
524 Fablman and Lebiere 

The Cascade-Correlation Learning Architecture 

Scott E. Fahlman and Christian Lebiere 
School of Computer Science 

Carnegie-Mellon University 

Pittsburgh, PA 15213 

ABSTRACT 

Cascade-Correlation is a new architecture and supervised learning algo

rithm for artificial neural networks. Instead of just adjusting the weights 

in a network of fixed topology. Cascade-Correlation begins with a min

imal network, then automatically trains and adds new hidden units one 

by one, creating a multi-layer structure. Once a new hidden unit has 

been added to the network, its input-side weights are frozen. This unit 

then becomes a permanent feature-detector in the network, available for 

producing outputs or for creating other, more complex feature detec

tors. The Cascade-Correlation architecture has several advantages over 

existing algorithms: it learns very quickly, the network . determines its 

own size and topology, it retains the structures it has built even if the 

training set changes, and it requires no back-propagation of error signals 

through the connections of the network. 

1 DESCRIPTION OF CASCADE·CORRELATION 

The most important problem preventing the widespread application of artificial neural 

networks to real-world problems is the slowness of existing learning algorithms such as 

back-propagation (or "backprop"). One factor contributing to that slowness is what we 

call the moving target problem: because all of the weights in the network are changing 

at once, each hidden units sees a constantly changing environment. Instead of moving 

quickly to assume useful roles in the overall problem solution, the hidden units engage in 

a complex dance with much wasted motion. The Cascade-Correlation learning algorithm 

was developed in an attempt to solve that problem. In the problems we have examined, 

it learns much faster than back-propagation and solves some other problems as well. 



The Cascade-Correlation Learning Architecture 525 

Hidden Unit 2 

Hidden unit 1 

Output Units 

Outputs 

o 0 

~~--------~~--.----

o--------~&_-------mr_--------------~----~--~~ 

Inpu~ O--------~~----~H-------------~.---~~--~ 

o--------~~------~--------------------------~ 

+1 

Figure 1: The Cascade architecture, after two hidden units have been added. The 

vertical lines sum all incoming activation. Boxed connections are frozen, X connections 

are trained repeatedly. 

Cascade-Correlation combines two key ideas: The first is the cascade architecture, in 

which hidden units are added to the network one at a time and do not change after they 

have been added. The second is the learning algorithm, which creates and installs the 

new hidden units. For each new hidden unit, we attempt to maximize the magnitude of 

the correlation between the new unit's output and the residual error signal we are trying 

to eliminate. 

The cascade architecture is illustrated in Figure 1. It begins with some inputs and one or 

more output units, but with no hidden units. The number of inputs and outputs is dictated 

by the problem and by the I/O representation the experimenter has chosen. Every input 

is connected to every output unit by a connection with an adjustable weight. There is 

also a bias input, permanently set to + 1. 

The output units may just produce a linear sum of their weighted inputs, or they may 

employ some non-linear activation function. In the experiments we have run so far, we 

use a symmetric sigmoidal activation function (hyperbolic tangent) whose output range 

is -1.0 to + 1.0. For problems in which a precise analog output is desired, instead of a 

binary classification, linear output units might be the best choice, but we have not yet 

studied any problems of this kind. 

We add hidden units to the network one by one. Each new hidden unit receives a 

connection from each of the network's original inputs and also from every pre-existing 

hidden unit. The hidden unit's input weights are frozen at the time the unit is added to 

the net; only the output connections are trained repeatedly. Each new unit therefore adds 



526 Fahlman and Lebiere 

a new one-unit "layer" to the network, unless some of its incoming weights happen to be 

zero. This leads to the creation of very powerful high-order feature detectors; it also may 

lead to very deep networks and high fan-in to the hidden units. There are a number of 

possible strategies for minimizing the network depth and fan-in as new units are added, 

but we have not yet explored these strategies. 

The learning algorithm begins with no hidden units. The direct input-output connections 

are trained as well as possible over the entire training set. With no need to back-propagate 

through hidden units, we can use the Widrow-Hoff or "delta" rule, the Perceptron learning 

algorithm, or any of the other well-known learning algorithms for single-layer networks. 

