
Bayesian Analysis (2006) 1, Number 3, pp. 385–402

The Case for Objective Bayesian Analysis

James Berger∗

Abstract. Bayesian statistical practice makes extensive use of versions of ob-
jective Bayesian analysis. We discuss why this is so, and address some of the
criticisms that have been raised concerning objective Bayesian analysis. The dan-
gers of treating the issue too casually are also considered. In particular, we suggest
that the statistical community should accept formal objective Bayesian techniques
with confidence, but should be more cautious about casual objective Bayesian
techniques.
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1 Introduction

This is not meant to be a general introduction to objective Bayesian analysis. Indeed,
little space is spent in actually defining objective Bayesian analysis, or describing my
favorite approaches. The article instead simply addresses the debate as to the value of
objective Bayesian versus subjective Bayesian analysis. Note that, in practice, I view
both objective Bayesian analysis and subjective Bayesian analysis to be indispensable,
and to be complementary parts of the Bayesian vision. But, in this debate, I will be
focusing on the strengths of objective Bayes and the weaknesses of subjective Bayes.

Section 1 sets the stage, outlining the framework in which I am considering the debate.
Section 2 outlines the case for use of objective Bayesian methods; Section 3 considers
the arguments against objective Bayesian analysis; and Section 4 considers the dangers
of too-casual objective Bayesian analysis.

1.1 Probability

Probability can be formally derived from a variety of axiom systems, but intuition that
people have concerning probability does not arise from any one such system, and so I do
not view it to be useful to restrict consideration to a single definition. Thus I will simply
view probability as a primitive concept, something that satisfies the standard rules of
probability and is used to describe an individual’s (or group’s) “degree of belief” in the
occurrence of an event. This is not as tidy as the subjectivist position on probability,
but it allows access to objectivist Bayesianism by many who would not accept the
subjectivist definition.
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1.2 Philosophical viewpoints

There is no unanimity as to the definition of objective Bayesian analysis, nor even
unanimity as to its goal. Indeed, there are at least the following four philosophical
positions:

1. A major goal of statistics (indeed science) is to find a completely coherent ob-
jective Bayesian methodology for learning from data. This is exemplified by the
attitudes of Jeffreys (1961) and Jaynes (1999) (although Kass and Wasserman
(1996) suggests that the viewpoint of Jeffreys may have gradually changed to
reflect something closer to Viewpoint 3 below).

2. Objective Bayesian analysis is the best method for objectively synthesizing and
communicating the uncertainties that arise in a specific scenario, but is not nec-
essarily coherent in a more general sense.

3. Objective Bayesian analysis is a convention we should adopt in scenarios in which
a subjective analysis is not tenable.

4. Objective Bayesian analysis is simply a collection of adhoc but useful methodolo-
gies for learning from data.

There is little disagreement as to 4), at least among Bayesians who have done extensive
data-analysis. 2) asks for something rigorous – but less so than 1) – namely, definition of
optimal objective Bayesian procedures in light of a well-defined scenario. For instance,
the scenario might be as specific as “inference for the correlation coefficient from a
bivariate normal distribution.” One approach in this direction (that I very much like)
is the reference prior approach of Bernardo (1979). Another such specific scenario and
recommendation is “for a group-invariant problem involving an amenable group, use
the right-Haar measure” (see Berger (1985) for a review). 3) suggests the still weaker
view that objective Bayesian analysis should just be treated conventionally, with the
community formally agreeing to use certain default procedures when subjectivity cannot
be incorporated into the prior. For instance, when considering tests or models that
have differing dimensions, it seems impossible to rigorously define a best method of
communication, so that we will likely have to settle for conventional methods.

My general view is that 1) is not attainable; 2) is often attainable and should be done
if possible; but often (as in most testing or model selection problems) the best we can
hope for is 3).

1.3 Should we be using the word “objective”?

Many Bayesians object to the label “objective Bayes,” claiming that it is misleading to
say that any statistical analysis can truly be objective. I agree with this at a philosoph-
ical level (cf. Berger and Berry (1988)), because the process of data analysis typically
involves a host of subjective choices, such as model building, and these choices will
typically have a much greater effect on the answer than will such things as choice of
prior distributions for model parameters.
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Model-building is not typically part of the objective/subjective debate, however –
in part because of the historical success of using models, in part because all the major
philosophical approaches to statistics use models and, in part, because models are viewed
as “testable,” and hence subject to objective scrutiny. It is quite debatable whether these
arguments are sufficient to remove model choice from the objective/subjective debate,
but I will simply follow statistical (and scientific) tradition and do so.

The context of my discussion, therefore, will be the choice of prior distributions for
parameters of statistical models. In this domain, I feel that there are a host of practical
and sociological reasons to use the label “objective” for priors of model parameters that
appropriately reflect a lack of subjective information. Other names for this approach
have been suggested – such as noninformative, reference, default, conventional, and
non-subjective – but none carries the simplicity or will carry the same weight outside of
statistics as “objective.” The statistics profession, in general, hurts itself by not using
attractive names for its methodologies, and we should start systematically accepting
the “objective Bayes” name before it is co-opted by others.

