
 Open access Journal Article DOI:10.1007/S10115-017-1029-1

The cascading neural network: building the Internet of Smart Things
— Source link

Sam Leroux, Steven Bohez, Elias De Coninck, Tim Verbelen ...+3 more authors

Institutions: Ghent University

Published on: 01 Sep 2017 - Knowledge and Information Systems (Springer London)

Topics: Deep learning, Cloud computing, Telecommunications network, Mobile device and The Internet

Related papers:

 Adaptive neural networks for efficient inference

 Going deeper with convolutions

 Deep Residual Learning for Image Recognition

 BranchyNet: Fast inference via early exiting from deep neural networks

 XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks

Share this paper:

View more about this paper here: https://typeset.io/papers/the-cascading-neural-network-building-the-internet-of-smart-
46sx30mjwg

https://typeset.io/
https://www.doi.org/10.1007/S10115-017-1029-1
https://typeset.io/papers/the-cascading-neural-network-building-the-internet-of-smart-46sx30mjwg
https://typeset.io/authors/sam-leroux-akxu41y7gt
https://typeset.io/authors/steven-bohez-490ygwdf6v
https://typeset.io/authors/elias-de-coninck-3abxy1x5pg
https://typeset.io/authors/tim-verbelen-1e4y7fvx0x
https://typeset.io/institutions/ghent-university-14limu0t
https://typeset.io/journals/knowledge-and-information-systems-1lm1xshf
https://typeset.io/topics/deep-learning-3smk9e5a
https://typeset.io/topics/cloud-computing-23j8n0mk
https://typeset.io/topics/telecommunications-network-1ujqdyzq
https://typeset.io/topics/mobile-device-f53b9ubg
https://typeset.io/topics/the-internet-1hyt0v5h
https://typeset.io/papers/adaptive-neural-networks-for-efficient-inference-3gjh85bxo5
https://typeset.io/papers/going-deeper-with-convolutions-1yobw2o2ds
https://typeset.io/papers/deep-residual-learning-for-image-recognition-b75jg61qrq
https://typeset.io/papers/branchynet-fast-inference-via-early-exiting-from-deep-neural-2dyw1q60vx
https://typeset.io/papers/xnor-net-imagenet-classification-using-binary-convolutional-393ghc3cqd
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/the-cascading-neural-network-building-the-internet-of-smart-46sx30mjwg
https://twitter.com/intent/tweet?text=The%20cascading%20neural%20network:%20building%20the%20Internet%20of%20Smart%20Things&url=https://typeset.io/papers/the-cascading-neural-network-building-the-internet-of-smart-46sx30mjwg
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/the-cascading-neural-network-building-the-internet-of-smart-46sx30mjwg
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/the-cascading-neural-network-building-the-internet-of-smart-46sx30mjwg
https://typeset.io/papers/the-cascading-neural-network-building-the-internet-of-smart-46sx30mjwg

Knowledge and Information Systems manuscript No.
(will be inserted by the editor)

The Cascading Neural Network: Building the

Internet of Smart Things

Sam Leroux · Steven Bohez ·

Elias De Coninck · Tim Verbelen ·

Bert Vankeirsbilck · Pieter Simoens ·

Bart Dhoedt

Received: Sep 22, 2015
Revised: Jan 04, 2017
Accepted: Jan 14, 2017

Abstract Most of the research on deep neural networks (DNNs) so far has
been focused on obtaining higher accuracy levels by building increasingly large
and deep architectures. Training and evaluating these models is only feasible
when large amounts of resources such as processing power and memory are
available. Typical applications that could benefit from these models are how-
ever executed on resource constrained devices. Mobile devices such as smart-
phones already use deep learning techniques but they often have to perform all
processing on a remote cloud. We propose a new architecture called a Cascad-
ing network that is capable of distributing a deep neural network between a
local device and the cloud while keeping the required communication network
traffic to a minimum. The network begins processing on the constrained device
and only relies on the remote part when the local part does not provide an
accurate enough result. The Cascading network allows for an early stopping
mechanism during the recall phase of the network. We evaluated our approach
in an Internet Of Things (IoT) context where a deep neural network adds intel-
ligence to a large amount of heterogeneous connected devices. This technique
enables a whole variety of autonomous systems where sensors, actuators and
computing nodes can work together. We show that the Cascading architec-
ture allows for a substantial improvement in evaluation speed on constrained
devices while the loss in accuracy is kept to a minimum.

Ghent University - iMinds
Gaston Crommenlaan 8/201
B-9050 Ghent, Belgium
E-mail: first.lastname@intec.ugent.be

2 Sam Leroux et al.

Keywords Neural Networks · Internet of Things (IoT) · Deep learning ·

Distributed systems and applications · Cloud computing · Mobile systems ·

Ubiquitous and pervasive computing

The Cascading Neural Network: Building the Internet of Smart Things 3

1 Introduction

In the past years deep artificial neural networks have proven to be exception-
ally powerful for various machine learning tasks. Deep learning techniques are
currently the state of the art for various machine learning tasks such as image
and speech recognition or natural language processing [1]. While extremely ca-
pable, they are also resource demanding, both to train and to evaluate. Most
of the research on deep learning focuses on training these deep models. In-
creasingly deep and complex networks are constructed to be more accurate
on various benchmark datasets. Crucial for training these huge models are
Graphical Processing Units (GPUs). High-end GPUs were once reserved for
3D modelling and gaming but their parallel architecture makes them also re-
markably suitable for deep learning. The majority of the operations within
a deep neural network are matrix multiplications and additions, two types
of operations for which a GPU is orders of magnitude faster than a Central
Processing Unit (CPU).

Training a deep neural network is computationally very expensive but efficient
(distributed) GPU implementations now make it feasible to train a model
considered too difficult to train in the past [2]. The time needed to train a
deep neural network is in most cases not very critical. The evaluation of a
trained model however can be extremely time sensitive. When the network is
used to guide a robot or to interpret voice commands from a user, it should
be able to operate in real-time. Any delay will result in poor user experience
or possibly in dangerous situations when a robot or drone is involved. While
training the network is often done on a high-performance system, once trained,
the network has to be used in a real-world environment. The resources available
to systems in these environments are much more limited.

In this paper, we focus on image classification problems using deep neural net-
works. The techniques presented here are however not limited to this domain
but can be extended to all deep learning classification tasks. Possible appli-
cations include home automation and security systems, smart appliances and
household robots. We want to use deep neural networks on constrained devices
that are unable to evaluate the entire network due to limitations in available
memory, processing power or battery capacity. Current wireless technologies
are fast and affordable enough to consider offloading all the computations to
a cloud back-end as a solution. This of course introduces an extra latency (10-
500 ms) and makes the devices dependent on the network connection. This
dependency may be unacceptable in some cases. A robot, for example, would
become inoperable when the server can not be reached.

In this paper we strike a middle ground. A neural network consists of sequential
layers where each layer transforms the output from the previous layer to a
representation suitable for the next layer. Each layer extracts more complex
features from its input. The last layer uses the high level features to classify the
input. We exploit the inherent sequential design of a neural network to enable

4 Sam Leroux et al.

an early stopping mechanism. We use the layers of a pretrained network as
stages in a cascade. Each layer is able to capture additional complexity but also
requires additional resources such as computing time and memory to store the
parameters. Every stage classifies the input and returns a confidence value.
We cease the evaluation of deeper layers once a certain required confidence
threshold is reached. The choice of this threshold value allows us to trade-off
accuracy and speed.

