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The C-C chemokine receptor 5, 32 base-pair deletion (CCR5-D32) allele confers strong resistance to infection by the AIDS
virus HIV. Previous studies have suggested that CCR5-D32 arose within the past 1,000 y and rose to its present high
frequency (5%–14%) in Europe as a result of strong positive selection, perhaps by such selective agents as the bubonic
plague or smallpox during the Middle Ages. This hypothesis was based on several lines of evidence, including the
absence of the allele outside of Europe and long-range linkage disequilibrium at the locus. We reevaluated this evidence
with the benefit of much denser genetic maps and extensive control data. We find that the pattern of genetic variation
at CCR5-D32 does not stand out as exceptional relative to other loci across the genome. Moreover using newer genetic
maps, we estimated that the CCR5-D32 allele is likely to have arisen more than 5,000 y ago. While such results can not
rule out the possibility that some selection may have occurred at C-C chemokine receptor 5 (CCR5), they imply that the
pattern of genetic variation seen at CCR5-D32 is consistent with neutral evolution. More broadly, the results have
general implications for the design of future studies to detect the signs of positive selection in the human genome.

Citation: Sabeti PC, Walsh E, Schaffner SF, Varilly P, Fry B, et al. (2005) The case for selection at CCR5-D32. PLoS Biol 3(11): e378.

Introduction

The impact of evolutionary selection on the human

population is of central interest and, with increasing

information about genetic variation, has become a subject

of intense examination [1–6]. Knowledge of selective events

and selected loci provide insight into the genetic etiology of

human disease, past and present, and into the events that

have shaped our species. As infectious diseases pose a major

selective force, selected variants may give insight into

immunological defense mechanisms—highlighting important

pathways in pathogen resistance.

Evolutionary pressure generates a number of potentially

detectable signals at a locus under selection as compared to

the neutrally evolving genome. Because different populations

are subject to distinct selective environments, selection may

produce population-specific alleles and greater population

differentiation at an affected gene, which can be measured

with the FST statistic [7]. Positive selection may also cause a

rapid rise in an allele’s frequency, creating a disparity in the

age of an allele estimated from its high frequency in the

population (characteristic of an old allele) and its long-range

linkage disequilibrium (LD, characteristic of a young allele).

LD-based methods such as the Long-Range Haplotype test

have been developed to detect this signal [3,8–10].

C-C chemokine receptor 5 (CCR5) is one of the most

prominent reported cases of recent natural selection in the

human genome. First identified as encoding a principal entry

receptor for HIV-1 infection of CD4-bearing T lymphocytes,

CCR5 has been the subject of intense focus by geneticists

[8,11–14]. A well-established association exists between a 32

base-pair deletion variant in CCR5 (CCR5-D32) and protec-

tion from HIV infection, demonstrating that CCR5 plays an

important biological role in HIV entry into cells.

The first suggestion that CCR5 may have been subject to
positive selection was a high proportion of nonsynonymous
mutations at CCR5, suggesting selective pressure for amino
acid divergence [12]. More compelling evidence for selection
on CCR5-D32 came from work by Stephens et al. [8]. This
study found that D32 occurs at high frequency in European

Caucasians (5%–14%, with north-south and east-west clines)
but is absent among African, Native American, and East Asian
populations, suggesting that the D32 mutation occurred after
the separation of the ancestral founders of these populations.
Moreover, Stephens et al. [8] reported strong LD between
CCR5-D32 and two microsatellite markers, suggesting an

estimated age for the allele of only ;700 y (range 275–1,875
y). The apparent rapid rise in frequency implied strong
positive selection, and the specific age raised intriguing
possibilities for the selective agent, such as the bubonic
plague in Medieval Europe.

