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ABSTRACT
Software packet processing is becoming more important to
enable differentiated and rapidly-evolving network services.
With increasing numbers of programmable processor and
accelerator cores per network node, it is a challenge to
support sharing and synchronization across them in a way
that is scalable and easy-to-program. In this paper, we
focus on parallel/threaded applications that have irregular
control-flow and frequently-updated shared state that must
be synchronized across threads. However, conventional
lock-based synchronization is both difficult to use and also
often results in frequent conservative serialization of critical
sections. Alternatively, we propose that Transactional
memory (TM) is a good match to software packet processing:
it both (i) can allow the system to optimistically exploit
parallelism between the processing of packets whenever it
is safe to do so, and (ii) is easy-to-use for a programmer.
With the NetFPGA [1] platform and four network packet
processing applications that are threaded and share memory,
we evaluate hardware support for TM (HTM) using the
reconfigurable FPGA fabric. Relative to NetThreads [2], our
two-processor four-way-multithreaded system with conven-
tional lock-based synchronization, we find that adding HTM
achieves 6%, 54% and 57% increases in packet throughput
for three of four packet processing applications studied, due
to reduced conservative serialization.

Categories and Subject Descriptors
C.1.4 [Processor architectures]: Parallel Architectures;
C.1.2 [Multiple Data Stream Architectures (Multi-
processors)]: Multiple-instruction-stream, multiple-data-
stream processors (MIMD); C.3 [Special-purpose and
application-based systems]: Real-time and embedded
systems
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1. INTRODUCTION
Modern network appliance programmers are faced with

larger and more complex systems-on-chip composed of
multiple processor and acceleration cores that must syn-
chronize and share data, while meeting the expectation
that performance should scale with the number of compute
threads [3, 4]. Programming is a particular challenge
for stateful applications with irregular control-flow. We
demonstrate in this paper that such applications are more
suitable to a run-to-completion model of execution, where a
single thread performs the complete processing of a packet
from start to finish. Hence the programmer writes a single
program that is executed on each packet. For performance,
the system must be able to execute multiple instances of
the program in parallel. However, the processing of different
packets is not always independent, and the application must
maintain some shared state.

While systems based on shared memory can ease the
orchestration of sharing and communication between cores,
they require the careful use of synchronization (i.e., lock
and unlock operations). Consequently, threads executing
in parallel wanting to enter the same critical section (i.e.,
a portion of code that accesses shared data delimited by
synchronization) will be serialized, thus losing the parallel
advantage of such a system. Hence designers face two
important challenges: (i) multiple processors need to share
memory, communicate, and synchronize without serializing
the execution, and (ii) writing parallel programs with
manually inserted lock-based synchronization is error-prone
and difficult to debug.

Transactional memory (TM) [5, 6] offers a potential solu-
tion to both challenges as it (i) can reduce false contention
on critical sections, and (ii) offers an easier programming
model for synchronization. A TM system optimistically
allows multiple threads inside a critical section—hence TM
can improve performance when the parallel critical sections
access independent data locations. With transactional
execution, a programmer is free to employ coarser critical
sections, spend less effort minimizing them, and not worry
about deadlocks since a properly implemented TM system
does not suffer from them. To guarantee correctness,
the underlying system dynamically monitors the memory
access locations of each transaction (the read set and
write set) and detects conflicts between them. While
TM can be implemented purely in software (STM), a



Figure 1: Average fraction of conflicting packet
executions for windows of 2 to 16 consecutive
packets.

hardware implementation (HTM) offers significantly lower
performance overhead. The key question is: how amenable
to optimistic transactional execution is packet processing
on a multicore—i.e., on a platform with interconnected
processor or accelerator cores that synchronize and share
memory?

1.1 The Potential for Optimistic Parallelism
Although this depends on the application, for many

applications only the processing of packets belonging to
the same flow (i.e., a stream of packets with common
application-specific attributes, such as addresses, protocols,
or ports) results in accesses to the same shared state.
In other words, there is often parallelism available in
the processing of packets belonging to independent flows.
Melvin et al. [7] show that for two NLANR packet traces
the probability of having at least two packets from the
same flow in a window of 100 consecutive preceding packets
is approximately 20% and 40%. Verdú et al. [8] further
show that the distance between packets from the same flow
increases with the amount of traffic aggregation on a link,
and therefore generally with the link bandwidth in the case
of wide area networks.

Our position in this paper is that there is optimistic par-
allelism available in stateful, control-flow-intensive packet
processing applications, and that HTM support (assuming
an optimistic HTM) can exploit this parallelism and hence
be both (i) better-performing, and (ii) easier-to-program,
than lock-based critical sections. However, in this paper
we offer evidence only for performance, but rely on prior
work [9] to support the ease-of-programming claim. To
demonstrate the potential for optimistic parallelism in our
benchmark applications, we profiled them using our full-
system simulator (both are described in more detail later).
For now what we are interested in is how often the processing
of packets has a conflict—i.e. for two threads each processing
a packet, their write sets intersect or a write set intersects
a read set. In Figure 1, we show the average fraction
of packets for which their processing conflicts for varying
windows of 2 to 16 packets. For three of our applications,
NAT, Classifier, and Intruder2, the fraction of conflicting
packet-executions varies from around 20% to less than 10%
as the window considered increases from 2 to 16 packets,
indicating two important things: first, that conventional
synchronization for critical sections in these applications

would be overly-conservative 80% to 90% of the time, and
second that there is hence a strong potential for optimistic
synchronization for these applications. For UDHCP, our profile
indicates that nearly all packet-executions conflict. In reality
UDHCP contains several critical sections, some that do nearly
always conflict, but many others that do not conflict—hence
the potential for optimistic parallelism exists even for UDHCP.

