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Abstract 

Advances in IC processing allow for more microprocessor design 

options. The increasing gate density and cost of wires in advanced 

integrated circuit technologies require that we look for new ways to 

use their capabilities effectively. This paper shows that in advanced 

technologies it is possible to implement a single-chip multiproces- 

sor in the same area as a wide issue superscalar processor. We find 

that for applications with little parallelism the performance of the 

two microarchitectures is comparable. For applications with large 

amounts of parallelism at both the fine and coarse grained levels, 

the multiprocessor microarchitecture outperforms the superscalar 

architecture by a significant margin. Single-chip multiprocessor 

architectures have the advantage in that they offer localized imple- 

mentation of a high-clock rate processor for inherently sequential 

applications and low latency interprocessor communication for par- 

allel applications. 

1 Introduction 

Advances in integrated circuit technology have fueled microproces- 

sor performance growth for the last fifteen years. Each increase in 

integration density allows for higher clock rates and offers new 

opportunities for microarchitectural innovation. Both of these are 

required to maintain microprocessor performance growth. Microar- 

chitectural innovations employed by recent microprocessors 

include multiple instruction issue, dynamic scheduling, speculative 

execution and non-blocking caches. In the future, the trend seems to 

be towards CPUs with wider instruction issue and support for larger 

amounts of speculative execution. In this paper, we argue against 

this trend. We show that, due to fundamental circuit limitations and 

limited amounts of instruction level parallelism, the superscalar 

execution model will provide diminishing returns in performance 

for increasing issue width. Faced with this situation, building a 

complex wide issue superscalar CPU is not the most efficient use of 

silicon resources. We present the case that a better use of silicon 

area is a multiprocessor microarchitecture constructed from simpler 

processors. 
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To understand the performance trade-offs between wide-issue pro- 

cessors and multiprocessors in a more quantitative way, we com- 

pare the performance of a six-issue dynamically scheduled 

superscalar processor with a 4 × two-issue multiprocessor. Our 

comparison has a number of unique features. First, we accurately 

account for and justify the latencies, especially the cache hit time, 

associated with the two microarchitectures. Second, we develop 

floor-plans and carefully allocate resources to the two microarchi- 

tectures so that they require an equal amount of die area. Third, we 

evaluate these architectures with a variety of integer, floating point 

and multiprogramming applications running in a realistic operating 

system environment. 

The results show that on applications that cannot be parallelized, 

the superscalar microarchitecture performs 30% better than one 

processor of the multiprocessor architecture. On applications with 

fine grained thread-level parallelism the multiprocessor microarchi- 

tecture can exploit this parallelism so that the superscalar microar- 

chitecture is at most 10% better. On applications with large grained 

thread-level parallelism and multiprogramming workloads the mul- 

tiprocessor microarchitecture performs 50-100% better than the 

wide superscalar microarchitecture. 

The remainder of this paper is organized as follows. In Section 2 ,  

we discuss the performance limits of superscalar design from a 

technology and implementation perspective. In Section 3, we make 

the case for a single chip multiprocessor from an applications per- 

spective. In Section 4, we develop floor plans for a six-issue super- 

scalar microarchitecture and a 4 × two-issue multiprocessor and 

examine their area requirements. We describe the simulation meth- 

odology used to compare these two microarchitectures in Section 5, 

and in Section 6 we present the results of our performance compar- 

ison. Finally, we conclude in Section 7. 

2 The Limits of the Superscalar Approach 

A recent trend in the microprocessor industry has been the design 

of CPUs with multiple instruction issue and the ability to execute 

instructions out of program order. This ability, called dynamic 

scheduling, first appeared in the CDC 6600 [21]. Dynamic schedul- 

ing uses hardware to track register dependencies between instruc- 

tions; an instruction is executed, possibly out of program order, as 

soon as all of its dependencies are satisfied. In the CDC 6600 the 

register dependency checking was done with a hardware structure 

called the scoreboard. The IBM 360/91 used register renaming to 

improve the efficiency of dynamic scheduling using hardware struc- 
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Figure 1. A dynamic superscalar CPU 

tures called reservation stations [3]. It is possible to design a 

dynamically scheduled superscalar microprocessor using reserva- 

tion stations; Johnson gives a thorough description of this approach 

[13]. However, the most recent implementations of dynamic super- 

scalar processors have used a structure similar to the one shown in 

Figure 1. Here register renaming between architectural and physical 

registers is done explicitly, and instruction scheduling and register 

dependency tracking between instructions are performed in an 

instruction issue queue. Examples of microprocessors designed in 

this manner are the MIPS Technologies R10000 [24] and the HP 

PA-8000 [14]. In these processors the instruction queue is actually 

implemented as multiple instruction queues for different classes of 

instructions (e.g. integer, floating point, load/store). The three major 

phases of instruction execution in a dynamic superscalar machine 

are also shown in Figure 1. They are fetch, issue and execute. In the 

rest of this section we describe these phases and the limitations that 

will arise in the design of a very wide instruction issue CPU. 