1.4 History

A common misconception is that Bayesian analysis is a subjective theory; this is nei-
ther true historically nor in practice. The first Bayesians, Bayes (see Bayes (1763))
and Laplace (see Laplace (1812)), performed Bayesian analysis using a constant prior
distribution for unknown parameters, although the motivations of each in doing so were
considerably more sophisticated than simply stating that each possibly value of the
parameter should receive equal prior weight. Indeed, this approach to statistics, then
called “inverse probability” (see Dale (1991)) was central to statistics for most of the
nineteenth century, and was highly influential in the early part of the twentieth century.
Criticisms of only using a constant prior distribution led to alternative approaches to
statistics being developed, such as the frequentist school and the Fisherian school. Ob-
jections to these philosophies – primarily based on the notion that statistical actions
should be coherent in various senses – resulted in the rapid growth of the subjective
Bayesian school of statistics in the last half of the 20th century. Notice, however, that
the subjective Bayesian school did not become a serious component of Bayesianism until
nearly 200 years of highly successful objective Bayesian practice.

During the rise of the frequentist and Fisherian schools, the objective Bayesian school
did not disappear. Indeed, Jeffreys (see Jeffreys (1961)) was introducing significant
refinements of the inverse probability theory, refinements which eliminated most of the
earlier objections to inverse probability. Most of the applied Bayesian analyses I see
today follow the Laplace-Jeffreys objective school of Bayesian analysis, although often
with additional modern refinements.

As mentioned above, the most familiar element of the objective Bayesian school is the
use of objective prior distributions, designed to be minimally informative in some sense.
The most famous of these is the Jeffreys-rule prior (see Jeffreys (1961)). Reference priors
(Bernardo (1979) and Berger and Bernardo (1992)) are a refinement of the Jeffreys-rule
priors for higher dimensional problems and have proven to be remarkably successful from
both Bayesian and non-Bayesian perspectives. Maximum entropy priors (see Jaynes
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(1999)) are another well-known type of noninformative prior (although they often also
reflect certain informative features of the system being analyzed); related are minimal
description length andminimal message length priors (cf. the Computer Journal: special
issue on Kolmogorov complexity and algorithmic information theory, Volume 42, Issue 4:
1999). Invariance priors, as mentioned above, matching priors (see Datta and Mukerjee
(2004)), and admissible priors (cf. Berger et al. (2005)) are other approaches being
extensively studied today. A number of other approaches, such as data translated
likelihood priors (cf. Box and Tiao (1973)) and maximal data information priors (cf.
Zellner (1977)) have been extensively studied in the past. Finally, the fiducial approach
(cf. Fisher (1930)) and the structural approach (cf. Fraser (1968)) were developed
as alternatives to objective Bayesian analysis, and typically have objective Bayesian
interpretations. See Kass and Wasserman (1996) for a review of methods for selecting
noninformative priors.

A quite different area of the objective Bayesian school is that concerned with tech-
niques for default model selection and hypothesis testing. We include some comments
about these problems in the article, but they are of a distinct enough nature (and are
of enough difficulty technically and conceptually) that we do not focus upon them.

There are two other areas of Bayesian statistics that are, depending on one’s point
of view, highly related to objective Bayesian analysis. One is robust Bayesian analysis,
which is discussed in Section 3.3. The other is nonparametric Bayesian analysis which,
in some sense, attempts to do for model selection what objective Bayesian analysis does
for selection of priors for parametric models. Discussion of nonparametric Bayesian
analysis would take us too far afield.

2 Motivations for Objective Bayesian Analysis

2.1 The appearance of objectivity is often required

This is at once the heart, and the superficiality, of the objective Bayesian position.
Scientists hold up objectivity as the ideal of science, but often fail to achieve it in rather
spectacular fashion. This does not give any breathing room for statistics, however,
because it is statistics that the scientists often call upon to provide objective validation of
what they do. Thus the (arguably correct) view that science should embrace subjective
statistics falls on deaf ears; they come to statistics in large part because they wish it to
provide objective validation of their science.

Superficiality of the appearance of objectivity is mentioned above because this soci-
ological rationale for objective Bayesian analysis does not reflect the depth of what it
actually achieves – a readily understandable communication of the information in the
observed data, as communicated through a statistical model, for any scientific question
that is posed. In addition, we will argue that it simultaneously achieves what should
be a major goal of Bayesianism – ensuring that answers are conditional on the data
actually obtained – while at the same time respecting the frequentist notion that the
methodology must ensure success in repeated usage by scientists.