We proposed the concept of a Cascading network before in a conference paper
[3]. Here, we extend this work by including a much more thorough evaluation
on three typical IoT devices. We also include a validation of the architec-
ture on a distributed neural network trained on real-world large color images
(Imagenet dataset [4]).

The remainder of this paper is organized as follows. Section 3 introduces the
Cascading architecture. Section 4 illustrates what kind of problems can be
solved by this architecture. A thorough evaluation of the Cascading technique
can be found in section 5 where our approach is tested on three well known
datasets and on three types of resource-constrained devices. We begin in Sec-
tion 2 with an overview of the related previous work and the differences with
our approach.

2 Related work

2.1 Neural networks and deep learning

The basic architecture of neural networks dates back to the 1950s and the
essence has not changed much since. A neural network contains interconnected
layers of neurons. The knowledge of the network is stored in the weights of the
connections between the nodes. In the 1980s it was proven that neural net-
works with a single hidden layer are universal approximators [5]. This theorem
states that these simple neural networks can represent every possible function
when given appropriate weights; it does however not state how to find these
parameters or how many weights are needed.

Around 2006, interest in neural networks was renewed thanks to the advent of
deep learning [6]. Advances in technology such as efficient GPU implementa-
tions and the availability of huge (labelled) datasets allowed to train increas-
ingly deeper and complex network architectures. Currently (extremely) deep
networks are the state of the art technique for image and speech recognition
[7]. For a more in-depth overview of the history of neural networks and deep
learning, we refer to [6].

The Cascading Neural Network: Building the Internet of Smart Things 5

2.2 Resource constrained machine learning

Both neural networks and other machine learning algorithms and techniques
require vast amounts of resources, especially memory and processing power.
The training phase of a neural network is the most computationally expensive.
The gradient descent algorithm [8] used to tune the weights of the network
needs multiple passes over the training set and each iteration requires multiple
matrix multiplications and additions. Much of the research on distributed
neural networks has thus been focused on architectures for the distributed
training of deep networks on huge amounts of data. The most famous example
of this is the Google DistBelief [9] system, capable of training extremely large
neural networks on 1000s of machines and 10000s of cpu cores.

While the resources available when training a network are almost unlimited,
the evaluation of the trained network is often done on a budget. We sometimes
want to add the intelligence of a deep neural network to a constrained device.
Here, intrinsic restrictions on battery capacity, processing power and memory,
limit the size and complexity of the network. Various works have proposed
techniques to minimise the cost when evaluating a machine learning model
[10][11].

The use of a cascade architecture in a machine learning model has been pro-
posed before [12][13]. In [14], the authors present various topologies in which
machine learning models can be combined to minimise the cost when evalu-
ating the models. They describe how to construct a tree of classifiers where
samples can follow an individual path. Each path looks at specific features of
the input data. A cascade can be seen as a special case of a tree topology. The
technique we present here differs from previous uses of a cascade topology in
a machine learning model. Our cascade does not contain a set of independent
feature extractors but is trained as a whole, as one big model. By including an
early stopping mechanism in the form of intermediate output layers, we are
able to reuse parts of the big model as a smaller model.

Recently, various techniques have been proposed to compress a trained neu-
ral network, making it more suitable for resource constrained devices such as
smartphones, robots or drones. In [15] and [16], the authors show that a shal-
low network can learn to mimick a large, deep network, effectively compressing
the deep architecture in a small network with similar properties. This allows
the small network to obtain an excellent performance at a much lower cost,
both in memory required to store the weights and in processing power needed
to evaluate the network. It is also possible to compress an ensemble of neural
networks into one network [17]. The technique proposed here (Knowledge Dis-
tillation: KD) trains a student network based on the output of an ensemble of
teacher networks.

State-of-the-art networks are usually deep (number of layers) and wide (num-
ber of neurons per layer). In [18], a technique similar to the previous com-

6 Sam Leroux et al.

pressing techniques is used to train very thin but deep networks based on large
powerful networks. The depth of the networks is crucial since it encourages
the reuse of features, and leads to more abstract and invariant representations
at higher layers [19].

In [20] the authors present a network architecture called HashedNets. They
exploit the redundancy inherent in neural networks to achieve reductions in
model sizes, thereby making it possible to store the networks on devices with
limited memory. The hashing technique is elegantly simple: a hash function
is used to group weights in buckets. Every connection grouped in the same
bucket shares a weight value. A similar result can be obtained when using
reduced precision parameters in the network [21][22].

Deep neural network architectures contain thousands of neurons. A large im-
provement in runtime speed may be obtained by pruning the network. Opti-
mal Brain Damage [23] uses second order derivatives to remove unimportant
weights from the network. More recently, a technique to reduce the compu-
tational cost of convolutional neural network layers was proposed [24]. The
Perforated Convolutional Layer introduced here only calculates a subset of
the output exactly. The other outputs are approximated through interpola-
tion.

Our cascading architecture also makes deep neural networks suitable for con-
strained devices but does it in a fundamentally different way. Our resulting
model is not a compressed variant of the original network, in fact, the cascade
model is even slightly larger than the original model since there are extra pa-
rameters required for the additional output layers. We make a model more suit-
able for distributed evaluation by introducing an early-stopping mechanism.
The major advantage of this technique is that it allows for a runtime trade-off
between accuracy and speed. A suitable threshold can be selected based on
the required accuracy and on the available resources instead of having one
network with a fixed accuracy and computational cost. The time needed to
process one image depends on the complexity of the image whereas a normal
implementation of a neural network uses the exact same steps for each image
regardless of the different complexities. This concept of conditional computa-
tion has been recently proposed in other works as well. The most relevant of
these approaches are the Big-little neural networks [25] where a little, fast to
execute network is used to try to classify an input sample. The big network is
only used when the confidence of the little network is less than a predefined
threshold.

The Cascading architecture could be seen as a special case of a Big-little net-
work where a part of the big network is used as the little network, therefore
avoiding the overhead of storing two completely independent networks. An-
other advantage of the Cascade compared to the Big-little architecture is that
the computations done by the first stage in the cascade are used by the lat-
ter stages when needed. The Big network in the Big-little architecture on the
other hand needs to start again from scratch when the little network is unable

The Cascading Neural Network: Building the Internet of Smart Things 7

to classify the input. We compare the Cascade and the Big Little approach in
section 5.1.

3 Architecture

We want to evaluate a trained deep neural network on a constrained device
unable to hold all the parameters in memory or unable to perform the calcula-
tions in the required time. Instead of offloading the entire network to a cloud
backend, we offload only a part of the network. The first layers are evaluated
locally and the remote part is only required when these layers are unable to
classify a sample with sufficient confidence. This early-stopping mechanism
during the recall phase of the network makes sure that we only communicate
with the cloud backend when it is absolutely required. By avoiding unneces-
sary data transfers to the cloud, we can reduce the average latency and cost
when evaluating the network.

Fig. 1: The cascading architecture. The three additional output layers allow
for an early-stopping mechanism when evaluating the network.

We slightly modify the standard architecture of a feed forward neural network
to enable the early-stopping mechanism. Instead of one output layer (a soft-
max classifier) after the last hidden layer, we train multiple output layers: one
directly on the raw input data and one after every hidden layer in the network.
This allows to stop propagating a sample through the network once a suffi-
ciently confident result is obtained. We use an interesting property of neural
network classifiers stating that they provide outputs which estimate Bayesian
a posteriori probabilities [26], meaning the outputs can be interpreted as confi-
dence measures (i.e. how confident is the network that a certain sample belongs
to a certain class ?).