With the recent availability of comprehensive information
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about patterns of allelic diversity in the human genome, we
can now reexamine the case for selection at CCR5 by
comparison with extensive empirical data and more sophis-
ticated predicted distributions. We carried out high-density
single-nucleotide polymorphism (SNP) genotyping around
CCR5 in multiple populations, and analyzed the data with the
benefit of large genomic comparison datasets and revised
physical and genetic maps. Our results show that CCR5-D32
does not clearly stand out in terms of genetic diversity or
long-range haplotypes relative to other variants at the locus
or throughout the human genome.

Results/Discussion

We genotyped CCR5-D32, two microsatellites, and 70 SNPs
(dbSNP data release 120, www.ncbi.nlm.nih.gov/SNP) extend-
ing 837 kbp centromere-distal and 430 kbp centromere-
proximal to the CCR5 locus (Table S1). We studied 340
chromosomes from three populations: European-Americans,
Chinese, and Yoruba from Nigeria. Eight of the European-
American chromosomes bore the D32 mutation. In addition,
we genotyped a subset of the SNPs in 12 D32/D32 individuals
from the original study. This provided a total of 32
chromosomes bearing the D32 allele. We carried out all
analyses on both datasets (Table S2).

We first examined the allele frequencies at SNPs around
CCR5 in the European-American, Yoruba, and Chinese
population samples for evidence of selection. As a genome-
wide empirical comparison, we used two datasets. The first is
2,359 SNPs genotyped in the same 340 samples in the three
populations. These SNPs are distributed in 168 immunologic
genes from 64 loci across the genome; they were chosen
according to the same methodology and have a similar
physical distribution as for CCR5 [15] (see Materials and
Methods). The second is data for 63,149 SNPs on Chromo-
some 3 from the International Haplotype Map Project
(HapMap, data release 16) genotyped in the same three
populations.

CCR5 is not a significant outlier relative to the 168 genes or
HapMap Chromosome 3 with respect to heterozygosity and
FST (Table 1; Figure S1). The heterozygosity statistic assesses
the genetic diversity in a population; a selective sweep can
reduce genetic diversity and balancing selection can increase
genetic diversity. The FST statistic [7] compares the frequency
of an allele between populations; a population-specific
selective pressure may produce greater population differ-

entiation at an affected gene. We also looked at the derived
allele frequency (DAF) distribution, which can detect the
genetic hitchhiking of variation linked to an allele under
positive selection, and found no evidence for selection [16]
(Table 1; Figure S2). All of these tests have limited power, with
genotyping data ascertained to favor common shared SNPs
and using the chimpanzee sequence for comparison. There-
fore, while the results provide no evidence for selection, it
can not be ruled out; this could be further explored with
sequencing of a large number of chromosomes.
We also assessed the significance of the observation that

D32 is at moderately high frequency (8%) in the European-
Americans but absent in the Chinese and Yoruba populations
sampled. The observation is not exceptional in our available
polymorphic data: of SNPs present at similar frequency (7%–
9%) in European-Americans, ;7% are not found in the
Chinese and Yoruba populations for the 168 genes, and 6%
are not found for the same populations for the HapMap data.
These estimates are likely to be conservative considering that
the ascertainment of these studies favors shared polymor-
phisms. As more data become available, this analysis should
be extended by larger sample sizes, more populations, and
more closely matched data (including insertion/deletion
polymorphisms and functional polymorphisms).
We next tested for signatures of selection by examining the

extent of LD around CCR5-D32. For this purpose, we used the
Long-Range Haplotype test for selection [3] (see Materials
and Methods). Specifically, we calculated the relative ex-
tended haplotype homozygosity (REHH), which is sensitive to
recent directional positive selection, and extended haplotype
homozygosity (EHH), which is more sensitive to multiple
selective sweeps at a locus. To estimate the recombination
rate, we used two measures: the genetic distance from a
family-based linkage study [17] and the number of observed
historical recombination events [3] (Material and Methods).
We initially examined the centromere-distal side of CCR5

using the approach of Stephens et al. [8] (Figure 1A).
Specifically, we sorted the chromosomes into two groups:
D32-bearing and non-D32-bearing chromosomes. Consistent
with the previous study [8], we found that the D32-bearing
chromosomes have much longer LD than non-D32-bearing
chromosomes: the EHH is 5.96 times greater than the average
EHH of other variants at this locus (REHH¼5.96 at a distance
of 500 kbp or 0.25 centimorgans [cM]) (Figure 1B).
We reasoned, however, that the apparent long-range LD

might be a result of sorting the chromosome into only two

Table 1. Genetic Diversity at CCR5 in Comparison with Genetic Diversity for Regions from Two Large Empirical Datasets

