
 Open access Journal Article DOI:10.1109/TPDS.2018.2861712

The Case for Phase-Based Transactional Memory — Source link

Joao P. L. de Carvalho, Guido Araujo, Alexandro Baldassin

Institutions: State University of Campinas, Sao Paulo State University

Published on: 01 Feb 2019 - IEEE Transactions on Parallel and Distributed Systems (Institute of Electrical and
Electronics Engineers (IEEE))

Topics: Transactional memory, Hybrid system, Serialization, POWER8 and Benchmark (computing)

Related papers:

 An effective hybrid transactional memory system with strong isolation guarantees

 Hybrid Transactional Memory Revisited

 Architectural support for high-performing hardware transactional memory systems

 PhTM: Phased Transactional Memory

 Optimizing hybrid transactional memory: the importance of nonspeculative operations

Share this paper:

View more about this paper here: https://typeset.io/papers/the-case-for-phase-based-transactional-memory-
2mf04go2bc

https://typeset.io/
https://www.doi.org/10.1109/TPDS.2018.2861712
https://typeset.io/papers/the-case-for-phase-based-transactional-memory-2mf04go2bc
https://typeset.io/authors/joao-p-l-de-carvalho-3xd03z0tm7
https://typeset.io/authors/guido-araujo-28dekkwf9n
https://typeset.io/authors/alexandro-baldassin-4auryaf62e
https://typeset.io/institutions/state-university-of-campinas-2pr7uqxg
https://typeset.io/institutions/sao-paulo-state-university-1vlztc6y
https://typeset.io/journals/ieee-transactions-on-parallel-and-distributed-systems-1rg5f5po
https://typeset.io/topics/transactional-memory-1idp59n6
https://typeset.io/topics/hybrid-system-30cptmdk
https://typeset.io/topics/serialization-1dxf0qfh
https://typeset.io/topics/power8-2j15713i
https://typeset.io/topics/benchmark-computing-2t10njof
https://typeset.io/papers/an-effective-hybrid-transactional-memory-system-with-strong-3ggostche4
https://typeset.io/papers/hybrid-transactional-memory-revisited-2hu8sxaraz
https://typeset.io/papers/architectural-support-for-high-performing-hardware-4na2849iyd
https://typeset.io/papers/phtm-phased-transactional-memory-fe79akxa1w
https://typeset.io/papers/optimizing-hybrid-transactional-memory-the-importance-of-13x9e0ucpj
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/the-case-for-phase-based-transactional-memory-2mf04go2bc
https://twitter.com/intent/tweet?text=The%20Case%20for%20Phase-Based%20Transactional%20Memory&url=https://typeset.io/papers/the-case-for-phase-based-transactional-memory-2mf04go2bc
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/the-case-for-phase-based-transactional-memory-2mf04go2bc
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/the-case-for-phase-based-transactional-memory-2mf04go2bc
https://typeset.io/papers/the-case-for-phase-based-transactional-memory-2mf04go2bc

The Case for Phase-Based
Transactional Memory

Jo~ao P. L. de Carvalho , Guido Araujo , and Alexandro Baldassin

Abstract—In recent years, Hybrid TM (HyTM) has been proposed as a transactional memory approach that leverages on the

advantages of both hardware (HTM) and software (STM) execution modes. HyTM assumes that concurrent transactions can have very

different phases and thus should run under different execution modes. Although HyTM has shown to improve performance, the overall

solution can be complicated to manage, both in terms of correctness and performance. On the other hand, Phased Transactional

Memory (PhTM) considers that concurrent transactions have similar phases, and thus all transactions could run under the same mode.

As a result, PhTM does not require coordination between transactions on distinct modes making its implementation simpler and more

flexible. In this article we make the case for phase-based transactional systems using PhTM*, the first implementation of PhTM on

modern HTM-ready processors. PhTM* novelty relies on avoiding unnecessary transitions to software mode by: (i) taking into account

the categories of hardware aborts; (ii) adding a new serialization mode. Experimental results using Broadwell’s TSX reveal that, for the

STAMP benchmark suite, PhTM* performs on average 1.68x better than PhTM, a previous phase-based TM, 2.08x better than

HyTM-NOrec, a state-of-the-art HyTM, and 2.28x better than HyCO, the most recent hybrid system in the literature. In addition, PhTM*

also showed to be effective when running on a Power8 machine by performing over 1.18x, 1.36x and 1.81x better than PhTM,

HyTM-NOrec and HyCO, respectively. We also show that STAMP applications do not exhibit hybrid behavior to justify the use of

conventional hybrid systems, thus making PhTM* a better solution to those type of programs. Finally, we show for the first time that

conventional hybrid systems do not perform better than phased-based system in a scenario with hybrid-behaved transactions.

Index Terms—Transactional memory, phase-based execution, performance evaluation

Ç

1 INTRODUCTION

THE idea of usingmemory transactions as an abstraction for
exposing parallelism is an approach that has been exten-

sively studied in the last ten years [1]. In a nutshell, a transac-
tion is a block of instructions that are executed in an all-or-
nothing fashion: either the updates to memory take place
immediately once the block is finished and the transaction is
committed, or changes to memory are discarded and the
transaction is aborted, due to conflicting updates by different
transactions. Herlihy and Moss [2] proposed a hardware
implementation to allow the execution of memory transac-
tions and coined the name TransactionalMemory (TM).

Although hardware implementations of TM (HTM)
enable fast mechanisms for commit, abort and conflict
detection, they suffer from capacity aborts when executing
transactions that overflow the speculative storage capacity
of the underlying hardware. Chip manufacturers such as
IBM and Intel have recently added support for hardware
transactions in their processors [3], [4], [5]. Such support is

provided as best-effort, in the sense that there is no guarantee
that a transaction will ever succeed executing in hardware.
In such case, the HTM runtime must assure that the tran-
saction will eventually commit. Contrary to HTM, software
approaches for TM (STM) have been investigated [1]
and became very popular due to their capacity flexibility,
although the cost of such flexibility can sometimes impact
program performance.

In order to leverage on the advantages of both HTM
and STM, Hybrid TM (HyTM) schemes have also been
proposed [6], [7], [8], [9], [10], [11], [12], [13]. In HyTM, a
dynamic mechanism is provided to assign each transaction
to HTM or STM according to its demand for speculative
storage. The concurrent execution of both hardware and
software transactions in HyTM might become quite compli-
cated to manage, both in terms of correctness and perfor-
mance. For instance, detecting conflicts between hardware
and software transactions usually requires some kind of
instrumentation on the fast path (hardware), possibly mak-
ing the common case slower.

Another approach for TMs, Phased Transactional Memory
(PhTM), was proposed in 2007 by Lev et al. [14] to allow the
execution of transactions in phases. In a phase, all transac-
tions execute in the same mode (hardware or software). As
a result, PhTM does not require coordination between trans-
actions running in different modes (as is the case with
HyTM), making its implementation simpler and more flexi-
ble. For example, in PhTM different STMs can be used while
in software mode. As described in [14], the main chall-
enges of PhTM lies in: (i) identifying efficient modes;

� J.P.L. de Carvalho and G. Araujo are with UNICAMP – Institute of
Computing, Campinas 13083-970, Brazil.
E-mail: {joao.carvalho, guido}@ic.unicamp.br.

� A. Baldassin is with UNESP – Univ Estadual Paulista, S~ao Paulo 01049-
010, Brazil. E-mail: alex@rc.unesp.br.

Manuscript received 30 Jan. 2018; revised 17 July 2018; accepted 27 July 2018.
Date of publication 31 July 2018; date of current version 16 Jan. 2019.
(Corresponding author: Jo~ao P. L. de Carvalho).
Recommended for acceptance by A. C. M. Melo.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2018.2861712

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 2, FEBRUARY 2019 459

1045-9219� 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-3476-184X
https://orcid.org/0000-0002-3476-184X
https://orcid.org/0000-0002-3476-184X
https://orcid.org/0000-0002-3476-184X
https://orcid.org/0000-0002-3476-184X
https://orcid.org/0000-0003-4869-5190
https://orcid.org/0000-0003-4869-5190
https://orcid.org/0000-0003-4869-5190
https://orcid.org/0000-0003-4869-5190
https://orcid.org/0000-0003-4869-5190
https://orcid.org/0000-0001-8824-3055
https://orcid.org/0000-0001-8824-3055
https://orcid.org/0000-0001-8824-3055
https://orcid.org/0000-0001-8824-3055
https://orcid.org/0000-0001-8824-3055
mailto:
mailto:

(ii) managing correct (and fast) transitions between phases;
and (iii) deciding when to switch phases.

At the time it was proposed, PhTM was evaluated in a
simulated environment. The approach was not further
investigated mostly because faster HyTM designs started to
appear. Some of the arguments used against PhTM revolve
around: (i) the need for system-wide synchronization bar-
riers (which might incur in a high overhead), (ii) difficulty
in determining when to change phases, and (iii) reduced
performance due to a single transaction requiring execution
in a slower mode (e.g., software) [8]. Although these argu-
ments have been taken for granted, we are not aware of any
work that has investigated the performance of PhTM on
contemporary HTM-enabled processors.