8 Sam Leroux et al.

This approach is shown in Figure 1 for a neural network with three hidden
layers. The technique used to propagate a sample through the network is
illustrated in Algorithm 1. The network consists of n hidden layers and n+ 1
output layers.

Algorithm 1 Propagating a sample through the cascade network: Keep
evaluating the hidden layers until a confident result is obtained.

1: procedure fprop(x)
2: i← 0
3: y ← output layeri(x)
4: while max(y) < thresholdi & i < n do
5: x← hidden layeri(x)
6: i← i+ 1
7: y ← output layeri(x)

8: return y

3.1 Training

A Cascade network is trained as follows. We append additional output layers
(softmax classifiers) after all or after a subset of the hidden layers and use
standard backpropagation to train the layers. It is possible to train all the lay-
ers at once. The error backpropagated to a certain parameter is the (weighted)
average of the error of every output layer for that parameter.

It is also possible to reuse a pre-trained off-the-shelf network. Research has
shown that the features learned by the first layers of a deep neural network
are often not specific to one problem but can be generalized over different
datasets [27]. A popular approach to train a powerful network is to reuse
the first layers of a publicly available pre-trained network and to replace the
layers at the end of the network. The network as a whole is then fine-tuned
on the problem specific dataset. This technique makes it possible to train a
complex network on a relatively small amount of data since the first layers of
the network already are suitable feature extractors.

Converting a completely trained traditional network to a cascade network
can be done very fast at a small cost when keeping the weights fixed. We
propagate the training set data once through the network and store the internal
representations after every hidden layer. We then train softmax output layers
to classify the stored representations. This second approach is used in all our
experiments.

The Cascading Neural Network: Building the Internet of Smart Things 9

4 Use cases

The principal use case aims at evaluating a large neural network on a device
unable to hold all the parameters in memory or unable to do the required
calculations in the given time window. Instead of offloading the entire network
to the cloud, we run a part of the network locally and only rely on the cloud
server when absolutely necessary.

The delay introduced by offloading the computations to a server in a datacenter
may be unacceptable for real-time applications such as a control system for
a robot. An interesting idea is to bring the cloud closer. Fog computing [28]
aims at reducing the physical distance between the user and the cloud. Local
computation nodes (cloudlets [29]) can be used as a substitute for remote cloud
servers. Technological advancements allow for ever more powerful systems in a
smaller, more energy efficient package but these local systems will always fall
behind the remote cloud servers where space and energy is abundant.

In most cases, neural networks are simulated in software on general purpose
hardware. While extremely flexible, this paradigm is not the most efficient way
to evaluate a neural network. Neuromorphic chips [30] are hardware compo-
nents, specially designed to accommodate a neural network. They require less
power to run and are able to generate an output faster. They are still expen-
sive and hard to obtain at the moment and the amount of neurons they can
contain is relatively small for any real-world network. The cascade architecture
however would allow for a potentially very powerful hybrid network. The first
layers are evaluated on the fast neural network hardware. The deeper layers,
simulated in software, are only needed when the first layers were unable to
classify the sample confidently. A similar architecture could incorporate Field
Programmable Gate Arrays (FPGAs) to evaluate the first layers. The poten-
tial of FPGAs as a hardware accelerator for deep neural networks has been well
documented [31] but practical applications are still rather uncommon.

The Cascading paradigm also allows for a more robust fault-tolerant system.
Internet connectivity can be unstable in many practical situations. The Cas-
cade network divides the neural network into different parts. One part is always
evaluated locally so the system will still be able to operate when the Internet
connection drops, although the accuracy will be lower.

The Cascade network decides whether to accept or to reject a classification
based on the threshold value. This value is not hard-coded into the network
but can be passed as an argument at runtime, independent for each sample.
This can be useful in many practical situations since it allows a trade-off
between accuracy and speed. Similarly, the threshold could depend on other
measurements such as network latency or the cost associated with the network
connection (WiFi vs mobile connections).

A possible architecture enabled by the Cascade network is shown in Figure 2.
The first layers are evaluated on the robot, either by an on board neuromorphic

10 Sam Leroux et al.

chip or by the embedded CPU or GPU. Offloading the computations is only
needed when these layers are unable to classify the input. A local computation
node (cloudlet) is used for the intermediate layers. The cloudlet can be reached
by a local low latency network connection. Sending data to the cloud introduces
a higher latency and is only required when the deeper layers are needed.

Neuromorphic
hardware

Embedded
CPU/GPU

Cloudlet Cloud
server

Fig. 2: A deep neural network with the layers distributed between devices. The
first two hidden layers are evaluated on the robot. The intermediate represen-
tations can be transferred to the cloudlet or even to the cloud when needed.

5 Experimental results

In this section, we present the results obtained on three well known image clas-
sification datasets (MNIST, CIFAR10 and ImageNet 1K). These datasets rep-
resent increasingly difficult tasks that require increasingly complex networks
and amounts of training data. All experiments described here were performed
using the Theano framework [32].

We used an Nvidia GTX980 and an Nvidia Tesla K40 GPU for training. We
used three devices typical for an IoT-context to validate our approach.

Each experiment was performed on a different device. A summary of the sys-
tem specifications can be found in Table 1.

The Raspberry Pi1 was originally developed to teach basic programming skills
in schools. It quickly became a favourite platform for developers to build Inter-
net of Things (IoT) systems because of the small physical size and affordability.
The Intel Edison2 was, in contrast to the Raspberry Pi, specially designed with
IoT applications in mind. The Edison includes a 500 MHz Atom processor to-
gether with WiFi and Bluetooth connectivity in a package half the size of the
Raspberry Pi. Its size and typical power consumption of less than 1W make
it even suitable for wearable applications. The Nvidia Jetson TK13 finally is

1https://www.raspberrypi.org/
2http://www.intel.com/content/www/us/en/do-it-yourself/edison.html
3http://www.nvidia.com/object/jetson-tk1-embedded-dev-kit.html

The Cascading Neural Network: Building the Internet of Smart Things 11

(a) Raspberry Pi 2 (b) Intel Edison (c) Nvidia Jetson
TK1

Fig. 3: Resource constrained devices used for testing

Table 1: Summary of the device specifications

Raspberry Pi 2 Intel Edison Nvidia Jetson Tk1

CPU 900MHz quad-core 500MHz Dual-core NVIDIA 2.32GHz ARM

ARM Cortex-A7 Atom processor MCU quad-core Cortex-A15

GPU Broadcom VideoCore N/A NVIDIA Kepler GPU

IV @ 250 MHz 192 SM3.2 CUDA cores

Memory 1GB (shared with gpu) 1GB 2GB (shared with gpu)

Dimensions 85mm x 56mm 60mm x 29mm 127mm x 127mm

Power ≈ 3W ≈ 1W ≈ 12W

a very powerful (considering its size and price) single board computer. The
Jetson includes a Kepler GPU with 192 CUDA cores which makes it perfect
for deep learning. The TK1 is especially suited for robotics and automotive
applications. These three devices are shown in Figure 3.