Measure Population CCR5 Comparison Regions (64) HapMap Chromosome 3

Average heterozygosity European-American 0.34 0.27 (0.16–0.39) 0.29 (0.14–0.44)

Chinese 0.26 0.24 (0.11–0.37) 0.26 (0.09–0.43)

Yoruba 0.22 0.27 (0.17–0.37) 0.3 (0.19–0.41)

Average FST European-American versus Chinese 0.11 0.14 (0.02–0.27) 0.09 (0.03–0.15)

European-American versus Yoruba 0.12 0.16 (0.01–0.30) 0.14 (0.07–0.21)

Chinese versus Yoruba 0.19 0.17 (0.02–0.31) 0.16 (0.08–0.23)

Average DAF distribution European-American 0.34 0.35 (0.21–0.48) 0.41 (0.24–58)

Chinese 0.26 0.35 (0.21–0.49) 0.4 (0.23–0.58)

Yoruba 0.22 0.29 (0.19–0.40) 0.34 (0.2–0.49)

DOI: 10.1371/journal.pbio.0030378.t001
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classes based on their genotype at CCR5-D32, rather than
dividing them according to the full variation seen at CCR5.

Figure 2 shows how an apparent signal of long-range LD
can readily arise in this fashion. Briefly, one class (for
example, the non-D32) may contain multiple distinct hap-
lotypes whose individual signals of long-range LD may be
obscured when grouped together, with the result that the

other class (for example, the D32) appears to have much
longer relative LD.
In fact, this is precisely the case forCCR5.We fully delineated

the variation at CCR5 by genotyping seven additional SNPs
within the gene and defined haplotypes as previously described
[18] (Figure S3). There are five distinct haplotypes, including
the D32-bearing haplotype with frequency 8% (Table S3). The
relative LD of the D32-bearing haplotype is significantly lower
than for two other haplotypes (REHH¼ 1.92 versus 6.77 and
3.29 at distance 500 kbp or 0.25 cM; see Figure 1C), indicating
that there is no significant evidence of long-range LD on the
centromere-distal side of CCR5.
We next analyzed LD on the centromere-proximal side of

CCR5. We first employed the approach used in the original
study and again found the D32-bearing chromosomes had
much longer LD than non-D32-bearing chromosomes (REHH
¼20.22 at a distance of 250 kbp or 0.25 cM; see Figure 1B). We
then reanalyzed the data by disaggregating the chromosomes
into the five haplotypes described above. The relative long-
range LD for D32-bearing chromosomes is much lower
(REHH¼ 7.26), although it is still the highest among the five
haplotypes.
We sought to assess whether the extent of LD in the

centromere-proximal direction on D32-bearing chromo-
somes is unusual relative to that seen across the human
genome. We first compared the results to the genome-wide
distribution of REHH scores for the HapMap (Release 16,
www.hapmap.org), and found that D32-bearing chromosomes
do not clearly stand out from other haplotypes of similar
frequency (6%–10%) (Figures 3A and S4). Because the 120
European-American chromosomes genotyped in the HapMap
project have limited power for studying low-frequency
haplotypes (P. V., B. F., E. S. L., and P. C. S., unpublished
data), we augmented the analysis by comparing all 32 D32-
bearing chromosomes to simulations with larger sample size
[19] (see Materials and Methods). We simulated 1,000 1-mbp
regions in 400 European-American chromosomes under a
neutral model, generating 5,915 haplotypes matched with a
frequency similar to the D32-bearing haplotype (6%–10%).
The level of EHH for the D32-bearing haplotype was not
unusually high on either the centromere-distal (p ¼ 0.49) or
centromere-proximal (p¼ 0.15) side of CCR5 when compared
to the level seen at an equivalent recombination distance for
the simulated regions. The REHH (we used the EHH of the
two common haplotypes for a relative value) was also not
unusually high (Figure 3B).
We further examined the extent of the D32-bearing

