

Edinburgh Research Explorer

The case for open source software

Citation for published version:
Choi, S 2016, 'The case for open source software: The interactional discourse lab', Applied Linguistics, vol.
37, no. 1, pp. 100-120. https://doi.org/10.1093/applin/amv066

Digital Object Identifier (DOI):
10.1093/applin/amv066

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Applied Linguistics

Publisher Rights Statement:
© This is a pre-copyedited, author-produced PDF of an article accepted for publication in Applied Linguistics
following peer review. The version of record Choi, S. (2016). The case for open source software: The
interactional discourse lab. Applied Linguistics, 37(1), 100-120. 10.1093/applin/amv066 is available online at:
http://applij.oxfordjournals.org/content/37/1/100

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 25. Aug. 2022

https://doi.org/10.1093/applin/amv066
https://doi.org/10.1093/applin/amv066
https://www.research.ed.ac.uk/en/publications/df2a9832-367c-4fa1-ac31-8f996b2de49c

1

The Case for Open Source Software: The

Interactional Discourse Lab

Seongsook Choi

Moray House School of Education, University of Edinburgh

E-mail: s.choi@ed.ac.uk

Computational techniques and software applications for the quantitative content

analysis of texts are now well established, and many qualitative data software

applications enable the manipulation of input variables and the visu- alization

of complex relations between them via interactive and informative graphical

interfaces. Although advances in text analysis have helped researchers mine text

data for semantic content and identify language patterns in text with greater

facility, interactional dynamics and patterns of talk have been neglected. This

article introduces a new open-source tool, Interactional Discourse Lab. This tool

is designed to map dynamics in spoken interaction and to represent them in easily

accessible visual form, capturing aspects such as the frequency and pat- terning

of exchanges, and the distribution of turns and discourse features. It is designed

to contribute, with other analytical tools such as those used in text analysis,

to the development of interactional topographies. The paper sets the tool within a

wider case for the development of open-source software in applied linguistics

as a platform for methodological innovation.

INTRODUCTION

Both commercial and bespoke software tools for text analysis, content analysis,

quantitative and qualitative analysis are widely available and widely used, and

the multitude of functions they offer make them a convenient option [see

Lewin and Silver 2007; Evers et al. 2011 for a detailed history of Computer-

Assisted Qualitative Data AnalysiS (CAQDAS) and its functionalities, and

http://caqdas.soc.surrey.ac.uk/ for details of available software tools].
1

While

some researchers have expressed doubts about the value of such diversity,

especially given the time and effort involved in user training (Silver and Lewins

2007, 2014), a more serious problem is that most have functions designed to

serve one methodological paradigm, requiring users to work within the

parameters determined by the producer. Moreover, the aggressive marketing

of software creates a situation in which institutions may be able to support only

one package (Fielding and Lee 2002) and the cost of some soft- ware products

may be prohibitive. For this reason, many researchers are forced to prioritize

their choice of CAQDAS tools in terms of institutional availability rather than

the precise relevance of its functionality to their work, problems

mailto:s.choi@ed.ac.uk
http://caqdas.soc.surrey.ac.uk/

that may be exacerbated by a paucity of detailed documentation of analytic

and technical procedures, and critiques of software utility (Silver and

Patashnick 2011).

Although the advantages of the use of software for methodological con-

vergence have been recognized by researchers in some fields (Fielding and

Cisneros-Puebla 2009), the main response in the social sciences has been

the development of ad hoc task-function or research-project-specific tools

by the few who can programme or have the funds to employ a programmer.

These offer a precisely targeted response, but this in turn limits the range of

their applicability, which means that most researchers are forced to rely on

proprietary alternatives. However, there is recent evidence of a more col-

laborative approach to developing software tools in the area of corpus re-

search, a notable example being AntWebConc (Anthony et al. 2011),

software built through collaborative efforts of teachers, researchers, and

programmers which has led Anthony (2013) to argue the case for collab-

orative community effort in developing corpus tools. This builds on earlier

arguments by Biber et al. (1998), Mason (2008), Gries (2009), and Weisser

(2009) encouraging corpus linguists to learn programming languages to build

tools for specific tasks that existing software cannot provide. Garretson (2008)

offers information for English language researchers with programming skills

on how to design software.

The present article builds on this pioneering work. It discusses the advan-

tages, challenges, and issues associated in developing and using open-source

software (henceforth OSS) for applied linguistic analysis more generally,

arguing that this represents an opportunity for a radical re-orientation in the

use of computer-aided analysis, holding out the prospect of a new level of

methodological innovation based on collaboratively evolving platforms. In

making the case for distributed code development, it situates research

methodology within a broader theoretical shift in applied linguistics (AL)

that approaches language not from the perspective of individual cognition

but in terms of co-constructed social action. The article begins with an ex-

planation of the nature of OSS and a consideration of its benefits, proposing a

model for its use that maximizes its methodological potential. As an illustra-

tion of the model in action, the article then introduces a new open-source

tool, the interactional Discourse Lab (IDLab), a program developed by the

author using R, an open-source statistical programming language. The tool is

designed to map dynamics in spoken interaction and to represent them in

easily accessible visual form, capturing aspects such as the frequency and

patterning of exchanges, and the distribution of turns and discourse features.

It is designed to contribute, with other analytical tools such as those used in

corpus analysis, to the development of interactional topographies: different

landscapes of interaction or patterns of talk within specific domains and the

distinctive interactional contours that have been developed by groups over

time.

3

OSS IN ACADEMIC RESEARCH

Writing bespoke software is now an integral part of the research process in the

physical sciences and although researchers have traditionally kept close control

over their programs there is now an increasing requirement to publish their

source code (i.e. the inner working of the program) in academic papers. At first

sight, it may seem that releasing the source code would risk affecting author-

ship rights or ruining a potential commercial opportunity: someone can simply

copy the software, rebrand it, and sell it under their own name. There are,

however, many advantages to releasing OSS for the developer, for the users,

and, in the long run, for science itself, which explains the change in publishing

practices.

The use of OSS is well established in computer sciences and more widely in

the physical sciences. Researchers in AL and the social sciences, on the other

hand, seem to be largely unfamiliar with it, with the exception of a small

number who have programming skills and are able to write a tool to execute

tasks that are specific to their project needs and not otherwise achievable

using free or commercialized packages. This section explains what OSS is

and highlights its established features and practices in the physical sciences.

The benefits of OSS compared with closed-source software and the potential

contribution of the former to AL and social sciences research are also discussed.

What is OSS?