Regulatory analysis by government is another regime in which the appearance of
objectivity is highly valued. In a different world, clinical trials for a new drug would
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incorporate the subjective opinions of all scientists involved but, since most of the
scientists would be from the interested pharmaceutical company, regulatory agencies
instead prefer to base their analyses on objective methodology. There are contexts
– such as regulation of medical devices – where it is arguably essential to utilize the
subjective Bayesian approach. And there are ethical reasons why it might become
necessary for clinical trials to be done in a subjective Bayesian fashion (cf. Kadane
(1996)). But keeping the appearance of objectivity, to the extent possible, will likely
remain a major goal of regulatory agencies.

Many more scenarios could be listed, but would be superfluous. Statistics owes its
central presence in science and life to the facts that (i) it is enormously useful for
prediction; (ii) it is viewed as providing an objective validation for science. Discarding
the latter would lead to a considerable downgrading of the value placed on statistics.

2.2 Most statistics is not done by statisticians

For whatever reasons, it is not common for subjective Bayesian statistical analyses to
be done by non-statisticians. Indeed, one often hears the comment, “I do not want to
do a subjective analysis, and hence I will not use Bayesian methodology.” This is often
a tragedy; one can still take advantage of the many benefits of Bayesian analysis, even
if a subjective Bayesian analysis is not performed. Among the many such benefits are:

• Highly complex problems can be handled, via MCMC.

• Very different information sources can easily be combined.

• Multiple comparisons are automatically accommodated.

• Bayesian analysis is an automatic “Ockham’s razor,” naturally favoring simpler
models that explain the data.

• The methodology does not require large sample sizes.

• Sequential analysis (e.g. clinical trials) is much easier.

Here is a typical example of the simplicity of objective Bayesian methods in use by
non-statisticians.

Example 1. Medical diagnosis (Mossman and Berger (2001)): Within a population for
which p0 = Pr(Disease D), a diagnostic test results in either a Positive (+) or Negative
(–) reading. Let p1 = Pr(+ |patient has D) and p2 = Pr(+ |patient does not have D).
By Bayes’ theorem,

θ = Pr(D|+) =
p0 p1

p0 p1 + (1− p0)p2
.

In practice, the pi are typically unknown but, for i = 0, 1, 2, there are available (indepen-
dent) data, xi, having Binomial(xi |ni, pi) densities. It is desired to find a 100(1−α)%
confidence set for θ.
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This problem has been studied in the classical literature, using standard log odds and
delta method procedures to develop confidence sets, as well as more sophisticated ap-
proaches such as the Gart-Nam procedure (see Gart and Nam (1988)). For a description
of these methods, as applied to this problem, see Mossman and Berger (2001).

In 1999, Dr. Mossman (a psychiatrist), called me to ask if objective Bayesian analysis
could provide a simple answer to this question, since the classical approaches were either
difficult to apply or were not proving very successful in the contexts in which he was
interested. I immediately gave him the following simple objective Bayesian procedure,

utilizing the standard Jeffreys-rule priors (π(pi) ∝ p
−1/2
i (1 − pi)

−1/2) for the pi, to
compute the 100(1− α)% equal-tailed posterior credible sets for θ.

• Draw random pi from the Beta(pi |xi +
1

2
, ni − xi +

1

2
) posterior distributions,

i = 0, 1, 2, that results from using the Jeffreys-rule priors with the data.

• Compute the associated θ =
p0 p1

p0 p1 + (1− p0)p2
.

• Repeat this process 10, 000 times.

• The α/2 and 1 − α/2 quantiles of these 10,000 generated θ form the desired
confidence limits. (In other words, simply order the 10,000 values of θ, and let the
confidence interval be the interval between the 104 (α/2)-th and 104 (1− α)/2-th
values.)

This is probably not the optimal objective Bayesian analysis (since it did not attempt
to find the optimal objective prior, given that θ was the parameter of interest), but it
worked very well (as will be seen in the next section).

Dr. Mossman was able to implement this procedure on an Excel spreadsheet with
a few hours work, and so he (and psychiatry) now have a simple and easy to use pro-
cedure, routinely usable on a host of applications. In contrast, the subjective Bayes
approach would require separate analyses for each individual problem, and would re-
quire a considerably higher level of training of the psychiatrists (given the difficulties of
accurate subjective elicitation). In addition, there would be a considerable barrier to
implementation of the subjective Bayesian approach because of the scientific arena in
which this is being used.

2.3 Unification of statistics by objective Bayesian methods

Bayarri and Berger (2004) review the vast literature showing that objective Bayesian
methods are the most promising route to the unification of Bayesian and frequentist
statistics. Consider, for instance, the medical diagnosis example.

Example 1 (continued): Dr. Mossman was not a Bayesian, and indeed wanted a
frequentist confidence interval. To convince him that the Bayesian credible interval
is actually an excellent frequentist confidence procedure, a large simulation study was
performed. Table 1 gives typical results from this simulation for the objective Bayesian
method, along with the three frequentist methods mentioned above. It is based on a
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simulation that repeatedly generates data from binomial distributions with sample sizes
20 and the indicated values of the parameters (p0, p1, p2). For each generated triplet
of data, the 95% confidence interval is computed by the studied procedures, and it is
noted whether the interval contains the true θ or misses to the left or right. The entries
in the table are the long run proportion of misses to the left or right. Ideally, these
proportions should be 2.5% and, at the least, their sum should be 5%.