In this article we shed some light on the effectiveness of
phase-based transacional systems by making use of both
the original version of PhTM, as described by Lev et al. [14],
and its improved version (PhTM*) previously proposed by
ourselves in [15]. We show that they are an efficient and
appropriate approach for the execution of transactional pro-
grams on modern HTM-ready processors. To achieve that
we show that PhTM* outperforms conventional hybrid sys-
tems for all STAMP applications. We also show that STAMP
applications do not exhibit hybrid behavior to justify the
use of conventional hybrid systems (HyTM-NOrec [8] and
HyCO [13]), therefore making PhTM* a better suited solu-
tion. Finally, we show for the first time that conventional
hybrid systems do not perform better than phased-based
system in a scenario with hybrid-behaved transactions.

1.1 Motivating Example

To illustrate the potential of PhTM*, please consider Fig. 1,
where performance evaluation numbers have beenmeasured
for two programs from Intset, a microbenchmark that
implements basic data structure operations (search, insert,
remove) over a sorted integer set. Fig. 1 presents (x axis) two
Intset programs: a linked-list and a red-black tree, both
containing 4096 elements. The configuration shown in the
figure performs 20 percent updates (insert and remove) on
four threads, and was run in six transactional systems: a
hardware implementation (Intel’s RTM), an STM (NOrec),
the original (PhTM) and our phased approach (PhTM*),
Dalessandro et al. hybrid system (HyTM-NOrec) [8] and
Spear et al. hybrid system (HyCo) [13]. The y axis shows the
normalized throughput with regard to the sequential execu-
tion (higher is better).

As shown in Fig. 1, RTM does not perform well when
executing linked-list operations because of capacity aborts:

most of the transactions cannot complete due to resource
limitations and are serialized. On the other hand, NOrec
performs much better (close to 3x). PhTM* is able to detect
the best mode (software in this case) and also performs
well, close to NOrec. Note that both hybrid systems
(HyTM-NOrec and HyCO) perform better than RTM but
still not as good as the phased systems.

On the other hand, for the red-black tree the behavior is
the opposite: RTM performs very well (9x), since there are
no capacity aborts in this scenario, while NOrec presents no
speedup. Again, PhTM* is capable of detecting the best
mode (hardware in this case) and has similar performance
(close to 8.5x), whereas HyTM-NOrec does not provide any
speedup. HyCO achives good speedup, but falls signifi-
cantly behind RTM, PhTM and PhTM*.

In Section 4 a set of experiments is performed on larger
benchmarkswhich support the claim that PhTM* can dynam-
ically detect and get the best of both HTM/STM modes out-
performing evenmore complexHyTM approaches.

1.2 Contributions

This article makes the following contributions:

� It confirms that PhTM* [15] is an efficient phase-based
transactional system that provides the following nov-
elties: (i) it avoids unnecessary switches to software
mode by considering not only the number, but also
the categories of hardware aborts; (ii) it reduces the
frequency of spurious software mode transitions by
using a new serializationmode (Section 3);

� The experimental results on two different HTM pro-
cessors, Intel Broadwell (4.2) and IBM Power8 (4.3),
using the STAMP [16] benchmark suite, reveal that
PhTM* is able to detect the best execution mode and
provides superior performance compared to both
PhTM [14], a previous phase-based TM, and HyTM-
NOrec [8] andHyCO [13], two state-of-the-art hybrid
implementations. In particular, PhTM* performs on
average 1.64x better than PhTM, 2.08x better than
HyTM-NOrec and 2.28x better tahn HyCO on the
Broadwell machine, and 1.18x, 1.36x and 1.81x on the
Power8machine, respectively (Sections 4.2 and 4.3);

� It shows that STAMP applications do not exhibit
hybrid behavior to justify the use of conventional
hybrid systems (HyTM-NOrec [8] and HyCO [13]),
therefore making PhTM* a better suited solution.
And, for the first time, it shows that conventional
hybrid systems do not perform better than phased-
based system in a scenario with hybrid-behaved
transactions (Section 4.4);

� It presents the first experimental results showing the
inherent limitations of conventional hybrid systems,
as demonstrated by Shavit et al. [17] (Section 4.5);

� It discusses the virtues and limitations of phase-
based transactional systems and reports our experi-
ence when designing PhTM* (Section 4.6).

This article is divided as follows. Section 2 presents the
background and relatedwork. Section 3 describes our PhTM*
design. Section 4 presents the evaluation of PhTM*, compar-
ing it against other state-of-the-art approaches. Finally, we
conclude the article in Section 5.

Fig. 1. Intset – 14 threads, 20 percent updates and 80 percent lookups.

460 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 2, FEBRUARY 2019

2 BACKGROUND

Transactional Memory (TM) is a parallel programming
model which uses transactions to abstract the synchroniza-
tion of shared memory accesses [1]. Instead of using a tradi-
tional approach such as locks, which require programmers
to think about how to isolate multiple accesses to the same
data, transactions only require programmers to think about
what to synchronize: the TM runtime automatically pro-
vides atomicity, isolation and consistency. As a conse-
quence, transactions avoid most of the pitfalls attributed to
locks (e.g., deadlocks and priority inversion), while still pro-
viding similar or better performance [2].

To date, many TM systems were proposed and imple-
mented either in hardware (HTM), software (STM) or some
combination of both (HyTM). Recently, IBM and Intel have
added basic HTM support to their processors [18], opening
up new opportunities for TM research and improved
performance.

2.1 Hardware Transactional Support

Most of the processors with transactional memory support
available today only implement best-effort transactions,
meaning that the hardware does not guarantee whether or
not transactions will eventually complete; this task is left to
the programmer or runtime.

Transactional support in Intel processors (Haswell) is
available through the Transactional Synchronization Extension
(TSX) [5], [19] and comes in two flavors: RTM (Reduced
Hardware Transactions), a set of instructions that enable the
control of transactions, and HLE (Hardware Lock Elision),
two prefixes used to elide writes in lock variables and run
critical sections speculatively. RTM is Intel best-effort
implementation of hardware transactions and adds three
main instructions: XBEGIN and XEND to mark the transac-
tional code region, and XABORT to explicitly abort a transac-
tion. When a transaction aborts, the code is redirected to a
fallback path specified by the XBEGIN instruction. In this
case, the hardware provides a register (EAX) which stores
the possible causes of the abort.

The Power8 processor is the first IBM processor that
implements hardware transactional support directly by the
Power ISA [20]. Power8 is also the first HTM-ready proces-
sor that supports non-transactional operations inside of
transactions through SUSPEND and RESUME instructions.
All operations executed within a SUSPEND/RESUME block
are not rolled-back on a transactional abort. Power8’s hard-
ware only provides best-effort progress guarantees and,
similar to RTM, relies on the programmer to provide an
alternative execution path (fallback) to be executed when
transactions are unable to complete in hardware. The
instructions TBEGIN, TEND and TABORT were added to the
Power ISA to explicitly start, commit and abort transactions.
Detailed information about the causes of transactional fail-
ures are provided by a special-purpose register (TEXASR).

2.2 Hybrid Transactional Memory

The main goal of hybrid transactional memory is to
allow concurrent execution of both hardware and software
transactions. The research on hybrid mechanisms gained
momentum with the introduction of hardware support, but

the approach has been studied at least since 2006 as shown
by the works of Kumar et al. [6] and Damron et al. [7].

The advent of more efficient STM designs and real HTM
implementations gave rise to new hybrid proposals. The
NOrec STM [21], presented in 2010 byDalessandro et al., sim-
plified the implementation of STM by using a single global
sequence lock and employing value-based validation.
Hybrid algorithms based on NOrec (HyTM-NOrec) were
proposed byDalessandro et al. in 2011 [8]. The authors inves-
tigated different implementations with contrasting trade-
offs. For instance, while a straightforward implementation
can provide opacity, it comeswith drawbacks such as a single
software transaction aborting all the hardware ones (regard-
less of having real data conflicts). More advanced algorithms
using lazy subscription were also discussed, but they requ-
ired sand-boxing or the execution of non-transactional
instructions inside hardware transactions (not available on
most commercial processors at the time).

Around the same time (circa 2011), Riegel et al. [9]
proposed a family of hybrid implementations for AMD ASF
(Advanced Synchronization Facility) [22]. Two specific
implementations are discussed: one based on the Lazy Snap-
shot Algorithm (LSA) [23] and the other on NOrec [21]. Simi-
lar to some approaches described by Dalessandro et al. [8],
their algorithms heavily rely on non-speculative operations
inside transactions.

Matveev and Shavit proposed two hybrid approaches
employing a multi-level fallback mechanism: RH-TL2 [10]
in 2013, and RH-NOrec [11] in 2015. In general, the idea is
to have transactions starting in hardware mode (fast path)
but switching to a “mixed” slow path in case it fails. If it
fails again, it then switches to a pure software mode (slow
path). For RH-TL2, the “mixed” slow path mode executes
the transaction body in software mode, but the commit
operation is performed using a hardware transaction. As for
RH-NOrec, the “mixed” slow path works by adding two
small hardware transactions: (1) an HTM prefix, executing
the largest possible number of reads in hardware (adjusted
dynamically based on abort rate); (2) an HTM posfix, encap-
sulating all the writes. The modifications allowed the fast
path to be executed without instrumentation.