Software is written in abstract coding, programming languages (such as Java,

R, or Python) in which the programmer needs to be fluent. The instructions

written in this language are then turned into a list of commands that a com-

puter can understand, through a process called compilation. A user of the

software requires only the compiled version (or ‘binaries’) to run it; it contains

all the commands the computer needs to follow in order to execute the task.

Binaries are designed to be run by a computer but they are very difficult for a

human to inspect because the original set of instructions has been reduced to a

long sequence of 0s and 1s.

A program is said to be open-source when its source code is made publicly

available. Most commercial and research software tends to be distributed as

closed-source: the users have access to only the binaries (the executable ver-

sion) of the program, and while they are able to run the software, they cannot

inspect or modify it. In contrast, open-source programs publish the original

code that produced the software, known as the source code. This is written in a

programming language that can be read and understood by those familiar with

the relevant language, as well as modified.

Since the source code is publicly available, it is possible for interested and

able users to contribute to the project, from reporting bugs and improving

algorithms to extending its original version. Many tools and services are

now available that facilitate the contributions of people not involved in the

original project or software development. Contributions can take the form of

code improvement, reporting bugs, and requesting features. Examples of such

tools and services include distributed version control software like Git and

Mercurial that make it easy to submit requests and patches, and services such

as Github for developers, as well as forums and mailing lists for users. All

these are popular ways of quickly building a community of people inter- ested

in the group development of the most efficient program—an arrange- ment

that would be unthinkable in a closed-source scenario.

The case for open source

While these advantages of OSS make it an appealing option for applied lin-

guists, it is the contention of this article that taken together the use of OSS has

the potential to form the basis of a new developmental and methodological

approach with its primary focus on decentralized, distributed development,

flexible membership, and an on-going process of community-wide software

testing and debugging in a process reminiscent of Cowley’s (2007: 119) con-

cept of ‘distributed language’ and the idea that ‘[m]ulti-agent models can be

used to explore hypotheses about patterns that emerge from repeated inter-

action’. In what follows, these advantages are grouped under the acronym

‘VARIES’.

Visibility

Wren (2008) has shown how rapidly dedicated academic software vanishes after

the research has been published. When such software is also published, it saves

researchers’ time and effort involved in rewriting the same software. Publishing

the code on a public repository and attracting users into forming a community

makes research software more visible: the software is easier to track down, the

community itself advertising it through word of mouth and research practices. This

allows more people to become involved in its develop- ment. When this is the

case, the feedback and interest from the community can be quantified by the

original developer and used as evidence of the impact of their work in the same

way as citations have been used traditionally (e.g. number of contributors,

number of downloads, changes). In fact, a growing number of publications are

recognizing the effort spent on programming by supporting the publication of the

code that comes with a research manuscript (Morin et al. 2012a). For example,

both Biostatistics (Peng 2009) and PLOS Computational Biology (Prlic ́ and

Lapp 2012) have made editorial decisions to encourage code publications.

Adaptability

The adaptability of OSS allows the involvement of new researchers with differ-

ent needs, which in turn means that the software itself is less likely to fossilize

5

and become obsolete. For example, OSS developed in cloud computing is used

in cancer research (https://blog.cloudflare.com/cloudflare-fights-cancer/). It also

is not uncommon for the original developer to become less involved in their

project, while the software is kept alive by the community it built. Examples can

be found with Gnome (a Linux desktop environment) or many smaller projects

(e.g. uBlock, a browser add-on).

Reactivity

Compared with an equivalent closed-source or proprietary software, an open-

source alternative is also more reactive to user needs and the pace of research.

With more people involved, improvements are likely to happen quickly, and

thus users are more likely to give feedback as they see their issues addressed

faster than if one single, probably overworked, developer were to do it all.

Inclusivity

Because they use the software in their own research, the contributors have a

stake in making it work, encouraging what has been described as user-driven

innovation (Hippel 2001; Lerner and Tirole 2002). An illustration of this is

available in the form of the natural language processing task view (http://

cran.r-project.org/web/views/NaturalLanguageProcessing.html), a manually

curated collection of R packages dedicated to NLP.

Enhanceability

The quality of the code is likely to improve for two reasons: more people are

involved, some possibly having greater programming experience than the ori-

ginal coder, and there is added pressure on developers to write correct code

because they know that their work will be publicly scrutinized. Developers in

the public spotlight are less tempted to cut corners and more likely to follow

good software engineering principles (modularity, unit-testing). This improves

the original code and makes its output more reliable (with fewer bugs and a

clearer understanding of how the results are derived). Such practices can help

researchers with no formal training in programming feel more sure about

releasing their code public because of the natural peer review process that

occurs when the code is released. Open-source code also can then profit

from the synergy of multiple developers (Sornette et al. 2014), and the larger

a community is, the more likely bugs will be spotted and fixed: ‘given enough
eye-balls, all bugs are shallow’ (Raymond 2001: 33).

Speed

An extra advantage of producing code of good quality is that it can be re-used

for other open-source projects without re-inventing the wheel (Sojer and Henkel

2010), thus accelerating the pace of research. Additionally, while

https://blog.cloudflare.com/cloudflare-fights-cancer/
http://cran.r-project.org/web/views/NaturalLanguageProcessing.html
http://cran.r-project.org/web/views/NaturalLanguageProcessing.html

monolithic proprietary software traditionally moves slowly, with at best a

yearly release, this is in stark contrast with an open-source community like

R in linguistics: the latest research tools and techniques are available for anyone

to use, sometimes as soon as, or even before, they are officially published.

Reservations relating to OSS

Two frequent concerns about OSS in academic settings are the risk of being

‘scooped’ and the seemingly obvious forfeiture of future commercialization.

Since the software code is in the open, it is indeed possible for someone to take

it and either produce a scientific paper before the original author using this

head-start, or even simply claim it as their own. While possible, this scenario

rarely if ever plays out in reality. First, precisely because the original work is a

matter of public record, it is easy to assert ‘prior art’ (the right to authorship).

Secondly, there is overwhelming evidence that these are not treated as serious

threats: one need only consider very popular free and public pre-print reposi-

tories like arXive (http://arxiv.org/) and biorXiv (http://www.biorxiv.org/).

Thousands of manuscripts are submitted to these every week by academics

eager to share their work with their peers in advance of official recognition

through journal publication.