5.1 MNIST

The MNIST dataset [33] is arguably one of the most common benchmark
datasets for image recognition. It consists of a 60,000 sample training set and
a 10,000 sample test set. The samples are 28 by 28 pixel black and white images
of handwritten digits. While this dataset is a relatively easy task for most state-
of-the-art models, it is still interesting as a first evaluation of new techniques
since the amount of data is relatively small. The human performance on this
dataset is estimated at an error rate of 0.2% [34]. Deep (convolutional) neural
networks are able to achieve similar performance levels [35]. Some typical
examples of the digits in this dataset are shown in Figure 4.

We trained the basic fully-connected architecture shown in Figure 5 to obtain
an error rate of 0.69% on the MNIST dataset. All neurons are Rectified

12 Sam Leroux et al.

Fig. 4: The MNIST dataset consists of 28 by 28 pixel black and white images
of handwritten digits.

Input
layer

Hidden
layer 0

Hidden
layer 1

Hidden
layer 2

Hidden
layer 3

784
neurons

900
neurons

1500
neurons

1750
neurons

2000
neurons

Output
layer 0

Output
layer 1

Output
layer 2

Output
layer 3

Output
layer 4

Fig. 5: 4 layer fully connected MNIST Cascade network. Four additional out-
putlayers were trained.

Linear units (ReLUs) [36]. A fixed momentum [37] value of 0.9 was used during
training.

Dropout [38] and L2 regularization proved to be essential in training this net-
work. We used the infimnist code4 [39] to generate additional training sam-
ples by applying pseudo-random deformations and translations to the original
MNIST training set.

Table 2 shows the accuracy of the different output layers in the network and
the corresponding runtime on the Raspberry Pi 2. These results confirm the
premise that deeper neural networks are usually capable of more accurate clas-
sification than shallow ones. This also proves that it is indeed possible to have
a hidden layer that functions as an input for another hidden layer and simul-
taneously for a softmax output layer. While additional hidden layers are able
to improve the classification accuracy, they also increase the computational
cost and memory requirements of the network.

The Softmax output layer trained directly on the raw input data is still able
to achieve a 91.29% accuracy rate. This suggests that the greater part of the
network is only needed for a minority of the data samples. The cascading
architecture allows us to exploit this property by providing an early-stopping
mechanism.

4http://leon.bottou.org/projects/infimnist

The Cascading Neural Network: Building the Internet of Smart Things 13

Table 2: Accuracy and runtime on the Raspberry Pi 2 of the network at varying
depths.

Layer number
Test error
rate

Average time (in ms) needed to
process one test sample on the
Raspberry Pi 2

0 8.71% 0.85± 0.01
1 2.46% 8.76± 0.09
2 1.02% 22.03± 0.15
3 0.75% 48.17± 0.17
4 0.69% 80.11± 0.26

Table 3: Accuracy and runtime of the cascade using varying thresholds, eval-
uated on the Raspberry Pi 2.

Threshold Test error rate

Average time (in ms) needed to
process one test sample on the
Raspberry Pi 2

0.5 5.37% 1.32± 0.02
0.7 2.44% 2.71± 0.02
0.9 1.03% 8.40± 0.06

0.95 0.82% 12.89± 0.06
0.99 0.72% 28.84± 0.11

0.995 0.69% 34.16± 0.11
0.999 0.69% 53.97± 0.18

The test error rate and the corresponding runtime of the cascade on the Rasp-
berry Pi 2 are presented in Table 3. These results are also graphically summa-
rized in Figure 6. The same threshold is used for every layer. This experiment
confirms the advantages of the Cascade network. The Cascade is able to achieve
the same error rate as the base network while the required runtime is less than
half the time needed for the base network.

Some random samples classified by each layer are shown in Table 4. This
gives a qualitative idea of what type of samples are classified by each layer.
These images confirm our intuitive expectations, the uncomplicated samples
are classified by the early layers while the harder samples are left for the deeper
layers.

We can distinguish the harder from the easier classes in a similar way. Table
5 shows for each class and for each layer the percentage of the samples of
that class that are classified by the layer. Images of a handwritten zero are
relatively easy to classify, over a third of these samples are classified by the first
output layer, trained directly on the raw input data. The digit one on the other
hand poses more of a challenge to the network. Two possible explanations for
the difficulty of this class are the different styles of handwritten ones and the
fact that a vertical pen stroke is also present in other classes such as four or
seven.

Table 6 reveals the total percentage of samples classified by each layer. While
the first output layer is capable of an accurate classification in 91.29% of

14 Sam Leroux et al.

the samples, only 16.47% are classified by this layer because of the threshold
imposed by the cascade.

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

❇❛s❡ ♥❡t✇♦r❦

❚❤r❡s❤♦❧❞

❊
rr
♦
r
r❛
t❡

✭✪
✮

(a) Error rate

0 0.2 0.4 0.6 0.8 1

0

20

40

60

80 ❇❛s❡ ♥❡t✇♦r❦

❚❤r❡s❤♦❧❞
❆
✈
❡r
❛
❣
❡
r✉
♥
t✐
♠
❡
♣
❡r

s❛
♠
♣
❧❡

✭♠
s✮

(b) Runtime

Fig. 6: Accuracy and runtime (measured on the Raspberry Pi 2) of the MNIST
cascade network using varying thresholds. A larger threshold requires the net-
work to be more confident of the result. The error rate is lower but the com-
putational cost is higher. The accuracy and the runtime of the base network
are indicated by the dashed horizontal line.

Table 4: Typical images classified by different layers. The easier samples are
classified by the first layers while the harder samples are left for the deeper
layers. (threshold=0.99)

output
layer

Typical samples classified by this layer

0

1

2

3

4

The Cascading Neural Network: Building the Internet of Smart Things 15

Table 5: Percentage of the test samples classified by each layer (threshold =
0.999)

Layers Classes
0 1 2 3 4

0 37.86% 2.56% 29.94% 17.82% 12.32%
1 23.57% 24.58% 17.54% 25.54% 20.77%
2 22.04% 57.09% 22.77% 33.76% 41.04%
3 12.14% 10.57% 21.71% 15.05% 16.50%
4 4.39% 5.20% 8.04% 7.82% 9.37%

5 6 7 8 9
0 4.48% 29.85% 25.00% 4.83% 0.69%
1 37.33% 18.37% 24.61% 8.42% 1.98%
2 28.70% 29.54% 17.41% 42.81% 50.84%
3 19.28% 15.24% 20.62% 33.78% 35.08%
4 10.20% 6.99% 12.35% 10.16% 11.40%

Table 6: Total percentage of the test samples classified by each layer (threshold
= 0.99)

Layer Total percentage of samples classified
0 16.47%
1 20.17%
2 34.91%
3 19.90%
4 8.55%

5.2 CIFAR10

While the MNIST dataset contained relatively uncomplicated images of nu-
meric digits, the CIFAR10 dataset [40] contains images of complex types of
objects. This dataset consists of 60,000 32 by 32 pixel color images in 10
classes. Some of the classes include: airplane, car, truck, cat and dog. Human
level performance is estimated at an accuracy of 94% [41], the current state-
of-the-art models are able to achieve human performance (93.57%)[42]. Some
typical samples are shown in Figure 7.

Fig. 7: The CIFAR-10 dataset contains 32 by 32 pixel color images of ten
classes such as car, truck, cat and dog.

16 Sam Leroux et al.

We trained the convolutional architecture shown in Figure 8 to obtain an
accuracy of 84.26%. The network consists of three convolutional layers with
64 5 by 5 filters each and one fully connected layer with 1024 neurons at the
end. The non-linearities are all Rectified Linear Units (ReLU) [36]. We used
stochastic gradient descent with a fixed momentum value of 0.9 to train these
layers. Dropout [38] with probability of 0.5 was used on the fully connected
layer. The input image data was rescaled to have zero mean and unit variance
but no other preprocessing or data augmentation techniques were used.