Another hybrid approach, named Invyswell, was
proposed by Calciu et al. in 2014 [12]. Invyswell uses a modi-
fied version of InvalSTM [24] as the software fallback. While
HTM performs better with small transactions, InvalSTM is
designed to handle large transactions and high contention.
The idea of Invyswell is to combine both systems so as to pro-
vide good overall performance. Invyswell actually provides
five executionmodes: two in hardware and three in software.
Having many different modes helps in adapting the system
to different workloads, but complicates the design and req-
uires efficient heuristics for transitioning between modes.
Similarly to RH-NOrec, Invyswell performed well for some
STAMP applications, but for others (such as Kmeans
and Yada) a noticeable slowdown was noticed when com-
pared to other approaches (either pure hardware or software
schemes).

Although not a hybrid system per se, Xiao et al. [25] pro-
pose a decision tree-based approach to decide between
hardware and software TM implementations. However, the
proposed solution chooses between HW and SW statically,

DE CARVALHO ETAL.: THE CASE FOR PHASE-BASED TRANSACTIONAL MEMORY 461

differently from PhTM* [15], and therefore would not per-
form as good as the phase-based approach with long-
running applications that change phases periodically.

Common to all hybrid approaches is the need to coordinate
the concurrent execution of hardware and software transac-
tions. In turn, this usually introduces some kind of instrumen-
tation (slowing the fast path) and complicates the design of
the algorithm. On the other hand, as described in the next
section, the phased approach (PhTM) only allows one execu-
tion mode (e.g., hardware or software) at a time, making the
algorithmdesignmuch simpler andmore flexible.

2.3 Phased Transactional Memory

Phased Transactional Memory is a phase-based transac-
tional system that executes transactions in modes selected
according to properties like transactional length, level of
contention and speculative capacity requirements. Unlike
hybrid systems, in PhTM simultaneously executing transac-
tions use the same running mode (e.g., HTM or STM). All
the discussion in this section is based solely on Lev et al.’s
[14] description of the PhTM implementation; no other algo-
rithm nor pseudo-code has been published on this subject
since then.

The prototype PhTM implementation described in [14]
has two modes of execution: a pure hardware mode (HW),
and a pure software mode (SW). While in HW, transactions
execute using the HTM support available in the machine,
whereas in SW mode transactional execution is provided by
means of an STM library. Given that most HTM implemen-
tations available today have smaller overheads than STM
libraries to manage a transaction (start, commit and abort),
and that all accesses inside a hardware transaction are
treated as transactional (no read/write barriers), the paths
executed in HW or SWmode are respectively called the fast-
path and slow-path. The phase transitions as well as the
choice of which path to take are driven by three global vari-
ables: mode, deferredCount and undeferredCount.
The system must be able to access these variables atom-
ically, but most current processors only have support to
atomically access at most 64bits. A way to circumvent this
problem is to store them as bit fields of a 64 bit variable
(modeIndicator): one bit for the mode state, and the
remaining 63 bits split into two counters (deferredCount
and undeferredCount). A possible configuration for the
modeIndicator variable is shown in Fig. 2a.

As shown in Fig. 2b, the PhTM system starts in HW
mode (mode bit not set). When a hardware transaction
aborts, it increments a local counter with the number of
retries. As described in [14], while this number is less than
nine, the system remains in HW mode . Otherwise, the
transactions that repeatedly failed initiate a transition to SW
phase : each failed transaction increments deferred-

Count if, and only if, the system is still in HW, and sets the
mode bit if not yet set. Therefore, a phase transition auto-
matically causes all currently running hardware transac-
tions to abort because variable modeIndicator belongs to
the read-set of all hardware transactions. All aborted trans-
actions restart and check which path to choose by reading
modeIndicator.

The system remains in SWmode while deferredCount
is nonzero . In this mode, transactions that incremented
deferredCount (while still in HW mode) decrement it
when they complete running in SW mode. Each undeferred
transaction (those that did not increment deferredCount)
first increment undeferredCount (making sure that the
mode is SW and no HW mode transition is in place) and
decrements it again once they finish. A transaction that dec-
rements one of the counters to zero, while the other counter
is also zero, forces a phase transition to HW .

It is easy to see that PhTM has two major shortcomings
concerning its phase transition policies. First, only the num-
ber of aborts is considered when changing the system to SW
mode, so transactions that cannot complete in HWmode due
to hardware limitations, e.g., capacity constraints, will fail
9 times before they have a chance to complete in SW mode.
In addition, hardware transactions can fail arbitrarily (spuri-
ously), so even transactions that could finish in hardware
may be forced to switch to SW mode. Second, the system
switches back to HW mode as soon as all deferred transac-
tions, possibly only one, finishes and no undeferred transac-
tions are running. As a consequence, the system may start
going back and forth between modes: a failed transaction
switches the system mode to SW, it then starts and finishes
in this mode before any other transaction is able to run, forc-
ing the system to switch back to HWalmost instantly.

In the next section we propose PhTM*, an efficient
Phased TM algorithm that addresses the above described
drawbacks of PhTM. PhTM* avoids unnecessary switches
to SW mode by considering not only the number, but also
the categories of hardware transactions’ aborts.

3 PHTM*– AN EFFICIENT PHASED TM ALGORITHM

In this section we describe the first implementation of a
phase-based transactional system designed with real HTM
support on the fast-path. Our proposed implementation
(PhTM*) is capable of using feedback information from
HTM execution to guide the phase transition process. Con-
trary to PhTM, in PhTM* there are three modes of execution
for all running transactions: (a) hardware mode (HW);
(b) softwaremode (SW); and (c) serial mode (GLOCK).While
in HW or SW, transactions execute using the TM support
available in hardware or the support provided in any STM
library, respectively. Transactions in GLOCK mode execute
holding a global lock, irrevocably and in total isolation.

Similarly as in PhTM, both mode transitions are con-
trolled using a single global variable, modeIndicator. The

Fig. 2. PhTM – (a) Bit field with state configuration and (b) transition
automaton.

462 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 2, FEBRUARY 2019

field configuration is similar to the one in Fig. 2a, only the
lengths of the fields change: 2 bits for mode and 31 bits for
each counter. A transaction in PhTM* starts in HW mode
and uses the hardware transaction’s abort information to
decide which mode to choose, SW or GLOCK. Our pro-
posed algorithm, differently of other usual hybrid systems
(e.g., HyTM-NOrec), does not require any special HTM or
STM implementations. In fact, any HTM providing explicit
instructions to start, commit and abort transactions are suit-
able to be used with PhTM*.

To simplify the description of the algorithm we use
HW!SW, HW!GLOCK, GLOCK!HW, and SW!HW to
describe the transitions among hardware, software and
serial modes. Fig. 3 shows the mode transition automaton
of the PhTM* algorithm. As shown, PhTM* only switches to
SW as a last resort when a HW transaction experiences
an abort rate over a fixed threshold (ABORT_THRSD) and
has persistent capacity aborts. This policy aims to detect
long transactions and direct them to run in SW. A capacity
abort is considered persistent if, and only if, it happens at
least twice in a row. The abort rate is calculated considering
all hardware abort causes, except capacity, and is given by
the following equation:

abort ratet ¼ a � abort ratet�1 þ ð1� aÞ � abort;

where abort is 1 when a HW transaction aborts, and 0 other-
wise. a is used to either give more weight to the past history
(abort ratet�1) or the current abort rate (abort). The abort
rate computation was inspired by the contention intensity
formulation introduced by Yoo et al. [26].

Mainly two reasonsmake long transactions better suited to
run in SW rather thanHW. First, transactions that persistently
fail because of capacity issues will never be able to complete
in HW as HTMs typically have limited transactional capac-
ity [27]. Second, because the conflict detection granularity in
STMs is usually finer than in HTMs, and all accesses inside a
transaction are tracked to detect conflicts in most HTMs,
hardware transactions are more susceptible to false conflicts
than software transactions.Moreover, the longer a transaction
themore likely it is to conflictwith others, so two long transac-
tions have a higher conflict probability inHW than in SW.

Once the system is in SW, deferred transactions start
immediately. Deferred transactions are those which could
not complete in HW and therefore trigger a HW!SW tran-
sition. Undeferred transactions are those which switched to
SW because at least one deferred transaction initiated a
HW!SW transition. Undeferred transactions must first
increment undeferredCount while checking if both the
system mode is still SW and there is no SW!HW transi-
tions in place (deferredCount equals 0). Therefore, newly
started undeferred transactions only increment their coun-
ter if deferredCount is not zero and the current state is SW.
If an undeferred transaction sees that the mode changed to
HW or that deferredCount is zero, it decrements unde-
ferredCount if it has restarted and wait for the SW!HW
transition to happen. After completion, undeferred transac-
tions only have to decrement undeferredCount. On the
other hand, deferred transactions must decrement defer-
redCount. When a deferred transaction commits for the
N-th time it computes the average size, in cycles, of the
transactions it has executed. If such average is above a fixed
threshold (SIZE_THRSD), then the system remains in SW
and the value of N is doubled. A SW!HW transition is
started once transactions are small enough and both coun-
ters are zero . The system is always capable to return to
HW simply because once a deferred transaction commits, it
decrements deferredCount, and when such counter reaches
the value zero, no other transactions starts. It is possible
that deferredCount reaches zero while undeferredCount
does not. In this scenario, the thread which decreased def-
erredCount to zero performs a SW!HW when condition

is met.
After a hardware transaction starts, it checks if modeIn-

dicator is zero or, in other words, if the system is in HW
and no HW!SW is in place. If so, the transaction can safely
execute in HW, given that the modeIndicator variable
belongs to the read-set of all transactions in HW and any
mode transition will conflict with and abort all hardware
transactions. In such case, either the mode changed or a
transition to SW is in place. If the mode changed to GLOCK
the transactions wait until the serial transaction completes
and retries in HW. On the other hand, if the system is in
SW, or is attempting a HW!SW transition, the transactions
will simply restart in SW.