1.2 Contributions
In this paper we describe, implement, and evaluate

four threaded, stateful, control-flow-intensive networking
applications that share memory and synchronize, a real
implementation of an HTM system called NetTM on the
NetFPGA [1] platform, and compare with a two-processor,
eight-threaded base system that implements only conven-
tional lock-based synchronization (called NetThreads [2]).
In this context we make the following contributions: (i) we
motivate the need for software packet processing, i.e., a run-
to-completion-on-shared-memory programming model for
packet processing applications that are stateful and control-
flow intensive; (ii) we demonstrate the benefits of exploiting
optimistic parallelism in packet processing on NetTM; (iii)
we show that NetTM outperforms flow-affinity scheduling,
but that NetTM could be extended to exploit a flow affinity
approach.

2. SOFTWARE PACKET PROCESSING
Many packet processing applications must process packets

at line rate, and to do so they must scale to make full
use of a system composed of multiple processors and ac-
celerators cores. Given the broad and varied use of packet
processing, in this section we clarify the application-types
and bandwidths for which software packet processing is
suitable, and what challenges emerge when programming
these applications in a multicore environment.

2.1 Application Types
We divide network processing applications into three

categories:

1) Basic Common packet processing tasks performed in
small office/home office network equipment include learn-
ing MAC addresses, switching and routing packets, and
performing port forwarding, port and IP filtering, basic
QoS, and VLAN tagging. These functions are typically
limited to a predefined number of values (e.g. 10 port
forwarding entries) such that they can be implemented in an
ASIC switch controller chip, without the need for software
programmability.

2) Byte-Manipulation A number of network applica-
tions, in particular cryptography and compression routines,
apply a regular transformation to most of the bytes of
a packet. Because these workloads often require several
iterations of specialized bit-wise operations, they benefit
from hardware accelerators such as the specialized engines
present in network processors [10], modern processors (e.g.
Intel AES instruction extensions), and off-the-shelf network
cards; they also generally do not require the programmabil-
ity of software.

3) Control-Flow Intensive Network packet processing
is no longer limited solely to routing, with many ap-
plications that require deep packet inspection becoming



increasingly common. Some applications, such as storage
virtualization and server load balancing, are variations on
the theme of routing that reach deeper into the payload
of the packets to perform content-based routing, access
control, and bandwidth allocation. Other applications
have entirely different computing needs such as the in-
creasingly complex firewall and bandwidth management
systems that must recognize applications, scan for known
malicious patterns, and recognize new attacks among a sea
of innocuous packets. Furthermore, with the increasing
use of application protocols built on HTTP and XML, the
distinction between payload and header processing is slowly
disappearing. Hence in this paper we focus on such control-
flow intensive applications.

2.2 The Need for Simpler Synchronization
The Internet has witnessed a transformation from static

web pages to social networking and peer-to-peer data trans-
fers. This transformation of user behavior patterns re-
quires network connectivity providers to constantly and
proactively adapt their services to adequately provision and
secure their infrastructure. As networking requirements
evolve constantly, many network equipment vendors opt for
network processors to implement functions that are likely
to change over time. Because many network protocols
are now considered outdated, there is even a desire to
have vendors open the hardware to accept user/researcher
code [11]. However, once faced with board-specific reference
code, programmers are often hesitant to edit it, in part
due to the challenge of modifying the synchronization
and parallelization mechanisms in those carefully tuned
multicore programs.

With multicore processors becoming commodity, general
purpose processors are closing the performance gap with
network processors for network-edge applications [12] fueling
an increased industry use of open-source software that
can turn an off-the-shelf computer into a network device;
examples include the Click Modular router [13], Snort [14],
Quagga [15], and the XORP project [16]. Those applications
are often coded as a single thread of computation with
many global data structures that are unsynchronized—
hence porting them to multicore is a substantial challenge
when performance depends on constructing finer-grained
synchronized sections. There is therefore a need for simpler
synchronization mechanisms to support control-flow inten-
sive programs.

2.3 Fast- vs Slow-Path Processing
Network equipment typically connects multiple network

ports on links with speeds that span multiple orders of
magnitude: 10Mbps to 10Gbps are common physical layer
data rates. While local area networks can normally achieve
a high link utilization, typical transfer speeds to and from
the Internet are on the order of megabits per second [17]
as determined by the network organization and utilization
between the Internet service providers.

The amount of processing performed on each packet will
directly affect the latency introduced on each packet and
the maximum allowable sustained packet rate. The amount
of buffering available on the network node will also help
mitigate bursts of traffic and/or variability in the amount
of processing. For current network appliances that process
an aggregate multi-gigabit data stream across many ports,

there is typically a division of the processing in data plane
(a.k.a. fast path) and control plane (a.k.a. slow path)
operations. The data plane takes care of forwarding packets
at full speed based on rules defined by the control plane
which only processes a fraction of the traffic (e.g. routing
protocols). Data plane processing is therefore very regular
from packet to packet and deterministic in the number
of cycles per packet. Data plane operations are typically
implemented in ASICs on linecards; control plane opera-
tions are typically implemented on a centralized supervisor
card. The control plane, often software programmable and
performing complex control-flow intensive tasks, still has to
be provisioned to handle high data rates. For example, the
Cisco SPP network processor in the CRS-1 router is designed
to handle 40Gbps [18]. On smaller scale network equipment
(eg., a commodity desktop-based router at the extreme end
of the spectrum), the two planes are frequently implemented
on a single printed circuit board either with ASICs or
programmable network processors or a combination of both.
In that case, the amount of computation per packet has a
high variance, as the boundary between the fast and slow
path is often blurred.

