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Abstract Efficient management of mobile resources from an energy perspective in

modern smart-phones is paramount nowadays. Today’s mobile phones are equipped

with a wide range of sensing, computational, storage and communication resources.

The diverse range of sensors such as microphones, cameras, accelerometers, gy-

roscopes, GPS, digital compass and proximity sensors allow mobile apps to be

context-aware whereas the ability to have connectivity almost everywhere has boot-

strapped the birth of rich and interactive mobile applications and the integration of

cloud services. However, the intense use of those resources can easily be translated

into power-hungry applications. The way users interact with their mobile handsets

and the availability of mobile resources is context dependent. Consequently, under-

standing how users interact with their applications and integrating context-aware

resources management techniques in the core features of a mobile operating system

can provide benefits such as energy savings and usability. This chapter describes

how context drives the way users interact with their handsets and how it determines

the availability and state of hardware resources in order to explain different context-

aware resources management systems and the different attempts to incorporate this

feature in mobile operating systems.

1 Introduction

Lithium-ion battery technologies have not experienced the same evolution as the

rest of hardware components in mobile handsets. The battery capacity is limited by
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design factors such as size and weight, thus the only alternative left at the moment to

extend their battery life is reducing the power consumption at the hardware level and

designing more energy efficient applications and operating systems. However, de-

spite the recent achievements in improving the energy efficiency by both hardware

and software vendors, mobile handsets still suffer from severe energy limitations. As

the consumption of energy can be attributed to the use of particular hardware com-

ponents (mainly sensors, displays and wireless interfaces), there is a clear need to

discover new ways of reducing the use of such components without compromising

the user experience and services delivered by mobile applications.

Generally, there’s a energy-usability trade-off when managing networking and

sensing resources in mobile systems. Typical software energy saving techniques

aim at keeping hardware resources in low power mode for as long as possible.

However, transitions between power modes can imply an energy cost depending

on the power features of the resource. As an example, cellular interfaces present

three power modes: DCH (Dedicated Channel) FACH (Forward Access Channel,

an intermediate power mode popularly known as “tail-energy”) and IDLE. In the

case of WCDMA technologies, a large fraction of energy is wasted in these inter-

mediate but still high-power states after the completion of a typical transfer in case

there is going to be an immediate transmission once the current one is finished in

order to improve the user experience in cellular networks. In GSM technologies, the

time spent in the FACH state is much smaller compared to 3G (6 vs. 12 secs) [1]. In

fact, these transitions are typically related to applications running on the device and

the interaction patterns of the user [2] [3].

On the other hand, the quality of resources such as cellular networks can vary de-

pending on the location, time of the day and even season of the year [4]. Users tend

to run a specific set of application (and consequently, they access an specific set of

hardware resources) depending on the social or personal activity they are perform-

ing. Consequently, this dependency has implications in the energy consumption of

the handset since both the state of resources and the way users interact with their

handsets and applications are social and context-dependent. As an example, a mo-

bile user can experience frequent periods of network blackouts in certain locations

(specially when moving) so launching a network-intense video streaming applica-

tion in these situations might not be the best idea.

Incorporating contextual information and energy-awareness as a key feature of

mobile operating systems has been barely explored despite its enormous potential.

In this chapter, we will show how mobile operating systems can exploit contextual

information to adapt the system to the environment and the users’ needs in order to

extend the battery life of the handset without compromising the users’ experience.

In other words, the operating system can learn from user’s interaction and mobil-

ity patterns to know what kind of resource is likely to be demanded by the user

at an specific context and the state of these resources. In section 2 we will show

how users interaction is driven by context while section 3.1 describes the depen-

dency of resources availability (e.g. wireless interfaces and location sensors) with

context. Finally, section 4 describes two ongoing projects that are trying to incor-
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porate context-aware features at the operating system level to manage resources:

CondOS [5] and ErdOS [6].

2 Are users’ interaction with their handsets driven by context?

Several studies have tried to explore the impact of contextual information on mo-

bile systems. As an example, LiveLab is an event-based resources logger for jail

broken iPhone devices used to measure real-world smartphone usage and wireless

networks [7]. Despite the fact that the results obtained are not statistically represen-

tative, they indicate that both users’ interaction with the device and the state of the

resources depend on contextual factors such as time and space [8].