PhTM* serializes transactions only when they fail repeat-
edly due to non-persistent capacity aborts . This policy
prevents transactions from livelocking and allows PhTM* to
quickly return to HW. A transition to GLOCK may fail
because another thread may already have switched the sys-
tem to SW. Notice that only a single thread can run in
GLOCK at a time; the other threads must wait the GLOCK
transaction to complete . As PhTM* tries to serialize only
short transactions, the amount of time waiting for the
GLOCK transaction is usually very small (see Section 4).
Given that GLOCK transactions run irrevocably and in isola-
tion, the only post completion action necessary is to switch
the system toHW, atomically writing 0 to modeIndicator.

4 EXPERIMENTAL RESULTS

The purpose of this section is to present a quantitative anal-
ysis of the performance of our phase-based transactional

Fig. 3. PhTM*’s transition automaton

DE CARVALHO ETAL.: THE CASE FOR PHASE-BASED TRANSACTIONAL MEMORY 463

system, PhTM*, comparing it against the original phased
transactional prototype, hardware, software, and hybrid
systems.

4.1 Experimental Setup

The following transactional systems are evaluated1:

� RTM: Intel hardware implementation of TM. Each
transaction may retry up to 9 times.2In case this
threshold is reached or an abort is persistent, indi-
cated by a hardware flag, the transaction is serialized
with a global lock. The lemming effect [28] is treated
by delaying the restart of new HW transactions till
the lock is free;

� PowerTM: Power8 hardware implementation of TM.
This system shares the implementation code of RTM,
but uses Power8’s HTM instructions instead of
TSX’s;

� NOrec:This is the code developed by the Rochester
Synchronization Group and released as part of
the RSTM package [29]. NOrec employs a global
sequence lock, performs deferred versioning and
eager conflict detection by means of value-based
validation;

� HyTM-NOrec: We implemented and used the
2-location version of HyTM-NOrec, with eager sub-
scription of the software sequence lock. The code for
the software path of HyTM-NOrec is the same used
for NOrec. Besides adding the hardware path, the
only changes necessary to implement HyTM-NOrec
are: (i) eagerly subscribe the sequence lock after
starting a HW transaction; (ii) increment the global
hardware commit counter in the pre-commit phase;
and (iii) re-validate the software transactions when-
ever such counter changes;

� HyCo: We also implemented and used the Hybrid
Cohorts [13] algorithm. Transactions on the software
path first try to writeback their updates inside a HW
transactions, allowing concurrent execution of both
SW and HW transactions. In the experiments, we
used the same threshold values as Spear et al. [13]:
HW transactions are retried up to 20 times and trans-
actions are serialized with a global lock after 5 SW
failed commit validations. The hardware-assisted
commit in SW is only retried twice;

� PhTM: The prototype implementation described by
Lev et al. [14] and presented in Section 2.3. The maxi-
mum number of HW retries (MAX_RETRIES) was set
to 9 and the software component of PhTM is based
on NOrec;

� PhTM*: Our phase-based transactional system using
the algorithm described in Section 3. The implementa-
tion shares much of the same code used by PhTM,
including the software path, which is based onNOrec.
The number of HW retries (MAX_RETRIES) was again

set to 9, the abort rate threshold (ABORT_THRSD) and
value of a were set to 60 and 75 percent, respectively.
The value of 30k cycles was used as the threshold for
transaction length (SIZE_THRSD). When running
in software mode, a transaction length is initially
averaged every 100 executions (this value is doubled,
to a maximum of 1000, everytime a new average is
calculated). These values were chosen based on a per-
formance analysis conducted with the STAMP bench-
mark. We discuss the implications of changing these
thresholds further in Section 4.6.

The results reported in this section represent the mean of
20 executions. All applications and algorithm implementa-
tions were compiled with GCC (GNU C/C++ Compiler) 7.2
and optimization level three (-O3). In this section we present
experiments conducted on two different machines, one pow-
ered with a Broadwell processor and another with a IBM
POWER8. Eachmachine has the following configuration:

� Broadwell: This machine has a Intel Xeon E5-2660 v4
2.0 GHz processor and 64 GB of RAM, running
CentOS 7 Linux kernel version 3.10. The E5-2660 v4
processor has 14 cores, each with 2 hardware threads
(total of 28 SMT threads). The processor’s transac-
tional capacity (for writes) is limited by the size of
the L1 data cache (32 KB) and the granularity of con-
flict detection is at the level of a cache line (64 bytes);

� Power8: This machine has a IBM Power8 Turismo
SCM 3:0 GHz processor and 16 GB RAM, running
Ubuntu 14.04 with linux kernel version 3.16. The
Power8 processor has 4 cores, each with 8 hardware
threads (total of 32 SMT threads). The processor’s
transactional capacity (both reads and writes) is lim-
ited by a 64-entry directory structure associated with
the L2 cache (CAM) [20], and conflicts are detected
at the level of a cache line (128 bytes).

In neither of these machines we made use of hyper-
threading as it tends to decrease performance due to capac-
ity aborts. Moreover, performance issues induced by the
memory allocator [30], [31] were avoided by using the
TCMalloc allocator with the changes suggested by Nakaike
et al. [18]. Our analysis makes use of the STAMP [16] bench-
mark suite. STAMP consists of scientific applications from a
diversity of fields such as bioinformatics (Genome), security
(Intruder) and computational geometry (Yada). STAMP
is parallelized using the Single Program Multiple Data
(SPMD) style, where every thread executes the same block
of code with different input. STAMP thus favors regularity
and code homogeneity.

4.2 Results Using TSX

Fig. 4 shows speedup (y-axis), over sequential time, for 7
STAMP applications up to 14 threads (x-axis). The last set of
bar graphs (geomean) is the geometric mean speedup of all
applications. The Bayes application was not used because
of its known high execution time variation [32].

In Table 1 we present the number of transitions between
different modes and the percentage of time spent at each
mode for RTM, PhTM, and PhTM* when executing with 14
threads. Table 1 also shows the percentage of commits at
each mode when running RTM, PhTM and PhTM* also on

1. Source code of PhTM* and all evaluated TM system can be found
at https://github.com/jaopaulolc/PhTM-Star

2. This threshold is actually used by all the evaluated systems and
follows the recommendation of Lev et al. [14] for their PhTM system.
During our tests, values ranging from 5 to 20 were used leading to quite
the same results, on average.

464 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 2, FEBRUARY 2019

14 threads. The percentages are computed as the number of
commits of a given mode over the total number of commits
of the system.

The first observation one can draw from the graphs is
that RTM outperforms NOrec in almost all (5 out of 7) appli-
cations. NOrec only outperforms RTM for Labyrinth and
Yada. Therefore, in order to better analyze the results, we
will discuss first the HTM-friendly applications (Intruder,
Kmeans, SSCA2, Vacation and Genome). After that we
present results explaining the remaining STM-friendly
applications (Labyrinth and Yada). All the discussion in
this section considers the results with 14 threads, unless
explicitly stated otherwise.

Of all HTM-friendly applications, Kmeans and SSCA2 are
those with the shortest transactions. Short transactions
reduce the probability of data conflicts and rarely cause per-
sistent capacity aborts, thus RTM completes most Kmeans’s
and SSCA2’s transactions. However, when running with
the software implementation, the overhead of read/write

barriers is noticeable. The abort rate for SSCA2 is very low,
around 0.48 percent with 14 threads, while for Kmeans it is
significantly higher, around 69.93 percent. Even with such a
high abort rate, RTM is able to outperform NOrec due to
very low capacity aborts (less than 0.2 percent) and because
conflicts of short transactions have a low probability to per-
sist. As Table 1 shows, almost all transactions are executed
in HW with RTM. Since SSCA2 has low abort rate, both
PhTM and PhTM* are able to keep the transactions in HW
mode and perform almost as good as RTM. Both phased
approaches fall slightly short of RTM because both imple-
mentations add overhead due to duplication of code for
both execution paths. PhTM* overhead is larger than PhTM
due to its more sophisticated heuristic. For Kmeans, the
increased abort rate causes PhTM to switch to SW much
more than PhTM* (141676.5 and 34.1, respectively with 14
threads), explaining the great performance advantage of the
latter. PhTM* avoids switching to SW repeatedly because
the number of capacity aborts in Kmeans is very low, around

Fig. 4. Speedup results for the STAMP benchmark.