In this paper, we focus on complex packet processing tasks
that are best-suited to a software implementation, since a
complete hardware implementation would be impractical.
Our benchmark applications therefore target the control
plane, rather than the data plane of multi-gigabit machines.

3. BENCHMARK APPLICATIONS
Prior network processing benchmark suites [19, 20] are

dominated by stateless kernels that emulate isolated packet
processing routines and fall into the first two categories in
Section 2.1 above. For those kernels that represent header
processing workloads, the amount of instruction-level paral-
lelism (ILP) can exceed several thousand instructions [20].
Because such tasks are best addressed by SIMD processors
or custom ASICs, in this paper we instead focus on control-
flow intensive applications where the average ILP is only
five [21]. However, there is a lack of benchmark suites
representing applications of that kind, i.e. that are threaded
and synchronized.

We have developed the four control-flow intensive ap-
plications detailed in Table 1. Because our evaluation
platform (Section 5) does not have an operating system,
all the low-level protocol-handling is inlined directly into
our programs. To implement time-stamps and time-outs,
we use a hardware system clock. Table 1 also describes
the nature of the parallelism in each application, and
Table 2 reports statistics on the dynamic accesses per critical
section for each application. Note that the critical sections
comprise significant numbers of loads and stores with a high
disparity between the average and maximum values, showing
that our applications are stateful and irregular in terms of
computations per packet. As indicated in Table 1, the NAT

application maintains shared and per-flow statistics along
with a dynamically-allocated address translation table, and
the other benchmarks inspect deeply into the payload of
packets. We next analyze the representative traits of
each application and generalize them to other control-flow
intensive network applications, particularly with respect to
packet ordering, data parallelism, and synchronization.



Packet Ordering In a network device, there is typically
no requirement to preserve the packet ordering across flows
from the same or different senders: they are interpreted as
unrelated. For a given flow, one source of synchronization
is often to preserve packet ordering, which can mean: i)
that packets must be processed in the order that they
arrived; and/or ii) that packets must be sent out on the
network in the order that they arrived. The first criteria is
often relaxed because it is well known that packets can be
reordered in a network [22], which means that the enforced
order is optimistically the order in which the original sender
created the packets. The second criteria can be managed
at the output queues and does not usually affect the core
of packet processing. For our benchmark applications in
Table 1, while we could enforce ordering in software, we
allow packets to be processed out-of-order because our
application semantics allow it. Enforcing flow ordering in
our system would require to support many more flows to
stress our processors at maximum utilization and would
therefore require significantly more packet buffering. In such
a setting with an increased number of independent flows, we
expect that a transactional memory system could extract
more parallelism across the flows and its throughput would
thus be further increased.

Data Parallelism Packet processing typically implies
tracking flows (or clients for UDHCP) in a database, commonly
implemented as a hash-table or direct-mapped array. The
size of the database is bounded by the size of the main
memory—typically larger than what can be contained in
any single data cache—and there is usually little or a very
short-term reuse of incoming packets. Because a network
device executes continuously, a mechanism for removing
flows from the database after some elapsed time is also
required. In stateful applications, i.e. applications where
shared, persistent data structures are modified during the
processing of most packets, there may be variables that
do not relate directly to flows (e.g. a packet counter).
Therefore, it is possible that the processing of packets from
different flows access the same shared data and therefore
the processing of those packets in parallel may conflict.
Also, for certain applications, it may possible to extract
intra-packet parallelism (e.g. parallelization of a loop),
however those cases are rare because they are likely to leave
some processors underutilized so we do not consider them
further. Whenever shared data is accessed by concurrent
threads, those accesses must be synchronized to prevent data
corruption.

Synchronization To increase parallelism, implementing
finer-grain synchronization is not always feasible since re-
peatedly entering and exiting critical sections will likely add
significant overhead. For example, NAT and Classifier

have a significant fraction of their code synchronized because
there is an interaction between the hash table lock and the
flow lock: a thread cannot release the lock on the hash table
prior to acquiring a lock on a flow descriptor to ensure that
the flow is not removed in the mean time. Mechanisms
for allowing coarser-grained sections while preserving per-
formance are therefore very desirable for packet processing.

4. EXPLOITING PARALLELISM
Because nearly all modern network processors are multi-

Table 2: Dynamic Accesses per Critical Section
Loads Stores

Benchmark mean max mean max

NAT 114 739 42 98
Classifier 2433 67873 64 573
Intruder2 95 593 16 182

UDHCP 61 3504 11 36
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Figure 2: Parallelization models.

core, the mapping of the application to those cores is often
specific to the underlying processor architecture and is also
a trade-off between performance and ease-of-programming.
In this section we quantitatively justify our choice of the
run-to-completion model for extracting parallelism from
control-flow-intensive, stateful software packet processing
applications. Run-to-completion is one of the three common
execution models for exploiting parallelism, illustrated in
Figure 2, that we describe next.

4.1 Pipelining
Pipelining is widely used as the underlying parallelization

method [3, 12, 29, 30], most often to avoid the difficulty of
managing locks: there is no need to synchronize if writes
to shared data structures are done in a single pipeline
stage1, even if there are multiple readers. As shown
in Figure 2(a), the pipeline model allows a sequence of
operations to be performed on a packet by spreading the
operations across cores. Programs are best suited for
pipelining if they are composed of data-independent and self-
contained kernels executing in a stable computation pattern
with communication at the boundaries [31]. However,
efficiently balancing the pipeline stages and the amount of
communication between them to maximize multiprocessor
utilization is complicated and often not possible for complex
applications. Even if an acceptable result is obtained, this
difficult process must be repeated when the application
is updated or the code is ported to a different processor
architecture. Furthermore, handling packets that require
varying amounts of computation or breaking down frequent

1Assuming the writes can be flushed atomically.