Vallina-Rodriguez et al. performed a study using a background application to col-

lect traces directly from 18 mature Android users during 2 weeks [2]. The dataset

contains contextual information and more than 25 state and usage statistics from

multiple resources and applications, sampled every 10 seconds. This analysis uses

machine learning techniques to understand the dependencies between resources

caused by users interaction and both spatial and temporal context. The paper demon-

strates that energy demand and resource availability depend enormously on each

participant’s pattern of usage both in terms of which applications they ran and when

and where they were doing so. This interaction can be very variable and dynamic

both in time and space.

Spatial context affects how users interact with their handsets. Figure 1 shows

three scatterplots of the average percentage of daily usage of the 3G interface, tele-

phony and the screen versus its standard deviation while the users are subscribed to

their three most popular cells. Users U1, U5, U8, U9, U14 and U18 have a strong

routine due to their low variance and are quite likely to interact with certain re-

sources in those locations. These users present a more predictable interaction pat-

tern than other users who are likely to interact with their resources in non-frequent

location and in transitions between them (e.g. while commuting).

However, temporal context also provides useful hints about how resources are

used. Figure 2 plots the average usage and availability of different mobile resources

such as battery, telephony, network, screen and CPU for ten users per hour of day.

Each one of the x-axis bins represent an hour of the day and the colour indicates their

averaged value during duration of the experiment. These results reveal that battery

usage, charging opportunities and power limitations are well defined for some indi-

viduals in the temporal domain while others are more random. For instance, users

such as U2 and U5) and yet others present a much burstier pattern for specific re-

sources.

While most resources available in mobile handsets can be recovered and re-

allocated once used by a process, energy can be only recovered when the user man-

ually charges the handset. As a consequence, an energy-aware operating system

must be able to estimate when energy will be consumed, how much energy will be

available and when it will be recovered by predicting future charging opportunities
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Fig. 1: User classification by their percentage of the usage/interaction with the 3G interface, tele-

phony service and screen while subscribed at the most common cells (likely to be users’ workplace

and home). The x axis represents the daily average usage and the y axis the standard deviation. This

information can be used to identify the places where the energy consumption will be higher and

also to infer the predictability of the user interaction and the state of a resource.

Fig. 2: Average usage and availability of different mobile resources for users U1 to U10 per

hour of day. As in Figure 1, this information can be used to identify peaks of usage and temporal

patterns on those resources.

and their uncertainty. Charging actions are in fact context-dependent and relatively

predictable. Oliver [9] used classification methods to identify three distinct types of

charging patterns among a large dataset of 17.300 Blackberry users. Those clusters

are defined as “opportunistic chargers”, “light-consumers” and “nigh time charg-

ers”. In their results, they evaluated that it is possible to predict the energy level on

a mobile handset within 7% error within an hour and within 28% error within 24

hours.
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Figure 3 shows the correlograms or autocorrelation plots of the battery capacity

and the CPU load for three users for a 7 day lag. Note that a correlogram is a plot

of the sample autocorrelations versus the time lags. This kind of analysis helps to

identify randomness and periodicities in a dataset. The correlogram clearly reveals

that U3 presents a clear charging periodicity of 24 hours approximately while U8

does not have such a marked routine. However, those results highly depend on the

resource analysed. As we can observe, the CPU load is not periodic at all indicating

that CPU load might be more difficult to predict than battery capacity. This confirms

that an efficient resources management technique must be user-centric and must try

to identify the randomness, patterns and predictability of each individual user and

device.
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Fig. 3: Correlogram for the CPU load and the battery capacity for users U1, U3 and U8 during

a period of 7 days. The battery capacity correlogram shows a clear pattern and a periodicity on

the energy consumption and recharging cycle every 24 hours approximately while the CPU load is

highly random.