DE CARVALHO ETAL.: THE CASE FOR PHASE-BASED TRANSACTIONAL MEMORY 465

0.15 percent with 14 threads. When it does switch to SW, it
quickly switches back to HW because the transactions are
very small. This feature shows the effectiveness of PhTM*’s
more elaborated heuristic over PhTM. PhTM* performs
noticeably better than RTM for Kmeans with 8, 10 and 12
threads. The increase on abort rate leads RTM to transition
much more frequently to GLOCK than PhTM*. In addition,
for those specific thread configurations PhTM* spends most
of its execution time in HW, above 51.3 percent, while RTM
spends the same fraction of execution time in GLOCK. In
fact, RTM remains 32.9, 31.4 and 35.5 percent in HW while
PhTM* spends 90.2, 77.6 and 64.5 percent, respectively, with
8, 10 and 12 threads. However, with 14 threads PhTM*
spends a considerable amount of execution time in SW,
explaining the observed performance degradation.

The difference between RTM and NOrec increases with
the number of threads for Intruder, Vacation and
Genome. Amongst these three applications, Genome has the
lowest abort rate, around 8.94 percent with 14 threads, but
the majority of the aborts are capacity ones. The occurrence
of capacity aborts explain the performance gap between
RTM and PhTM*. These aborts, although spurious, leads
PhTM* to stay over 12.5 percent in SW instead of retrying
either on HW or GLOCK. Nonetheless, the few times
PhTM* switches to SW (around 10 on average with 14
threads) it is able to go back to HW where it spends most of
its time, about 59.2 percent. The lack of a serialization mode
causes much frequent mode changes in PhTM (around
2354) and the total amount of time it stays in SW mode is
48.6 percent, explaining why PhTM* performs better. The
same behavior explains why PhTM* is slightly better than
PhTM in Intruder with 14 threads. Although the abort
rate is higher in Intruder (about 57.72 percent), PhTM*
spends less time in SW, about 61.71, against PhTM’s
75.07 percent. PhTM* starts spending more time in SW than
in HW mode beyond the 8-thread, explaining the perfor-
mance degradation. The increase on conflict aborts triggers
more HW!SW transitions. Nonetheless, PhTM* still per-
forms better than PhTM.

Vacation has a moderate abort rate compared with the
other STAMP applications, revolving around 20 percent.
Two thirds of these aborts are due to capacity reasons,
explaining the migrations to SW in PhTM and the total of
66.7 percent of the execution time spent in this mode. This is
in contrast with PhTM*, which spends little time in SW (less
than 6.9 percent). In addition, the number of migrations

back and forth to SW in PhTM is very high, causing extra
overhead (due to the SW!HW barrier) and thus allows
PhTM* to perform increasingly better beyond the 8-thread
boundary. Similar to Intruder, capacity aborts become
more frequent beyond 8 threads in Vacation. However,
PhTM* rarely switches to SW due to Vacation’s lower
abort rate. RTM outperforms NOrec for Intruder, Genome
and Vacation due to the contention on the software
sequence lock. Table 1 reveals that PhTM* not only spends
most of its time in HW, but also that HW is in fact very
effective. In particular for SSCA2 and Vacation, the sys-
tem stays in HW 100 and 82.6 percent while commiting the
majority of transactions, respectively, 100 and 95.9 percent.

For the remaining two applications, Labyrinth and
Yada, NOrec performs noticeably better than RTM. These
applications, particularly Labyrinth, have very long run-
ning transactions. As all accesses inside a hardware transac-
tion are versioned, RTM’s transactions are more vulnerable
to capacity and conflict aborts than NOrec, which uses the
manually instrumented accesses provided as STAMP anno-
tations. As a consequence, hardware transactions in RTM
exhibit an abort rate over 90 percent for Labyrinth, most
being capacity aborts, and over 67 percent for Yada, from
which 63 percent are due do conflicts and the remaining
36 percent due to capacity. As a consequence, a significant
percentage of transactions in both applications are serial-
ized, as Table 1 shows. With NOrec, the abort rate is close to
25 and 11 percent for Yada and Labyrinth, respectively.
Again, Table 1 makes it clear that that SW is the most effec-
tive system for both Labyrinth and Yada.

PhTM*’s heuristic quickly (after about 8 serializations)
switches to SW and never switches back, given the long
transactions in Labyrinth, allowing it to perform very
close to NOrec for this application. Although Table 1 shows
a percentage of 97.3 percent in SW for PhTM, against
PhTM*’s 96.8 percent, it should be noticed that PhTM keeps
migrating between modes much more frequently and the
overhead to switch from SW to HW (the cost of waiting all
software transactions to finish) is showed as part of SW.
After instrumenting the code, we found out that this cost is
up to 30 percent of the total time spent in SW, explaining
why PhTM* was better than PhTM. For Yada something
similar happens, except that Yada also presents a lot of con-
flict aborts. This causes PhTM* to switch between modes
much more frequently, but still a lot less than PhTM (161.4
versus 124810). As a result, the penalty for switching from

TABLE 1
Transitions, Percentage of Time and Commits in each System Mode for STAMP with 14 Threads

System RTM PhTM PhTM*

Trans. % of
Time

% of
Commits

Trans. % of
Time

% of
Commits

Trans. % of
Time

% of
Commits

Application HW!GL HW GL HW GL HW!SW HW SW HW SW HW!SW HW!GL HW SW GL HW SW GL

Kmeans 605896.4 99.9 00.0 88.5 11.4 141676.5 23.4 76.5 56.0 43.9 34.1 404178.1 51.3 27.8 20.7 79.1 09.7 11.6
SSCA2 0 100.0 00.0 100.0 00.0 0 100.0 00.0 100.0 00.0 0 0 100.0 00.0 00.0 100.0 00.0 00.0
Intruder 1819652.5 46.7 53.2 94.3 05.6 476510.5 24.9 75.0 63.2 36.8 429.2 1010588.3 19.1 61.7 19.1 74.9 19.0 06.2
Genome 19060.3 72.0 27.9 99.2 00.7 2354 51.3 48.6 69.5 30.4 10 15023.6 59.2 12.5 28.2 82.9 16.5 00.5
Vacation 38496.6 86.4 13.5 99.0 00.9 12829.7 33.2 66.7 62.3 37.6 9.1 37930.2 82.6 06.9 10.4 95.9 03.1 00.9
Labyrinth 518.7 52.6 47.3 50.7 49.2 52.6 02.6 97.3 25.2 75.1 1 02.8 00.0 96.8 03.1 01.5 98.2 00.2
Yada 442611.4 66.8 33.1 82.8 17.1 124810 09.7 90.3 54.2 45.8 161.4 6129.2 01.3 94.6 04.0 01.1 98.6 00.2

466 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 2, FEBRUARY 2019

SW to HW due to the barrier is only 2.33 percent of the time
spent in SW, against a cost of 37.6 percent for PhTM. This is
a strong evidence that the serialization mode used by
PhTM* is efficient in minimizing the barrier cost in situa-
tions that would involve a lot of migrations.

As Fig. 4 also shows, both PhTM* and HyTM-NOrec
achieved close speedups in 2 out of the 7 applications: Laby-
rinth and Yada. In fact, Labyrinth was the only applica-
tion to effectively benefit from HyTM-NOrec’s ability to run
transactions in different modes simultaneously. However
PhTM* outperforms HyTM-NOrec for Yada, showing the
effectiveness of PhTM*’s heuristic to quickly detect the best
running mode. HyCO only achieves speedups close to
PhTM*’s for SSCA2 and Genome. Nonetheless, RTM is fol-
lowedmuch closely by PhTM*. Since PhTM* is able to follow
the best execution mode for each application, it presented the
best overall results for STAMP among all studied TM sys-
tems, with a 1.64x gain over PhTM, 2.08x over HyTM-NOrec
and 2.28x over HyCO considering the geometric mean for the
14 threads execution. Both hybrid systems evaluated (HyTM-
NOrec and HyCO) performed worse overall than both
phased approaches (PhTM and PhTM*). Themain causes are
discussed in great detail later on thiswork (4.4 and 4.5).

4.3 Results Using Power8

Our analysis of the results for the Power8 machine follows
the same structure of TSX’s, in which Fig. 5 shows the
speedup numbers and Table 2 the transitions and percent-
age of time spent in each execution mode for PowerTM,
PhTM and PhTM*. Table 2 also shows the percentage of
commits at each mode when running PowerTM, PhTM and
PhTM* with 4 threads. Here again the percentages are com-
puted as the number of commits of a given mode over the
total number of system commits.

Similarly to the results on Broadwell, there is a group of
applications which performs better with RTM (Kmeans,
SSCA2, Intruder and Genome) and another which per-
forms better with NOrec (Labyrinth and Yada). Differ-
ently of what was observed on Broadwell, but as also noted
by Nakaike et al. [18], both Intruder and Vacation did
not scale with PowerTM. Indeed, Intruder and Vaca-

tion exhibit a capacity abort rate over 88 and 99 percent,
respectively, with 4 threads. We discovered that such appli-
cations also do not scale with NOrec due to the fact that
both Intruder’s and Vacation’s transactions are not
large enough to mitigate the overhead of starting, commit-
ting and aborting transactions in SW. We also noticed that
this overhead is higher on Power8 than it is on Broadwell
and we believe that this is due to the memory model of each
processor. PowerPC’s memory model is more relaxed than
x86’s, therefore explicit CPU fences are necessary to guaran-
tee that reads and writes are not reordered with respect to
NOrec’s sequence lock operations. Such fences are not pres-
ent in the x86’s version of NOrec because the processor’s
memory model (TSO) guarantees the expected ordering.