The goal of the fetch phase is to present the rest of the CPU with a 

large and accurate window of decoded instructions. Three factors 

constrain instruction fetch: mispredicted branches, instruction mis- 

alignment, and cache misses. The ability to predict branches cor- 

rectly is crucial to establishing a large, accurate window of 

instructions. Fortunately, by using a moderate amount of memory 

(64Kbit), branch predictors such as the selective branch predictor 

proposed by McFarling are able to reduce misprediction rates to 

under 5% for most programs [15]. However, good branch predic- 

tion is not enough. As Conte pointed out, it is also necessary to 

align a packet of instructions for the decoder [7]. When the issue 

width is wider than four instructions there is a high probability that 

it will be necessary to fetch across a branch for a single packet of 

instructions since, in integer programs, one in every five instruc- 

tions is a branch [12]. This will require fetching from two cache 

lines at once and merging the cache lines together to form a single 

packet of instructions. Conte describes a number of methods for 

achieving this. A technique that divides the instruction cache into 

banks and fetches from multiple banks at once is not too expensive 

to implement and provides performance that is within 3% of a per- 

fect scheme on an 8-wide issue machine. Even with good branch 

prediction and alignment a significant cache miss rate will limit the 

ability of the fetcher to maintain an adequate window of instruc- 

tions. There are still some applications such as large logic simula- 

tions, transactions processing and the OS kernel that have 

significant instruction cache miss rates even with fairly large 64 KB 

two way set-associative caches [19]. Fortunately, it is possible to 

hide some of the instruction cache miss latency in a dynamically 

scheduled processor by executing instructions that are already in 

the instruction window. Rosenblum et. al. have shown that over 

60% of the instruction cache miss latency can be hidden on a data- 

base benchmark with a 64KB two way set associative instruction 

cache [ 19]. Given good branch prediction and instruction alignment 

it is likely that the fetch phase of a wide-issue dynamic superscaiar 

processor will not limit performance. 

In the issue phase, a packet of renamed instructions is inserted into 

the instruction issue queue. An instruction is issued for execution 

once all of its operands are ready. There are two ways to implement 

renaming. One could use an explicit table for mapping architectural 

registers to physical registers, this scheme is used in the R10000 

[24], or one could use a combination reorder buffer/instruction 

queue as in the PA-8000 [14]. The advantage of the mapping table 

is that no comparisons are required for register renaming. The dis- 

advantage of the mapping table is that the number of access ports 

required by the mapping table structure is O x W, where O is the 

number of operands per instruction and W is the issue width of the 

machine. An eight-wide issue machine with three operands per 

instruction requires a 24 port mapping table. Implementing renam- 

ing with a reorder buffer has its own set of drawbacks. It requires 

n x Q x O x W 1-bit comparators to determine which physical reg- 

isters should supply operands for a new packet of instructions, 

where n is the number of bits required to encode a register identi- 

fier and Q is the size of the instruction issue queue. Clearly, the 

number of comparators grows with the size of the instruction queue 

and issue width. Once an instruction is in the instruction queue, all 

instructions that issue must update their dependencies. This 

requires another set of n x Q x O x w comparators. For example, a 

machine with eight wide issue, three operand instructions, a 64- 

entry instruction queue, and 6-bit comparisons requires 9,216 1-bit 

comparators. The net effect of all the comparison logic and encod- 

ing associated with the instruction issue queue is that it takes a large 

amount of area to implement. On the PA-8000, which is a four- 

issue machine with 56 instruction issue queue entries, the instruc- 

tion issue queue takes up 20% of the die area. In addition, as issue 

widths increase, larger windows of instructions are required to find 

independent instructions that can issue in parallel and maintain the 

full issue bandwidth. The result is a quadratic increase in the size of 

the instruction issue queue. Moving to the circuit level, the instruc- 

tion issue queue uses a broadcast mechanism to communicate the 

tags of the instructions that are issued, which requires wires that 

span the length of the structure. In future advanced integrated cir- 

cuit technologies these wires will have increasingly long delays rel- 

ative to the gates that drive them [9]. Given this situation, 

ultimately, the instruction issue queue will limit the cycle time of 

the processor. For these reasons we believe that the instruction issue 



queue will fundamentally limit the performance of wide issue 

superscalar machines. 

In the execution phase, operand values are fetched from the register 

file or bypassed from earlier instructions to execute on the func- 

tional units. The wide superscalar execution model will encounter 

performance limits in the register file, in the bypass logic and in the 

functional units. Wider instruction issue requires a larger window of 

instructions, which implies more register renaming. Not only must 

the register file be larger to accommodate more renamed registers, 

but the number of ports required to satisfy the full instruction issue 

bandwidth also grows with issue width. Again, this causes a qua- 

dratic increase in the complexity of the register file with increases 

in issue width. Farkas et. al. have investigated the effect of register 

file complexity on performance [10]. They find that an eight-issue 

machine only performs 20% better than a four-issue machine when 

the effect of cycle-time is included in the performance estimates. 