haplotype in comparison to other haplotypes of similar
frequency. For this purpose, we defined the extended
haplotype length (EHL) on each side of a haplotype to be
the genetic distance at which the EHH score falls to 0.5. The
EHL for the D32-bearing haplotype is 0.212 cM on the
centromere-distal side and 0.258 cM on the centromere-
proximal side, corresponding to a total of 0.470 cM (Figures 3
and S5). We then determined the EHL for haplotypes of
comparable frequency (6%–10%) for both the HapMap data
(average EHL is 0.354; CCR5-D32 is the 88th percentile) and
for the simulated data (average EHL is 0.453; CCR5-D32 is the
64th percentile). The distribution is presented in Figure 3.
Long-range LD around rare alleles is a prevalent feature in
the genome, and the EHL for CCR5-D32 therefore does not
stand out in comparison to either the HapMap or simulation

Figure 1. EHH Breakdown of EHH over Distance between the CCR5-D32

Mutation and 63 SNPs at Increasing Distances from the Mutation.

(A) Map of SNPs typed.
(B) Comparison between D32 and a single non-D32 class of haplotypes. It
should be noted that the D32-bearing chromosomes appear (red) to
have greatly extended LD compared to the non-D32-bearing chromo-
somes (black).
(C) Breakdown using the eight-marker haplotype containing the D32

mutation. There are five haplotypes in European-Americans (frequencies:
42%, 31%, 10%, 8%, and 8%, respectively). Full haplotype sequences and
frequencies in other populations are given in Table S3. Notice that two of
the non-D32-bearing chromosomes (black) appear to have the similar
extended LD when compared to the D32-bearing chromosomes
centromere-distal to CCR5 (red). Centromere-proximal D32-bearing
chromosomes still have the most extended LD, indicated with an arrow.
DOI: 10.1371/journal.pbio.0030378.g001
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dataset (Table S4). The EHL for CCR5-D32 would only be
significant if the recombination rate in this region were
several-fold higher than that measured by the current
recombinational maps or by counting of historical recombi-
nation events (Protocol S1).

Given that long-range LD is a common feature of rare
alleles in European-Americans, we wanted to test if our
method would have the power to detect selection of an 8%
allele over the time scale previously proposed [8]. We
simulated 500 regions of 1 mbp length in 400 and 120
European-American chromosomes that had undergone a
partial selective sweep beginning either 700 or 2,000 y ago for
both groups of chromosomes, carrying the selected allele to a
frequency of 8%. We were able to detect recent selection in
the 400 chromosomes; 69% of selected alleles originating 700
y ago and 39% of selected alleles originating 2,000 y ago have
EHL values above the 95th percentile when compared to the
neutral distribution. There is far less power in the 120
chromosomes (30% and 10% of selected alleles originating
700 or 2,000 y ago, respectively), suggesting that the HapMap
dataset will be insufficient to scan for rare selected alleles in
European-Americans.

Finally, we revisited the estimated date of origin for the
CCR5-D32 mutation. The original estimate [8] was based on
the analysis of two microsatellites that were in strong LD