In the first group, Kmeans and SSCA2 have very short
transactions, explaining why both performed best with
PowerTM. NOrec’s higher overhead to start, commit and
abort transactions is noticeable and severely limited the
speedup of these applications. As Table 2 shows, both
PhTM and PhTM* are able to stay most of their time in HW,
thus performing as good as PowerTM (4 threads). This hap-
pens because the number of transitions in both PhTM and
PhTM* are much smaller than in PowerTM. Despite of the
less frequent mode transitions of PhTM*, PhTM still per-
forms slightly better. Genome, differently of Kmeans and
SSCA2, has small to medium-sized transactions and scales
with NOrec. However, the SW overhead is still quite

Fig. 5. Speedup results for the STAMP applications on the Power8 machine.

TABLE 2
Transitions, Percentage of Time and Commits in each System Mode for STAMP with 4 Threads

System PowerTM PhTM PhTM*

Trans. % of
Time

% of
Commits

Trans. % of
Time

% of
Commits

Trans. % of
Time

% of
Commits

Application HW!GL HW GL HW GL HW!SW HW SW HW SW HW!SW HW!GL HW SW GL HW SW GL

Kmeans 880.3 99.9 00.0 99.9 00.0 5.8 99.9 00.0 100.0 00.0 0 5.8 100.0 00.0 00.0 99.9 00.0 00.0
SSCA2 1 100.0 00.0 100.0 00.0 0 100.0 00.00 100.0 00.0 0 0 100.0 00.0 00.0 100.0 00.0 00.0
Intruder 5757525.4 50.1 49.8 74.4 24.5 1050867.1 32.3 67.6 63.0 36.9 24.2 4632403.9 63.2 00.5 36.1 79.5 00.4 20.1
Genome 54733 59.0 40.9 99.2 00.7 14088.3 56.9 43.0 91.2 08.7 0 52463.2 89.4 00.0 10.5 99.4 00.0 00.5
Vacation 4100667.8 50.3 49.6 02.3 97.6 754836.7 15.6 84.3 01.9 98.0 36.8 4052586.6 38.0 00.5 61.4 02.6 00.5 96.7
Labyrinth 514.4 49.0 50.9 50.1 49.9 90.4 01.4 98.5 34.3 65.7 1 1 00.0 98.6 01.3 00.6 99.2 00.1
Yada 468711.4 51.0 48.9 82.0 17.9 102626.1 15.0 84.9 54.1 45.8 370.4 94189.2 07.9 63.8 28.1 14.2 82.7 03.0

DE CARVALHO ETAL.: THE CASE FOR PHASE-BASED TRANSACTIONAL MEMORY 467

noticeable. PowerTM’s transactional capacity is large enou-
gh to hold most Genome’s transactions (up to 4 threads)
and, as it adds negligible transactional overhead, it per-
forms better than NOrec. PhTM*, by employing a more
elaborated heuristic, does not transition to SW as PhTM
does on Genome and thus is able to run most of the time in
HW. The high frequency of mode transitions in PhTM
makes the threads waste about 13 percent of Genome’s
execution time waiting on the SW!HW barrier and causes
more HW aborts due to writes on modeIndicator.

NOrec performs noticeably better than PowerTM in the
two remaining applications, Labyrinth and Yada. Both
applications have very long transactions, Labyrinth partic-
ularly. PowerTM, similarly to RTM, implements implicit
transactions, meaning that all accesses inside a transaction are
versionedwhich increases the likelihood of both capacity and
conflict aborts. Indeed, over 54 percent ofLabyrinth’s trans-
actions are aborted in PowerTM, most of them for exceeding
transactional capacity. As a consequence, PowerTM serial-
izes, respectively, 50.9 and 48.9 percent of Labyrinth’s and
Yada’s transactions, as Table 2 shows.

As also observed on TSX, PhTM*’s heuristic quickly
switches to SW in Labyrinth and never switches back,
explaining why its performance is very close to NOrec.
Despite Table 2 showing a close percentage of time in SW for
PhTM and PhTM*, threads in PhTM spent over 26 percent of
Labyrinth’s total execution time waiting on the barrier
against 0 percent in PhTM*. Notice that the amount of time
waiting on the SW!HW barrier also counts as SW mode
time. Neither PhTM nor PhTM* were able to scale well with
Yada. The former due to the high frequency of HW!SW
transitions and the wastage of time waiting on the SW!HW
barrier (over 23 percent). The latter because about half of
Yada’s transactions did not had an abort rate high enough to
trigger a HW!SW transitions, explaining why PhTM* spent
around 28.1 percent of the time in GLOCKmode.

Fig. 5 also shows that both PhTM* and HyTM-NOrec
achieved close speedups in 2 out of 7 applications

(Labyrinth and Yada). Moreover, PhTM* outperformed
HyTM-NOrec in 3 out of 7 (SSCA2, Intruder and Genome).
PhTM* also performed as good as HyCO in 2 out of 7 appli-
cations (SSCA2 and Intruder). However, on the 5 remain-
ing applications HyCO fell significantly behind due to its
inherent limitations discussed further on Section 4.5. Laby-
rinth was the only application in which HyTM-NOrec
was significantly faster than PhTM* (less than 8 percent).
This result shows that a simpler design choice to execute
transactions in phases, such as PhTM*, can lead to the same,
or even better performance than a more complex hybrid sys-
tem such as HyTM-NOrec. Confirming the results obtained
with TSX, PhTM* presented the best results overall for
STAMP among all studied TM systems, with a 1.18x gain
over PhTM, 1.36x over HyTM-NOrec and 1.81x over HyCO
considering the geometric mean with 4 threads.

4.4 Behavior of STAMP Applications

In order to understand the dynamic behavior of STAMP
applications we sampled their commit-rate over time.
Figs. 6 and 7 shows the throughput (y-axis), number of com-
mitted transactions per second, over the execution time of
each application (x-axis) when executed on Broadwell and
POWER8 with 14 and 4 threads, respectively. Notice that
each point in the plot is actually the instantaneous commit-
rate calculated as the average number of commits of the last
n transactions. The value of n was chosen based on the size
and number of transactions. Applications with medium
sized transactions were executed with n ¼ 1K (Genome and
Yada), many transactions with n ¼ 5K (Intruder and
SSCA2), large but few transactions with n ¼ 5 (Labyrinth)
and short but many transactions with n ¼ 2K (Vacation).
We omit the results for Kmeans due to the high variation on
the completion time (of individual transactions) induced by
its very small transactions composed of only a couple of
memory updates. As each point is ordered, the plots show
how the commit-rate changes over time. As in the previous
section, first we present the HTM-friendly applications

Fig. 6. Commit-rate over time of all STAMP applications running on the Broadwellmachine.

468 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 2, FEBRUARY 2019

(Kmeans, SSCA2, Intruder, Genome and Vacation) and
later those that performed better with STM (Labyrinth
and Yada) as Section 4.2 shows.

Fig. 6 makes it clear that, although the commit-rate
changes over time, the best performing system remains the
same throughout the whole execution. This result shows,
for the first time, that STAMP applications do not exhibit
hybrid behavior. As a result, a phase-based TM system is
better suited than a hybrid alternative because there is no
point in time in which any two transactions will diverge on
the best performing execution mode. The SPMD nature of
STAMP applications combined with the fact that a single
transaction dominates execution time [33] also supports our
claim. Fig. 6 also shows how effective PhTM* is to both
detect and remain on the best mode. This mono-phase char-
acteristic lends STAMP a poor candidate to evaluate hybrid
systems as it will not stress the scenario where two or more
transactions are required to execute on different modes.

Genome is the only exceptional case with a more notice-
able commit-rate change. After the instant 100, HW is able to
complete transactions at a higher rate than SW. Even with
this abrupt change PhTM* was capable of quickly switching
and remaing in HW. Around instant 140, SW becomes the
best running mode and again PhTM* followed SW closely.
The results of Intruder reveal that PhTM* and HyTM-
NOrec were not able to closely follow the best mode (HW),
showing that there is still space for improving the state tran-
sition heuristics. The plot of Labyrinth shows significantly
fewer points than the other applications because Laby-

rinth has to execute only about 500 transactions in order to
terminate while the others must execute hundreds or even
thousands of thousands (e.g., Intruder and Yada).

Confirming the results obtained with Broadwell, Fig. 7
shows that STAMP applications do not exhibit hybrid
behavior on POWER8 either. Such consistent results, obtai-
ned with two different architectures, are strong evidences
that the behavior depicted on both Figs. 6 and 7 are indeed
intrinsic of STAMP and not induced by the systems

characteristics. Therefore, STAMP is a poor candidate to
evaluate hybrid transactional systems on both Haswell and
POWER8 platforms.

4.5 Performance in the Presence of Phases and
Hybrid Behavior

In the previous Section 4.4 we have showed that STAMP, the
de facto standard in TM systems evaluation, do no exhibit suf-
ficient hybrid behavior to stress dynamic mode transition
heuristics. Therefore, in order to properly evaluate PhTM*
and all previous transactional systems (See Section 4.1) we
adapted the Intset microbenchmark, from the TinySTM
code base [34], to enable it to execute phases composed of
operations over two of its data structures, a linked-list (LL)
and a red-back tree (RB). Intset aims to measure how effec-
tive a given synchronization mechanism implementation is
under different scenarios [35]. The microbenchmark per-
forms a stress test in a sorted integer set by randomly alter-
nating between its search, insert and delete operations.
Therefore, a configuration with a 20 percent update rate
means that 10 percent of all operations are insertions, 10 per-
cent are deletions and the remaining 80 percent are lookups.
Notice that each of these data structures has its own intrinsic
characteristics, such as memory footprint for each operation,
which limits HW and SW performance in different ways.
In general, RB operations are usually HW-Friendly, while
LL operations tend to be more SW-Friendly. As a result,
the microbenchmark can emulate phase changes by simply
switching between these two data structures.