The complexity of the bypass logic also grows quadratically with 

number of execution units; however, a more limiting factor is the 

delay of the wires that interconnect the execution units. As far as 

the execution units themselves are concerned, the arithmetic func- 

tional units can be duplicated to support the issue width, but more 

ports must be added to the primary data cache to provide the neces- 

sary load/store bandwidth. The cheapest way to add ports to the 

data cache is by building a banked cache [20], but the added multi- 

plexing and control required to implement a banked cache increases 

the access time of the cache. We investigate this issue in more detail 

in Section 4.2. 

3 The Case for a Single-Chip Multiprocessor 

The motivation for building a single chip multiprocessor comes 

from two sources; there is a technology push and an application 

pull. We have already argued that technology issues, especially the 

delay of the complex issue queue and multi-port register files, will 

limit the performance returns from a wide superscalar execution 

model. This motivates the need for a decentralized microarchitec- 

ture to maintain the performance growth of microprocessors. From 

the applications perspective, the microarchitecture that works best 

depends on the amount and characteristics of the parallelism in the 

applications. 

Wall has performed one of the most comprehensive studies of 

application parallelism [22]. The results of his study indicate that 

applications fall in two classes. The first class consists of applica- 

tions with low to moderate amounts of parallelism; under ten 

instructions per cycle with aggressive branch prediction and large, 

but not infinite window sizes. Most of these applications are integer 

applications. The second class consists of applications with large 

amounts of parallelism, greater than forty instructions per cycle 

with aggressive branch prediction and large window sizes. The 

majority of these applications are floating point applications and 

most of the parallelism is in the form of loop-level parallelism. 

The application pull towards a single-chip multiprocessor arises 

because these two classes of applications require different execu- 

tion models. Applications in the first class work best on processors 

that are moderately superscalar (2 issue) with very high clock rates 

because there is little parallelism to exploit. To make this more con- 

crete we note that a 200 MHz MIPS R5000, which is a single issue 

machine when running integer programs, achieves a SPEC9.5 inte- 

ger rating which is 70% of the rating of a 200 MHz MIPS R10000, 

which is a four-issue machine [6], Both machines have the same 

size data and instruction caches, but the R5000 has a blocking data 

cache, while the R10000 has a non-blocking data cache. Applica- 

tions in the second class have large amounts of parallelism and see 

performance benefits from a variety of methods designed to exploit 

parallelism such as sUperscalar, VLIW or vector processing. How- 

ever, the recent advances in parallel compilers make a multiproces- 

sor an efficient and flexible way to exploit the parallelism in these 

programs [1]. Single-chip multiprocessors, designed so that the 

individual processors are simple and achieve very high clock rates, 

will work well on integer programs in the first class. The addition of 

low latency communication between processors on the same chip 

also allows the multiprocessor to exploit the parallelism of the float- 

ing point programs in the second class. In Section 6 we evaluate 

the performance of a single-chip multiprocessor for these two 

application classes. 

There are a number of ways to use a multiprocessor. Today, the 

most common use is to execute multiple processes in parallel to 

increase throughput in a multiprogramming environment under the 

control of a multiprocessor aware operating system. We note that 

there are a number of commercially available operating systems 

that have this capability (e.g. Silicon Graphics IRIX, Sun Solaris, 

Microsoft Windows NT). Furthermore, the increasingly widespread 

use of visualization and multimedia applications tends to increase 

the number of active processes or independent threads on a desktop 

machine or server at a particular point in time. 

Another way to use a multiprocessor is to execute multiple threads 

in parallel that come from a single application. Two examples are 

transaction processing and hand parallelized floating point scien- 

tific applications [23]. In this case the threads communicate using 

shared memory, and these applications are designed to run on paral- 

lel machines with communication latencies in the hundreds of CPU 

clock cycles; therefore, the threads do not communicate in a very 

fine grained manner. Another example of manually parallelized 

applications are fine-grained thread-level integer applications. 

Using the results from Wall's study, these applications exhibit mod- 

erate amounts of parallelism when the instruction window size is 

very large and the branch prediction is perfect because the parallel- 

ism that exists is widely distributed. Due to the large window size 

and the perfect branch prediction it will be very difficult for this 

parallelism could be extracted with a superscalar execution model. 

However, it is possible for a programmer that understands the 

nature of the parallelism in the application to parallelize the appli- 

cation into multiple threads. The parallelism exposed in this manner 

is fine-grained and cannot be exploited by a conventional multipro- 

cessor architecture. The only way to exploit this type of parallelism 

is with a single-chip multiprocessor architecture. 