Input

layer

Convolutional

layer
Convolutional

layer

Convolutional

layer

Fully

connected

layer

32 x 32

pixel

image

64 5x5 filters

3x3 maxpool

2x2x2x2 zero

padding

64 5x5 filters

3x3 maxpool

64 5x5 filters 1024

neurons

Output

layer 0

Output

layer 1

Output

layer 2

Output

layer 3

Output

layer 4

Fig. 8: 4 layer convolutional CIFAR10 network.

The Intel Edison was chosen as the test platform for this experiment. Table 7
shows the error rate that can be obtained by the different subnetworks in the
cascade and the corresponding runtime on the Edison. We also include the ac-
curacy when each path is trained completely from scratch. This to investigate
the impact of training softmax output layers on the intermediate representa-
tions. We found that the penalty of using these already trained layers is small.
The complexity of the images included in the CIFAR10 dataset poses more
of a challenge than the MNIST digits. Yet, a single softmax classifier trained
on the raw pixel data is still able to classify 41.85% of the test set correctly.
This suggest that the Cascade could also allow for a speed-up on this more
complicated dataset.

Table 8 shows the obtained test error rate and the required runtime on the
Intel Edison using various thresholds. The Cascade again allows for a speed
up, although less spectacular than the MNIST cascade. The average runtime
of the Cascade with a threshold of 0.95 is 25% less than the runtime of the base
network at a marginal increase in error rate (15.97% instead of 15.74%).

Even though the Cascade allows for a gain in speed when evaluating the net-
work on one machine, this is not the main goal of this architecture. The Cas-
cade is even more advantageous when it is used to distribute the layers over
different machines, as described in the following experiment.

The Cascading Neural Network: Building the Internet of Smart Things 17

Table 7: Accuracy and runtime of the CIFAR10 network at varying depths,
evaluated on the Intel Edison.

Layer number
Test error
rate

Test error rate
(from scratch)

Average time (in ms) needed to
process one test sample on the
Edison

0 58.15% 58.15% 0.99± 0.01
1 29.31% 28.33% 13.90± 0.02
2 18.11% 18.05% 37.62± 0.02
3 16.24% 16.05% 39.72± 0.03
4 15.74% 15.74% 56.70± 0.03

Table 8: Accuracy and runtime of the cascade using varying thresholds, eval-
uated on the Intel Edison.

Threshold Test error rate
Average time (in ms) needed to
process one test sample on the
Edison

0.5 28.57% 14.34± 0.02
0.7 20.13% 25.72± 0.02
0.8 18.13% 31.63± 0.02
0.9 16.40% 36.54± 0.03

0.95 15.97% 41.89± 0.03
0.99 15.74% 47.62± 0.03

The Cascading approach exploits the fact that not all possible input samples
are equally hard to classify and that even a small network is able to capture
enough information to allow a correct classification. In the worst case all layers
of the network are used but the amortized cost over all samples should be
lower. A similar approach is also presented in [25]. Here the authors propose
a mechanism with two independent networks. First a “little network” is used.
This is a low cost, fast to execute model. The second (“Big”) network is only
used for those input samples where the “little” network is not confident in the
output. Our cascading technique could be seen as a special case where we do
not have two completely independent models but where instead we provide an
early-stopping mechanism in the network. Our “little” network is part of the
“Big” network. This allows us to reduce the memory footprint of the system
and this also allows us to build upon the computations of the first stage when
the deeper layers are needed (compared to starting over from scratch in the
Big-little technique). The little network in the Big-little technique however is
not forced to be useful as a part of the Big network which means that the
architecure of both networks can be optimised independently, something that
is not possible for the Cascade.
We have implemented a basic version of the Big-little technique to compare
against the Cascade. We used the Cifar10 network described before as the
Cascade. We based the Big-little version on the same network. The “little”
network consists of one convolutional layer (64 5*5 filters) and a softmax
output layer. The “Big network” is the same network as used in the Cascade.
The results are shown in Figure 9. The reported runtime is measured on the

18 Sam Leroux et al.

Intel Edison. This graph shows that the Cascade allows for more flexibility
to trade-off accuracy and speed since the cascade has multiple decision points
compared to just one in the Big-little architecture. We also find that for these
networks the Cascade approach is able to obtain the same accuracy level at a
lower computational cost.

0 20 40 60

0.2

0.3

0.4

0.5

0.6

❘✉♥t✐♠❡ ✭♠s✮

❊
rr
♦
r
r❛
t❡

✭✪
✮

❈❛s❝❛❞❡
❇✐❣ ▲✐tt❧❡

Fig. 9: Accuracy as a function of runtime for both the Cascade and the Big
Little architecture, measured on the Intel Edison.

5.3 ImageNet

The previous two datasets are excellent default benchmark datasets but do
not really capture the complexity of real-world high-resolution images.

The ImageNet dataset [4] contains millions of images, organized following the
WordNet [43] hierarchy. Wordnet can be seen as a linked database of English
words grouped in sets of synonyms (synsets). ImageNet contains manually
labelled high resolution images for a subset of these words. At the moment
of writing (September 2015), ImageNet contains 14,197,122 images in 21841
synsets for an average of 650 images per synset.

A subset of the data is used in the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) [44]. This challenge has been run annually since 2010
and every year, new state-of-the-art results were obtained. The 2014 dataset
contained 1,281,167 training images, a validation set of 50,000 images and
a 100,000 test set. There were 1000 classes and each class had at least 732
training images. Some typical examples of the images included in this dataset
are shown in Figure 10.

The accuracy on this challenge is most often measured using the top-5 test
error rate (the model is allowed to guess 5 times). The human performance on

The Cascading Neural Network: Building the Internet of Smart Things 19

this dataset is hard to measure but is estimated at an error rate of 5.1% [44].
Recently, a deep convolutional neural network outperformed humans when it
achieved a 4.94% top-5 test error rate [45].

Fig. 10: Sample ImageNet images

The strength of the ImageNet dataset is its size but this size also makes train-
ing a model very challenging. For our experiments, we choose not to train a
network from scratch but re-used a pre-trained network. We used the Over-
feat network [46]. Overfeat was designed for the 2013 ILSVRC contest where
it obtained very competitive results.

There are two versions available for download, a fast version and an accurate
version. Both have a similar architecture. The fast network achieves a 16.39%
top-5 error rate on the ILSVRC 2013 test set while the accurate network
obtains a 14.18% top-5 error rate [46].

The Overfeat network contains 5369 million connections, requiring 144 mil-
lion weights [46]. Every weight is a 32 bit floating point number, this means
that at least 576 MB of memory is required just to store the weights. Even
more memory is temporarily needed when using the network. These memory
requirements, combined with the needed processing power makes it practically
impossible to evaluate a network of this size on most embedded devices.

We transformed the pretrained Overfeat network into a Cascade by training
two additional output layers after the second and the fourth convolutional
layer. The intermediate representations after these layers are large (respec-
tively 57600 and 115200 elements). We applied an eight by eight max pooling
operation just before the softmax layers to reduce the dimensionality and to
make it easier for the softmax layers to learn a suitable classification. Figure
11 shows the components of the Overfeat network and the extra cascading
layers. Traditional stochastic gradient descent with a momentum value of 0.9
was used to train the output layers. Dropout (with probability=0.5) proved to
be crucial to reliably train these layers. The weights of the base network were
kept fixed.