Nevertheless, Banerjee et al. in [10] claim that, despite the fact that there is a

great variation among users, most of recharges happen when the battery has substan-

tial energy left and a considerable portion of the recharges are driven by context (e.g.

location and time). In a similar way, Ravi et al. proposed a system for context-aware

battery management that warns the mobile user when it detects a power limitation

before the next charging opportunity is going to happen [11]. This stops the system

from compromising the execution and performance of crucial applications and ser-
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vices such as telephony and messaging by non-crucial ones. This system uses the

current set of applications running, the battery discharging rate1 and phone call logs

as inputs of their forecasting algorithms. The results indicate that their algorithm

can predict battery consumption and charging opportunities only for users with a

low usage entropy. The main difficulty is predicting phone calls because of their

dependency of the almost unpredictable social factors and the variability of calling

patterns between weekends and weekdays.

As a conclusion, contextual information can be used to understand how mobile

users interact with their devices. This can enable innovative ways to manage re-

sources as we will see in the following sections. However, the entropy of users’ inter-

action patterns and habits require identifying new techniques to efficiently leverage

this information without impacting negatively on the user experience. The operating

system can infer which applications are likely to be executed by the user at a given

context and which resources might be required by them. As a result, the operating

system can proactively pre-load these applications and set the hardware resources

that will be required by them in the right power mode while turning off (or setting in

low-power modes) those hardware components and applications that are not likely

to be accessed.

3 Context-aided mobile resource management

In addition to users’ interaction patterns with mobile handsets, the state and avail-

ability of mobile resources depend on contextual aspects. Two clear examples are:

• GPS. The number of visible satellites by the receiver affects the time to fix their

location from the cold-start 2 phase and its accuracy. However, satellites are con-

stantly moving in their orbits, the number of satellites visible for the receiver

depends on time of day and the day [13]. Other aspects such as reflections and

radio obstacles also affect the time required by the receivers (thus the energy

required) to fix their location. Nevertheless, in the case of assisted-GPS, chips

can vary depending on the availability of a cellular network to quickly access

the ephemeris of the satellites [14] thus reducing considerably the time to fix the

location.

• Cellular interfaces. The energy consumption of cellular interfaces and their qual-

ity of service depend on the receiving signal strength of the radio link [15]. As

the signal-to-noise ratio (SNR) increases, more retransmissions at the link layer

1 Battery discharging rate might arguably not be the best indicator to measure energy consumption

in mobile handsets. This signal is very noisy since it depends on hardware and users’ habits and

requires complex methods to be properly calibrated [12]
2 If the GPS chip has not been used in a long time, then the Time To First Fix (TTFF) can be

longer because it needs to download the satellites ephemeris and almanac before it can make the

calculations. Usually, the GPS-receiver also needs 4 satellites to accurately fix its location. This is

usually referred to as cold start. In cases when the chip was recently used (in the order of minutes

or even few hours), the time to fix would be even faster (i.e. warm start and hot start phases).
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are required and therefore, more energy is consumed. As we can see in Fig-

ure 4, co-located nodes present different network coverage and quality depending

on the location and the mobile operator. The signal strength is in fact, context-

dependent. As any radio technology, the quality of the link can be affected by

other aspects such as provider’s network deployment, whether the node is in-

doors or outdoors, node’s mobility, radio obstacles and radio interferences [16].

3.1 Wireless interfaces

Mobile handsets present different wireless interfaces that range from cellular net-

works such as GPRS to LTE and IEEE 802.11 (i.e. WiFi) technologies. The key

differentiators between these interfaces are their availability and their power states.

The operating system could switch the type of network depending on which service

is being requested by the user and the applications. The OS can select the optimal

link for a wireless communication taking into account the energy-delay trade-off

and applications requirements [1], [17], [18]. As a result, the system can adapt to

channel conditions by leveraging contextual [19], local and historic information to

decide whether and when it must defer a transmission in order to save energy.

As we can see in network coverage maps collected by crowd-sourcing means

such as OpenSignalMap [20], the network availability and quality depend on lo-

cation. 3GTest [21] is a cross-platform application that checks the state of cellu-

lar networks and the performance of network-based applications. The traces from

30.000 mobile users all over the world confirm the impact of contextual aspects on

the performance of cellular networks. Network properties can vary depending on

the time-of-day and location for a specific operator, as Tan et al. [22] had also pre-

viously demonstrated for a more geographically limited environment such as Hong

Kong. A detailed knowledge of the network properties can help to identify bottle-

necks in wireless network and also performance limitations and bugs in hardware,

operating system and popular network-centric applications. In fact, the latency of

the radio link depends on the current power state of the wireless machine. Based on

historic data, the operating system can seamlessly enable caching mechanisms to

applications accessing wireless interfaces and also supporting traffic shaping tech-

niques to adapt the applications’ traffic to the conditions of the wireless interface at

a given location.