Table 1: Benchmark Applications

Description Critical Sections Input packet trace
C
l
a
s
s
i
f
i
e
r

Performs a regular expression matching on TCP
packets, collects statistics on the number of
bytes transferred and monitors the packet rate
for classified flows to exemplify network-based
application recognition. In the absence of a
match, the payloads of packets are reassembled
and tested up to 500 bytes before a flow is marked
as non-matching. As a use case, we configure
the widely used PCRE matching library [23]
(same library that the popular Snort [14] intrusion
detection/prevention system uses) with the HTTP
regular expression from the “Linux layer 7 packet
classifier” [24].

Has long transactions when regular
expressions are evaluated; exploits
parallelism across flows stored in a
global synchronized hash-table.

Publicly available packet trace from
2007 on a 150Mbps trans-Pacific link
(the link was upgraded from 100Mbps
to 150Mbps on June 1, 2007) [25].
HTTP server replies are added to all
packets presumably coming from an
HTTP server to trigger the classifica-
tion.

N
A
T

Exemplifies network address translation by rewrit-
ing packets from one network as if originating
from one machine, and appropriately rewriting
the packets flowing in the other direction. As an
extension, NAT collects flow statistics and monitors
packet rates.

Exhibits short transactions that en-
compass most of the processing; ex-
ploits parallelism across flows stored
in a global synchronized hash-table.

Same packet trace as Classifier.

I
n
t
r
u
d
e
r
2

Network intrusion detection [26] modified for
packetized input and re-written to have array-
based reassembly buffers to avoid the overhead
of queues, lists and maps that also reduced the
effectiveness of signatures due to the large amount
of malloc()/free() calls [27].

Has two synchronization phases: first
a per-flow lock is acquired and re-
leased to allow processing each packet
individually, then most of the com-
putation is performed on reassembled
messages before the per-flow variables
are modified again under synchroniza-
tion.

256 flows sending random messages of
at most 128 bytes, broken randomly
in at most 4 fragments, containing
10% of ’known attacks’. The frag-
ments are shuffled with a sliding
window of 16 and encapsulated in IP
packets.

U
D
H
C
P

Derived from the widely-used open-source DHCP
server. As in the original code, leases are stored
in a linearly traversed array and IP addresses are
leased after a ping request for them expires, to
ensure that they are unused.

Periodic polling on databases for time
expired records results in many read-
dominated transactions as seen in Ta-
ble 2. Has high contention on shared
lease and awaiting-for-ping array data
structures.

Packet trace modeling the expected
DHCP message distribution of a net-
work of 20000 hosts [28].

accesses to large stateful data structures (such as routing
tables) to ensure lock-free operation is impractical in a
pipeline with many stages.

Because a number of network processors implement the
pipeline model [33] with the promise of extracting paral-
lelism while being lock-free, we must justify our choice of
a different model (run-to-completion). For this purpose,
we use benchmarks from NetBench [32]2, and our stateful
benchmarks running on a single thread. As Netbench’s
applications require a number of system and library calls,
they cannot be ported easily to our NetTM embedded target
(Section 5), so we instead record execution traces using the
PIN tool [34]. We only monitor the processing for each
packet and ignore the packet and console I/O routines.

As seen in Figure 3(a), our four applications span the
spectrum of latency variability (i.e. jitter) per packet
that is represented by the NetBench benchmarks. Route

and ipchain have a completely deterministic behavior (no
variability), while table lookup tl and the regular expres-
sion matching Classifier have the most variation across
packets. Considering that for those applications the amount
of computation can be more than doubled depending on
the packet, we conclude that they are less amenable to
pipelining. Even if re-circulating a packet from the end
to the beginning of a pipeline were effective at mitigating
this huge variation in latency [33], we would also have to
effectively divide the packet processing into pipeline stages.

To emulate pipelining, we employ a previously-proposed
graph-clustering method that greedily clusters instructions
with the highest control and data flow affinity [35] to

2Except dh which is not packet based nor ssl because of its
inlined console output.

eliminate cyclic dependences and minimize communication
between pipeline stages. Since NetTM has 8 threads, we
cluster the instructions into 8 pipeline stages based on the
profile information3. In all benchmarks in Figure 3(b),
clustering the code into pipeline stages leads to significant
load imbalance. url has the largest pipeline imbalance
(i.e. the rate of the pipeline is 7.9 times slower than the
average rate of all the stages) because of the clustering of
the Boyer-Moore string search function in a single pipeline
stage. Even route which has a deterministic execution
(Figure 3(a)) has load imbalance because of the clustering
of the checksum routine in a single longer-latency pipeline
stage and ipchains has similar problems. While hardware
accelerators could be used to accelerate checksum opera-
tions, a programmer cannot rely on them to balance the
latency of arbitrary code in stages. To get a better load
balance, a programmer would replicate the slowest stages
and move to the hybrid or run-to-completion model, and
add synchronization around stateful data structures.

4.2 Run-to-Completion and Hybrid
The model in Figure 2(b) refers to the conventional

single-threaded method of writing a program where dif-
ferent processors process packets from beginning-to-end
by executing the same program. Different paths in the
program will exercise different parts of the application on
different threads, which do not execute in lock-step. The
programming is therefore intuitive but typically requires
the addition of locks to protect shared data structures
and of coherence mechanisms when shared data can be

3Control-flow and data dependences are based on the
profiled basic-blocks.