A third way to use a multiprocessor is to accelerate the execution of 

sequential applications without manual intervention; this requires 

automatic parallelization technology. Recently, this automatic par- 

allelization technology was shown to be effective on scientific 

applications [2], but it is not yet ready for general purpose integer 

applications. Like the manually parallelized integer applications, 

these applications could derive significant performance benefits 

from the low-latency interprocessor communication provided by a 

single-chip multiprocessor. 
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6-way SS 4x2-way MP 

# of CPUs 1 4 

Degree superscalar 6 4 x 2 

# of architectural registers 32int / 32fp 4 x 32int / 32fp 

# of physical registers 160int / 160fp 4 x 40int / 40fp 

# of integer functional units 3 4 x 1 

# of floating pt. functional units 3 4 x 1 

# of load/store ports 8 (one per bank) 4 x 1 

BTB size 2048 entries 4 x 512 entries 

Return stack size 32 entries 4 x g entries 

Instruction issue queue size 128 entries 4 x 8 entries 

I cache 32 KB, 2-way S.A. 4 x 8 KB, 2-way S. A. 

D cache 32 KB, 2-way S.A. 4 x 8 KB, 2-way S. A. 

LI hit time 2 cycles (4 ns) 1 cycle (2 ns) 

LI cache interleaving 8 banks N/A 

Unified L2 cache 256 KB, 2-way S.A. 256 KB, 2-way S. A. 

L2 hit time / LI penalty 4 cycles (8 ns) 5 cycles (10 ns) 

Memory latency / L2 penalty 50 cycles (100 ns) 50 cycles (100 ns) 

Table 1. Key characteristics of the two microarchitectures 

4 Two Microarchitectures 

To compare the wide superscalar and multiprocessor design 

approaches, we have developed the microarchitectures for two 

machines that will represent the state of  the art in processor design 

a few years from now. The superscalar microarchitecture (SS) is a 

logical extension of the current R10000 superscalar design, wid- 

ened from the current four-way issue to a six-way issue implemen- 

tation. The multiprocessor microarchitecture (MP), is a four-way 

single-chip multiprocessor composed of four identical 2-way super- 

scalar processors. In order to fit four identical processors on a die of 

the same size, each individual processor is comparable to the Alpha 

21064, which became available in 1992 [8]. 

These two extremely different microarchitectures have nearly iden- 

tical die sizes when built in identical process technologies. The pro- 

cessor size we select is based upon the kinds of  processor chips that 

advances in silicon processing technology will allow in the next few 

years. When manufactured in a 0.25 I.tm process, which should be 

possible by the end of  1997, each of the chips will have an area of 

430 mm 2 - -  about 30% larger than leading-edge microprocessors 

being shipped today. This represents typical die size growth over 

the course of a few years among the largest, fastest microprocessors 

[11]. 

We have argued that the simpler two-issue CPU used in the multi- 

processor microarchitecture will have a higher clock rate than the 

six issue CPU; however, for the purposes of this comparison we 

have assumed that the two processors have the same clock rate. To 

achieve the same clock rate the wide superscalar architecture would 

require deeper pipelining due to the large amount of instruction 

issue logic in the critical path. For simplicity, we ignore latency 

variations between the architectures due to the degree of pipelining. 

We assume the clock frequency of both machines is 500 MHz. At 

500 MHz the main memory latencies experienced by the processor 

are large. We have modeled the main memory as a 50-cycle, 100 ns 

delay for both architectures, typical values in a workstation today 

with 60 ns DRAMs and 40 ns of delays due to buffering in the 

DRAM controller chips [25]. 

Table 1 shows the key characteristics of  the two architectures. We 

explain and justify these characteristics in the following sections. 

The integer and floating point functional unit result and repeat 

latencies are the same as the R10000 [24] 

4.1 6 - W a y  S u p e r s e a l a r  A r c h i t e c t u r e  

The 6-way superscalar architecture is a logical extension of the cur- 

rent R10000 design. As the floorplan in Figure 2 and the area break- 

down in Table 2 indicate, the logic necessary for out-of-order 

instruction issue and scheduling dominates the area of the chip, due 

to the quadratic area impact of supporting 6-way instruction issue. 

First, we increased the number of  ports in the instruction buffers by 

50% to support 6-way issue instead of 4-way, increasing the area of 

each buffer by about 30-40%. Second, we increased the number of 

instruction buffers from 48 to 128 entries so that the processor 

examines a larger window of instructions for ILP to keep the execu- 

tion units busy. This large instruction window also compensates for 

the fact that the simulations do not execute code that is optimized 

for a 6-way superscalar machine. The larger instruction window 

size and wider issue width causes a quadratic area increase of the 

instruction sequencing logic to 3-4 times its original size. Alto- 

gether, the logic necessary to handle out-of-order instruction issue 

occupies about 120 mm 2 - -  about 30% of the die. In comparison, 

the actual execution units only occupy about 70 mm 2 - - j u s t  18% 

of the die is required to build triple R10000 execution units in a 

0.25 gtm process. 

Due to the increased rate at which instructions are issued, we also 

enhanced the fetch logic by increasing the size of the branch target 

buffer to 2048 entries and the call-retum stack to 32 entries. This 

increases the branch prediction accuracy of the processor and pre- 



21 mm 

'10 

12. 

t-- 

¢J 
O 

21 mm 

External Instruction 
Interface 

Fetch 

Inst. Decode & 
Rename 

Instruction 
Cache 
(32 KB) 

TLB 

Data 
Cache 
(32 KB) 

Reorder Buffer 
Instruction Queues, 

and Out-of-Order Logic 

Floating Point 
Unit 

"2 

O )  
O 

A 
r O  

v 
<,(3 
t O  

03 ¢-. 