On the other hand, the availability of WiFi access points is reduced to specific

locations as we can see for London city center (UK) in Figure 5. IEEE 802.11 net-

works usually present a lower latency than cellular networks for transmitting data

but they present a higher cost when the device is associating to the access point. As

a consequence, reducing the energy cost of scanning and associating to the access

point is essential. Because of this reason, most of the works described in this section

try to leverage contextual information to smartly wake up the WiFi interface from

sleep mode when it is likely to have an access point.
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(a) Operator 1 (b) Operator 2

Fig. 4: Signal strength perceived by two identical co-located handsets in several locations in west

and centre of Cambridge (UK) with different network operators. Lighter points indicate better

signal strength.

Fig. 5: Open IEEE 802.11g Access Points in London city center (UK). Snapshot obtained from

WiFi Map UK [23]

The operating system can adapt the AP’s discovery enquiries to minimise the en-

ergy consumption while maximising the chances of having connectivity. The works

by Agarwa et al [24] and Blue-Fi [25] are two good examples to illustrate this claim.

These papers describe how to save energy by exploiting other resources such as

Bluetooth radios and contextual information to serve as a paging channel for IEEE

802.11 technologies. The results show that it is possible to save between 23% to

48% of energy compared to the present IEEE 802.11 standard operating modes

with negligible impact on performance. The system can predict when there will be

Wi-Fi connectivity by combining contextual information obtained from Bluetooth

scans contact-patterns and cell-tower information. Likewise, Context-for-wireless is
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a context-aware intelligent switching algorithm between WiFi and cellular networks

to reduce the energy consumption substantially [26]. Context-for-wireless leverages

contextual information such as time, historic data, cellular network conditions and

mobility to formulate the selection of wireless interfaces as a statistical decision

problem and to predict future network conditions.

3.2 Location Sensors

Mobile applications tend to become context-aware. By simply looking at the ap-

plications market of mobile platforms such as Android and iPhone, it is possible

to find a large number of context-aware applications and location-aware online ser-

vices such as Google Maps and Foursquare [27]. Applications often need location

data to update locally relevant information, to provide a service requested by the

user and also to find nearby friends and places of interest.

Modern smartphones include different types of location sensors with different

resolution and energy demands such as cellular network-based location providers,

WiFi-based, A-GPS (Assisted-GPS), gyroscopes and compass. New location tech-

niques are being investigated such as audio fingerprints [28], signal-strenght finger-

prints [29]. and geo-magnetism fingerprints [30]. Other solutions leverage phone

sensors, audio beaconing infrastructures and opportunistic user-intersection (in

space-time) to develop an electronic escort service formulated like routing pack-

ets in Delay-Tolerant Networks (DTNs) [31]. All these technologies are mainly fo-

cused on providing more efficient indoor localisation. However, most context-aware

applications are based on standard sensors. They usually prefer A-GPS over its alter-

natives (e.g. network-based location providers such as Skyhook [32] and Location-

api [19]) because of its accuracy despite its higher energy cost. Cellular network

based location services present a mean error in the order of 300m (can be in the

order of several km) and, given a location they can report different locations be-

cause of radio link changes. As a consequence, the research community tried to find

solutions to save energy when accessing location information without sacrificing

accuracy. [33] describes four alternative techniques to GPS sensing to reduce the

energy consumption:

• Substitution and Suppression makes use of alternative location-sensing mech-

anisms (e.g. network-based location sensing or combined use of accelerometers

and compass) that consumes less power than GPS. Substitution decides when

to use more energy-efficient sensors instead of more energy-costly ones such as

GPS. As a consequence, the system can automatically decrease the energy con-

sumption of mobile sensing applications. On the other hand, suppression utilises

less power-intensive sensors. As an example, it is possible to use accelerometers

to suppress unnecessary GPS sensing if the user is static.
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• Piggybacking synchronises the location sensing requests from multiple running

location-based applications3.