In our simulations, we use Fahlman's "quickprop" algorithm [Fahlman, 1988] to train the 

output weights. With no hidden units, this acts essentially like the delta rule, except that 

it converges much faster. 

At some point, this training will approach an asymptote. When no significant error 

reduction has occurred after a certain number of training cycles (controlled by a "patience" 

parameter set by the operator), we run the network one last time over the entire training 

set to measure the error. If we are satisfied with the network's performance, we stop; if 

not, we attempt to reduce the residual errors further by adding a new hidden unit to the 

network. The unit-creation algorithm is described below. The new unit is added to the 

net, its input weights are frozen, and all the output weights are once again trained using 

quickprop. This cycle repeats until the error is acceptably small (or until we give up). 

To create a new hidden unit, we begin with a candidate unit that receives trainable input 

connections from all of the network's external inputs and from all pre-existing hidden 

units. The output of this candidate unit is not yet connected to the active network. We run 

a number of passes over the examples of the training set, adjusting the candidate unit's 

input weights after each pass. The goal of this adjustment is to maximize S, the sum over 

all output units 0 of the magnitude of the correlation (or, more precisely, the covariance) 

between V, the candidate unit's value, and Eo, the residual output error observed at unit 

o. We define S as 

S = L: L:(Vp - V) (Ep,o - Eo) 
o p 

where 0 is the network output at which the error is measured and p is the training pattern. 

The quantities V and Eo are the values of V and Eo averaged over all patterns. 

In order to maximize S, we must compute 8Sj8wi, the partial derivative of S with 

respect to each of the candidate unit's incoming weights, Wi. In a manner very similar 

to the derivation of the back-propagation rule in [Rumelhart, 1986], we can expand and 

differentiate the fonnula for S to get 

8Sj8Wj = L: uo(Ep,o - Eo)J;,lj,p 
p,o 

where U o is the sign of the correlation between the candidate's value and output o,ff, is 



The Cascade-Correlation Learning Architecture 527 

the derivative for pattern p of the candidate unit's activation function with respect to the 

sum of its inputs, and li,p is the input the candidate unit receives from unit i for pattern 

p. 

After computing 8 S / 8Wi for each incoming connection, we can perform a gradient ascent 

to maximize S. Once again we are training only a single layer of weights. Once again 

we use the quickprop update rule for faster convergence. When S stops improving, we 

install the new candidate as a unit in the active network, freeze its input weights, and 

continue the cycle as described above. 

Because of the absolute value in the formula for S, a candidate unit cares only about the 

magnitude of its correlation with the error at a given output, and not about the sign of 

the correlation. As a rule, if a hidden unit correlates positively with the error at a given 

unit, it will develop a negative connection weight to that unit, attempting to cancel some 

of the error; if the correlation is negative, the output weight will be positive. Since a 

unit's weights to different outputs may be of mixed sign, a unit can sometimes serve two 

purposes by developing a positive correlation with the error at one output and a negative 

correlation with the error at another. 

Instead of a single candidate unit. it is possible to use a pool of candidate units, each 

with a different set of random initial weights. All receive the same input signals and see 

the same residual error for each pattern and each output. Because they do not interact 

with one another or affect the active network during training, all of these candidate units 

can be trained in parallel; whenever we decide that no further progress is being made, 

we install the candidate whose correlation score is the best. The use of this pool of 

candidates is beneficial in two ways: it greatly reduces the chance that a useless unit will 

be permanently installed because an individual candidate got stuck during training, and 

(on a parallel machine) it can speed up the training because many parts of weight-space 

can be explored simultaneously. 

The hidden and candidate units may all be of the same type, for example with a sigmoid 

activation function. Alternatively, we might create a pool of candidate units with a 

mixture of nonlinear activation functions-some sigmoid, some Gaussian, some with 

radial activation functions. and so on-and let them compete to be chosen for addition 

to the active network. To date, we have explored the all-sigmoid and all-Gaussian cases, 

but we do not yet have extensive simulation data on networks with mixed unit-types. 