(a) Normalized variability in packet processing latency
with a single thread (stddev/mean latency).

(b) Imbalance in pipeline stages with an emulated
pipeline of 8 threads (max stage latency/mean).

Figure 3: Single-threaded computational variability
and load imbalance in an emulated pipeline for
NetBench [32] benchmarks and our benchmarks
(marked with a *).

held in multiple locations. For network processors with
no special communication channel between the cores for
pipeline operations, such as the 100Gbps-rated 160-threads
Cisco QuantumFlow Processor [36], run-to-completion is the
natural programming model.

A hybrid of pipelining and run-to-completion approaches
is also possible, as shown in Figure 2(c), where each
pipeline stage is replicated. While packets can flow across
different pipelines, the assumption is that a specialized
engine at the input would dispatch a packet to a given
pipeline, which would function generally independently.
Enforcing this independence to minimize lock contention
across pipelines is actually application specific and can lead
to important load-imbalance. The number of processors
assigned to each pipeline must also be sized according to the
number of network interfaces to provide a uniform response
time. A variation on the hybrid model consists of using
the processors as run-to-completion but delegating atomic
operations to specialized processors [37]. That model also
removes the need for locks (assuming point-to-point lock-
free communication channels) but poses the same problems
in terms of ease of programming and load imbalance as the
pipeline model.

Nearly all modern multicore processors are logically or-
ganized in a grid to which the programmer can map an
execution model of his choice. The major architectural
factors that would push a programmer away from the
intuitive run-to-completion model are: (i) a high cache
coherence penalty across private data caches, or (ii) a
reduced instruction and data cache storage compared to a
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Figure 4: The NetThreads architecture, currently
with two processors. NetTM supports TM by
extending NetThreads, mainly with signatures and
an undo-log.

Table 3: On-chip memories.
Memory Description

Input buffer Receives packets on one port and services
processor requests on the other port, read-
only, logically divided into ten fixed-sized packet
slots.

Output buffer Sends packets to the NetFPGA MAC controllers
on one port, connected to the processors via its
second port.

Data cache Connected to the processors on one port,
32-bit line-sized data transfers with the
DDR2 SDRAM controller (similar to previous
work [38]) on the other port.

All three 16KB, single-cycle random access, arbitrated
across processors, 32 bits bus.

task decomposition in pipeline(s). Most network processors
do not implement cache coherence (except commodity mul-
ticore machines) and for our experiments, our data cache is
shared and therefore has roughly the same hit rate with
or without task pipelining. Because the synchronization
around shared data structures in our stateful applications
makes it impractical to extract parallelism otherwise (e.g.,
with a pipeline of balanced execution stages), we adopt the
run-to-completion/pool-of-threads model, where each thread
performs the processing of a packet from beginning-to-end,
and where all threads essentially execute the same program
code. Consequently our work can be interpreted as an
evaluation of a run-to-completion or of an hybrid model
where we focus on a single replicated pipeline stage.

5. NETTHREADS ON NETFPGA
In this section we briefly describe the NetThreads [2] mul-

tithreaded multiprocessor system that allows us to program
the NetFPGA [1] platform in software using shared memory
and conventional lock-based synchronization.

NetThreads: Processor Architecture In this work our
starting point architecture for comparison is our NetThreads
multithreaded multicore architecture that supports only
lock-based critical sections, shown in Figure 4. Each
processor has a single-issue, in-order, 5-stage pipeline that
issues instructions from four hardware threads in round-
robin to hide pipeline hazards and cache miss latency [39].



Each processor also has a 16KB private instruction cache
and support for thread scheduling [40]4: when a thread
cannot immediately acquire a lock, its slot in the round-
robin order can be used by other threads until an unlock
operation occurs—this leads to better pipeline utilization
by minimizing the execution of instructions that implement
spin-waiting. To implement lock-based synchronization,
NetThreads provides a synchronization unit containing 16
hardware mutexes; in our ISA, each lock/unlock operation
specifies a unique identifier, indicating one of these 16
mutexes. In our current instantiation of NetThreads, 16
mutexes is the maximum number that we can support while
meeting the 125MHz target clock speed. However, through
simulation we found that supporting an unlimited number of
mutexes would improve the performance of our applications
by less than 2%, except for Classifier which would improve
by 12%.

NetThreads: Memory System As described in Table 3,
our multiprocessor architecture is bus-based and designed to
match the two-port limitation of block RAMs available on
FPGAs. Similarly to other network processors [10, 36], our
packet input/output and queuing in the input and output
buffers are hardware managed. In addition to the input
buffer in Figure 4, the NetFPGA framework can buffer
incoming packets for up to 6100 bytes (4 maximally sized
packets) but the small overall input storage, while consis-
tent with recent findings that network buffers should be
small [41], is very challenging for irregular applications with
high computational variance and conservatively caps the
maximum steady-state packet rate sustainable via packets
dropped at the input of the system. In NetThreads, off-chip
memory is accessed via an SDRAM controller that services
a merged load/store queue of up to 64 entries in-order; since
this queue and the data cache are shared by all processors,
they serve as a single point of serialization and memory
consistency, hence threads need only block on pending loads
but not stores (as opposed to the increased complexity of
having private data caches). Because of the port limitation
of block RAMs in an FPGA, a shared cache is more efficient
than coherent caches for a small number of processors. In
its current form, our shared memory architecture will not
easily scale to a large number of processors—however, as
we demonstrate later in Section 7, our applications are
mostly limited by synchronization and critical sections and
not contention on the shared buses. In other words, the
synchronization inherent in the applications is the primary
roadblock to scalability, and our focus in this paper.