While open-source code can be published as is, it is best practice to accom-

pany it with an OSS licence clarifying what other developers are allowed to do

with the original code (Morin et al. 2012b). OSS licences do not necessarily

prevent future commercialization; for example, one can decide to make the

software free for research and education organizations but not for commercial

entities. In fact, rather than selling the software itself, a company’s business

model can be based on services (e.g. training, maintenance, bespoke versions),

and many successful companies use OSS as their core product [e.g. Red Hat

(linux), Oracle (MySQL), and Revolution Analytics (R)].

Given the advantages of OSS, it may be surprising that most software, and

commercial software in particular, are only available as closed-source. The case

for the closed-source alternative draws on a number of potential disadvantages

of OSS:

1. A greater emphasis is put on usability in commercial software; while OSS

are typically started to ‘scratch an itch’ and focus on functionality, com-

mercial companies invest a lot of effort in ensuring high-quality user

experience and robustness to misuse (making it ‘idiot-proof’). These as-

pects are often either not to be found in OSS and are in any case to replicate

due to the lack of naı̈ ve users among the interested parties.

2. There is still a large degree of scepticism over software quality, the as-

sumption being that something given away must have low value, or in-

versely, if it is expensive, it must be of high quality or it would not survive

in the market place. The view of a commercial software employee

http://www.biorxiv.org/
http://www.biorxiv.org/

7

(although she did subsequently apologize) is not atypical: ‘We have cus-

tomers who build engines for aircraft. I am happy they are not using

freeware when I get on a jet.’ (http://www.nytimes.com/2009/01/07/

technology/business-computing/07program.html). Given the prevalence of

this opinion, even an OSS advocate might think twice before publish- ing

his/her code and risking alienating potential customers.

3. Some also consider that publishing code is a potential security risk: a

malicious developer can identify a weakness in the software and exploit

it to his/her own gain, as in data theft or sabotage (Payne 2002). Keeping

software closed-source seems to remove or at least diminish this possibil-

ity, the so-called ‘security through obscurity’ assumption.

Towards more reproducible research

The current situation in AL and, more broadly, social science research typically

consists of unpublished data and black-box software (Morin et al. 2012b; Ram

2013) and as Joppa et al. (2013) report, even in the physical sciences, ‘software
code is not formally peer-reviewed’. There is a call for science to move towards the

sharing of data (van Assen et al. 2014) for increased transparency and reduced

publication bias, not least because exposing the process by which the reported

results are arrived at allows evaluation of the published evidence (Peng 2011).

More broadly, however, OSS offers the prospect of a reconfiguration of

research activity in which software programmes are used.

As a number of AL researchers have begun to argue (Porte 2012), reprodu-

cible research is an essential step towards more reliable results and better sci-

ence, and the transparency of OSS—the ability to reproduce a researcher’s

results given their data and their code—is crucial for this. Indeed, one could

consider OSS as being continuously informally peer reviewed by interested

reviewers, who are also the end users. As each new user adapts the source

code, they thereby (i) test the original and (ii) expand the library of available

packages. The need to adapt is driven by methodological challenges that are

different from those of the original project, which means that innovative

thinking may be required. If the link between research method and software

development is also made transparent, the fund of methodological experience

is also thereby enriched.

This allows an element of shared methodological development. In a trad-

itional model, methodological decisions are typically made by those involved

in a particular project and reported on completion of the project. However, the

process of continuous evolution characteristic of OSS means that new updates

can become available when methodological decisions are, as it were, ‘in pro-

cess’ and can then be built into this and themselves inform further develop-

ments in terms of both research method and computational technique. This

offers the possibility of a radical revision of methodological practice away from

individual or team endeavour and towards a more distributed model based on

http://www.nytimes.com/2009/01/07/technology/business-computing/07program.html
http://www.nytimes.com/2009/01/07/technology/business-computing/07program.html

collaboratively evolving platforms. The first steps towards this have already been

taken in the physical sciences, but the human sciences have yet to embrace it.

The interdisciplinary orientation of AL and the breadth of disciplines on which

it draws make it an ideal candidate to lead the way in exploiting the potential

of this model, but in order for this to happen there needs to be a radical

re-orientation of attitudes to what counts as ownership and originality.

Practical advice on developing OSS

In order to illustrate what this process might involve, brief extracts from

research based on an OSS tool developed by the author will be presented,

but this needs to be seen in the context of practical steps involved in OSS

development. This section summarizes these and is intended as no more than

a guide addressed to prospective developers.

1. There is no rule about when to publish developers’ code. Some start as

early as possible (‘open-development’, Prlic ́and Procter 2012) but opening

the code can be done at the time of the publication or even later. This is

to a large extent up to the developer and their collaborators.

2. The simplest way to publish code is to upload it to a webpage (e.g. the

author’s institutional webpage) and it should be bundled with an OSS

licence. The range of choice can seem bewildering, but a developer’s de-

cision should be based on how they want their code to be used by future

projects: from granting future users complete freedom over future projects

(a permissive licence such as Berkeley Software Distribution or

Massachusetts Institute of Technology), to allowing access to future uses

of their code only if they are under specific licensing restrictions (a copyleft
licence such as GNU (the acronym for ‘GNU’s Not Unix!’) General Public

License or Lesser GNU General Public License). Copyleft (a pun on ‘copy-

right’; a copy of the license is left with the source code) licences might

seem more restrictive, but they exist to ensure that derived projects stay

in the realm of OSS.

3. The combination of multiple OSS with different licences is also another

factor to consider; some licences are not compatible, and software with a

permissive licence might be preferred over one with a more restrictive

licence. Morin et al. (2012b) provide a detailed explanation of the range of

available licences and the rationale for selection.

4. While posting the source code on your webpage is a good first step, there

are better ways for publishing it that are also more amenable to building a

community and receiving feedback: Version Control Systems (CVS) and

bug tracking software. CVS allow developers to keep track of changes in

the code by taking a snapshot at a point in time and annotating the change.

Thus, it is very easy to go through the history of an algorithm and

explain, for example, why a particular choice was made. The most

popular CVS currently are git, mercurial, and subversion.

9

5. The history of all changes is posted to public repositories hosted on a

server from which developers can download a copy. In the case of OSS,

the repository is public and anyone can access it, as well as contribute to

it. A number of companies offer free hosting for OSS, examples including

GitHub (github.com), BitBucket (bitbucket.org), or sourceForge (source-

forge.net). CVS are not only good software engineering practice (Ram 2013;

Wilson et al. 2014), they also make it much easier for external developers

to contribute to an open-source project. Typically, an inter- ested third-

party downloads (‘pulls’) a copy of the source code, works on it, and submits

the patch to the repository’s owner, who can decide whether to include

(‘push’) it in the current version.