• Adaption adjusts sensing parameters such as time and distance depending on

the remaining battery capacity. This technique tries to find heuristics to adapt the

sampling rate without sacrificing accuracy.

• Probabilistic Models. Some methodologies rely on probabilistic models of

users’ location to infer future locations to reduce the number of sensing reads.

Continuous location-sensing can be very costly in terms of energy. Several re-

search projects tried to combine in a different way those techniques, mainly looking

at the energy-accuracy tradeoff as it is summarised in Table 1:

Sensor-based optimisations

Sensors Used

Name GPS Accel. GSM Piggybacking Probabilistic

Models

Adaptation

EnLoc X X X X

A-Loc X X X X

EnTracked X X

RAPS X X X X X

Zhuang X X X X X

Caps X X X

Table 1: Location sensing optimisations. Most of the works aimt to tackle the continuous location

sensing challenge by combining different techniques. This table highlights the different method-

ologies used by each one of the solutions and the sensors they are using.

EnLoc [35] provides a location sensing adaptive framework that exploits mo-

bility patterns of the user and decides which sensor to use taking into account

the accuracy-energy trade-off of the different location sensors available in mobile

phones. The authors take advantage of users’ Logical Mobility Tree (LMT). This

model allows sampling at a few uncertainty points which may be sufficient for pre-

dicting future locations. EnLoc utilises dynamic programming to find the optimal

localisation accuracy for a given energy budget: it decides which localisation sensor

will be the best one for a given scenario and energy budget.

Similarly, EnTracked [36] estimates and predicts the system state and mobility

of the user 4 to schedule position updates in order to minimise the power consump-

tion while optimising robustness. EnTracked uses the GPS-estimated uncertainty to

3 The energy consumption becomes even more significant if multiple applications are requesting

location reads independently. [33] is the only one that applies this technique. Android OS Location

Providers follow a similar philosophy [34]
4 The system only supports pedestrians as possible movement model and uses accelerometer to

infer users’ mobility
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quickly schedule a new measurement if a potential bad measurement is performed.

Other solutions exploit Hidden Markov Models to predict the mobility of the users

and they also take advantage of Bluetooth scans to identify static scenarios based on

devices in the same location [37]. A more sophisticated version of the system was

recently proposed in [38]. In this case, they use sensors such as radio fingerprints,

accelerometer and compass with the collaboration of a server to estimate the time

to sleep of the GPS receiver before the next positioning sensing.

A-Loc [39] incorporates probabilistic models of user location and sensor errors.

It was implemented as a middleware solution for Android devices which requires

applications’ collaboration. A-Loc selects the most energy-efficient sensor to meet

applications accuracy requirements which must be either specified explicitly by ap-

plications or automatically by the system. The system uses the probabilistic models

to choose among different localisation methods and tunes the energy expenditure to

dynamically meet the error requirements.

Other systems such as RAPS (Rate adaptive GPS-based positioning for smart-

phones) [40] take inspiration from the observation that GPS accuracy in urban areas

can be poor due to moving objects, trees’ shade and building reflections. To solve

this issue, RAPS uses location-time history of the user to estimate user velocity

and adaptively turn on GPS in case the estimated uncertainty in the prediction ex-

ceeds the accuracy threshold. RAPS presents three different approaches: it allows

synchronising GPS readings between neighbouring mobile devices to reduce power

consumption, it blocks GPS reads when the user is subscribed to cellular base sta-

tions where it is unlikely to get a GPS read (e.g. an area where the user is usually

indoors) and it exploits accelerometer data to estimate user velocity. It also proposes

sharing position readings among nearby devices using Bluetooth in order to further

reduce GPS activation. However, RAPS is mainly designed for pedestrian use, and

a significant portion of the energy savings come from avoiding GPS activation when

it is likely to be unavailable. The authors recently proposed newer approaches such

as [41]. In this case, they try to combine the accuracy and energy complementary

features of GPS and network-based solution. This paper is based on the observation

that users exhibit consistency in their everyday routes, having a sequence of Cell-

IDs. The system can provide an accurate estimation of user’s position by monitoring

the cell-ID transitions and using a history of GPS readings obtained within a cell.