Targeting NetFPGA Table 4 describes the details of our
implementation of NetThreads on the NetFPGA platform,
including compilation, timing, validation, and measurement.
Due to stringent timing requirements (there are no free PLLs
after merging-in the NetFPGA support components), and
despite some available area on the FPGA, we are limited
to caches of 16KB each and a maximum of two processors.
NetThreads is constrained by, but meets the 125 MHz clock
rate of the Ethernet MACs. These limitations are not
inherent in our architecture, and would be relaxed in a
system with more PLLs and a more modern FPGA.

4This thread scheduling [40] is found in the NetThreads-RE
released version of NetThreads [2].

Table 4: Implementation Details.
Aspect Description

Compilation Modified gcc 4.0.2, Binutils 2.16, and
Newlib 1.14.0

Instruction set 32-bit MIPS-I ISA without delay slots [42],
with software mul and div

Platform NetFPGA 2.1 [1] with 4 x 1GigE Media
Access Controllers (MACs)

FPGA Virtex II Pro 50 speed grade 7ns
Synthesis Xilinx ISE 10.1.03, high effort to meet

timing constraints
Off-chip memory 64 Mbytes 200MHz DDR2 SDRAM, Xilinx

MIG controller
Processor clock 125MHz, same as Ethernet MACs

Validation Execution trace generated in RTL simula-
tion and online in debug mode, compared
against cycle-accurate simulator

Measuring host Linux 2.6.18 Dell PowerEdge 2950 with two
quad-core 2GHz Xeon processors

Packet source Modified Tcpreplay 3.4.0 sending packet
traces from a Broadcom NetXtreme II GigE
NIC to an input port of the NetFPGA

Packet sink NetXtreme GigE NIC connected to another
NetFPGA port used for output

Figure 5: Comparison of the actions taken by the
processor if the synchronization is lock-based or
transactional.

6. NETTM: NETTHREADS + HTM
To support HTM, as shown in Figure 4, the main

additions over our NetThreads implementation are the
signature table, the undo-log, and (not shown) support for
transactions in the register file and thread scheduler. In this
section we describe how these hardware features impact the
semantics of synchronization in the code and the execution
in NetTM.

6.1 Programming NetTM
In this section, we examine how TM can seamlessly co-

exist with lock-based synchronization.

Specifying Transactions TM semantics imply that any
transaction will appear to have executed atomically with
respect to any other transaction. Like most TM systems,
for NetTM a transactional critical section is specified by
denoting the start and end of a transaction, using the
same instruction API as the lock-based synchronization
for NetThreads—i.e., lock can mean “start transaction”
and unlock can mean “end transaction”. Hence existing
programs need not be modified, since NetTM can use



existing synchronization in the code and simply interpret
critical sections as transactional as shown in Figure 5.

Locks vs Transactions NetTM supports both lock-
based and TM-based synchronization, since a code region’s
access patterns can favor one approach over the other. For
example, in our evaluation, lock-based critical sections are
necessary for I/O operations since they cannot be undone
in the event of an aborted transaction: specifically, for
processor initialization, to protect the sequence of memory-
mapped commands leading to sending a packet, and to
protect the allocation of output memory.

Composing Locks and Transactions It is desirable
for locks and transactions in our system to be composable,
meaning that they may be nested within each other. For
example, to atomically transfer a record between two linked
lists, the programmer might nest existing atomic delete
and insert operations within some outer critical section.
NetTM supports composition as follows. Lock within lock
is straightforward and supported. Lock within transaction
is not supported, since code within a lock-based critical
section should never be undone, and we do not support
making transactions irrevocable [43]. Transaction within
lock is supported, although the transaction must be fully
nested within the lock/unlock, and will not be executed
atomically—meaning that the transaction start/end are
essentially ignored, under the assumption that the enclosing
lock properly protects any shared data. Transaction within
transaction is supported, and again the start/end of the
inner transaction are ignored.

Improving Performance via Feedback TM allows
the programmer to quickly achieve a correct threaded
application. Performance can then be improved by re-
ducing transaction aborts, using feedback that pin-points
specific memory accesses and data structures that caused
the conflicts. While this feedback could potentially be
gathered directly in hardware, for now we use our full-system
simulator of NetTM to do so. For example, we identified
memory management functions (malloc() and free()) as
a frequent source of aborts, and instead employed a light-
weight per-thread memory allocator that is not contended
on synchronization. The baseline code of our benchmarks
is thus optimized by hand with cycle-accurate simulation
feedback and attempts to make synchronization as fined-
grained as possible to best represent the performance of
the locks-only implementations. Data structures were
privatized, except for cases where the data should be global
(e.g. global hash tables). Privatizing those last data
structures implies a different organization of the work to
minimize lock contention across the threads, an approach
that we also evaluate against transactional memory in
Section 7.1.

6.2 Implementing NetTM
A key aspect of any HTM architecture is the required

ability to segregate transactional modifications from regular
memory. For this purpose, NetTM implements eager version
management [5]—i.e. writes modify main memory directly
and are not buffered. To support rollback for aborts, a
backup copy of each modified memory location must be
saved in an undo-log. Eager version management simplifies
NetTM, since the alternative of lazy version management

Figure 6: Signature table used to mark speculatively
read and/or written for N hardware contexts. Ver-
sion bits are used to distinguish between consecutive
transactions on the same hardware context: a
mismatch between this version and the context’s
transaction number indicates that the entry for that
context is invalid.

would require mechanisms to manage multiple versions of
transactionally-modified memory locations. The choice of
eager version management drives most of the design of the
NetTM architecture, as summarized by the following four
key mechanisms.