One final note on the implementation of this algorithm: While the weights in the output 

layer are being trained, the other weights in the active network are frozen. While the 

candidate weights are being trained, none of the weights in the active network are changed. 

In a machine with plenty of memory. it is possible to record the unit-values and the output 

errors for an entire epoch, and then to use these cached values repeatedly during training. 

rather than recomputing them repeatedly for each training case. This can result in a 

tremendous speedup as the active network grows large. 



528 Fahlman and Lebiere 

Figure 2: Training points for the two-spirals problem, and output pattern for one network 

trained with Cascade-Correlation. 

2 BENCHMARK RESULTS 

2.1 THE TWO-SPIRALS PROBLEM 

The "two-spirals" benchmark was chosen as the primary benchmark for this study because 

it is an extremely hard problem for algorithms of the back-propagation family to solve. 

n was first proposed by Alexis Wieland of MImE Corp. The net has two continuous

valued inputs and a single output. The training set consists of 194 X-Y values, half of 

which are to produce a + 1 output and half a -1 output. These training points are arranged 

in two interlocking spirals that go around the origin three times, as shown in Figure 2a. 

The goal is to develop a feed-forward network with sigmoid units that properly classifies 

all 194 training cases. Some hidden units are obviously needed, since a single linear 

separator cannot divide two sets twisted together in this way. 

Wieland (unpublished) reported that a modified version of backprop in use at MITRE 

required 150,000 to 200,000 epochs to solve this problem, and that they had never 

obtained a solution using standard backprop. Lang and Witbrock [Lang, 1988] tried the 

problem using a 2-5-5-5-1 network (three hidden layers of five units each). Their network 

was unusual in that it provided "shortcut" connections: each unit received incoming 

connections from every unit in every earlier layer, not just from the immediately preceding 

layer. With this architecture, standard backprop was able to solve the problem in 20,000 

epochs, backprop with a modified error function required 12,000 epochs, and quickprop 

required 8000. This was the best two-spirals performance reported to date. Lang and 

Witbrock also report obtaining a solution with a 2-5-5-1 net (only ten hidden units in 

all), but the solution required 60,000 quickprop epochs. 

We ran the problem 100 times with the Cascade-Correlation algorithm using a Sigmoidal 

activation function for both the output and hidden units and a pool of 8 candidate units. 

All trials were successful, requiring 1700 epochs on the average. (This number counts 



The Cascade-Correlation Learning Architecture 529 

both the epochs used to train output weights and the epochs used to train candidate units.) 

The number of hidden units built into the net varied from 12 to 19, with an average of 

15.2 and a median of 15. Here is a histogram of the number of hidden units created: 

Hidden Number of 

Units Trials 

12 4 #### 

13 9 ######### 

14 24 ######################## 

15 19 ################### 

16 24 ######################## 

17 13 ############# 

18 5 ##### 

19 2 ## 

In terms of training epochs, Cascade-Correlation beats quickprop by a factor of 5 and 

standard back prop by a factor of 10, while building a network of about the same com

plexity (15 hidden units). In terms of actual computation on a serial machine, however, 

the speedup is much greater than these numbers suggest In backprop and quickprop, 

each training case requires a forward and a backward pass through all the connections in 

the network; Cascade-Correlation requires only a forward pass. In addition, many of the 

Cascade-Correlation epochs are run while the network is much smaller than its final size. 

Finally, the cacheing strategy described above makes it possible to avoid re-computing 

the unit values for parts of the network that are not changing. 

Suppose that instead of epochs, we measure learning time in connection crossings, defined 

as the number of multiply-accumulate steps necessary to propagate activation values 

forward through the network and error values backward. This measure leaves out some 

computational steps, but it is a more accurate measure of computational complexity 

than comparing epochs of different sizes or comparing runtimes on different machines. 