despite apparently being at a considerable genetic distance
away (0.91-cM interval and both centromere-distal, according
to the genetic maps that were current at the time). With
improvements in the genetic map over the past 7 y [17], the
microsatellites were shown to be on opposite sides of CCR5
and at a much shorter genetic distance (0.18 cM, Figure S6).
Using the methodology and data employed by Stephens et al.
[20] (Table S5), but with the revised genetic map, the
estimated age rises from 688 y (275–1,875 y, 95% confidence
interval) to 7,000 y (2,900–15,750 y, 95% confidence interval ).
When we expanded the analysis to include 32 genetic markers
that have been genotyped in the D32-bearing chromosomes,
the estimated age also rises, to a similar value of 5,075 y
(3,150–7,800 y, 95% confidence interval). The SNP-based
estimate of the age differs and has tighter error bars because
the denser map holds more information about historical
recombination events than the two microsatellites, whose
genetic diversity is roughly equivalent to two SNPs (Figure
S7). The older age estimate is consistent with unpublished
work on DNA extracted from 3,000-y-old burial sites in
central Germany showing that the CCR5-D32 was present at
an appreciable frequency several millennia ago, at least in
central Germany [21].
The revised age estimate suggests the high frequency of the

CCR5-D32 allele cannot be attributed solely to a strong

Figure 2. Model of Haplotype-Based Selection Approach

The image compares this approach, where the variants at the gene being studied are fully elaborated, to a model where the variants are not fully
elaborated. At the top, multiple SNPs are genotyped to fully define the variants that exist in the gene. The resultant observed haplotype structure is
shown in both bifurcation diagram and EHH plot formats (see Materials and Methods). At the bottom, only one SNP is genotyped, collapsing all other
variants into a seemingly diverse super-haplotype and creating an impression of extension for the remaining haplotype.
DOI: 10.1371/journal.pbio.0030378.g002
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selective event within the past millennium. If selection did

play a role in the high frequency of the allele, the initial

selection pressure must have occurred before the period

calculated in the previous estimate [8]. It should be noted that

the data do not rule out some additional selection occurring

within the past millennia, but none that would be detected by

the methodology used in Stephens et al. or in the current

paper.

Our reanalysis of CCR5 shows that CCR5-D32 does not

clearly stand out from the rest of the genome in terms of

allele frequency distribution, population differentiation, or

long-range LD (Figure S8). The high population differ-

entiation and long-range LD found for CCR5-D32 are, in

fact, far more common in the genome than previously

believed, and therefore do not provide support for the

hypothesis of strong selection for CCR5-D32. Using methods

described both in the previous study [8] and in the current

study, and by examining currently available data, there is no

detectable evidence for recent selection for CCR5-D32. Of

course, the lack of support does not exclude the possibility of

selection for the allele or the locus. Given the biology of the

gene, it is certainly possible that it has been subject to some

selection despite the lack of clear evidence. We note that

small-scale studies of the distribution of mutations [12–14,22]

have provided suggestive evidence for selection, but these

results may be less convincing in comparison to recently

available genome-wide distributions [23].

Beyond the specific results for CCR5, our results have
important implications for studies of selection in the human
genome. First, accurate assessment of LD benefits from fully
delineating the core haplotypes at a locus; it may not be
sufficient to compare a haplotype of interest to the set of all
other haplotypes. Second, long-range LD around specific
alleles is a prevalent feature in the genome; the significance of
LD results should therefore be assessed relative to empirical
distributions observed in genome-wide studies with larger
numbers of samples. Third, accurate estimates of an allele’s
age require accurate genetic maps.

With the growing availability of genome-wide datasets, it
should soon be possible to search the genome for signs of
strong selective events [3] by studying the pattern of variation
at every gene relative to a comprehensive genome-wide
distribution. The results should shed light on important
factors that have shaped our species and may provide
valuable information about natural mechanisms of disease
resistance.