Fig. 8 shows the throughput (y-axis), committed transac-
tions per second, over time (x-axis) for a 3-phase configura-
tion of our new microbenchmark: two LL phases alternated
by a RB phase, both with 20 percent of all operations being
updates. Both data structures were initialized with 4K ele-
ments. Each data point is the average number of commits for
the last 1K transactions. In all of them PhTM* is capable to
effectively detect and remain in the best runing mode.
Clearly neither HyTM-NOrec or HyCOwere able to keep up

Fig. 7. Commit-rate over time of all STAMP applications running on the POWER8machine.

DE CARVALHO ETAL.: THE CASE FOR PHASE-BASED TRANSACTIONAL MEMORY 469

with PhTM or PhTM*. In fact, HyTM-NOrec performed
worse than pure SW for the RB 20 percent updates phase.
HyCO performed better than HyTM-NOrec, however much
worse than both PhTM and PhTM* for the LL 20 percent
phase. Both hybrid systems must fail 10 times in HW before
switching to SW. Once in SW, as soon as the transactions
commit, they will start again in HW, even though SW is the
best suitable execution mode. This result shows, for the first
time, the inability of conventional hybrid systems to dynami-
cally adapt to program phase changes.

The previous results showed that conventional hybrid
systems are unable to cope with phases. However they were

designed for hybrid-behaved applications, those which exe-
cute both HW-Friendly and SW-Friendly transactions con-
currently. Since we failed to find applications with such
characteristics, we implemented a RB-tree forest to evaluate
the ability of conventional hybrid systems to execute both
SW andHW concurrently. In this microbenchmark, each for-
est operation consists of insertions, deletions and queries on
a number of trees in the forest. The number of trees is ran-
domly chosen individually by each thread before performing
an operation. As a result, transactionswith different memory
footprints, and therefore, different SW and HW friendliness,
will execute concurrently.

Fig. 9 shows the throughput of each transactional system
(y-axis) for each number of threads (x-axis). We show the
results for a forest with 1, 20, 45 and 90 trees, respectively
from top to the bottom graph. Each graph shows groups of
bars for the results with 20 and 60 percent updates, respec-
tively from left to right. As can be seen, HyCO was only
able to perform close to both PhTM and PhTM* with a forest
of a single tree. Once the number of trees in the forest
increase and threads start to modify the forest, PhTM* was
the only system that scaled with the number of threads. The
main reason for that is, although both HyTM-NOrec and
HyCO are able to execute SW and HW-Friendly concur-
rently, neither of them can effectively commit transactions
in SW and HW simultaneously.

Even though HyCO enables HW commits, transactions
that failed due to capacity abortswill most likely abort during

Fig. 8. Commit-rate over time of microbenchmark running on Broadwell

with 14 threads.

Fig. 9. Throughput of each transactional system for the hybrid microbenchmark running on Broadwell.

470 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 2, FEBRUARY 2019

hardware-assisted writeback (HC state). Once HyCO’s trans-
actions start to commit in SW, all HW transactions are
aborted via stx_kill flag. In addition, HW transactions can
only start after SW commit ends. HyTM-NOrec exhibits a
similar limitation. Every HW commit triggers a SW read-set
revalidation via the increment of a hardware commit counter.
Besides that, every SW commit aborts all HW transactions
due to the eager subscription to the sequence lock. The afore-
mentioned characteristics are inherent limitations of conven-
tional hybrid systems, as also discussed by Shavit et al. [17].

4.6 Challenges and Limitations of Phased TM
Systems

The previous results demonstrated that PhTM* is a viable
and competitive alternative to standard hybrid transactional
systems. As Lev et al. pointed out [14], there are three main
challenges in implementing phase-based systems: (i) identi-
fying efficient modes for various scenarios; (ii) managing
correct (and fast) transitions between modes; and (iii) decid-
ing when to switch modes. PhTM* illustrates a possible way
to effectively deal with the first two. We identified three
efficient modes: full concurrent HW, serial (GLOCK) and
SW modes. The transitions are usually very fast, but return-
ing to HW from SW may become an issue because a barrier
is needed to wait for the software transactions to finish. The
problem of deciding when to switch modes turned out to be
the most challenging one.

The core idea of PhTM* is to avoid switching to software
mode too early and use it as a last resort. Full hardware
mode is the default and the preferred one. If transactions
cannot complete concurrently in HW, serial mode is used
first. However, if the abort rate is still too high and hard-
ware resources are exhausted (indicated by two consecutive
capacity aborts), PhTM* migrates to SW. When to return to
HW once in SW is the most difficult task. On the one hand,
it should not return too quickly because it might have to
pay the cost of the barrier. Moreover, it may also cause a
“ping-pong” effect, where the system keeps transitioning
between HW and SW continuously. On the other hand, if
too much time is spent in SW it might not benefit from the
fast execution provided by running transactions without
any instrumentation in HW. The decision made by PhTM*
is to only return when: (1) the transactions aborted in HW
have been committed in SW; and (2) the transaction length
is below a given threshold. Therefore, if transactions are still
very long, PhTM* assumes that they still will not be able to
complete in HW, and therefore stays in SW.

The drawback of the heuristic proposed by PhTM* is that
several thresholds need to be tuned: the abort rate threshold
(ABORT_THRSD) and its corresponding a, the minimum
transaction length (SIZE_THRSD), and the minimum num-
ber of times a transaction needs to run in software before its
length is averaged. We set these values after a performance
analysis conducted with the STAMP benchmarks. The
results showed in the last two sections indicate that they
provided very good results. For instance, it is very clear that
PhTM*’s heuristic avoided a lot of unnecessary transitions
to software for all applications when compared to PhTM
(see Tables 1 and 2). Avoiding the “ping-pong” effect was
crucial for the observed performance gains. Even though
we have tuned the parameters using Broadwell as the

baseline, the good results carried over to POWER8, showing
the robustness of the heuristic proposed by PhTM*.

The strongest argument against phase-based transactional
systems is the alleged performance impact caused by a single
transaction requiring execution in a slower mode (e.g., soft-
ware) [9], [10]. Our results show that the STAMP applications
do not exhibit frequent scenarioswherein a single long transac-
tion requires PhTM* switching to a software mode. This is
mostly due to the way these applications were constructed
(i.e., SPMDstyle),whichdoes not favor transaction heterogene-
ity. Therefore, most applications have transactions with well-
defined capacity utilization behavior and a simpler phase-
based approach such as PhTM* offers a competitive solution
when compared to amore complicatedHyTMapproach.

5 CONCLUSION

In this article we made a case for phased transactional mem-
ory by providing a new implementation, PhTM*, and show-
ing that it is competitive with current hybrid systems using
both Broadwell and Power8 processors. Our results show
that for the STAMP benchmarks, a simpler transactional
system based on phases can achieve better overall perfor-
mance than state-of-the-art hybrid systems while providing
a simpler and more flexible implementation. It also shows
that STAMP applications do not exhibit hybrid behavior to
justify the use of conventional hybrid systems (HyTM-
NOrec and HyCO), therefore making PhTM* a better suited
solution. And for the first time we show that conventional
hybrid systems do not perform better than phased-based
system in a scenario with hybrid-behaved transactions.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers
for their insightful comments. This work was supported
by FAPESP (grant 2016/15337-9), Center for Computatio-
nal Engineering and Sciences (CCES), and CNPq (grant
446160/2014-8).

REFERENCES

[1] T. Harris, J. Larus, and R. Rajwar, Transactional Memory,
2nd ed. San Rafael, CA, USA: Morgan & Claypool Publishers,
Jun. 2010.

[2] M. Herlihy and J. E. B. Moss, “Transactional memory: Architec-
tural support for lock-free data structures,” in Proc. 20th Annu. Int.
Symp. Comput. Archit., Jun. 1993, pp. 289–300.

[3] A. Wang, M. Gaudet, P. Wu, J. N. Amaral, M. Ohmacht, C. Barton,
R. Silvera, and M. Michael, “Evaluation of Blue Gene/Q hardware
support for transactional memories,” in Proc. 21st Int. Conf. Parallel
Architectures Compilation Tech., Sep. 2012, pp. 127–136.

[4] C. Jacobi, T. Slegel, and D. Greiner, “Transactional memory archi-
tecture and implementation for IBM system Z,” in Proc. 2012 45th
Annu. IEEE/ACM Int. Symp. Microarchitecture, Vancouver, B.C.,
CANADA, 2012, pp. 25–36, doi: 10.1109/MICRO.2012.12.

[5] Intel� Architecture Instruction Set Extensions Programming Reference,
Intel Corporation, Feb. 2012.

[6] S. Kumar, M. Chu, C. J. Hughes, P. Kundu, and A. Nguyen,
“Hybrid transactional memory,” in Proc. 11th Symp. Principles
Practice Parallel Program., Mar. 2006, pp. 209–220.