6. CVS make the collaborative process of editing the code much easier than,

say, doing it by email or a shared folder. Moreover, since every change is

digitally signed by its creator, attribution is clear. Most repository hosts

also include a bug tracking service, where people can report bugs or request

features. Each post is triaged and addressed by the repository’s owner

or anyone else, as the case may be. This is ideal for involving non- technical

users, who cannot contribute on the code engine itself. It can be also coupled

with more traditional approaches like a forum or a dedicated mailing list

(Prlic ́and Procter 2012).

INTERACTIONAL DISCOURSE LAB

The case for OSS has so far been made in general terms, but in order to illus-

trate how this resource might be used in the context of AL, this section pro-

vides an example of a newly developed OSS tool. It begins with a brief

justification for the tool in the context of other programmes that are available,

moves on to describe the tool itself, and concludes with an illustration of how

its outputs have contributed to a research project focusing on interdisciplinary

team meetings.

The IDLab (www.interactionaldiscourselab.net), a free open-source visua-

lization tool, captures the interactional dynamics of talk-in-action using both

qualitative and quantitative methods. It automatically generates interactive

visualizations of the patterns of interactions from an input transcript that has

been tagged by the user of the tool. The IDLab processes the tags to pro- duce

visual representations of the information using R, a statistical program- ming

language (http://r-project.org). The generated visuals are then displayed in

three separate panels: speakers and tags, interactions, and timeline, each

panel updating the relevant statistics and graphs according to the tags selected

by the user.

Computational techniques in quantitative content analysis have been used

since the 1950s (McEnery and Hardie 2011). Nowadays well-established soft-

ware applications such as AntConc and WordSmith offer semi-automated text

analysis techniques (e.g. concordance, collocation, and cluster analysis) that

http://www.interactionaldiscourselab.net/
http://r-project.org/

speed up and simplify the text analysis process. These techniques are used to

mine text data for semantic content and to identify language patterns in the

text. CAQDAS applications (e.g. Atals.ti, MAXQDA, NVivo) arrived on the

scene later and enhanced traditional analysis methods such as Roter’s

Interaction Analysis System (Roter and Larson 2002) and Bale’s Interaction

Process Analysis (Bales 1950) by allowing researchers to interactively manipu-

late the importance of input variables and to visualize complex relations

between them through interactive and informative graphical interfaces.

These computational techniques are invaluable in analysing content of the

input texts by measuring features such as frequencies of certain keywords or

expressions in the text and proportions of participants’ speaking time in the talk,

and visual representations of these findings. They are, however, not designed

to facilitate the analysis of the interactional dynamics of talk (but see Biber

2008 for the relationship between corpus analysis and discourse analysis).

Furthermore, the visual representations available in these software applications

mainly serve to display researchers’ annotated concepts and themes.

IDLab is not designed to replace traditional analysis and methodologies;

rather it serves to augment existing tools by offering insights into the data

otherwise not easily accessible in non-visual text data. The closest tool to

this that is currently available is Discursis (Angus et al. 2013), a visualization

system that shows the temporal structure of a conversation by representing the

time series of each speaker’s turn as well as shared concepts between them.

However, while Discursis, using word frequency statistics generated by

Leximancer, provides turn-by-turn visual information relating to global topic

structures, IDLab focuses on patterns and dynamics of turn-taking. Both tools

emphasize the importance of visual representation of conversational dynamics.

IDLab is written entirely in R, a free and open-source language designed for

statistics (R Core Team 2014). R was chosen for a number of reasons:

1. It is rapidly becoming the de facto standard for data analysis. It is widely

used by statisticians and has a vibrant community contributing open- source

state-of-the-art packages.

2. It provides a flexible graphics package (ggplot2).

3. It provides a package that creates an interactive webpage from R alone,

bypassing the need for expertise in web server technology (shiny).

This tool is an example of what OSS enables. It is entirely built on OSS, from R

and its packages to Javascript libraries. This project and many others could not

have succeeded without the thousands of developers who decided to share

their work. It is now open source, its code published on Github (https://

github.com/aktionsart/interactionalDiscourseLab), a platform that facilitates

collaboration on software development. Interested users can either submit

patches or report bugs. Non-technical users can request features or give feed-

back on Gitub or through a web form on the dedicated website (http://inter

actionaldiscourselab.net/).

https://github.com/aktionsart/interactionalDiscourseLab
https://github.com/aktionsart/interactionalDiscourseLab
http://interactionaldiscourselab.net/
http://interactionaldiscourselab.net/

11

Figure 1: Sample page from IDLab

The visual representation produced gives a synaptic view of the dynamics of

spoken engagement, highlighting frequent exchanges and important contribu-

tors, while the frequencies themselves can be read in the associated table. Each

frequency comes with a confidence interval to convey the uncertainty

attached to the measurement (May et al. 2000).

One of the strengths of this tool is its ease of use for those with no specialist

knowledge. Once a user has tagged a text or collection of texts (a simple matter

of adding a code within slashes at the end of the turn; e.g. ‘Was that on

Saturday? /check/’), the program will generate a page with a panel containing

the full list of tags. The user then selects as many of these as required in order

to explore relationships between them. In addition to the tagged items, the

program will also automatically generate visual representations of turn distri-

bution, speaker interaction networks, and so on Figure 1 illustrates a typical

page.

The engine of IDLab has been designed to facilitate growth and experimen-

tation. It is modular both internally and externally. Internally, the processed

data are available as input to any new functions, bypassing unnecessary dupli-

cation of the workflow (from raw data, to turn selection to simple statistics).

Externally, the interface is made up of thematically distinct panels. An inter-

ested and technically able user can thus contribute a new, separate module

without having to delve into the intricacies of the original version of the soft-

ware. IDLab is publicly hosted on Github, with an accompanying issue tracker.

This enables non-technical users to report bugs or request features using a

simple form. They can also leave comments on the project’s page. While it is

not possible to demonstrate the full range of the tool’s functionality in this

article, the next section offers a snapshot of two features that were part of a

wider project.

‘So’ in interdisciplinary research meetings

The examples presented in this article are drawn from a larger project that I am

conducting, with over 400 hours of audio-recorded interdisciplinary scientific

research project meetings varying in length from one to eight hours and invol-

ving researchers from physics, medicine, mathematics, statistics, biology and

bioinformatics. The aim of this larger project is to understand better the nature

of interdisciplinary research engagement with a view to improving the effect-

iveness of the interaction involved and the aspect discussed here focused on

‘so-prefaced’ turns in biology-focused interdisciplinary research projects com-

prising over 24 hours of transcribed talk amounting to over 330,000 words.