¢D 
¢M 

. . J  

¢ -  

E 
O 

Figure 2. Floorplan for the six-issue dynamic superscalar 

microprocessor. 

vents the instruction fetch mechanism from becoming a bottleneck 

since the 6-way execution engine requires a much higher instruc- 

tion fetch bandwidth than the 2-way processors used in the MP 

architecture. 

The on-chip memory hierarchy is similar to the Alpha 21164 - -  a 

small, fast level one (L1) cache backed up by a large on-chip level 

two (L2) cache. The wide issue width requires the L1 cache to sup- 

port wide instruction fetches from the instruction cache and multi- 

ple loads from the data cache during each cycle. The two-way set 

associative 32 KB L1 data cache is banked eight ways into eight 

small, single-ported, independent 4 KB cache banks each of which 

handling one access every 2 ns processor cycle. However, the addi- 

tional overhead of the bank control logic and crossbar required to 

arbitrate between the multiple requests sharing the 8 data cache 

banks adds another cycle to the latency of the L1 cache, and 

increases the area by 25%. Therefore, our modeled L1 cache has a 

hit time of 2 cycles. Backing up the 32 KB L1 caches is a large, uni- 

fied, 256 KB L2 cache that takes 4 cycles to access. These latencies 

are simple extensions of the times obtained for the L1 caches of 

current Alpha microprocessors [4], using a 0.25 I.tm process tech- 

nology 

4 x 2-way Superscalar Multiprocessor 

Architecture 

4.2 

The MP architecture is made up of four 2-way superscalar proces- 

sors interconnected by a crossbar that allows the processors to share 

the L2 cache. On the die, the four processors are arranged in a grid 

with the L2 cache at one end, as shown in Figure 3. Internally, each 

of the processors has a register renaming buffer that is much more 

limited than the one in the 6-way architecture, since each CPU only 

has an 8-entry instruction buffer. We also quartered the size of the 
branch prediction mechanisms in the fetch units, to 512 BTB 

entries and 8 call-return stack entries. After the area adjustments 

caused by these factors are accounted for, each of the four proces- 
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sors is less than one-fourth the size of the 6-way SS processor, as 

shown in Table 3. The number of execution units actually increases 

in the MP because the 6-way processor had three units of each type, 

while the 4-way MP must have four - -  one for each CPU. On the 

other hand, the issue logic becomes dramatically smaller, due to the 

decrease in instruction buffer ports and the smaller number of 

entries in each instruction buffer. The scaling factors of these two 

units balance each other out, leaving the entire processor very close 

to one-fourth of the size of the 6-way processor. 

The on-chip cache hierarchy of the multiprocessor is significantly 

different from the cache hierarchy of the 6-way superscalar proces- 

sor. Each of the 4 processors has its own single-banked and single- 

ported 8 KB instruction and data caches that can both be accessed 

in a single 2 ns cycle. Since each cache can only be accessed by a 

single processor with a single load/store unit, no additional over- 

head is incurred to handle arbitration among independent memory- 

access units. However, since the four processors now share a single 

L2 cache, that cache requires an extra cycle of latency during every 

access to allow time for interprocessor arbitration and crossbar 

delay. We model this additional L2 delay by penalizing the MP an 

additional cycle on every L2 cache access, resulting in a 5 cycle L2 

hit time. 

5 Simulation Methodology 

Accurately evaluating the performance of the two microarchitec- 

tures requires a way of simulating the environment in which we 

would expect these architectures to be used in real systems. In this 

section we describe the simulation environment and the applica- 

tions used in this study. 

5.1 Simulation Environment  

We execute the applications in the SimOS simulation environment 

[18]. SimOS models the CPUs, memory hierarchy and I/O devices 



0.3511m R10K Size Extrapolated % Growth Due to 

CPU Component Original Size (mm 2) to 0.251tin (mm 2) New Functionality New Size (mm 2) % Area 

256K On-Chip L2 Cache a 219 112 0% 112 26% 

8-bank D Cache (32 KB) 26 13 25% 17 4% 

8-bank I Cache (32 KB) 28 14 25% 18 4% 

TLB Mechanism 10 5 200% 15 3% 

External Interface Unit 27 14 0% 14 3% 

Instruction Fetch Unit and BTB t 8 9 200% 28 6% 

Instruction Decode Section 21 11 250% 38 9% 

Instruction Queues 28 14 250% 50 12% 

Reorder Buffer 17 9 300% 34 9% 

Integer Functional Units 20 10 200% 31 7% 

FP Functional Units 24 12 200% 37 9% 

Clocking & Overhead 73 37 0% 37 9% 

Total Size - -  - -  - -  430 100% 

Table 2. Size extrapolations for the 6-way superscalar from the MIPS R10000 processor 