[7] P. Damron, A. Fedorova, and Y. Lev, “Hybrid transactional mem-
ory,” in Proc. 12th Int. Conf. Architectural Support Program. Lang.
Operating Syst., Oct. 2006, pp. 336–346.

[8] L. Dalessandro, F. Carouge, S. White, Y. Lev, M. Moir, M. L. Scott,
and M. F. Spear, “Hybrid NOrec: A case study in the effective-
ness of best effort hardware transactional memory,” in Proc. 16th
Int. Conf. Architectural Support Program. Lang. Operating Syst.,
Mar. 2011, pp. 39–52.

DE CARVALHO ETAL.: THE CASE FOR PHASE-BASED TRANSACTIONAL MEMORY 471

http://dx.doi.org/10.1109/MICRO.2012.12

[9] T. Riegel, P. Marlier, M. Nowack, P. Felber, and C. Fetzer,
“Optimizing hybrid transactional memory: The importance of
nonspeculative operations,” in Proc. 23rd Annu. ACM Symp. Paral-
lel Algorithms Architectures, Jun. 2011, pp. 53–64.

[10] A. Matveev and N. Shavit, “Reduced hardware transactions: A
new approach to hybrid transactional memory,” in Proc. 25th
Annu. ACM Symp. Parallel Algorithms Architectures, Jul. 2013,
pp. 11–22.

[11] A. Matveev and N. Shavit, “Reduced hardware NOrec: A safe and
scalable hybrid transactional memory,” in Proc. 20th Int. Conf.
Architectural Support Program. Lang. Operating Syst., Mar. 2015,
pp. 59–71.

[12] I. Calciu, J. E. Gottschlich, T. Shpeisman, G. A. Pokam, and
M. Herlihy, “Invyswell: A hybrid transactional memory for
haswell’s restricted transactional memory,” in Proc. 23rd Int. Conf.
Parallel Architectures Compilation Tech., Aug. 2014, pp. 187–200.

[13] W. Ruan and M. Spear, “Hybrid transactional memory revisited,”
in Proc. Int. Symp. Distrib. Comput., 2015, pp. 215–231.

[14] Y. Lev, M. Moir, and D. Nussbaum, “PhTM: Phased transactional
memory,” in Proc. 2nd ACM SIGPLAN Workshop Transactional
Comput., Aug. 2007.

[15] J. P. L. de Carvalho, G. Araujo, and A. Baldassin, “Revisiting
phased transactional memory,” in Proc. Int. Conf. Supercomputing,
2017, pp. 25:1–25:10. [Online]. Available: http://doi.acm.org/
10.1145/3079079.3079094

[16] C. C. Minh, J. Chung, C. Kozyrakis, and K. Olukotun, “STAMP:
Stanford transactional applications for multi-processing,” in Proc.
IEEE Int. Symp. Workload Characterization, Sep. 2008, pp. 35–46.

[17] D. Alistarh, J. Kopinsky, P. Kuznetsov, S. Ravi, and N. Shavit,
“Inherent limitations of hybrid transactional memory,” in Proc.
Int. Symp. Distrib. Comput., 2015, pp. 185–199.

[18] T. Nakaike, R. Odaira, M. Gaudet, M. M. Michael, and H. Tomari,
“Quantitative comparison of hardware transactional memory for
blue gene/q, zenterprise ec12, intel core, and POWER8,” in Proc.
42nd Annu. Int. Symp. Comput. Archit., 2015, pp. 144–157.

[19] R. M. Yoo, C. J. Hughes, K. Lai, and R. Rajwar, “Performance eval-
uation of Intel transactional synchronization extensions for high-
performance computing,” in Proc. Int. Conf. High Perform. Comput.
Netw. Storage Anal., 2013, pp. 19:1–19:11.

[20] H. Le, G. Guthrie, D. Williams, M. Michael, B. Frey, W. Starke,
C. May, R. Odaira, and T. Nakaike, “Transactional memory sup-
port in the ibm power8 processor,” IBM J. Res. Develop., vol. 59,
no. 1, pp. 8–1, 2015.

[21] L. Dalessandro, M. F. Spear, and M. L. Scott, “NOrec: Streamlin-
ing STM by abolishing ownership records,” in Proc. 15th Symp.
Principles Practice Parallel Program., Jan. 2010, pp. 67–78.

[22] J. Chung, L. Yen, S. Diestelhorst, M. Pohlack, M. Hohmuth,
D. Christie, and D. Grossman, “ASF: AMD64 extension for lock-
free data structures and transactional memory,” in Proc. 43rd
ACM/IEEE Int. Symp. Microarchitecture, Dec. 2010, pp. 39–50.

[23] T. Riegel, P. Felber, and C. Fetzer, “A lazy snapshot algorithm
with eager validation,” in Proc. 20th Int. Symp. Distrib. Comput.,
Sep. 2006, pp. 284–298.

[24] J. E. Gottschlich, M. Vachharajani, and J. G. Siek, “An efficient
software transactional memory using commit-time invalidation,”
in Proc. Int. Symp. Code Generation Optimization, Apr. 2010,
pp. 101–110.

[25] Y. Xiao, T. Jeyakumaran, E. Atoofian, and A. Jannesari,
“Improving Performance of Transactional Memory Through
Machine Learning,” Concurrency Computat.: Practice Experience,
vol. 30, 2017, Art. no. e4397.

[26] R. M. Yoo and H.-H. S. Lee, “Adaptive transaction scheduling for
transactional memory systems,” in Proc. 20th Annu. ACM Symp.
Parallel Algorithms Archit., Jun. 2008, pp. 169–178.

[27] B. Goel, R. Titos-Gil, A. Negi, S. A. McKee, and P. Stenstrom,
“Performance and energy analysis of the restricted transactional
memory implementation on haswell,” in Proc. IEEE 28th Int.
Parallel Distrib. Process. Symp., 2014, pp. 615–624.

[28] D. Dice, Y. Lev, M. Moir, and D. Nussbaum, “Early experience
with a commercial hardware transactional memory implemen-
tation,” in Proc. 14th Int. Conf. Architectural Support Program. Lang.
Operating Syst., Mar. 2009, pp. 157–168.

[29] V. J. Marathe, M. F. Spear, C. Heriot, A. Acharya, D. Eisenstat,
W. N. Scherer, and M. L. Scott, “Lowering the overhead of
nonblocking software transactional memory,” in Proc. 1st ACM
SIGPLAN Workshop Lang. Compilers, Hardware Support Transac-
tional Comput., Jun. 2006.

[30] A. Baldassin, E. Borin, and G. Araujo, “Performance implications
of dynamic memory allocators on transactional memory systems,”
in Proc. 20th Symp. Principles Practice Parallel Program., Feb. 2015,
pp. 87–96.

[31] D. Dice, T. Harris, A. Kogan, and Y. Lev, “The influence of
malloc placement on TSX hardware transactional memory,”
CoRR, vol. abs/1504.04640, 2015. [Online]. Available: http://
arxiv.org/abs/1504.04640

[32] D. Christie, J.-W. Chung, S. Diestelhorst, M. Hohmuth,
M. Pohlack, C. Fetzer, M. Nowack, T. Riegel, P. Felber, P. Marlier,
and E. Riviere, “Evaluation of AMD’s advanced synchronization
facility within a complete transactional memory stack,” in Proc.
5th Eur. Conf. Comput. Syst., Apr. 2010, pp. 27–40.

[33] J. P. L. de Carvalho, R. P. Murari, and A. Baldassin, “Reacessing
sTAMP applications on a new transactional hardware,” in Proc.
Workshop High-Perform. Comput. Syst., Oct. 2015.

[34] P. Felber, C. Fetzer, P. Marlier, and T. Riegel, “Time-based soft-
ware transactional memory,” IEEE Trans. Parallel Distrib. Syst.,
vol. 21, no. 12, pp. 1793–1807, Dec. 2010.

[35] M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer, “Software
transactional memory for dynamic-sized data structures,” in Proc.
22nd Annu. Symp. Principles Distrib. Comput., Jul. 2003, pp. 92–101.

Jo~ao P. L. de Carvalho received the master’s
degree in computer science from Universidade
Estadual Paulista (UNESP), Brazil, in 2016. He is
currently working toward the PhD degree at the
University of Campinas (UNICAMP). His research
interests include concurrent programming, high
performance computing, and compiler-aided pro-
filing and parallelization.

Guido Araujo received the PhD degree in electri-
cal engineering from Princeton University, in
1997. He is a full professor of computer science
and engineering with UNICAMP. His current
research interests include code optimization, par-
allelizing compilers, transactional memory and
cloud computing, which are explored in close
cooperation with industry partners.

Alexandro Baldassin received the PhD degree
in computer science from the University of Cam-
pinas (UNICAMP), Brazil, in 2009. Since 2010,
he has served as an assistant professor with the
Department of Statistics, Applied Mathematics
and Computation (DEMAC), Sao Paulo State
University (UNESP), Brazil. His main research
interests include computer architecture, multicore
processors, and parallel programming.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

472 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 2, FEBRUARY 2019

http://doi.acm.org/10.1145/3079079.3079094
http://doi.acm.org/10.1145/3079079.3079094
http://arxiv.org/abs/1504.04640
http://arxiv.org/abs/1504.04640