They use the Smith-Waterman algorithm for sequence matching between similar

historic data. They look for a sub-sequence in the database that matches and they

pick up the sequence that matches the best and they turn ON GPS when there is no

good matching. However, such system has the limitation of not being able to detect

small detours in common routes.

4 Context-aware mobile operating systems

In previous sections we have seen that the most commonly used hardware compo-

nents by applications in mobile phones are context-dependent in terms of availabil-
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ity, energy cost as also users’ interaction patterns. Current mobile operating systems

are also multitasking. By executing ps in the terminal of an Android handset we

can identify more than 60 processes running simultaneously. Many of these pro-

cesses are context-aware and they are accessing shared resources such as sensors

and wireless interfaces. However, battery capacity is still the main limitation in mo-

bile systems and, as a consequence, mobile devices are likely to experience power

limitations at any time depending on how intensely the users interact with them.

Two mobile operating systems already aim to leverage contextual information to

prolong the battery life on mobile handsets: CondOS [5] and ErdOS [6].

CondOS has been conceived after observing that context-awareness is already

a reality in modern mobile platforms and applications. Mobile handsets support a

diverse range of sensing hardware and they are capable of executing the algorithms

required to process raw sensed data. However, the way contextual information is

generated and provided to applications can be more efficient by integrating context-

aware resources management techniques in the operating systems. If applications

manage and generate their own context independently, the power consumption can

increase. It is necessary to provide a central content provider that coordinates all

the context requests and the operating system is the right place for that. They con-

sider that raw-sensed data must be converted into “contextual data units” (CDUs)

by the operating system. A CDU is defined as a higher level data abstraction com-

pared to the current contextual data provided by modern mobile platforms. Those

objects contain a unit of meaningful context data to applications such as walking or

commuting). The authors also list the potential benefits that can be achieved with a

context-aware OS:

• Memory Management. Actions such as “running” and “walking” may suggest

the user to load a music player or a workout app. On the other hand, actions such

as “driving” may suggest loading a navigator. The operating system can see how

users’ interacted previously with applications in order to pro-load them and set

the hardware resources in the right power mode to improve the user experience.

• Scheduling. Context information can help to schedule processes while limiting

the impact on battery life and user experience. CondOS suggests that context

can directly influence process priorities based on the users’ preferences and the

applications that are likely to be executed at a given location.

• I/O. Contextual data can help to adapt notifications such as the ringing mecha-

nism or the appropriate input method to the situation (e.g. voice search features

might be useful while the user is walking but they might not be the best choice

in a noisy environments or in the opera). The operating system can also adapt

manage wireless interfaces aided with contextual information as we have already

seen in Section 3.1.

• Security. Security can be adapted to the location. For example, security require-

ments can be relaxed at home, enabling interaction and sharing data with other

devices in the home network. On the other hand, in public places the security

policies can be more rigid in order to reduce the potential security and privacy

risks.
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• Energy savings. As we have seen in the previous sections, mobile operating sys-

tems can predict future charging opportunities from contextual information. The

operating system can manage applications and resources in order to meet the

energy goals that users’ interaction might impose. Moreover, having a central

source of contextual information can potentially save energy by reducing the

number of requests to the hardware resource. Applications can collaborate and

share interests on resources in a similar fashion as Android OS does with its

“location providers” [34].

Mobile operating systems need to make efficient and autonomous allocation

decisions whilst maximising the users experience. Software should guarantee en-

ergy efficiency in addition to the traditional OS perspective of maximising perfor-

mance [42]. Recently, energy-aware operating systems attracted the attention of the

research community again with mobile operating systems such as Cinder [43] and

ErdOS [6]. However, those two projects follow different philosophies about how

energy management should be performed, and by whom.

