), where
at+1 denotes a1. Let s ∈ PT n and suppose that Dom(s) = {a1, . . . , at}, with t ≥ 0 and a1 < · · · < at. We say
that s is orientation-preserving (resp., orientation-reversing) if the sequence of its images (a1s, . . . , ats) is cyclic
(resp., anti-cyclic). These notions were first introduced by McAlister [13]. Catarino and Higgins worked these
concepts too in [1].

We denote by POPn the submonoid of PT n of all orientation-preserving transformations. Adding to POPn

all orientation-reversing transformations we obtain the submonoid PORn of PT n. Next, we look both at the
“full” and the “injective” parts of POPn and PORn. Denote by OPn the submonoid of POPn of all its
full transformations and, similarly, by ORn the submonoid of PORn of all its full elements; by POPIn the
submonoid of POPn whose transformations are injective and, finally, by PORIn the submonoid of PORn whose
elements are injective too. The cardinals of OPn and ORn were calculated by McAlister [13] and, independently,
by Catarino and Higgins [1] who also computed the number of their idempotents. In [3] Fernandes calculated
the cardinal of POPIn and the cardinal of PORIn was determined by the authors in [4]. In this case, it is
easy to show that the idempotents of PODIn, POPIn and PORIn are also the 2n idempotents of In.

In what follows we denote by 1 the trivial monoid, by Sn the symmetric group and by Cn the cyclic group
of order n. With respect to the inclusion relation, the diagram bellow presents the relationship between the
various monoids introduced above
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The first section of this note is dedicated to calculating the cardinals of these monoids and in the second
section we compute the cardinals of their sets of idempotents. We recall the known results and complete the
study by computing the remaining cases.

1 Cardinals

Let PDn be the set of all order-reversing partial transformations of Xn and let IDn and Dn be the subsets of
all its injective transformations and of all its full transformations, respectively. Clearly, PODn = POn ∪ PDn

hence PODIn = POIn ∪ IDn and ODn = On ∪ Dn. Furthermore, POn ∩ PDn = {s ∈ PTn : | Im(s)| ≤ 1},
whence POIn ∩ IDn = {s ∈ In : | Im(s)| ≤ 1} and On ∩ Dn = {s ∈ Tn : | Im(s)| = 1}.

Now, consider the following particular order-reversing permutation of order two:

h =
(

1 2 · · · n− 1 n
n n− 1 · · · 2 1

)
.

To calculate the cardinals of PODn, PODIn and ODn, we will make use of the mapping ϕ : POn −→ PDn

defined by (s)ϕ = sh, for all s ∈ POn. Obviously, this mapping is a bijection and so we have |PDn| = |POn|.
On the other hand, ϕ maps On onto Dn and POIn onto IDn, therefore |Dn| = |On| and |IDn| = |POIn|.
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Now, recalling that Howie [9] computed

|On| =
(

2n− 1
n− 1

)
and since |On ∩ Dn| = n, the next result follows.

Theorem 1.1 [5] |ODn| = 2
(

2n− 1
n− 1

)
− n. �

As |POIn ∩ IDn| = |{s ∈ In : | Im(s)| ≤ 1}| = n2 + 1 and Garba [7] (independently, Fernandes [2]) proved,
that

|POIn| =
(

2n
n

)
,

we deduced the cardinal of PODIn.

Theorem 1.2 [4] |PODIn| = 2
(

2n
n

)
− n2 − 1. �

Taking into account that Gomes and Howie [8] established that

|POn| =
n∑

i=1

(
n

i

)(
n+ i− 1

i

)
+ 1

and using the fact that |POn ∩ PDn| = n
∑n

i=1

(
n
i

)
+ 1, we may compute |PODn|.

Theorem 1.3 [5] |PODn| =
n∑

i=1

(
n

i

)(
2
(
n+ i− 1

i

)
− n

)
+ 1. �

The cardinal of POPn was also calculated by the authors.

Theorem 1.4 [6] |POPn| = 1 + (2n − 1)n+
n∑

k=2

k

(
n

k

)2

2n−k. �

Denote by PRn the set of all orientation-reversing partial transformations of Xn. By definition, we have
PORn = POPn ∪ PRn. To obtain the cardinal of PORn we use the following result of Catarino and Higgins:

Lemma 1.5 [1] Let a be a cyclic (resp., anti-cyclic) sequence. Then a is also anti-cyclic (resp., cyclic) if and
only if a has no more than two distinct values. �

This fact allows us to conclude that POPn ∩ PRn = {s ∈ POPn : | Im(s)| ≤ 2}. As the mapping Ψ :
POPn −→ PRn defined by (s)Ψ = sh, for all s ∈ POPn, is a bijection, we get |POPn| = |PRn| and so
|PORn| = 2|POPn| − |{s ∈ POPn : | Im(s)| ≤ 2}|. Therefore we are able to obtain the cardinal of PORn.

Theorem 1.6 [6] |PORn| = 1 + (2n − 1)n+ 2
(
n

2

)2

2n−2 +
n∑

k=3

2k
(
n

k

)2

2n−k. �
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The cardinal of POPIn, computed by Fernandes [3], is given by the next formula

|POPIn| = 1 +
n

2

(
2n
n

)
.