Clearly the objective Bayes interval has better performance in this regard than any
of the classically derived confidence intervals. Furthermore, it can be seen that the
objective Bayes intervals are, on average, smaller than the classically derived intervals.
(See Mossman and Berger (2001) for more extensive computations.) This combination
of small confidence sets with correct frequentist coverage has been repeatedly shown to
happen when the objective Bayesian approach is used to derive confidence sets.

Table 1: The probability that the nominal 95% interval misses the true θ on the left
and on the right, for the indicated parameter values, and when n0 = n1 = n2 = 20.

(p0, p1, p2) O-Bayes Log Odds Gart-Nam Delta

( 1

4
, 3

4
, 1

4
) .0286, .0271 .0153, .0155 .0277, .0257 .0268, .0245

( 1

10
, 9

10
, 1

10
) .0223, .0247 .0017, .0003 .0158, .0214 .0083, .0041

( 1

2
, 9

10
, 1

10
) .0281, .0240 .0004, .0440 .0240, .0212 .0125, .0191

This but scratches the surface of the objective Bayesian and frequentist interface. In
Bayarri and Berger (2004), a variety of other aspects of this interface are considered,
including a host of other areas in which objective Bayesian methodologies can be used to
obtain excellent frequentist procedures, such as hierarchical, multilevel, or mixed model
analysis, and problems that involve many nuisance parameters. Also discussed is the role
of objective Bayesian analysis in implementation of conditional frequentist analysis, a
methodology that can be much superior to traditional unconditional frequentist analysis.

On the other hand, Bayarri and Berger (2004) review some of the many ways that
frequentist notions are valuable in the construction of objective Bayesian methodology,
including the development of objective prior distributions and the creation of a variety
of simplifications based on asymptotic or other approximations.

2.4 Uses of objective Bayesian analysis to a subjectivist

Most subjectivists do make at least some use of objective Bayesian methods in practice.
It is worthwhile discussing some of the reasons why this is so.

Use subject matter experts wisely. One only has limited time to elicit models and
priors from the experts in a problem, and usually it is most efficient to use the available
expert time for modeling, not for prior elicitation. Indeed, in the model construction
phase of an analysis, it is usually quite counterproductive to perform subjective prior
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elicitation about parameters of models, since the models will likely not even be those
used at the end.

Another aspect of this is that statistical model building is typically an activity with
which experts will have some familiarity, whereas they will typically not have familiarity
with prior elicitation. This last means that, with the subjective Bayes approach, the
already scarce time must be used to train them in elicitation, for otherwise the priors
obtained can be quite bad.

Example 2. My first large-scale Bayesian analysis was in Andrews et al. (1993). It in-
volved a roughly 3000 parameter problem, with many interweaving levels of hierarchical
modeling. For a number of these parameters there was effectively no data, so a massive
subjective elicitation effort was undertaken. While the elicitation was done with statisti-
cally sophisticated engineers, it was enormously difficult and expensive, with extensive
training needed. All the usual elicitation mistakes were encountered: variability was
initially much too small (virtually never would different experts give prior distributions
that even overlapped); there would be massive confusions over statistical definitions
(e.g., what does a positive correlation mean?); etc. Since there was no data available
about these parameters, one of the severe problems in elicitation was at least avoided,
namely how to elicit the prior when the expert has already seen the data (the usual
situation that a statistician faces).

For the many parameters for which there was data, however, all of the expert time was
used to assist model building. It was necessary to consider many different models, and
expert insight was key to obtaining good models; there simply was no extra available
expert time for prior elicitation. Also, the analysis was related to government regula-
tion of fuel efficiency, so it was important for the industry to present an analysis that
appeared to be as objective as possible (and, in essence, the model parameters for which
objective priors were used were the most contentious of the parameters politically).

This analysis employed one of the largest subjective elicitations I have seen, yet it
was still the case that the vast majority of parameters in the problem were handled with
objective priors. In subsequent big problems, I have tended to be forced, just from these
practical considerations, to use an even higher ratio of objective to subjective priors.

Determining if subjective elicitation is needed. An objective Bayesian analysis can
be run initially, to assess if subjective priors are even needed. (Perhaps the data will
“swamp the prior.”)

Objective Bayes as a reference. Subjective elicitation can easily result in poor prior
distributions, because of systematic elicitation bias (e.g., the almost universal tendency
to underestimate the actual amount of uncertainty about unknowns) and the fact that
elicitation typically yields only a few features of the prior, with the rest of the prior
(e.g., its functional form) being chosen in a convenient, but possibly inappropriate, way.
It is thus good practice to compare answers from a subjective analysis with answers
from an objective prior analysis. If there are substantial differences, it is important
to check that the differences are due to features of the prior that are trusted, and not
due to either unelicited “convenience” features of the prior or suspect elicitations (e.g.,



James Berger 393

too-small prior variances).