% Area 
0.35ltm RIOK Size Extrapolated % Growth Due to (of CPU / of entire 

CPU Component Original Size (mm 2) to 0.2511m (mm 2) New Functionality New Size (mrn 2) chip) 

D Cache (8 KB) 26 13 -75% 3 6%/3% 

I Cache (8 KB) 28 14 -75% 4 7% / 3% 

TLB Mechanism 10 5 0% 5 9% / 5% 

Instruction Fetch Unit and BTB 18 9 -25% 7 13% / 7% 

Instruction Decode Section 21 11 -50% 5 10% / 5% 

Instruction Queues 28 14 -70% 4 8% / 4% 

Reorder Buffer 17 9 -80% 2 3% / 2% 

Integer Functional Units 20 10 0% 10 20% / 10% 

FP Functional Units 24 12 0% 12 23% / 12% 

Per-CPU Subtotal - -  - -  - -  53 100% / 50% 

256K On-Chip L2 Cache a 219 112 0% 112 26% 

External Interface Unit 27 14 0% 14 3% 

Crossbar Between CPUs - -  - -  - -  50 12% 

Clocking & Overhead 73 37 0% 37 9% 

Total Size - -  - -  - -  424 100% 

Table 3. Size extrapolations in the 4 × 2-way MP from the MIPS R10000 processor. 

a. estimated from current LI caches 

of uniprocessor and multiprocessor systems in sufficient detail to 

boot and run a commercial operating system. SimOS uses the 

MIPS-2 instruction set and runs the Silicon Graphics IRIX 5.3 

operating system which has been tuned for multiprocessor perfor- 

mance. SimOS actually simulates the operating system; therefore, 

all the memory references made by the operating system and the 

applications are generated. This feature is particularly important for 

the study of multiprogramming workloads where the time spent 

executing kernel code makes up a significant fraction of the non- 

idle execution time. 

A unique feature of SimOS that makes studies such as this feasible 

is that SimOS supports multiple CPU simulators that use a common 

instruction set architecture. This allows trade-offs to be made 

between the simulation speed and accuracy. The fastest CPU simu- 

lator, called Embra, uses binary-to-binary translation techniques 

and is used for booting the operating system and positioning the 

workload so that we can focus on interesting regions of execution. 

The medium performance CPU simulator, called Mipsy, is two 

orders of magnitude slower than Embra. Mipsy is an instruction set 

simulator that models all instructions with a one cycle result latency 

and a one cycle repeat rate. Mipsy interprets all user and privileged 

instructions and feeds memory references to a memory system sim- 

ulator. The slowest, most detailed CPU simulator is MXS, which 

supports dynamic scheduling, speculative execution and non-block- 

ing memory references. MXS is over four orders of magnitude 

slower than Embra. 

The cache and memory system component of our simulator is com- 

pletely event-driven and interfaces to the SimOS processor model 



Integer applications 

compress compresses and uncompresses file in memory 

eqntott translates logic equations into truth tables 

m88ksim Motorola 88000 CPU simulator 

MPsim VCS compiled Verilog simulation of a multiprocessor 

Floating point applications 
r 

applu solver for parabolic/elliptic partial differential equations 

apsi solves problems of temperature, wind, velocity, and distribution of pollutants 

swim shallow water model with 1K x 1K grid 

tomcatv mesh-generation with Thompson solver 

Multiprogramming application 

pmake parallel make of gnuchess using C compiler 

Table 4. The applications. 

which drives it. Processor memory references cause threads to be 

generated which keep track of the state of each memory reference 

and the resource usage in the memory system. A call-back mecha- 

nism is used to inform the processor of the status of all outstanding 

references, and to inform the processor when a reference com- 

pletes. These mechanisms allow for very detailed cache and mem- 

ory system models, which include cycle accurate measures of 

contention and resource usage throughout the system. 

5.2 Applications 

The performance of nine realistic applications is used to evaluate 

the two microarchitectures. Table 4 shows that the nine applications 

are made up of two SPEC95 integer benchmarks (compress, 

m88ksim), one SPEC92 integer benchmark (eqntott), one other 

integer application (MPsim), four SPEC95 floating point bench- 

marks (applu, apsi, swim, tomcatv), and a multiprogramming appli- 

cation (pmake). 

The applications are parallelized in different ways to run on the MP 

microarchitecture. Compress is run unmodified on both the SS and 

MP microarchitectures; using only one processor of the MP archi- 

tecture. Eqntott is parallelized manually by modifying a single bit 

vector comparison routine that is responsible for 90% of the execu- 

tion time of the application [16]. The CPU simulator m88ksim is 

also paraUelized manually into three threads using the SUIF com- 

piler runtime system. Each of the three threads is allowed to be in a 

different phase of simulating a different instruction at the same 

time. This style of parallelization is very similar to the overlap of 

instruction execution that occurs in hardware pipelining. The 

MPsim application is a Verilog model of a bus based multiprocessor 

nmning under a multi-threaded compiled code simulator (Chrono- 

logic VCS-MT). The multiple threads are specified manually by 

assigning parts of the model hierarchy to different threads. The 

MPsim application uses four closely coupled threads; one for each 

of the processors in the model. The parallel versions of the SPEC95 

floating point benchmarks are automatically generated by the SUIF 

compiler system [2]. The pmake application is a program develop- 

ment workload that consists of the compile phase of the Modified 

Andrew Benchmark [17]. The same pmake application is executed 

on both microarchitectures; however, the OS takes advantage of the 

extra processors in the MP microarchitecture to run multiple compi- 

lations in parallel. 