20 Sam Leroux et al.

Table 9 summarizes the results that can be obtained by the different output
layers in the network. The first output layer is able to achieve a top-5 accu-
racy of 33.83% which is impressive for a network with only two convolutional
layers (a random guess would yield a top-5 accuracy of 0.5%). The next two
convolutional layers are able to improve this result to a top-5 accuracy rate of
51.7%.

The last output layer is the pretrained Overfeat Softmax layer and is able to
obtain a top-5 accuracy of 81.59%. All calculations were performed on the
Nvidia GTX980 GPU. Each sample was processed one at a time by the GPU
to simulate an environment where each image has to be processed as soon as
it becomes available.

We then evaluated the required runtime and the obtained accuracy of the
cascade with varying thresholds. Table 10 shows that the cascading archi-
tecture even allows for a small speed-up when evaluating the network on a
GPU.

The real strength of this architecture however becomes apparent when we
distribute the neural network between devices. To demonstrate this, we built
an experimental set-up where the network is distributed between the Jetson
TK1 board and a GPU server (GTX980 GPU) in the cloud. The network
connection between the two nodes was throttled to simulate real-world network

221x221
RGB image

Convolution
96 7x7

2x2 stride

3x3 max pool
3x3 stride

ReLu

Convolution
256 7x7
1x1 stride

2x2 max pool
2x2 stride

ReLu

Convolution
512 3x3
1x1 stride

1x1x1x1 zero
padding

ReLu

Convolution
512 3x3
1x1 stride

1x1x1x1 zero
padding

ReLu

Convolution
1024 3x3
1x1 stride

1x1x1x1 zero
padding

ReLu

Convolution
1024 3x3
1x1 stride

3x3 max pool
3x3 stride

1x1x1x1 zero
padding

Convolution
4096 5x5
1x1 stride

ReLu

FC
ReLu
4096

8x8 maxpool

Softmax

8x8 maxpool

Softmax Softmax

Fig. 11: The adapted Overfeat network with two extra output layers. Max-
pooling is used to reduce the dimensionality before applying the additional
softmax layers. A larger version of this image is included in Appendix A.

Table 9: Accuracy and runtime of the output layers in the Overfeat network
when evaluated on an Nvidia GTX980 GPU

Outputlayer Top-1 accuracy Top-5 accuracy Runtime (ms)
1 17.95% 33.83% 3.6± 0.001
2 29.49% 51.7% 7.2± 0.004
3 59.95% 81.59% 36± 0.018

The Cascading Neural Network: Building the Internet of Smart Things 21

Table 10: Accuracy and runtime of the Overfeat cascade when evaluated on
an Nvidia GTX980 GPU

Threshold Top-1 accuracy Top-5 accuracy Runtime (ms)
0.9 58.14% 79.79% 30± 0.02

0.99 59.73% 81.27% 34± 0.02
0.999 59.95% 81.59% 35± 0.02

Table 11: Local evaluation on the Jetson TK1 compared to full offload to the
cloud with varying network bandwidth and latency.

Bandwidth (Mbit/s) RTT (ms) Cloud (ms) Local (ms)

1
10 4853± 15

1110± 4

100 4944± 16

10
10 551± 1.5

100 639± 1.6

100
10 121± 0.16

100 211± 0.65

connections. For each architecture, we measured the required runtime with a
network bandwidth of 1, 10 and 100 Mbit/s and a Round Trip Time (RTT)
of 10 and 100 ms.

The two traditional options (local evaluation and full offload) are compared in
Table 11. When all calculations needed by the Overfeat network are performed
locally on the Jetson TK 1 GPU, it takes 1110 ms to process one image.

The alternative approach is to offload all the computations to the GPU server
in the cloud. The time required by this technique will depend on the bandwidth
and latency of the network connection. Table 11 shows that a complete offload
to the cloud takes less time than the local computation except in the case of
very limited bandwidth (1 Mbit/s).

The time needed to serialise and to transfer the data can quickly outweigh the
time needed to do the actual calculations. The cascading architecture avoids
sending data over the network when a confident classification can be made
by the local part of the network. We evaluated the cascading network on the
same machines using the same network parameters.

We compared two possible cascades, one with two local convolutional layers
(and one maxpool + softmax layer) and one with four local convolutional
layers (and one maxpool + softmax layer). These networks are illustrated in
Figure 12.

Table 12 shows the required runtime of the first cascade with varying network
bandwidth and latency. In the case of very limited bandwidth (1 Mbit/s),
it takes over two seconds to process one image. The Jetson board is able to
evaluate the entire network in just over 1 second so in this case it is less time
consuming to do all the calculations locally. This however is only possible
because the Jetson TK1 can hold the entire network in memory. On other

22 Sam Leroux et al.

(a) 2 local layers (b) 4 local layers

Fig. 12: The two cascade networks, gray blocks are evaluated locally

Table 12: Accuracy and runtime of the Overfeat cascade with two local con-
volutional layers when using a threshold value t of 0.9,0.99 and 0.999

Bandwidth (Mbit/s) RTT (ms) t=0.9 (ms) t=0.99 (ms) t=0.999 (ms)

1
10 2143± 16 2390± 14 2490± 12

100 2220± 17 2477± 14 2579± 12

10
10 299± 2 329± 3 341± 3

100 375± 3 414± 3 430± 3

100
10 114± 1 123± 1 127± 1

100 190± 2 208± 2 215± 2
Top 1 Accuracy 58.12% 59.67% 59.92%
Top 5 Accuracy 79.73% 81.33% 81.56%

devices, with less memory, offloading to the cloud would be unavoidable. The
cascade network would allow for a 2X speed-up compared to a full offload in
these cases.

A full offload in the case of a 10 Mbit/s connection with 10 and 100 ms RTT
takes respectively 551 and 639 ms. The cascade with threshold 0.99 requires
only 329 and 414 ms respectively. A speed-up of 40% while the drop in top-5
accuracy is negligible (-0.3%).

A high speed network connection (100 Mbit/s) makes offloading to the cloud
less time consuming. The runtime of the cascade is statistically the same as
a full offload in this case. The cascade could still be useful however since it
provides a redundancy against network failure and could avoid costs related
with wireless network connections.

We repeated the experiment but now with a larger local part. The first four
convolutional layers are evaluated locally. The cascade offers little to no im-
provement in this case since the local computations take much longer and the
data that needs to be transferred over the network is twice as large as the
data sent over the network in the previous cascade. This to illustrate that the
performance of the cascade will strongly depend on the choice of the local and
the remote part.

The Cascading Neural Network: Building the Internet of Smart Things 23

Table 13: Accuracy and runtime of the overfeat cascade with four local con-
volutional layers.