Use for nuisance parameters. A common and reasonable practice is to develop subjec-
tive priors for the important parameters or quantities of interest in a problem, with the
unimportant or “nuisance” parameters being given objective priors.

Inappropriateness of standard (e.g., conjugate) priors. Through study of objective
priors, one can obtain insight into possibly bad behavior of standard (e.g., conjugate)
subjective priors. An example is use of the Inverse Wishart distribution as a conjugate
prior for a covariance matrix. Yang and Berger (1994) show a very unsettling property
of this prior, namely that it forces apart eigenvalues of the covariance matrix.

2.5 Teaching of elementary statistics is greatly simplified

Most elementary statistical procedures have an objective Bayesian interpretation (and
indeed many were first derived in the inverse probability days of objective Bayesianism).
Teaching the procedures with this interpretation is much easier than teaching them with
frequentist interpretations: it is quite a bit easier to understand “θ is in the interval
(2.31, 4.42) with degree-of-belief probability 0.95” than to understand “the confidence
procedure C(x) will contain θ with probability 0.95 if it were repeatedly used with
random data from the model for a fixed θ, and the interval for the given data happened
to be (2.31, 4.42).” Teaching objective Bayesian analysis is also considerably easier than
teaching subjective Bayesian analysis, in that one does not need to teach the difficult
subject of elicitation, which requires significant understanding of probability. Note
that I am referring here to courses where students are not expected to be able to derive
procedures; where the goal is simply to teach then to use the procedures and understand
the interpretation of the answers.

3 Arguments Against Objective Bayesian Analysis

3.1 Impropriety

Objective Bayesian procedures often utilize improper prior distributions, which can
lead to the worry that one is using “improper probability theory.” The major objective
Bayesian theories address this, however, by establishing that the posterior distributions
that result are proper, and can be justified as limiting approximations to proper prior
posteriors.

The reference prior approach seems particularly attractive from this regard, virtu-
ally always yielding probabilistically justifiable proper posterior distributions. The
Jeffreys-rule prior is usually also successful in this regard. In contrast, the constant
prior will fairly often result in improper posteriors. Why the reference and Jeffreys-rule
approaches succeed in this regard is not well understood.
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3.2 Model and criterion dependence

The major objective Bayesian schools require consideration of the statistical model
in choice of the objective prior. For instance, the reference prior school defines the
prior via the (asymptotic) model-averaged information difference between the prior and
the posterior; the matching prior approach seeks priors that yield optimal frequentist
confidence sets for the given model, and the invariance approach is a model-dependent
concept. Having priors depend on the model can lead to violations of basic principles,
such as the likelihood principle and the stopping rule principle (cf. Berger and Wolpert
(1984)).

The most common response of objective Bayesians is that “objectivity” can only be
defined relative to some frame of reference, and the natural frame for statistics is the
statistical model. Hence violation of principles such as the likelihood principle is the
price that has to be paid for objectivity. In practice, violations of the likelihood principle
also tend to be extremely minor, with the answers (for the same likelihood function)
being virtually the same from one model to another.

It is also the case that objective priors can vary depending on the goal of the analysis
for a given model. For instance, in a normal model, the reference prior will be different
if inference is desired for the mean µ or if inference is desired for µ/σ. This, of course,
does not happen with subjective Bayesianism. Again, the objective Bayesian responds
that objectivity can only be defined relative to a frame of reference, and this frame
needs to include the goal of the analysis.

3.3 Incoherency

Because objective Bayesian methods can violate principles such as the likelihood princi-
ple, they can be incoherent according to standard definitions of coherence. It is worth-
while to discuss what this does, and does not, mean.

There have been a huge variety of axiomatic systems that seek to define coherent in-
ference or coherent decision making, and they all seem to lead to some form of Bayesian-
ism. The typical conclusion of these systems is that the analysis must be compatible
with some form of subjective Bayesianism to be fully coherent. At the end of this sec-
tion, however, we examine whether the usual forms of subjective Bayesianism are really
coherent in practice.

Robust Bayesian analysis is a coherent system that is implementable in practice. In
this approach subjective specifications are intervals (e.g. P (A) ∈ (0.45, 0.5)), and the
analysis considers all priors compatible with these specifications and results in intervals
as the posterior conclusions. The foundational arguments for robust Bayesian analysis
are compelling (cf. Walley (1991)) and there is an extensive literature on the devel-
opment of robust Bayesian methodology, much of it reviewed in Berger (1994) and
Ŕıos Insua and Ruggeri (2000). Unfortunately, robust Bayesian analysis has not caught
on in statistics, primarily because of technical issues: the interval specifications that
are easy to work with seem to result in posterior intervals that are too wide for use in
practice, and refining the class of prior distributions to eliminate unreasonable priors
leads to computational challenges that limit applicability. This could change as under-
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standing and computation advances, but robust Bayesian analysis is currently much less
utilized than objective Bayesian analysis.