A distinction is drawn in biology between ‘wets’, who conduct experiments,

and ‘dries’, who are broadly speaking theoreticians. The research revealed an

asymmetry of epistemic rights that privileged the contributions of the former

involved at the expense of those from the latter.

How speakers begin their turns can be indicative of positions they take up

and the turn initial position has been recognized as particularly important

(Schegloff 1987; Heritage 2013). This tool was used to explore ‘so’-initial turns,

which occurred with striking frequency: a count of turn-initial occur- rences

revealed that 6.8% of turns in the full data set began with ‘so’, repre- senting

approximately one occurrence every 15 turns.

Mapping interaction

In order to map aspects of the interaction that contribute to its topography, it is

first necessary to tag the data. The limitations of a priori categorization have

been well debated (Van Rees 1992; Schegloff 2005), so it is important to

emphasize that the aim at this point is not to develop a definitive analysis

but to generate an indicative map of the relevant interactional terrain. The

IDLab tool places no limit on the number of categories used, but a preliminary

analysis of the interdisciplinary corpus identified four functions that accounted

for all but a handful of turn-initial ‘so’ occurrences: Check (where the aim is to

understand, clarify, etc.), Explanation (comprising anything that serves to ex-

plain, account for, provide reasons or motives for, etc.), Consequence (expressing

the causal relationship between the stated outcome, in terms of actions or states,

and prior actions or conditions, both of which are known to the speaker), and

Upshot (expressing broader consequences, results or implications of prior talk,

involving a summary or interpretation of some aspect of that talk and

addressing the question, ‘What does that amount to?’). What emerged most

strikingly from this fairly basic mapping of a single feature was the extent to

which it reflects features of relevant activities, orientations, and

13

relationships, but the following analysis focuses on just two visual outputs:

interaction networks and timeline.

The importance of visual data display at any stage of research is widely

acknowledged and its goal is to provide ready access to information arising

from, and facilitate discoveries or particular perspectives on, a specific area of

investigation (Dey 1993; Burke et al. 2005; Lengler and Eppler 2007; Slone

2009), though as Verdinelli and Scagnoli (2013) note, visual display in quali-

tative research is underutilized and underdeveloped. Given the increasing so-

phistication of visual literacy and the proliferation of digital publications

encouraging researchers to embrace more visual forms of communication,

however, conditions are ideal for developing this aspect of data presentation.

Visual displays generated by the IDLab provide ready access to information

about the distribution of the turn-initial ‘so’ and the interactional relationships

between participants which may not be immediately visible to analysts in data

sets of this size. These representations (available in colour via [Link: Applied
Linguistics webpage]) also enable researchers to see the connection between

different segments of relevant data and allow them to acquire insights, de-

velop, and elaborate understanding.

Network

Interaction networks need to be read in conjunction with other outputs but is

provided here for illustrative purposes. The size of the circles in Figures 2 and 3

represents the extent of turn-initial ‘so’ use but not overall participation, and

while the thickness of the lines reflects the turn relationship as a percentage of

overall use for the individual from which the arrow derives, this has no im-

plications for the number of turns involved. Since this output shows only

consecutive (i.e. immediately adjacent) turns, it represents only a tiny subset

of the sequences shown on the timeline. It is therefore no more than indica-

tive, but it can nevertheless direct attention to potentially interesting

relationships.

While there is much that could be said about these diagrams, I focus here

only on one aspect: leadership. Although there is technically no leader in the

meetings, Carl is by far the most senior figure and Kate is the principle inves-

tigator, so these might be expected to provide research leadership. A compari-

son of Figures 2 and 3 suggests an interesting contrast between meetings where

Carl is present and those where he is not. It is immediately apparent, for

example, that the talk is much more distributed in Figure 2, where he is

absent, than it is in Figure 3, suggesting that his presence shifts the inter-

actional dynamic of the group. The only two people between whom there is

no connection in Figure 2 are Sue and Paul, though this is to be expected

because they are attending the meeting as experts in different disciplines, so

one would naturally expect them to interact with the experimental team

rather than with one another. Sue’s more distributed involvement in Figure 2

can be explained by the fact that in Carl’s absence she is the only person with

Figure 2: Speakers contiguous use of ‘so’-20 Mar

Figure 3: Speakers contiguous use of ‘so’-13 May

15

expert statistical knowledge present. In the meeting he attends (Figure 3),

Carl’s contribution is restricted to interactions with Kate (the leading ‘wet’)
and Anne (the leading ‘dry’). Although Paul is present at that meeting and

speaks, he has no consecutive ‘so’-initial turns and therefore does not appear on

the figure.

As indicated above, this is merely indicative, but it does point to potentially

interesting relationships in the talk in terms of how leadership gets done. These

can then be followed up with close analysis of the talk itself. This is further

facilitated if the visual representation of the development of the talk is also

considered.

Timeline

A timeline of one meeting, representing all ‘so’-initial turns (the non-contiguous

ones separated by a black line) by function and speaker (y-axis, Figure 4) reveals

a number of aspects that add important details to the map of the talk. For the

purposes of analysis, I focus only on upshots, which are more common towards

the end than at the beginning of the meeting, though there is a small cluster at

the end of an opening ‘wet’ presentation.
The ‘ownership’ of upshots reveals a distributed leadership dynamic, even

though Carl is present. Distributed leadership describes those constellations in

which teams lead their work collectively and independently of formal leaders

(Vine et al. 2008). Thus, rather than relying on an officially assigned leader or

chair to lead decision making, agenda setting, and so on, in distributed lead-

ership, the various activities typically associated with leadership are conjointly

performed among team members who may be on the same or different hier-

archical level within their organization (see also Gronn 2002; Day et al. 2004;

Nielsen 2004). In this project meeting, upshots express interpretations and

implications of the topic of discussion that will determine making important

decisions on what next steps are for the project. Thus it is unsurprising that the

final clusters of upshots are led by both Kate and Carl exercising their leader-

ship roles, and this is indeed what the timeline shows. However, potentially

more interesting is the fact that Anne, a post-doc, leads with upshots through-

out the meeting, suggesting that leadership of this team may in fact be

Figure 4: Timeline – 13 May

distributed, something that close analysis of the interaction actually bears out

(Choi and Schnurr 2014; Choi and Richards in press).