The Lang and Witbrock result of 20,000 backprop epochs requires about 1.1 billion 

connection crossings. Their solution using 8000 quickprop epochs on the same network 

requires about 438 million crossings. An average Cascade-Correlation run with a pool of 

8 candidate units requires about 19 million crossings-a 23-fold speedup over quickprop 

and a 50-fold speedup over standard backprop. With a smaller pool of candidate units the 

speedup (on a serial machine) would be even greater, but the resulting networks might 

be somewhat larger. 

Figure 2b shows the output of a 12-hidden-unit network built by Cascade-Correlation 

as the input is scanned over the X-V field. This network properly classifies all 194 

training points. We can see that it interpolates smoothly for about the first 1.5 turns of 

the spiral, but becomes a bit lumpy farther out, where the training points are farther apart. 

This "receptive field" diagram is similar to that obtained by Lang and Witbrock using 

backprop, but is somewhat smoother. 



530 Fahlman and Lebiere 

2.2 N-INPUT PARITY 

Since parity has been a popular benchmark among other researchers, we ran Cascade

Correlation on N-input parity problems with N ranging from 2 to 8. The best results 

were obtained with a sigmoid output unit and hidden units whose output is a Gaussian 

function of the sum of weighted inputs. Based on five trials for each value of N, our 

results were as follows: 

N Cases Hidden Average 

Units Epochs 

2 4 1 24 

3 8 1 32 

4 16 2 66 

5 32 2-3 142 

6 64 3 161 

7 128 4-5 292 

8 256 4-5 357 

For a rough comparison, Tesauro and Janssens [Tesauro, 1988] report that standard back

prop takes about 2000 epochs for 8-input parity. In their study, they used 2N hidden units. 

Cascade-Correlation can solve the problem with fewer than N hidden units because it uses 

short-cut connections. 

As a test of generalization, we ran a few trials of Cascade-Correlation on the lO-input 

parity problem, training on either 50% or 25% of the 1024 patterns and testing on the 

rest. The number of hidden units built varied from 4 to 7 and training time varied from 

276 epochs to 551. When trained on half of the patterns, perfonnance on the test set 

averaged 96% correct; when trained on one quarter of the patterns, test-set performance 

averaged 90% correct Note that the nearest neighbor algorithm would get almost all of 

the test-set cases wrong. 

3 DISCUSSION 

We believe that that Cascade-Correlation algorithm offers the following advantages over 

network learning algorithms currently in use: 

• There is no need to guess the size, depth, and connectivity pattern of the network 

in advance. A reasonably small (though not optimal) net is built automatically, 

perhaps with a mixture of unit-types . 

• Cascade-Correlation learns fast In backprop, the hidden units engage in a complex 

dance before they settle into distinct useful roles; in Cascade-Correlation, each unit 

sees a fixed problem and can move decisively to solve that problem. For the 

problems we have investigated to date, the learning time in epochs grows roughly 

as NlogN, where N is the number of hidden units ultimately needed to solve the 

problem. 



The Cascade-Correlation Learning Architecture 531 

• Cascade-Correlation can build deep nets (high-order feature detectors) without the 

dramatic slowdown we see in deep back-propagation networks. 

• Cascade-Correlation is useful for incremental learning. in which new infonnation is 

added to an already-trained net. Once built. a feature detector is never cannibalized. 

It is available from that time on for producing outputs or more complex features. 

• At any given time. we train only one layer of weights in the network. The rest of 

the network is constant. so results can be cached. 

• There is never any need to propagate error signals backwards through network 

connections. A single residual error signal can be broadcast to all candidates. 

The weighted connections transmit signals in only one direction. eliminating one 

difference between these networks and biological synapses. 

• The candidate units do not interact. except to pick a winner. Each candidate sees the 

same inputs and error signals. This limited communication makes the architecture 

attractive for parallel implementation. 

4 RELATION TO OTHER WORK 

The principal differences between Cascade-Correlation and older learning architectures 

are the dynamic creation of hidden units. the way we stack the new units in multiple 

layers (with a fixed output layer). the freezing of units as we add them to the net. and 

the way we train new units by hill-climbing to maximize the unit's correlation with the 

residual error. The most interesting discovery is that by training one unit at a time instead 

of training the whole network at once. we can speed up the learning process considerably. 

while still creating a reasonably small net that generalizes well. 