A quite different coherent subjective Bayesian approach is the Bayes linear analysis
approach (cf. Goldstein (1999)) which is based on making expectation, rather than
probability, the primitive in dealing with uncertainty. Modulo this assumption (which
practically implies that one approaches subjective Bayesian analysis through elicitation
of means, variances and covariances of direct quantities of interest, as opposed to the
standard statistical use of models and priors on the parameters of models), the approach
has appeal in many contexts. Discussion of the strengths and weaknesses of this ap-
proach would be an article in itself, so we will remain focused on the more traditional
subjective Bayesian analyses here. Indeed, any subsequent reference to “subjective
Bayesian analysis” should be understood as not necessarily referring either to robust
Bayesian analysis or Bayes linear analysis.

Another issue is that of properly defining coherency when the goal of the analysis is
communication of information. Let’s consider this question in terms of two commonly
mentioned “coherency violations” of objective Bayesian analysis.

Betting incoherency is one of the very common forms of coherency; the idea is to
ensure that any stated probability specifications cannot be beaten by a “Dutch book,”
i.e., an opponent cannot formulate a betting strategy according to which s/he will
for sure win money from you (in some repetitive version of the game) if you were to
bet according to your probability specifications. This seems reasonable, but consider
the simple example of observing data x ∼ N(θ, 1), where the goal is to objectively
communicate the probability that θ < x. Almost any objective approach (Bayesian,
frequentist, fiducial) would say the objective probability is 1/2, but this is betting
incoherent (see Robinson (1979)). Betting incoherency thus seems to be too strong a
condition to apply to communication of information.

Marginalization paradoxes can arise from objective priors, as shown in Dawid et al.
(1973). Here is an example, from Berger and Sun (2006), which raises the interesting
issue of whether avoidance of a marginalization paradox is fundamentally necessary.

Example 3. The bivariate normal distribution of (x1, x2) has mean (µ1, µ2) and co-

variance matrix Σ =

(

σ2
1

ρσ1σ2

ρσ1σ2 σ2
2

)

, where ρ is the correlation between x1 and x2.

For a sample x = {(x11, x21), (x12, x22), . . . , (x1n, x2n)}, the sufficient statistics are
x = (x1, x2)

′, where xi = n−1
∑n

j=1 xij , and

S =

(

s11 r
√
s11s22

r
√
s11s22 s22

)

,

where sij =
∑n

k=1(xik − xi)(xjk − xj), r = s12/
√
s11s22.

An interesting objective prior here is the right-Haar prior (corresponding to the tri-
angular group) π(µ1, µ2, σ1, σ2, ρ) = σ−2

1 (1−ρ2)−1. The resulting posterior distribution
for ρ, π(ρ | x), can be written constructively (i.e., in a way that simulation from the
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posterior is straightforward) as

ψ



− Z∗

√

χ2∗
n−1

+

√

χ2∗
n−2

√

χ2∗
n−1

r√
1− r2



 , where ψ(x) =
x√

1 + x2
, (1)

Z∗ is a standard normal random variable, and χ2∗
n−1 and χ2∗

n−2 are chi-squared ran-
dom variables with the indicated degrees of freedom, all random variables being drawn
independently to obtain a sample from the posterior.

This situation yields a marginalization paradox, as follows:

• Proper priors have the following intuitively appealing property in multiparameter
problems: if the posterior for a single parameter ρ depends only on a statistic r,
and the density of r depends only on ρ, then the posterior density of ρ is propor-
tional to the density of r | ρ times the marginal prior for ρ. If an improper objective
prior violates this property, it is stated to yield a marginalization paradox.

• From (1), it is clear that the posterior π(ρ | x) depends only on r. (π(ρ | x) also
happens to be the fiducial density for ρ, as found by Fisher (1930), although this
does not relate to the issue of marginalization paradoxes.)

• It is a fact that the density of r, p(r | ρ), depends only on the parameter ρ.

• It was shown in Brillinger (1962) that there exists no prior density π(ρ), such that
π(ρ) p(r | ρ) ∝ π(ρ | x), so that the objective Bayes posterior/fiducial density
for ρ cannot be produced in a Bayesian way starting just from r, resulting in a
marginalization paradox.

This example of a marginalization paradox is interesting because, in all other respects,
the posterior π(ρ | x) seems exemplary. It arises from a highly recommended prior
distribution (the right-Haar prior), yields the fiducial distribution for ρ, and also yields
exact frequentist inferences. For instance, Bayesian 100(1 − α)% credible sets, C(r),
for ρ, when considered as frequentist confidence intervals, can be shown to have exact
frequentist coverage of 1− α. It is, at the very least, surprising that an analysis that is
simultaneously correct from Bayesian, frequentist, and fiducial perspectives is incoherent
according to the marginalization paradox.