The timeline also illustrates how OSS tool development can respond rapidly

to user needs. While Figure 4 provides an overview of the sort described above,

it is less amenable to more detailed inspection and this proved frustrating for

some early users. The most recent version of the tool, developed in a few days

(as evidenced by the change history of the tool available at Github: https://

github.com/aktionsart/interactionalDiscourseLab/commits/master) in order to

address the problem, includes an ‘expansion’ tool accompanied by relevant

descriptors that makes possible finer grained analysis.

This illustration indicates that the tool, even at its current stage of develop-

ment, offers useful insights into the nature of group interaction, but far more

important in terms of the case for OSS as a platform for methodological innov-

ation is how this might be developed. At the most basic level, the current list

(speakers and tags, interactions, and timeline) might be extended, but the tool

might easily be adapted to other uses. It could, for example, be adapted for the

analysis of different repair trajectories in talk, possibly with types of turn-

constructional units as an additional dimension, thus shifting the focus towards

features that are traditionally associated with conversation analysis. A more

interesting though challenging development might use Bayesian ana- lysis to

predict the likely occurrence of a particular feature in the talk on the basis of

the distribution of key features and/or lexical items, thus extending analysis

beyond the turn to the sequence.

CONCLUSION

Although visual outputs of the IDLab are generated by embedded statistical

tools that allow quantitative representation, the visuals themselves afford—in

fact, encourage—interpretive readings that might lead to either selection and

close qualitative analysis of relevant extracts or further quantitative analysis. In

this respect, the tool might be seen as more paradigmatically neutral than

most commercial software that is currently available. The outputs of the tool

itself might feature in subsequent publications of findings (Choi and Richards

2014) or might be used simply for the purpose of identifying patterns in the

data that might otherwise not be obvious and/or selecting relevant extracts for

consideration, without featuring as part of the publication itself (Choi and

Schnurr 2014; Choi and Richards in press).

Tools such as IDLab offer an opportunity to map patterns of talk within

specific domains and are particularly valuable where the focus is on groups that

have worked together over time and where distinctive interactional con- tours

have developed (Richards 2006, 2010). There are many different land- scapes

of interaction, some features of which change over time while others endure,

and tools are now available to describe such terrains in sufficient detail to be

analytically productive, allowing the development of interactional

https://github.com/aktionsart/interactionalDiscourseLab/commits/master
https://github.com/aktionsart/interactionalDiscourseLab/commits/master

17

mapping systems. Such tools therefore offer the prospect of developing what

might be termed interactional topographies.
If collections of such topographies are to be a realistic prospect, the case for

OSS needs to be given serious consideration. The advantages of OSS, summed

up in the acronym VARIES, make it an ideal platform for collaborative meth-

odological innovation and the moment is right for AL to give a lead in the

social sciences in taking this up. The rapid expansion of OSS outside the social

sciences means that in doing so it would be catching a wave that is already

gathering momentum, with a model for collaborative development already

established in the physical sciences. Unlike CAQDAS programs, which are

stretched to cope with the ‘big data’ that is now becoming available, the

developmental potential of OSS means that it is well positioned to respond

to the challenges of this. This development also benefits from the fact that

computing speed and capacity are not only so much greater than in the past

but also more generally available, offering the prospect of more ambitious

projects and contributing to the expansion of innovative mixed methods

approaches (see Riazi, this issue).

Recent developments in AL are encouraging for researchers willing to ex-

plore what OSS has to offer. There is evidence, for example, of growing interest

in OSS in text analysis (e.g. the large number of R packages listed on the

natural language processing task view: http://cran.r-project.org/web/views/

NaturalLanguageProcessing.html) and of new developments in interactive

visualization tools for research (Siirtola et al. 2011, 2014; Angus et al. 2012).

In advancing the case for OSS, this article has adopted a largely practical

orientation, but it should be seen as part of a broader paradigm shift within AL

away from what Firth and Wagner (1997: 285) called an ‘individualistic and

mechanistic’ view of communication in SLA focusing on individual language

cognition, towards what Block (2003) described as the ‘social turn’ in which

the emphasis has shifted to language as co-constructed social action in which

‘human actors dynamically adapt to—that is, flexibly depend on, integrate with,

and construct—the ever-changing mind-body-world environments posited by

sociocognitive theory’ (Atkinson et al. 2007: 171). The development of distrib-

uted cognition as a scientific discipline (for a definition and overview, see

Zhang and Patel 2006) finds a parallel in Cowley’s concept of distributed

language that eschews ‘organism-centred models’ (Cowley 2011: 4) and situ-

ates language ecologically. What is being proposed in this article is an approach

to analysis that has theoretical resonance with this fundamental shift in the

way language is perceived. The analytical process is no longer reified and sys-

temically ‘fixed’ but is seen as an epiphenomenon of distributed multi-agent

analytical engagement that is both co-constructed and constantly evolving. In

shifting the responsibility of the researcher away from reflexive positioning as

an individual and towards informed engagement with emergent systems, this

also directs attention to the possibility of responding dynamically to evolving

patterns of interaction within specific groups.

http://cran.r-project.org/web/views/NaturalLanguageProcessing.html
http://cran.r-project.org/web/views/NaturalLanguageProcessing.html

The full implications of the foundational shift from treating language as a

semiotic system to seeing it as an environmental artifact are yet to be worked

through, though methodologically it is reflected in the steady growth in

conversation analytic research (Seedhouse 2005; Hellermann 2008) and the

development of multi-modal approaches (Seedhouse and Knight, this issue).

What this article points to is the possibility of the distributed development of

analytical tools and methodological understanding, which may in turn be part

of a broader reconceptualization of research. Reflexivity, for example, has

become a key concern for qualitative researchers (for an AL perspective, see

Roulston 2010) and is currently conceived as a matter of individual cognition,

though Byrd-Clark and Dervin’s (2014: 234) claim that ‘[r]eflexivity should

not just be something that is taking place inside the individual’ may be a straw

in the wind. The time may therefore be ripe for exploring and testing the full

potential of OSS, trialling approaches that are flexible, de-centralized, and

distributed, working towards a reconfiguration of methodological development

within a collaborative frame. In so doing, AL would be providing the lead for

the social sciences generally.

NOTE

1 See also Text Analysis Portal for Research (TAPOR 2.0: http://www. tapor.ca/) for

more software tools.

ACKNOWLEDGEMENTS

The author would like to thank Keith Richards for his unwavering support throughout the write-up of

this article. The author would also like to thank John Hellermann and the anonymous reviewers,

whose comments have strengthened this article considerably. Finally, the author would also like to

thank the scientific research project team members for their generous assistance allowing me to record

and observe their project meetings.