A number of researchers [Ash. 1989.Moody. 1989] have investigated networks that add 

new units or receptive fields within a single layer in the course of learning. While 

single-layer systems are well-suited for some problems. these systems are incapable of 

creating higher-order feature detectors that combine the outputs of existing units. The 

idea of building feature detectors and then freezing them was inspired in part by the 

work of Waibel on modular networks [Waibel. 19891. but in his model the structure of 

the sub-networks must be fixed before learning begins. 

We know of only a few attempts to build up multi-layer networks as the learning pro

gresses. Our decision to look at models in which each unit can see all pre-existing units 

was inspired to some extent by work on progressively deepening threshold-logic models 

by Merrick Furst and Jeff Jackson at Carnegie Mellon. (They are not actively pursuing 

this line at present.) Gallant [Gallant. 1986] briefly mentions a progressively deepening 

perceptron model (his "inverted pyramidU model) in which units are frozen after being 

installed. However. he has concentrated most of his research effort on models in which 

new hidden units are generated at random rather than by a deliberate training process. 

The SONN model of Tenorio and Lee [Tenorio, 1989] builds a multiple-layer topology 



532 Fahlman and Lebiere 

to suit the problem at hand. Their algorithm places new -two-input units at randomly se

lected locations, using a simulated annealing search to keep only the most useful ones-a 

very different approach from ours. 

Acknowledgments 

We would like to thank Merrick Furst, Paul Gleichauf, and David Touretzlcy for asking 

good questions that helped to shape this work. This research was sponsored in part by 

the National Science Foundation (Contract EET-8716324) and in part by the Defense 

Advanced Research Projects Agency (Contract F3361S-87-C-1499). 

References 

[Ash, 1989] 

[Fahlman, 1988] 

[Gallant, 1986] 

[Lang, 1988] 

[Moody, 1989] 

Ash, T. (1989) "Dynamic Node Creation in Back-Propagation Net

works", Technical Report 8901, Institute for Cognitive Science, Uni

versity of California, San Diego. 

Fahlman, S. E. (1988) "Faster-Learning Variations on Back

Propagation: An Empirical Study" in Proceedings of the 1988 Con

nectionist Models Summer School, Morgan Kaufmann. 

Gallant, S. I. (1986) "Three Constructive Algorithms for Network 

Learning" in Proceedings. 8th Annual Conference of the Cognitive 

Science Society. 

Lang, K. J. and Witbrock, M. J. (1988) "Learning to Tell Two Spirals 

Apart" in Proceedings of the 1988 Connectionist Models Summer 

School, Morgan Kaufmann. 

Moody, J. (1989) "Fast Learning in Multi-Resolution Hierarchies" in 

D. S. Touretzky (ed.), Advances in Neural Information Processing 

Systems 1, Morgan Kaufmann. 

[Rumelhart, 1986] Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986) "Learning 

Internal Representations by Error Propagation" in Rumelhart, D. E. 

and McClelland, J. L.,Parallel Distributed Processing: Explorations 

in the Microstructure of Cognition, MIT Press. 

[Tenorio, 1989] Tenorio, M. E, and Lee, W. T. (1989) "Self-Organizing Neural Nets 

for the Identification Problem" in D. S. Touretzky (ed.), Advances in 

Neural Information Processing Systems 1, Morgan Kaufmann. 

[Tesauro, 1988] Tesauro, G. and Janssens, B. (1988) "Scaling Relations in Back

Propagation Learning" in Complex Systems 2 39-44. 

[Waibel, 1989] Waibel, A. (1989) "Consonant Recognition by Modular Construction 

of Large Phonemic Time-Delay Neural Networks" in D. S. TouretzlcY 

(ed.), Advances in Neural Information Processing Systt ms 1, Morgan 

Kaufmann. 