Note that some approaches to objective Bayesian analysis, such as the reference prior
approach, do seem to avoid the marginalization paradox. For instance, Bayarri (1981)
shows that the reference prior for ρ in the bivariate normal example is π(µ1, µ2, σ1, σ2, ρ) =
σ−1

1 σ−1
2 (1 − ρ2)−1, and this does not have a marginalization paradox. But this prior

does not result in posterior credible intervals that have exact frequentist coverage, so
there is a fascinating philosophical tension.

Is subjective Bayesian analysis coherent in practice? The idealization of subjective
Bayesian analysis is of course coherent, but this idealization is not implementable, except
for trivial versions such as always estimate θ ∈ (0,∞) by 17.35426 (a coherent rule, but
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not one particularly attractive in practice). The problem is that, to elicit all features
of a subjective prior π(θ), one must infinitely accurately specify a (typically) infinite
number of things. In practice, only a modest number of (never fully accurate) subjective
elicitations are possible, so practical Bayesian analysis must somehow construct the
entire prior distribution π(θ) from these elicitations. Is there a coherent way of turning
these elicitations into full prior distributions? Consider some standard possibilities.

Example 4. One common method of turning elicitations into full priors is to use conju-
gate priors. But conjugate priors are model-dependent (or at least likelihood-dependent)
so, depending on the experiment designed to study θ, the subjective Bayesian following
this “prior completion” strategy would be constructing different priors for the same θ,
clearly incoherent.

Example 5. Consider the scientist who is taught to elicit prior quantiles for θ and to fit
these to some prior distribution π(θ). Alternatively, the scientist might have been told
to elicit predictive distributions, and work back to the prior. Different answers would
virtually certainly result from application of these two techniques.

Example 3 (continued). Consider again the above marginalization paradox involving
ρ, and suppose the analyst has access to the subject-matter expert for subjective prior
elicitation for 3 hours. In case one, the full bivariate normal distribution is considered,
and the subjective elicitation is performed for all five parameters. Alternatively, suppose
the analyst used only the model p(r | ρ), so all the time was used to elicit the prior
for just ρ. Almost certainly the subjective Bayesian analyses would have given different
answers. So, in practice, subjective Bayesians will virtually always experience what
could be called practical marginalization paradoxes.

3.4 The multiplicity of objective Bayesian procedures

In Section 1.4, a few of the many methods for developing objective priors were men-
tioned. Inventing a new criterion for finding “the optimal objective prior” has proven
to be a popular research pastime, and the result is that many competing priors are now
available for many situations. This multiplicity can be bewildering to the casual user.

I have found the reference prior approach to be the most successful approach, some-
times complemented by invariance considerations as well as study of frequentist prop-
erties of resulting procedures. Through such considerations, a particular prior usually
emerges as the clear winner in many scenarios, and can be put forth as the recommended
objective prior for the situation. Berger et al. (2006), which is under preparation, will
be presenting such unique recommended objective priors.

4 Dangers of Casual Objective Bayesian Analysis
One of the mysteries of modern Bayesianism is the lip service that is often paid to
subjective Bayesian analysis as opposed to objective Bayesian analysis, but then the
practical analysis actually uses a very adhoc version of objective Bayes, including use
of constant priors, vague proper priors, choosing priors to “span” the range of the



398 Objective Bayesian Analysis

likelihood, and choosing priors with tuning parameters that are adjusted until the answer
“looks nice.” I call such analyses pseudo-Bayes because, while they utilize Bayesian
machinery, they do not carry with them any of the guarantees of good performance
that come with either true subjective analysis (with a very extensive elicitation effort)
or (well-studied) objective Bayesian analysis. I will briefly discuss the problem with
each of these pseudo-Bayes procedures.

It should first be noted, however, that the pseudo-Bayes approach can be extremely
effective in actual data analysis, and I do not mean to discourage this approach. It
simply must be realized that pseudo-Bayes techniques do not carry the guarantees of
proper subjective or objective Bayesian analysis, and hence must be validated by some
other route.

4.1 Use of the constant prior density

The initial criticisms of use of a constant prior density in inverse probability centered
on the inconsistency of using the same prior for any parameterization of the model.
This logical issue is rarely a serious practical concern, but there can be serious practical
difficulties with use of a constant prior density.

One such problem is that constant prior densities can often result in improper poste-
rior distributions, as was shown for a common spatial situation in Berger et al. (2001).
Another example is discussed in Berger et al. (2005), in which use of a constant density
for a covariance matrix requires twice as many normal observations for posterior pro-
priety as the problem should require. This issue is worsened by the common use today
of Markov chain Monte Carlo (MCMC) methods of computation, since they can make
it difficult to identify improper posterior distributions. In contrast, recall that reference
priors virtually always result in proper posterior distributions.