Materials and Methods

Samples. DNA samples for 93 individuals from 12 multigenera-
tional pedigrees of European-American ancestry were obtained from
Coriell Repositories (http://locus.umdnj.edu/ccr). DNA samples from
93 healthy individuals (31 mother–father–child clusters) from the
Yoruba in Nigeria were obtained as part of the International
Collaborative Study of Hypertension in Blacks. DNA samples from
30 Han Chinese trios from Guanchi were included. DNA samples
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Figure 3. Comparisons with Empirical and Simulation Data

(A) and (B) Plots of relative EHH versus frequency for CCR5 in comparison to HapMap data (release 16) for Chromosome 3 in European-Americans (A)
and 1,000 simulations of 400 chromosomes in European-Americans (B). Green dots represent the comparison haplotypes and the lines represent, from
bottom to top, the 50th, 75th, 95th, and 99th percentiles. The red dots represent the results for eight CCR5-D32-bearing chromosomes in (A) and 32
CCR5-D32-bearing chromosomes in (B) for the centromere-proximal side, and the blue dots represent results for the centromere-distal side.
(C) EHL of the haplotypes of frequency 6%–10% from the HapMap (solid green line) and from simulations (dotted green line) in comparison to CCR5-

D32 (red line).
DOI: 10.1371/journal.pbio.0030378.g003
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from a chimpanzee, gorilla, and orangutan were obtained from
Coriell Repositories.

Genotype data. We genotyped 71 SNPs in and around and the
CCR5-D32 using the mass spectrometry-based MassArray platform
provided by Sequenom (San Diego, California, United States),
implemented as previously described [18]. The names, locations,
alleles, and flanks for all SNPs used are given in Table S1.

Microsatellite genotyping was conducted at the McGill University
and Genome Quebec Innovation Center (Quebec, Canada), by use of
MultiProbe and MiniTrak Liquid Handling Systems (Perkin-Elmer,
Wellesley, California, United States) and 3730 DNA sequencers
(Advanced Biosystems, Foster City, California, United States). PCR
was performed with fluorescently labeled markers in standard
conditions (annealing temperature of 54 8C).

We also used genotypes of 2,359 SNPs, distributed in 168
immunologic genes from 64 loci throughout the genome in the same
three populations [15]. SNPs were selected from public databases in
multiple batches over a 1.5-y period from July 2002 to December
2003. Preference was given to ‘‘double hit’’ SNPs which have been
shown to be more likely to be validated [24]. These criteria may bias
our ascertainment of haplotype structure and may reduce the
representation of rare and population-specific variation; we com-
ment in the paper where this bias might affect our observations.

We used publicly available data from the International Haplotype
Map Project as a comparative distribution of variance in the genome
with which to compare our results (http://www.hapmap.org).

Phasing. We prepared these files using Genehunter (http://www.
broad.mit.edu/ftp/distribution/software/genehunter/) to uncover un-
ambiguous phasing using family data [25]. The child chromosomes
were then discarded, and we kept only the independent parent
chromosomes. We then used PHASE (http://www.stat.washington.edu/
stephens/software.html [26,27]) to obtain complete phased data.

Simulations. We used a computer program that simulates gene
history with recombination based on a neutral model of evolution
described elsewhere [19,28]. The program was modified to generate
data comparable with that collected from the three populations—
Chinese, European-American, and Yoruba. The simulations were
calibrated to provide data consistent with the HapMap with respect
to various genetic measures (including FST, heterozygosity, and
minor-allele frequency distribution) and used model parameters
(including demography and recombination rate) consistent with
current estimates [19]. We simulated a long region (1 mbp in length)
of DNA and then mimicked the SNP selection strategy used by the
SNP Consortium [29], which was the source of most of the SNPs in
our study. We modified the program to generate simulations of a
partial selective sweep in 400 European-American chromosomes,
where 32 chromosomes had a common ancestor 700 y ago as per
Stephens et al. [8]. We also tested where the 32 chromosomes had a
common ancestor 2,000 y ago.

FST. Mean pairwise distance fixation index, FST, was used to
calculate genetic differentiation between the three populations
[30,31]. FST partitions the total variance into within- and between-
population components, quantifying the inbreeding effect of
population substructure.

Heterozygosity. Nei’s measure of heterozygosity [32], the proba-
bility that any two randomly chosen samples from a population are
the same, was used to calculate SNP diversity:

p ¼
n

n� 1
ð1�

X

k

i¼1

p2Þ ð1Þ

where n is the number of chromosomes in the sample, k is the number
of alleles at a locus, and pi is the frequency of the ith allele.