REFERENCES

Angus, D., S. Rintel, and J. Wiles. 2013. ‘Making
sense of big text: A visual-first approach for

analysing text data using Leximancer and

Discursis,’ International Journal of Social

Research Methodology 16/3: 261–7.

Angus, D., D. Rooney, B. McKenna, and

J. Wiles. 2012. ‘Visualizing punctuated equili-

bria in discursive change: Exploring a new text

analysis possibility for management research,’
Journal of Business and Management Landscapes

1/1: 1–16.

Anthony, L. 2013. ‘Critical look at software

tools in corpus linguistics,’ Linguistic Research 45

30/2: 141–61.

Anthony, L., Ch. Kiyomi, and K. Oghigian. 2011.

‘A novel, web-based, parallel concordan- cer

for use in the ESL/EFLclassroom’ in

J. Newman, (ed.): Corpus-Based Studies in 50

Language Use, Language Learning, and Language

Documentation. Rodopi, pp. 123–38.

Atkinson, D., E. Churchill, T. Nishino, and

H. Okada. 2007. ‘Alignment and interaction

in a sociocognitive approach in second 55

http://www.tapor.ca/
http://www.tapor.ca/

19

language acquisition,’ Modern Language Journal

91/2: 169–88.

Bales, R. 1950. Interaction Process Analysis.

Addison-Wesley.

Biber, D. 2008. ‘Corpus-based analyses of dis-

course: Dimensions of variation in conversa-

tion’ in V. K. Bhatia, J. Flowerdew, and R.

H. Jones (eds): Advances in Discourse Analysis.

Routledge, pp. 100–14.

Biber, D., S. Conrad, and R. Reppen. 1998.

Corpus Linguistics. Cambridge University Press.

Block, D. 2003. The Social Turn in Second Language

Acquisition. Edinburgh University Press.

Burke, J., P. O’Campo, G. Peak, A. Gielen,

K. McDonnell, and W. Trochim. 2005. ‘An

introduction to concept mapping as a partici-

patory public health research method,’
Qualitative Health Research 15/10: 1392–410.

Byrd-Clark, J. and F. Dervin. 2014. Reflexicity in

Language and Intercultural Education: Rethinking

Multilingualism and Interculturality. Routledge.

Choi, S. and K. Richards. 2014. ‘Computational
analysis of turn-taking patterns in interdiscip-

linary research meetings’ in S. Ruhi,

M. Haugh, T. Schmidt, and K. Wö rner (eds): Best

Practices for Spoken Corpora in Linguistic

Research. Cambridge Scholars Publishing,

Newcastle upon Tyne, pp. 95–116.

Choi, S. and K. Richards. In press. ‘The dy- namics

of identity struggles in interdisciplinary

meetings in higher education’ in S. Schnurr and

D. Van De Mieroop (eds): Identity Struggles.

John Benjamins Publishing.

Choi, S. and S. Schnurr. 2014. ‘Exploring dis-

tributed leadership: Solving disagreements and

negotiating consensus in a ‘leaderless’ team,’
Discourse Studies 16/1: 3–24.

Cowley, S. 2007. ‘Distributed language:

Biomechanics, functions, and the origins of talk’ in

C. Lyon, C. L. Nehaniv, and A. Cangelosi (eds):

Emergence of Communication and Language.

Springer, pp. 105–27.

Cowley, S. 2011. Distributed Language. John

Benjamins Publishing.

Day, D., P. Gronn, and E. Salas. 2004. ‘Leadership
capacity in teams,’ Leadership Quarterly 15/6:

857–80.

Dey, I. 1993. Qualitative Data Analysis: A User-

Friendly Guide for Social Scientists. Routledge.

Evers, J., K. Mruck, C. Silver, and B. Peeters. 2011.

‘The KWALON experiment: Discussions on

qualitative data analysis software by developers and

users,’ Forum: Qualitative Social Research 12/1.

Fielding, N. and C. A. Cisneros-Puebla. 2009.

‘CAQDAS-GIS Convergence: Toward a new

integrated mixed method research practice?,’
Journal of Mixed Methods Research 3/4: 349–70

Fielding, N. and R. Lee. 2002. ‘New patterns in

the adoption and use of qualitative software,’
Field Methods 14/2: 197–216.

Firth, A. and J. Wagner. 1997. ‘On discourse,

communication, and (some) fundamental con-

cepts in SLA research,’ The Modern Language

Journal 81/3: 285–300.

Garretson, G. 2008. ‘Desiderata for linguistic

software design,’ International Journal of

English Studies 8/1: 67–94.

Gries, S. T. 2009. Quantitative Corpus Linguistics

with R. Routledge.

Gronn, P. 2002. ‘Distributed leadership as a unit

of analysis,’ Leadership Quarterly 13/4: 423–51.

Hellermann, J. 2008. Social Actions for Classroom

Language Learning. Multilingual Matters.

Heritage, J. 2013. ‘Turn-initial position and some

of its occupants,’ Journal of Pragmatics 57: 331–
7.

Hippel, E. 2001. ‘Innovation by user commu-

nities: Learning from open-source software,’
MIT Sloan Management Review 42/4: 82.

Joppa, L. N., G. McInerny, R. Harper, L. Salido,

K. Takeda, K. O’Hara, D. Gavaghan, and

S. Emmott. 2013. ‘Troubling trends in scien-

tific software use,’ Science 340/6134: 814–15.

Lengler, R. and M. Eppler, 2007. ‘Towards a

periodic table of visualization methods for

management’ in IASTED Proceedings of the

Conference on Graphics and Visualization in

Engineering, Clearwater, FL, available at www.

visual-literacy.org/periodic_table/periodic_

table.pdf.

Lerner, J. and J. Tirole. 2002. ‘Some simple

economics of open source,’ Journal of

Industrial Economics 52/2: 197–234.

Mason, O. 2008. ‘Developing software for corpus

research,’ International Journal of English Studies

8/1: 141–56.

May, W., L. Johnson, and D. William. 2000.

‘Constructing two-sided simultaneous confi-

dence intervals for multinomial proportions for

small counts in a large number of cells,’ Journal

of Statistical Software 5/6: 1–24.

McEnery, T. and A. Hardie. 2011. Corpus

Linguistics: Methods, Theory and Practice.

Cambridge University Press.

Morin, A., J. Urban, P. D. Adams, I. Foster,

A. Sali, D. Baker, and P. Sliz. 2012a.

55

60

65

70

75

80

85

90

95

100

105

http://www.visual-literacy.org/periodic_table/periodic_table.pdf
http://www.visual-literacy.org/periodic_table/periodic_table.pdf
http://www.visual-literacy.org/periodic_table/periodic_table.pdf

‘Shining light into black boxes,’ Science 336/

6078: 159–60. doi:10.1126/science.1218263.