A difficult problem that arises when comparing the performance of 

different processors is ensuring that they do the same amount of 

work. The solution is not as easy as comparing the execution times 

of each application on each machine. Due to the slow simulation 

speed of the detailed CPU simulator (MXS) used to collect these 

results it would take far too long to run the applications to comple- 

tion. Our solution is to compare the two microarchitectures over a 

portion of the application using a technique called representative 

execution windows [5]. In most compute intensive applications 

there is a steady state execution region that consists of a single outer 

loop or a set of loops that makes up the bulk of the execution time. 

It is sufficient to sample a small number of iterations of these loops 

as a representative execution window if the execution time behavior 

of the window is indeed representative of the entire program. Simu- 

lation results show that for most applications the cache miss rates 

and the number of instructions executed in the window deviates by 

less than 1% from the results for the entire program. 

The simulation procedure begins with a checkpoint taken with the 

Embra simulator. Simulation from the checkpoint starts with the 

instruction level simulator Mipsy and the full memory system. 

After the caches are warmed by running the Mipsy simulator 

through the representative execution window at least once, the sim- 

ulator is switched to the detailed simulator, MXS, to collect the per- 

formance results presented in this paper. 

We use the technique of representative execution windows for all 

the applications except pmake. Pmake does not have a well defined 

execution region that is representative of the application as a whole. 

Therefore, the results for pmake are collected by running the entire 

application with MXS. 

6 Performance Comparison 

We begin by examining the performance of the superscalar 

microarchitecture and one processor of the multiprocessor microar- 

chitecture. Table 5 shows the IPC, branch prediction rates and 

cache miss rates for one processor of the MP; Table 6 shows the 

IPC, branch prediction rates, and cache miss rates for the SS 



microarchitecture. The cache miss rates are presented in the tables 

in terms of misses per completed instruction (MPCI); including 

instructions that complete in kernel and user mode. When the issue 

width is increased from two to six we see that the actual IPC 

increases by less than a factor of 1.6 for all of the integer and multi- 

programming applications. For the floating point applications the 

performance improvement varies from a factor of 1.6 for tomcatv to 

2.4 for swim.. 

BP Rate I cache D cache L2 cache 
Program IPC % %MPCI %MPCI %MPCI 

compress 0.9 85.9 0.0 3.5 1.0 

eqntott 1.3 79.8 0.0 0,8 0.7 

m88ksim 1.4 91.7 2.2 0.4 0.0 

MPsim 0.8 78.7 5.1 2,3 2.3 

applu 0.9 79.2 0.0 2.0 1.7 

apsi 0.6 95.1 1.0 4.1 2.1 

swim 0,9 99.7 0.0 1.2 1.2 

tomcatv 0.8 99.6 0.0 7,7 2.2 

pmake 1.0 86.2 2.3 2.1 0.4 

Table 5. Performance of a single 2-issue superscalar processor. 

BP Rate I cache D cache L2 cache 
Program IPC % %MPCI %MPCI %MPCI 

compress 1.2 86.4 0,0 3.9 1.1 

eqntott 1.8 80.0 0.0 1.1 1.1 

m88ksim 2.3 92.6 0.1 0,0 0.0 

MPsim 1.2 81.6 3.4 1.7 2.3 

applu 1.7 79.7 0.0 2.8 2.8 

apsi 1.2 95.6 0.2 3.1 2.6 

swim 2.2 99.8 0.0 2.3 2,5 

tomcatv 1.3 99.7 0.0 4.2 4.3 

pmake 1.4 82.7 0.7 1.0 0.6 

Table 6. Performance of the 6-issue superscalar processor. 

One of the major causes of processor stalls in a superscalar proces- 

sor is cache misses. However, cache misses in a dynamically sched- 

uled superscalar processor with speculative execution and non- 

blocking caches are not straightforward to characterize. The cache 

misses that occur in a single issue in-order processor are not neces- 

sarily the same as the misses that will occur in the speculative out- 

of-order processor. In speculative processors there are misses that 

are caused by speculative instructions that never complete. With 

non-blocking caches, misses may also occur to lines which already 

have outstanding misses. Both types of misses tend to inflate the 

cache miss rate of a speculative out-of-order processor. The second 

type of miss is mainly responsible for the higher L2 cache miss 

rates of the 6-issue processor compared to the 2-issue processor, 

even though the cache sizes are equal. 