1) Online Conflict Detection Conflicts must be detected
before a write is performed, to avoid adding transactional
data to the undo-log. To detect conflicts without introduc-
ing undue stalls in the system, we must be able to do so in a
single cycle. This requirement led us to implement conflict
detection via signatures, which are bit-vectors that track
the memory locations accessed by a transaction via hash
indexing [27], with each transaction owning two signatures
to track its read and write sets.

2) Application-Specific Signatures To alleviate the
tension between the limited on-chip storage of FPGAs and
the large number of bits required to prevent commonly-
accessed memory locations from mapping to the same
signature bit, we construct trie-based application-specific
hash functions [27] that map the most contentious profiled
memory locations to different signature bits. Performance
was previously shown to be highly dependent on the size
of the signature [27], so we tune signatures to match the
maximum size that fits our FPGA timing constraints for
each benchmark individually. Figure 6 shows how the
signatures are stored in block RAMs and how the relevant
read and write bits of all transactions can be accessed in a
single cycle. A challenge is that we must clear the signature
bits for a given transaction when it commits or aborts, and
it would be too costly to visit all of the rows of the block
RAM to do so. Instead we add to the signature table a
version number per transaction (incremented on commit or
rollback), that we can compare to a register holding the
true version number of the current transaction for that
thread context. Comparing version numbers produces a
Valid signal that is used to ignore the result of comparing
signature bits when appropriate. We clear signature bits
lazily: for every memory reference, a row of the signature
table is accessed and we clear the corresponding signature
bits for any transaction with mismatching version numbers.
This lazy-clear works well in practice, although it is possible
that the version number may completely wrap-around before



Figure 7: Throughput improvement relative to
locks-only (NetThreads) for flow-affinity scheduling
and TM (NetTM). In its current form, UDHCP is
unable to exploit flow-affinity scheduling.

there is an intervening memory reference to cause a clear,
resulting in a false conflict (which hurts performance but
not correctness). We are hence motivated to support version
numbers that are as large as possible.

3) Decoupling from the Data Cache Because signatures
track transactional accesses, optimistic modifications are
allowed to spill from the data cache to next level of memory
(in this case off-chip), which is essential to support our
benchmarks that exhibit large write sets (Table 2). In the
event of a conflict, all optimistic modifications are un-done
by flushing appropriately the undo-log (for both on-chip and
off-chip locations).

4) Fast Commits Commits in NetTM have a zero-
cycle overhead: main memory is eagerly modified, hence
to commit we need only discard the corresponding undo-log
by simply resetting its write pointer. For our applications,
transactions commit in the common case: when measured
at maximum saturation rate in our HTM system simulator,
67%, 78%, 97% and 79% of the transactions commit
without aborting for NAT, Classifier, Intruder2, and
UDHCP respectively.

6.3 Managing Transaction Conflicts
When a conflict between two transactions is detected,

there are many options for how long to stall or when to
restart after aborting [44]. Stalling approaches require
frequent re-validation of the read and write sets of the
stalled transaction, and can lead to live-lock (if a stalled
transaction conflicts with a repeatedly retrying transaction),
hence for simplicity we unconditionally abort and restart any
transaction that causes a conflict. To prevent restarts from
impeding unaborted transactions, we delay restarts until a
commit occurs in the system.

7. RESULTS
In this section we evaluate the performance of NetTM

relative to NetThreads—in other words we measure the
value-added of TM support over support for only con-
ventional lock-based synchronization, for a multithreaded
multicore. Figure 7 shows the resulting throughput of the
different synchronization alternatives, normalized to that of
the conventional-locks-only approach (i.e., NetThreads). We

report the maximum sustainable packet rate for a given
application as the packet rate with 90% confidence of not
dropping any packet over a five-second run—thus our results
are conservative given that network appliances are typically
allowed to drop a small fraction of packets.

The remainder of this section analyzes these results in
detail. We begin by evaluating the important alternative of
flow-affinity scheduling for NetThreads.

7.1 Flow-Affinity Scheduling for NetThreads
A simple way to avoid lock contention is to schedule

packets from the same flow (i.e., that are likely to contend)
to the same hardware context (thread context or CPU). Such
a scheduling strategy could potentially lower or eliminate the
possibility of lock contention, although by forcing critical
sections to be executed serially and threads to wait on each
other. We implement flow-affinity scheduling by modifying
the source code of our applications such that, after receiving
a packet, a thread can either process the packet directly or
enqueue (in software with a lock) the packet for processing
by other threads. The global shared data structures must
be fractionable, replicated or partitioned (in this case)
such that this packet scheduling results in fewer data
dependences. In Figure 7 we evaluate two forms of flow-
affinity, where packets are either mapped to a specific one
of the two CPUs (CPU-Affinity), or to a specific one of the
eight thread contexts available across both CPUs (Thread-
Affinity).