DAF distribution. We calculated the DAF distribution for all SNPs
where it was likely that the ancestral allele could be determined by
genotyping a representative chimpanzee, gorilla, and orangutan. If
there was a consensus primate allele across all successfully genotyped
primates, it was identified as the ancestral allele. Otherwise, no
ancestral allele was defined.

EHH. EHH assesses the age of each haplotype at a gene by
measuring the decay of the extended ancestral haplotype (i.e., SNPs
far away from the gene), which occurs over time with recombina-
tion. For a population of individuals sharing core haplotype X, EHH
is the probability that any two randomly chosen samples of core
haplotype X have the same extended haplotype [3]. It is a measure
of the decay of LD across a region of the genome that has two
advantages: first, it can be used with multi-allelic markers so a core
haplotype model can be studied if desired, and second, it measures
LD across a region with many loci and not just between a pair of
loci. The EHH is calculated as:

EHHt ¼

X

s

i¼1

ð
eti
2
Þ

ð
ct
2
Þ

ð2Þ

where t is the core haplotype tested, c is the number of samples of a
particular core haplotype, e is the number of samples for a particular
extended haplotype, and s is the number of unique extended
haplotypes.

To correct for local variation in recombination rates, we can
compare the EHH of a tested core haplotype to that of other core
haplotypes present at the locus, using the relative EHH measure (i.e.,
REHH). REHH is the factor by which EHH decays on the tested core
haplotype compared to the decay of EHH on all other core haplotypes
combined. One must first calculate the ‘‘EHH,’’ the decay of EHH on
all other core haplotypes combined. For this, we use the following
equation where n is the number of different core haplotypes:

EHH ¼

X

n

j¼1;j 6¼t

�

X

s

i¼1

ð
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2
Þ

�

X

s

i¼1;i6¼t

ð
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2
Þ

ð3Þ

The relative EHH (i.e., REHH) is simply EHHt= EHH . EHH and
REHH were calculated for all haplotypes in all haplotype blocks for
CCR5, HapMap Release 16 Chromosome 3, and the 1,000 simulated
regions (120-chromosome and 500-chromosome sample sets). Hap-
lotypes were placed into 20 bins based on their frequency. p-Values
were obtained by log-transforming the EHH and REHH in the bins to
achieve normality, and calculating the mean and standard deviation.
All analysis was carried out using the Sweep software program (P. V.,
B. F., E. S. L., and P. C. S., unpublished data).

Observed historical recombination (marker breakdown, all EHH).
When comparing EHH/REHH values across regions, it is important to
make sure that the value is being calculated at a similar genetic
distance. This will soon be replaced with better cM values, but, where
they are not known, this can be matched by the ‘‘marker breakdown,’’
that is the degree to which each added marker at a further distance
causes the extended haplotypes to decay for all core haplotypes [3].
This gives an evaluation of how much historical recombination
(observed recombinants) has occurred over a distance from the core,
and therefore what genetic distance is being looked at. This can be
calculated as ‘‘all EHH.’’

allEHH ¼

X

n

j¼1

�

X

s

i¼1

ð
ei
2
Þ

�

X

s

i¼1

ð
ci
2
Þ

ð4Þ

where n is the number of different core haplotypes, c is the number of
samples of a particular core haplotype, e is the number of samples of
a particular extended haplotype, and s is the number of unique
extended haplotypes.

Bifurcation diagram. To visualize the breakdown of LD on core
haplotypes, we used bifurcation diagrams [3]. The root of each
diagram is a core haplotype, identified by a dark-blue circle. The
diagram is bidirectional, portraying both proximal and distal LD.
Moving in one direction, each marker is an opportunity for a node;
the diagram either divides or not, depending on whether both or only
one allele is present. Thus, the breakdown of LD on the core
haplotype background is portrayed at progressively longer distances.
The thickness of the lines corresponds to the number of samples with
the indicated long-distance haplotype.
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