Cinder follows the philosophy of ECOSystem [44] and Odyssey [45]. They try

to leverage the interaction between applications and operating system without nec-

essarily being context-aware. In the case of Odyssey, applications adapt to the avail-

able energy and resources to provide different quality of service to the users in

runtime while ECOSystem fairly allocates energy shares to multiple hardware com-

ponents and applications. Cinder [43] allocates energy to applications using two

abstractions called reserve and taps to form a graph of resource consumption. When

an application consumes a resource, the Cinder kernel reduces the right values in

the corresponding reserve and its scheduler only allows threads to run if they have

enough reserves to run. The rate at which the reserves are being consumed is con-

trolled by the taps (a special-purpose thread whose only job is to transfer energy be-

tween reserves at proportional or constant rates). Once an application has consumed

all its reserves, the kernel prevents its threads to perform more actions. Nevertheless,

Cinder allows reserve debits between tasks for performing additional actions. Note

that most of the modern mobile OSs usually give priority to foreground processes

over the rest of the apps and non-system background processes in order to improve

the user experience and also to prolong the battery life.

A different approach is followed by ErdOS [6]. This operating system5 does not

require interaction and communication means between applications and OS. It is

completely seamless to applications. ErdOS also leverages contextual information

to manage resources efficiently customised for each user. ErdOS was motivated by

the observation that resources’ state (e.g. GPS and cellular networks) and the us-

age patterns and habits of mobile users are diverse and highly context-dependent.

As mobile systems present energy peaks caused by periods of high interaction from

the users, managing and allocating computing resources to applications proactively

based on predictions of the resources state and the users’ demands is more flexi-

ble and efficient than algorithmic resources management. In order to support this

feature, ErdOS monitors resources state, applications resource demands and users’

5 ErdOS is conceived as an Android OS extension
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interaction patterns with applications. It learns from users’ behaviour and habits (de-

fined as the users’ activity abstraction) to predict the future resources demands and

the resources availability in an event-based fashion. In fact, users generally remain

subscribed to a small set of base stations and the majority of interaction with their

resources or applications takes place there. ErdOS builds a location-based model

of resources usage and resources demands per location in order to predict power

limitations and peaks of energy consumption. Such a model might help to detect

malware and buggy applications by identifying situations where resources demand

are out of the norm.

Additionally, the authors consider that computation should not be exclusively

limited to local resources. Accessing resources in neighbouring handsets oppor-

tunistically can be beneficial both in terms of energy and usability by enabling ac-

cess to resources that have the right power mode [46]. By considering the social

activity of mobile phone users, we can see that large portions of a user’s daily life

are spent in close proximity of other mobile phone users with devices that incor-

porate similar hardware resources. Indeed, if we consider a commuter travelling by

bus and using a location-based service on her mobile phone, there is a high proba-

bility that a significant number of co-commuters are also using their phone’s GPS

and cellular networks to interact with similar services. Additionally, in social events

such as music concerts or sport events, large numbers of co-located users may use

their phone to access the internet simultaneously. This enables more opportunities

for sharing resources opportunistically and, as a consequence, more opportunities to

reduce the energy consumption. As a consequence, ErdOS tries to exploit this op-

portunity for improving the energy efficiency of mobile phone usage while making

acceptable compromises in the QoS, by trying to aggregate, share and coordinate

resources of multiple users at close proximity. Nevertheless, contextual information

can play an important role in making ErdOS even more energy efficient by allowing

the system to adapt the resources discovery enquiries and the privacy and security

policies to the probability of discovering devices at a given location.

5 Summary

Mobile handsets are power-hungry devices because of the integration of power-

hungry hardware resources such as touchscreen displays and location sensors.

Moreover, they support Internet data services anytime (almost) anywhere so they

are always connected to the network. All those resources bootstrap a rich ecosys-

tem of mobile applications but their design is clearly driven by usability factors

rather than energy efficiency. However, managing mobile resources from an energy-

efficient perspective without diminishing the user experience is clearly one of the

most challenging problems in mobile computing nowadays. Power management

considerations often require certain actions to be deferred, avoided or slowed down

to prolong battery life. In this chapter, we have seen that contextual information can

be a useful source of data to manage hardware resources more efficiently in mobile
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systems. It can allow the operating system to dynamically predict the power states of

the hardware components and applications behaviour at a given location. However,

those techniques can impact on the user experience with the handsets and there is

still an important work to be done in this space.
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