As Ψ maps POPIn onto the set of all injective orientation-reversing transformations, we conclude that
|PORIn| = 2|POPIn| − |{s ∈ POPIn : | Im(s)| ≤ 2}| and may deduce the following.

Theorem 1.7 [4] |PORIn| = 1 + n

(
2n
n

)
− n2

2
(n2 − 2n+ 3). �

The cardinals of OPn and ORn were calculated by McAlister [13] and, independently, by Catarino and
Higgins [1], who proved that

|OPn| = n

(
2n− 1
n− 1

)
− n(n− 1) and |ORn| = n

(
2n
n

)
− n2

2
(n2 − 2n+ 5) + n.

Just to complete the picture recall that

|Cn| = n, |Sn| = n!, |In| =
n∑

k=0

(
n

k

)2

k!, |Tn| = nn and |PTn| = (n+ 1)n.

2 Number of idempotents

For a given monoid M , we denote by E(M) its set of idempotents.

First we will consider the “ordered case”. Let M ∈ {ODn,PODIn,PODn}. Let e ∈ E(M). As the
product of two order-preserving transformations or of two order-reversing transformations is an order-preserving
transformation, we conclude that e must be order-preserving. Thus E(ODn) = E(On) and E(PODn) =
E(POn).

In [9] Howie showed that
|E(On)| = F2n,

where Fn is the nth Fibonacci number.
Recall that the Fibonacci numbers are recursively defined by

F0 = 0, F1 = 1, Fk+1 = Fk + Fk−1, for k ≥ 1.

Another interesting set of numbers is the Lucas sequence, which is also recursively defined as follows

L0 = 2, L1 = 1, Lk+1 = Lk + Lk−1, for k ≥ 1.

Fibonacci and Lucas numbers are intrinsically related. In fact, for any n ∈ N0,

Fn =
τn − θn

τ − θ
and Ln = τn + θn,

where τ is the golden number and θ is its rational conjugate, that is τ = 1+
√

5
2 and θ = 1−

√
5

2 . Moreover,
F2n = FnLn, for any n ∈ N0. For further details, see e.g. [14].

In view of the above observations, we conclude that

|E(ODn)| = |E(On)| = F2n =
τ2n − θ2n

τ − θ
.

Concerning the correspondent classes of partial transformations, the following formula for the number of
idempotents of POn was given by Laradji and Umar [11].

Theorem 2.1 |E(PODn)| = |E(POn)| = (
√

5)n−1(τn − (−θ)n) + 1. �
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The table below gives us an idea of the size of the monoids we are dealing with. By En we denote the set
E(POn) = E(PODn).

n |POn| |PODn| |En| n |POn| |PODn| |En|
1 2 2 2 6 5336 10293 1001
2 8 9 6 7 28814 56738 3626
3 38 54 21 8 157184 312327 13126
4 192 323 76 9 864146 1723692 47501
5 1002 1848 276 10 4780008 9549785 171876

Next, we look at the “oriented case”. Let M ∈ {ORn,PORIn,PORn} and, again, let e ∈ E(M). Similarly
to what happened in the “ordered case”, the product of two orientation-preserving or of two orientation-
reversing elements of M is an orientation-preserving transformation, whence e must preserve the orientation.
Thus E(ORn) = E(OPn) and E(PORn) = E(POPn).

Catarino and Higgins [1] showed that

|E(ORn)| = |E(OPn)| = L2n − (n2 − n+ 2) = τ2n + θ2n − (n2 − n+ 2).

We finish this note by computing the remaining cases, namely the number of idempotents of POPn and of
PORn.

Theorem 2.2 |E(PORn)|= |E(POPn)|=
n∑

j=1

(
n

j

)
[L2j − (j2− j+ 2)] + 1=

n∑
j=1

(
n

j

)
[τ2j + θ2j − (j2− j+ 2)] + 1.

Proof. For s ∈ PTn, we define Fix(s) = {x ∈ Dom(s) : (x)s = x}. An element s ∈ PTn is idempotent if and
only if Im(s) ⊆ Fix(s). Also, for each nonempty subset A of Xn, the number of idempotents of POPn with
domain A coincides with |E(OP |A|)|. Therefore

|E(PORn)| = |E(POPn)| =
∑n

j=1

(
n
j

)
|E(OPj)|+ 1

=
∑n

j=1

(
n
j

)
[L2j − (j2 − j + 2)] + 1

=
∑n

j=1

(
n
j

) [
τ2j + θ2j − (j2 − j + 2)

]
+ 1,

as required. �

Now, let En denote the set E(POPn) = E(PORn). We apply the last formula to compute some examples.

n |POPn| |PORn| |En| n |POPn| |PORn| |En|
1 2 2 2 6 21145 34711 1643
2 9 9 6 7 136529 243944 6526
3 61 64 23 8 862209 1622025 25280
4 449 549 96 9 5369617 10402858 96011
5 3161 4566 402 10 33133481 65219931 359288

To conclude with a full picture recall that |E(Cn)| = |E(Sn)| = 1 and |E(POIn)| = |E(PODIn)| =
|E(PORIn)| = |E(In)| = 2n, also |E(Tn)| =

∑n
j=1

(
n
j

)
jn−j and |E(PTn)| =

∑n
j=0

(
n
j

)
(j + 1)n−j .
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