Morin, A., J. Urban, and P. Sliz. 2012b. ‘A quick

guide to software licensing for the scientist-

programmer,’ PLoS Computational Biology 8/7:

e1002598. doi:10.1371/journal.pcbi.1002598.

Nielsen, J. 2004. The Myth of Leadership: Creating

Leaderless Organizations. Davies-Black.

Payne, C. 2002. On the security of open source

software. Information Systems 12, 61–78.

Peng, R. D. 2009. ‘Reproducible research and

Biostatistics,’ Biostatistics 10/3: 405–8.

Peng, R. D. 2011. ‘Reproducible research in

computational science,’ Science 334/6060:

1226–7.

Porte, G. 2012. Replication Research in Applied

Linguistics. Cambridge University Press.

Prlic ́, A. and H. Lapp. 2012. ‘The PLOS compu-

tational biology software section,’ PLoS

Computational Biology 8/11: e1002799.

doi:10.1371/journal.pcbi.1002799.

Prlic ́, A. and J. B. Procter. 2012. ‘Ten simple rules

for the open development of scientific

software,’ PLoS Computational Biology 8/12:

e1002802. doi:10.1371/journal.pcbi.1002802.

R Core Team. 2014. R: A Language and

Environment for Statistical Computing. R

Foundation for Statistical Computing.

Ram, K. 2013. ‘Git can facilitate greater repro-

ducibility and increased transparency in

science,’ Source Code for Biology and Medicine 8/

1: 7. doi:10.1186/1751-0473-8-7.

Raymond, E. S. 2001. The Cathedral & the Bazaar:

Musings on Linux and Open Source by an

Accidental Revolutionary. O’Reilly Media.

Richards, K. 2006. Language and Professional

Identity. Palgrave Macmillan.

Richards, K. 2010. ‘Professional orientation in back

region humor,’ Text and Talk 30/2: 221–41.

Roter, D. and S. Larson. 2002. ‘The Roter inter-

action analysis system (RIAS): Utility and flexi-

bility for analyses of medical interactions,’
Patient Education and Counselling 46: 243–51.

Roulston, K. 2010. Reflective Interviewing: A Guide

to Theory and Practice. Sage.

Schegloff, E. A. 1987. ‘Recycled turn begin- nings:

A precise repair mechanism in conver- sation’s
turn-taking organization’ in G. Button and

J.R.E. Lee (eds): Talk and Social Organization.

Multilingual Matters, pp. 70–85.

Schegloff, E. A. 2005. ‘Presequences and indir-

ection: Applying speech act theory to ordinary

conversation,’ Journal of Pragmatics 12/1: 55–
62.

Seedhouse, P. 2005. The Interactional Architecture

of the Language Classroom: A Conversation

Analysis Perspective. Blackwell.

Siirtola, H., T. Nevalainen, T. Sä ily, and

K. Rä ihä . 2011. ‘Visualisation of text corpora:

A case study of the PCEEC,’ Studies in Variation,

Contacts and Change in English 7, available at

www.helsinki.fi/varieng/series/volumes/07/siir

tola_et_al/

Siirtola, H., T. Nevalainen, T. Sä ily, and

K. Rä ihä . 2014. ‘Text variation explorer:

Towards interactive visualization tools for

corpus linguistics,’ International Journal of

Corpus Linguistics 19/3: 417–29.

Silver, C. and J. Patashnik. 2011. ‘Finding fidel-

ity: Advanced audiovisual analysis using soft-

ware,’ Forum: Qualitative Social Research 12/1:

art 37.

Silver C. and A. Lewins. 2007. Using Software in

Qualitative Research: A Step-by-Step Guide. Sage.

Silver, C. and A. Lewins. 2014. Using Software in

Qualitative Research: A Step-by-Step Guide, 2nd

edn. Sage.

Slone, D. J. 2009. ‘Visualizing qualitative infor-

mation,’ The Qualitative Report 14/3: 489–97.

Sojer, M. and J. Henkel. 2010. ‘Code reuse in

open source software development: Quantitative

evidence, drivers, and impediments,’ Journal of

the Association for Information Systems 11/12: 868–
901.

Sornette, D., T. Maillart, and G. Ghezzi. 2014. ‘How
much is the whole really more than the sum of its

parts? 1 + 1 = 2.5: Superlinear product- ivity in

collective group actions,’ PLoS ONE 9/8:

e103023. doi:10.1371/journal.pone.0103023.

Van Assen, M. A. L. M., R. C. M. van Aert,

M. B. Nuijten, and J. M. Wicherts. 2014. ‘Why
publishing everything is more effective than

selective publishing of statistically signifi- cant

results,’ PLoS ONE 9/1: e84896.

doi:10.1371/journal.pone.0084896.

Van Rees, M. A. 1992. ‘The adequacy of speech

act theory for explaining conversational phe-

nomena: A response to some conversation

analytical critics,’ Journal of Pragmatics 17/1:

31–47.

Verdinelli, S. and N. Scagnoli. 2013. ‘Data display

in qualitative research,’ International Journal of

Qualitative Methods 12: 359–81.

Vine, B., J. Holmes, M. Meredith, D. Pfeifer,

and B. Jackson. 2008. ‘Exploring co-leadership

55

60

65

70

75

80

85

90

95

100

105

http://www.helsinki.fi/varieng/series/volumes/07/siirtola_et_al/
http://www.helsinki.fi/varieng/series/volumes/07/siirtola_et_al/

21

talk through interactional sociolinguistics,’
Leadership 4/3: 339–60.

Weisser, M. 2009. Essential Programming for

Linguistics. Edinburgh University Press.

Wilson G., D. A. Aruliah, C. T. Brown, N.

P. Chue Hong, M. Davis, R. T. Guy,

S.H.D. Haddock, K. D. Huff, I. M. Mitchell,

M. D. Plumbley, B. Waugh, E. P. White, and

P. Wilson. 2014. ‘Best practices for scientific

computing,’ PLoS Biol 12/1: e1001745. doi:10. 10

1371/journal.pbio.1001745.

Wren, J. D. 2008. ‘URL decay in MEDLINE – A 4-

Year follow-up study,’ Bioinformatics 24/11: 1381–5.

Zhang, J. and V. L. Patel. 2006. ‘Distributed
cognition, representation, and affordance,’ 15

Pragmatics and Cognition 14/2: 333–4.