4.2 Vague proper priors

Vague conjugate priors. In general, when an improper prior produces an improper pos-
terior, using a vague proper prior can only hide—not solve—the problem. For instance,
in normal hierarchical models with a “higher level” variance τ 2, it is quite common to
use the vague proper prior density π(τ 2) ∝ τ−2(ε+1) exp (−ε′/τ2), with ε and ε

′

small.
However, as ε → 0 it is typically the case in these models that the posterior distri-
bution for τ2 will pile up its mass near 0, so that the answer can be ridiculous if ε is
too small. An objective Bayesian, who incorrectly used the related prior π(τ 2) ∝ τ−2,
would typically become aware of the problem, since the posterior would not converge
(as it will with the vague proper prior). The common perception that using a vague
proper prior is safer than using improper priors, or conveys some type of guarantee of
good performance, is simply wrong.

Use of vague proper priors will work well only when the vague proper prior is a
good approximation to a good objective prior. In the hierarchical situation men-
tioned above, for instance, it is known that π(τ 2) ∝ τ−1 is a good objective prior
(cf. Berger and Strawderman (1996)), and a good proper prior approximation to this
objective prior is π(τ 2) ∝ τ−(ε+1) exp (−ε′/τ2), which is an inverse gamma distribution.
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Truncation of the parameter space. It is a related common misconception that, to avoid
potential difficulties with improper priors, one need only choose (extreme) bounds on
the parameter space and confine analysis to this bounded space (in which the prior will
presumably be proper). For instance, a common attempt to avoid possible posterior
impropriety when using the constant prior is to choose the prior to be constant over some
(large) bounded region of Θ. This will not solve the problem, however, in that if the
posterior resulting from the constant prior were improper, then the ensuing inferences
will often be highly dependent on the actual bounds that were used. (The answers
obtained by truncating at ±K could then be very different than the answers obtained
by truncating at ±2K.) At the very least, this approach should only be used if a very
careful sensitivity study is done with respect to these bounds (and with bounds for
different parameters varying independently in the sensitivity study).

4.3 Transformation of θ

This approach consists of first transforming θ to a bounded interval – for instance, by
defining ψ = g(θ), where g : Θ→ [0, 1] is a 1−1 differentiable transformation – and then
placing an objective (but proper) prior on ψ, say π(ψ) = 1. This will typically ensure
that the posterior is proper. Note, however, that choosing g is essentially equivalent to
choosing the original prior π(θ). For instance, a simple change of variables shows that
(under mild conditions) use of π(ψ) = 1 is equivalent to use of π(θ) = |g′(θ)|, where
g′(θ) is the derivative of g(θ). This approach is thus essentially equivalent to choosing
a particular proper prior, but is guilty of hiding the fact that this has been done!

4.4 Data-Dependent Priors

We have seen that objective Bayesian priors usually depend on the model chosen for the
analysis, but it is not uncommon to see priors that actually depend on the data. These
include empirical Bayes priors, vague-proper priors specifically chosen to “span the range
of the likelihood function,” and objective priors chosen conditional on a local ancillary
(e.g., Fraser and Yuan (2004)). This last is an interesting new developing theory of
objective priors and, while data dependent, it does not involve an inappropriate double
use of the data, which is the problem that arises in the other two approaches.

Empirical Bayes priors: The empirical Bayes approach consists of somehow modeling
the prior, with the prior model having unknown hyperparameters that are estimated
by data (usually by maximum likelihood) and used in the ensuing Bayesian analysis.
Philosophically, this results in an undesirable double use of the data, but it is often
not a severe double use of the data unless the sample sizes are fairly small. More
problematic is that estimates of the hyperparameters can easily be on the boundaries of
their parameter space. In variance components problems for instance, it is quite common
that the empirical Bayes estimate of a variance component is zero, which can severely
and inappropriately affect the ensuing analysis. Thus we strongly prefer full objective
hierarchical Bayesian analysis to empirical Bayesian analysis, unless it has been shown
that the empirical Bayes analysis does approximate the full Bayesian analysis (see, e.g.,
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Kass and Steffey (1989)).

Data-dependent vague proper priors. The second common data-dependent procedure
is to choose priors that span the range of the likelihood function. For instance, one might
choose a uniform prior over a range that includes most of the mass of the likelihood
function, but that does not extend too far (thus hopefully avoiding the problem of
using a “too vague” proper prior). Another version of this procedure is to use conjugate
priors, with parameters chosen so that the prior is spread out somewhat more than the
likelihood function, but is roughly centered in the same region. The two obvious concerns
with these strategies are that (i) the answer can still be quite sensitive to the spread of
the rather arbitrarily chosen prior; and (ii) centering the prior on the likelihood is a quite
problematic double use of the data. Also, in problems with complicated likelihoods, it
can be very difficult to implement this strategy successfully.

Perhaps the most questionable of all the pseudo-Bayes procedures is to write down
proper (often conjugate) priors with unspecified parameters, and then to treat these
parameters as “tuning” parameters to be adjusted until the answer “looks nice.” At
the very least, anyone using this technique should clearly explain that this is what was
done.

In conclusion, while these pseudo-Bayesian techniques can be useful as data explo-
ration tools, they should not be confused with formal objective Bayesian analysis, which
has very considerable extrinsic justification as a method of analysis.
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