Flow-affinity is determined for NAT and Classifier by
hashing the IP header fields, and for Intruder2 by ex-
tracting the flow identifier from the packet payload. We
cannot evaluate flow-affinity for UDHCP because we did not
find a clear identifier for flows that would result in parallel
packet processing, since UDHCP has many inter-related
critical sections (as shown in Figure 1). To implement
a reduced lock contention for the flow-affinity approaches
we (i) replicated shared data structures when necessary,
in particular hash-tables in NAT and Classifier and (ii)
modified the synchronization code such that each CPU
operates on a separate subset of the mutexes for CPU-

Affinity, and uses no mutexes for Thread-Affinity.
Figure 7 shows that flow-affinity scheduling only improves

Classifier. NAT shows a slight improvement for CPU-based
affinity scheduling and otherwise NAT and Intruder2 suffer
slowdowns due to load-imbalance: the downside of flow-
affinity scheduling is that it reduces flexibility in mapping
packets to threads, and hence can result in load-imbalance.
The slowdown due to load-imbalance is less pronounced for
CPU-Affinity because the packet workload is still shared
among the threads of each CPU.

7.2 TM via NetTM
Figure 7 shows that NetTM can achieve throughput

improvements of 6%, 57% and 54% for NAT, Classifier

and UDHCP relative to NetThreads, by reducing false syn-
chronization and exploiting the optimistic parallelism avail-
able across critical sections. TM is particularly useful in
enforcing synchronization only when necessary around the
global hash table in NAT and Classifier. Classifier has
the most speedup because its regular expression matching
depends on the data structures stored in the hash table,
so parallelizing the hash table operations allows for coarse-
grained parallelism. UDHCP also experiences a significant



speedup because the operations on the global linked list
of IP lease records are coarse grained and can often be at
least partially overlapped. Figure 7 also shows that overall
TM outperforms the best performing flow-affinity approach
by 4% for NAT and 31% for Classifier, while requiring no
special code modification nor program analysis to determine
how to privatize global data structures and to dispatch
packets to those partitions as in the flow affinity approach
explained in Section 7.1.

Despite having a high average commit rate, Intruder2

has a throughput reduction of 8%: optimistic parallelism
is difficult to extract in this case because Intruder2 has
short transactions (Table 2) and an otherwise high CPU
utilization such that any transaction abort directly hinders
performance. The cost of failed speculation includes the
instructions speculatively executed but aborted, the atomic
flushing of the undo-log and the reduced parallelism inside
a multithreaded core experienced while aborted threads
are de-scheduled for a transaction restart. The case of
Intruder2 therefore demonstrates that TM isn’t necessarily
the best option for every region of code or application.
One advantage of NetTM is that the programmer is free
to revert to using locks since NetTM integrates support for
both transactions and locks.

While there are many possible further code transforma-
tions possible to improve TM performance (e.g. minimizing
undo-log size or privatizing variables), our experience with
our full-system simulator shows that the main potential
source of further improvement resides in addressing peaks
of serialization that trigger packet drops that thus limit
the maximum system throughput. From an architectural
standpoint, we believe that the most fruitful avenues for
speedups are in addressing those bursts of reduced paral-
lelism using application-specific (i) contention management
to throttle a thread to avoid repeated conflicts, and (ii) more
expressive signatures that only report conflicts on true data
dependences.

8. RELATED WORK
There is a large body of work studying the design space

of programming models for network devices. Mudigonda et
al. [45] show that the minimum set of hardware features for
a network processor to be simple to program and efficient
are data-caching to exploit data locality, and multithreading
to exploit parallelism and to hide long cache-miss latencies.
Our NetThreads system implements both features, but
the programmer is left to properly synchronize shared
data access between the threads with locks. The need
and the effects of inserting synchronization has long been
understood for packet processing on multicores [46]. The
Aspen project [47] presents a survey of many projects
that focus on expressing parallelism by decomposing an
application into a pipeline of modules, often linked together
with new programming language idioms. Proposing similar
automated pipeline decompositions to extract parallelism,
compiler efforts [29, 31] either avoid replicating stateful
pipeline stages or use locks to ensure correctness. Alterna-
tively, it is possible to mitigate locks by distributing packets
to different pipeline stages based on affinity approaches [37,
48] like the one that we implement in this paper. The
MultiLayer project [37] reports performance gains with
such affinity scheduling because of increased instruction and
data locality. However, modern network processors have

considerably more memory available than in that study:
e.g. the NFP-32xx [49] processors have 20 times more
local memory and 160 times more instruction storage. This
makes instruction and data locality arguably less important
than efficiently managing the parallelism across many cores.
While speculative execution was previously proposed for
packet processing [6, 7], to our knowledge this paper is the
first evaluation with a real system and stateful and control-
flow intensive applications. While we do not quantitatively
measure the increased ease of programmability of transac-
tional memory for packet processing, we rely on prior efforts
to do so in other application domains, e.g. Rossbach et
al. [9] demonstrated that over 70% of a pool of 237 student
programmers made errors with fine-grained locking on a
multiplayer game programming assignment, while less than
10% made errors with transactions.

9. CONCLUSIONS
In this paper we have shown that many complex packet

processing applications written in a high-level language, es-
pecially those that are stateful, are unsuitable to pipelining.
Flow-affinity scheduling can mitigate lock contention for
certain applications, assuming the code has such affinity
and the programmer is able and willing to replicate and
provide scheduling for global data structures as necessary.
However, we have demonstrated that transactional memory
(TM) provides the best overall performance in most cases,
by exploiting the parallelism available in the processing of
packets from independent flows, while allowing the most
flexible packet scheduling and hence load balancing. Our
NetTM implementation makes synchronization (i) easier,
by allowing more coarse-grained critical sections and elim-
inating deadlock errors, and (ii) faster, by exploiting the
optimistic parallelism available in many concurrent critical
sections. For multithreaded applications with shared data
and synchronization, we demonstrated that NetTM can
improve throughput by 6%, 55%, and 57% over our Net-
Threads locks-only system, although TM is inappropriate
for one application due to short transactions that frequently
conflict.
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