Figure 4 shows the IPC breakdown for one processor of the MP 

microarchitecture with an ideal IPC of two. In addition to the actual 

IPC achieved, we show the loss in IPC due to data and instruction 

cache stalls, and pipeline stalls. We see that a large percentage of 

the IPC loss is due to data cache stall time. This is caused by the 

small size of the primary data cache. Mk88ksim, MPsim and pmake 

have significant instruction cache stall time which is due to the 

large instruction working set size of these applications. Pmake also 

has multiple processes and significant kernel execution time which 

further increases the instruction cache miss rate. 

• D Cache Stall 

• I Cache Stall 

Pipeline Stall 

• Actual IPC 

Figure 4. IPC Breakdown for a single 2-issue processor. 
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Figure 5. IPC Breakdown for the 6-issue processor. 

Figure 5 shows the IPC breakdown for the SS microarchitecture. 

We see that a significant amount of IPCis lost due to pipeline stalls. 

The increase in pipeline stalls relative to the two-issue processor is 

due to limited ILP in the applications and the 2-cycle L1 data cache 

hit time. The larger instruction cache in the SS microarchitecture 

eliminates most of the stalls due to instruction misses for all of the 

applications except MPsim and pmake. Although the SPEC95 float- 

ing point applications have a significant amount of ILP, their perfor- 

mance is limited on the SS microarchitecture due to data cache 

stalls which consume over one-half of the available IPC 

Table 7 shows cache miss rates for the MP microarchitecture given 

in terms of MPCI. To reduce miss-rate effects caused by the idle 

loop and spinning due to synchronization, the number of completed 

instructions are those of the single 2-issue processor. Comparing 

Table 5 and Table 7 shows that for eqntott, m88ksim and apsi the 

MP microarchitecture has significantly higher data cache miss rates 

than the single 2-issue processor. This is due primarily to the high- 



I cache D cache L2 cache 
Application % M P C I  % M P C l  %MPCI 

compress 0.0 3.5 1.0 

eqntott 0,6 5.4 1.2 

m88ksim 2,3 3.3 0.0 

MPsim 4.8 2.5 3.4 

applu 0.0 2.1 1.8 

apsi 2.7 6.9 2.0 

swim 0.0 1.2 1.5 

tomcatv 0.0 7.8 2.5 

pmake 2.4 4.6 0.7 

Table 7. Performance of the 4 x 2-1ssue processor. 

degree of communication present in these applications. Although 

pmake also exhibits an increase in the data cache miss rate, it is 

caused by process migration from processor to processor in the MP 

microarchitecture. 

Figure 6 shows the performance comparison between the SS and 

MP microarchitectures. The performance is measured as the 

speedup of each microarchitecture relative to the single 2-issue pro- 

cessor. On compress, an application with little parallelism, the MP 

is able to achieve 75% of the SS performance even though three of 

the four processors are idle. Neither microarchitecture shows sig- 

nificant improvement over the 2-issue processor, however. 

For applications with fine-grained parallelism and high-communi- 

cation, such as eqntott, m88ksim and apsi, the MP and SS are simi- 

lar. Both architectures are able to exploit fine-grained parallelism, 

although in different ways. The SS microarchitecture relies on the 

dynamic extraction of ILP from a single thread of control. The MP 

can take advantage of moderate levels of ILP and can, unlike con- 

ventional multiprocessors, exploit fine-grained thread-level paral- 

lelism. Both the SS and MP approaches provide a 30% to 100% 

performance increase over the 2-issue processor. 

Applications with large amounts of parallelism allow the MP 

microarchitecture to take advantage of coarse-grained parallelism 

in addition to fine-grained parallelism and ILP. For these applica- 

tions, the MP is able to significantly outperform the SS microarchi- 

tecture, whose ability to dynamically extract parallelism is limited 

by the 128 instruction window. 

7 Conclusions 

The characteristics of advanced integrated circuit technologies 

require us to look for new ways to utilize large numbers of gates 

and mitigate the effects of high interconnect delays. We have dis- 

cussed the details of implementing both a wide, dynamically sched- 

uled superscalar processor and a single chip multiprocessor. The 

implementation complexity of the dynamic issue mechanisms and 

size of the register files scales quadratically with increasing issue 

width and ultimately impacts the cycle time of the machine. The 

alternative multiprocessor microarchitecture, which is composed of 

simpler processors, can be implemented in approximately the same 

area. We believe that the multiprocessor microarchitecture will be 

easier to implement and will reach a higher clock rate. 

rr 

Figure 6. Performance comparison of  SS and MP. 

Our results show that on applications that cannot be paraUelized the 

superscalar microarchitecture performs 30% better than one proces- 

sor of the multiprocessor architecture. On applications with fine 

grained thread-level parallelism the multiprocessor microarchitec- 

ture can exploit this parallelism so that the superscalar microarchi- 

tecture is at most 10% better, even at the same clock rate. We 

anticipate that the higher clock rates possible with simpler CPUs in 

the multiprocessor will eliminate this small performance difference. 

On applications with large grained thread-level parallelism and 

multiprogramming workloads the multiprocessor microarchitecture 

performs 50--100% better than the wide superscalar microarchitec- 

ture. 
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