Bandwidth (Mbit/s) RTT (ms) t=0.9 (ms) t=0.99 (ms) t=0.999 (ms)

1
10 4211± 20 4700± 20 4899± 20

100 4285± 20 4785± 20 4986± 21

10
10 559± 5 614± 4 637± 4

100 636± 6 702± 6 728± 6

100
10 191± 2 203± 2 210± 2

100 268± 3 290± 2 297± 2
Top 1 Accuracy 58.14% 59.73% 59.95%
Top 5 Accuracy 79.79% 81.27% 81.59%

6 Conclusion

We presented a novel architecture called a Cascade network to avoid redundant
calculations when evaluating a deep neural network model. In addition, this
technique also allows for an elegant offloading mechanism where network com-
munication is avoided when it is not absolutely necessary. The performance
gain depends on the neural network architecture and on the hardware specifi-
cations. We evaluated our approach on three well known benchmark datasets
(MNIST, CIFAR10 and Imagenet) and were able to speed up the evaluation
of three standard network architectures while keeping the loss in accuracy to
a minimum. The measurements were performed on three typical IoT devices,
simulating real-world environments. For the MNIST network we are able to
reduce the computational cost by half while keeping the same level of accu-
racy. On the CIFAR10 dataset we have a speedup of 20% with a marginal loss
of accuracy. For the Imagenet dataset we distributed the well known Overfeat
network. The network was evaluated partially on a local device and partially
offloaded to the cloud. We measured the performance for different bandwidth
and round trip times and found that we were able to reduce the average run-
time by up to 40% depending on the network characteristics.

Acknowledgements Part of this work was supported by the iMinds IoT Research Pro-
gram. Steven Bohez is funded by a Ph.D. grant of the Agency for Innovation by Science
and Technology in Flanders (IWT). We gratefully acknowledge the support of NVIDIA
Corporation with the donation of the Tesla K40 GPU and the Jetson TK1 used for this
research.

References

1. G. Hinton, Y. LeCun et al., “Guest editorial: Deep learning,” International Journal of
Computer Vision, vol. 113, no. 1, pp. 1–2, 2015.

2. A. Coates, B. Huval, T. Wang, D. Wu, B. Catanzaro, and N. Andrew, “Deep learning
with cots hpc systems,” in Proceedings of the 30th international conference on machine
learning, 2013, pp. 1337–1345.

24 Sam Leroux et al.

3. S. Leroux, S. Bohez, T. Verbelen, B. Vankeirsbilck, P. Simoens, and B. Dhoedt,
“Resource-constrained classification using a cascade of neural network layers,” in IJCNN
2015, 2015.

4. J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-
scale hierarchical image database,” in Computer Vision and Pattern Recognition, 2009.
CVPR 2009. IEEE Conference on. IEEE, 2009, pp. 248–255.

5. K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are uni-
versal approximators,” Neural networks, vol. 2, no. 5, pp. 359–366, 1989.

6. J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural Networks,
vol. 61, pp. 85–117, 2015.

7. Y. Bengio, “Learning deep architectures for ai,” Foundations and trends R© in Machine
Learning, vol. 2, no. 1, pp. 1–127, 2009.

8. D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by back-
propagating errors,” Cognitive modeling, vol. 5, 1988.

9. J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, A. Senior, P. Tucker,
K. Yang, Q. V. Le et al., “Large scale distributed deep networks,” in Advances in Neural
Information Processing Systems, 2012, pp. 1223–1231.

10. Z. Xu, K. Weinberger, and O. Chapelle, “The greedy miser: Learning under test-time
budgets,” arXiv preprint arXiv:1206.6451, 2012.

11. K. Singer, “Online classification on a budget,” Advances in neural information process-
ing systems, vol. 16, p. 225, 2004.

12. P. Viola and M. J. Jones, “Robust real-time face detection,” International journal of
computer vision, vol. 57, no. 2, pp. 137–154, 2004.

13. L. Lefakis and F. Fleuret, “Joint cascade optimization using a product of boosted clas-
sifiers,” in Advances in neural information processing systems, 2010, pp. 1315–1323.

14. Z. E. Xu, M. J. Kusner, K. Q. Weinberger, M. Chen, and O. Chapelle, “Classifier
cascades and trees for minimizing feature evaluation cost,” Journal of Machine Learning
Research, vol. 15, pp. 2113–2144, 2014.

15. C. Bucilu, R. Caruana, and A. Niculescu-Mizil, “Model compression,” in Proceedings
of the 12th ACM SIGKDD international conference on Knowledge discovery and data
mining. ACM, 2006, pp. 535–541.

16. J. Ba and R. Caruana, “Do deep nets really need to be deep?” in Advances in Neural
Information Processing Systems, 2014, pp. 2654–2662.

17. G. E. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural network,”
in NIPS 2014 Deep Learning Workshop, 2014.

18. A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta, and Y. Bengio, “Fitnets:
Hints for thin deep nets,” arXiv preprint arXiv:1412.6550, 2014.

19. Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A review and
new perspectives,” Pattern Analysis and Machine Intelligence, IEEE Transactions on,
vol. 35, no. 8, pp. 1798–1828, 2013.

20. W. Chen, J. T. Wilson, S. Tyree, K. Q. Weinberger, and Y. Chen, “Compressing neural
networks with the hashing trick,” arXiv preprint arXiv:1504.04788, 2015.

21. S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep learning with
limited numerical precision,” arXiv preprint arXiv:1502.02551, 2015.

22. M. Courbariaux, Y. Bengio, and J.-P. David, “Low precision arithmetic for deep learn-
ing,” arXiv preprint arXiv:1412.7024, 2014.

23. Y. LeCun, J. S. Denker, S. A. Solla, R. E. Howard, and L. D. Jackel, “Optimal brain
damage.” in NIPs, vol. 89, 1989.

24. M. Figurnov, D. Vetrov, and P. Kohli, “Perforatedcnns: Acceleration through elimina-
tion of redundant convolutions,” arXiv preprint arXiv:1504.08362, 2015.

25. E. Park, D. Kim, S. Kim, Y.-D. Kim, G. Kim, S. Yoon, and S. Yoo, “Big/little deep
neural network for ultra low power inference,” in Hardware/Software Codesign and
System Synthesis (CODES+ ISSS), 2015 International Conference on. IEEE, 2015,
pp. 124–132.

26. M. D. Richard and R. P. Lippmann, “Neural network classifiers estimate bayesian a
posteriori probabilities,” Neural computation, vol. 3, no. 4, pp. 461–483, 1991.

27. J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable are features in deep
neural networks?” in Advances in Neural Information Processing Systems, 2014, pp.
3320–3328.

The Cascading Neural Network: Building the Internet of Smart Things 25

28. F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its role in the
internet of things,” in Proceedings of the first edition of the MCC workshop on Mobile
cloud computing. ACM, 2012, pp. 13–16.

29. T. Verbelen, P. Simoens, F. De Turck, and B. Dhoedt, “Cloudlets: Bringing the cloud to
the mobile user,” in Proceedings of the third ACM workshop on Mobile cloud computing
and services. ACM, 2012, pp. 29–36.

30. K. Boahen, “Neuromorphic microchips,” Scientific American, vol. 292, no. 5, pp. 56–63,
2005.

31. K. Ovtcharov, O. Ruwase, J.-Y. Kim, J. Fowers, K. Strauss, and E. S. Chung, “Ac-
celerating deep convolutional neural networks using specialized hardware,” Microsoft
Research Whitepaper, vol. 2, 2015.

32. F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I. Goodfellow, A. Bergeron,
N. Bouchard, D. Warde-Farley, and Y. Bengio, “Theano: new features and speed im-
provements,” arXiv preprint arXiv:1211.5590, 2012.

33. Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to
document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

34. Y. LeCun, L. Jackel, L. Bottou, C. Cortes, J. S. Denker, H. Drucker, I. Guyon, U. Muller,
E. Sackinger, P. Simard et al., “Learning algorithms for classification: A comparison on
handwritten digit recognition,” Neural networks: the statistical mechanics perspective,
vol. 261, p. 276, 1995.

35. L. Wan, M. Zeiler, S. Zhang, Y. L. Cun, and R. Fergus, “Regularization of neural
networks using dropconnect,” in Proceedings of the 30th International Conference on
Machine Learning (ICML-13), 2013, pp. 1058–1066.

36. V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann ma-
chines,” in Proceedings of the 27th International Conference on Machine Learning
(ICML-10), 2010, pp. 807–814.

37. B. T. Polyak, “Some methods of speeding up the convergence of iteration methods,”
USSR Computational Mathematics and Mathematical Physics, vol. 4, no. 5, pp. 1–17,
1964.

38. N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout:
A simple way to prevent neural networks from overfitting,” The Journal of Machine
Learning Research, vol. 15, no. 1, pp. 1929–1958, 2014.

39. G. Loosli, S. Canu, and L. Bottou, “Training invariant support vector machines
using selective sampling,” in Large Scale Kernel Machines, L. Bottou, O. Chapelle,
D. DeCoste, and J. Weston, Eds. Cambridge, MA.: MIT Press, 2007, pp. 301–320.
[Online]. Available: http://leon.bottou.org/papers/loosli-canu-bottou-2006

40. A. Krizhevsky and G. Hinton, “Learning multiple layers of features from tiny images,”
Computer Science Department, University of Toronto, Tech. Rep, vol. 1, no. 4, p. 7,
2009.

41. A. Karpathy, “Lessons learned from manually classifying cifar-10,” 2011.

42. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
arXiv preprint arXiv:1512.03385, 2015.

43. G. A. Miller, “Wordnet: a lexical database for english,” Communications of the ACM,
vol. 38, no. 11, pp. 39–41, 1995.

44. O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. Bernstein et al., “Imagenet large scale visual recognition challenge,”
arXiv preprint arXiv:1409.0575, 2014.

45. K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification,” arXiv preprint arXiv:1502.01852, 2015.

46. P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun, “Overfeat:
Integrated recognition, localization and detection using convolutional networks,” in In-
ternational Conference on Learning Representations (ICLR 2014). CBLS, April 2014.

26 Sam Leroux et al.

A The Overfeat Cascading architecture

22
1x

22
1

R
G
B

im
ag
e

C
on

vo
lu
ti
on

96
7x

7
2x

2
st
ri
d
e

3x
3
m
ax

p
o
ol

3x
3
st
ri
d
e

R
eL

u

C
on

vo
lu
ti
on

25
6
7x

7
1x

1
st
ri
d
e

2x
2
m
ax

p
o
ol

2x
2
st
ri
d
e

R
eL

u

C
on

vo
lu
ti
on

51
2
3x

3
1x

1
st
ri
d
e

1x
1x

1x
1
ze
ro

p
ad

d
in
g

R
eL

u

C
on

vo
lu
ti
on

51
2
3x

3
1x

1
st
ri
d
e

1x
1x

1x
1
ze
ro

p
ad

d
in
g

R
eL

u

C
on

vo
lu
ti
on

10
24

3x
3

1x
1
st
ri
d
e

1x
1x

1x
1
ze
ro

p
ad

d
in
g

R
eL

u

C
o
n
vo
lu
ti
o
n

1
0
2
4
3
x
3

1
x
1
st
ri
d
e

3
x
3
m
a
x
p
o
o
l

3
x
3
st
ri
d
e

1
x
1
x
1
x
1
ze
ro

p
a
d
d
in
g

C
o
n
vo
lu
ti
o
n

4
0
9
6
5
x
5

1
x
1
st
ri
d
e

R
eL

u

F
C

R
eL

u
4
0
9
6

8x
8
m
ax

p
o
ol

S
of
tm

ax

8x
8
m
ax

p
o
ol

S
of
tm

ax
S
o
ft
m
a
x

The adapted Overfeat network with two extra output layers. Maxpooling is used to reduce
the dimensionality before applying the additional softmax layers. This is a larger version of
Figure 11.

The Cascading Neural Network: Building the Internet of Smart Things 27

Author Biographies

Sam Leroux received his M.Sc degree in Information Engineer-
ing Technology from Ghent University, Belgium in July 2014. In
September of that year, he joined the Department of Information
Technology at Ghent University, where he is active as a Ph.D.
student. His main research interests are machine learning, neural
networks, deep learning and cloud computing. He is also active
as a teaching assistant for various courses in both the bache-
lor and master of Science in Information Engineering Technology
program.

Elias De Coninck received his M.Sc. in Information Engineer-
ing Technology from University College Ghent, Belgium in Au-
gust 2012. He is now working on a Ph.D. at Ghent University -
iMinds on hybrid cloud systems.

Steven Bohez received his M.Sc. degree in Computer Science
from Ghent University, Belgium in June 2013. He is working on a
Ph.D. at Ghent University - iMinds and is focusing on advanced
mobile cloud applications that are distributed between mobile
devices and the cloud.

Tim Verbelen received his M.Sc. degree in Computer Science
from Ghent University, Belgium in June 2009. In July 2013, he
received his Ph.D. degree with his dissertation ”Adaptive Of-
floading and Configuration of Resource Intensive Mobile Appli-
cations”. Since August 2009, he has been working at the De-
partement of Information Technology (INTEC) of the Faculty of
Engineering at Ghent University, and is now active as postdoc-
toral researcher. His main research interests include mobile cloud
computing and adaptive software. Specifically he is researching
adaptive strategies to enhance real-time applications such as Aug-
mented Reality on mobile devices.

28 Sam Leroux et al.

Bert Vankeirsbilck received a M. Sc. Degree (2007) and a
Ph.D. Degree (2013) in Computer Science Engineering from
Ghent University. Since June 2013, he has been active as a post-
doctoral research at the dept of Information Technology at the
same university. From a Ph.D. topic on optimization of quality
of experience for mobile thin client systems, the focus broadened
towards resource constrained computing and distributed intelli-
gence, mostly supported by software design based on edge cloud
architectures.

Pieter Simoens received his M.Sc. degree in Electronic Engi-
neering (2005) and Ph.D. degree (2011) from the Ghent Univer-
sity, Belgium. During his Ph.D. research, he was funded by the
Fund for Scientific Research Flanders (FWO-V). In 2012, he was a
visiting researcher at the School of Computer Science of Carnegie
Mellon University, USA. Currently, he is assistant professor af-
filiated with the Department of Information Technology of the
Ghent University and with iMinds. He is teaching courses on Mo-
bile Application Development and Software Engineering.

His main research interests include mobile cloud offloading,
service-oriented networking, edge/fog computing paradigms, and
service engineering for advanced mobile applications. In these
fields, he is author and co-author of more than 70 papers pub-
lished in international journals or in the proceedings of interna-
tional conferences. He has also been involved in several national
and European research projects (FP6 MUSE, FP7 MobiThin,
H2020 FUSION).

Bart Dhoedt received a Masters degree in Electro-technical En-
gineering (1990) from Ghent University. His research, addressing
the use of micro-optics to realize parallel free space optical in-
terconnects, resulted in a Ph.D. degree in 1995. After a 2-year
post-doc in opto-electronics, he became Professor at the Depart-
ment of Information Technology.

Bart Dhoedt is responsible for various courses on algorithms,
advanced programming, software development and distributed
systems. His research interests include software engineering,
distributed systems, mobile and ubiquitous computing, smart
clients, middleware, cloud computing and autonomic systems. He
is author or co-author of more than 300 publications in interna-
tional journals or conference proceedings..

