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THE CASE FOR SEQUENCING THE PACIFIC OYSTER GENOME
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University of New Jersey, Port Norris, New Jersey 08349; 5School of Marine Science, The College of
William and Mary, Virginia Institute of Marine Science, Gloucester Point, Vaginia 23062; 6Medical
University of South Carolina, Hollings Marine Laboratory, Charleston, South Carolina 29412

ABSTRACT An international community of biologists presents the Pacific oyster Crassostrea gigas as a candidate for genome
sequencing. This oyster has global distribution and for the past several years the highest annual production of any freshwater or marine
organism (4.2 million metric tons, worth $3.5 billion US). Economic and cultural importance of oysters motivates a great deal of
biologic research, which provides a compelling rationale for sequencing an oyster genome. Strong rationales for sequencing the oyster
genome also come from contrasts to other genomes: membership in the Lophotrochozoa, an understudied branch of the Eukaryotes and
high fecundity, with concomitantly high DNA sequence polymorphism and a population biology that is more like plants than any of
the model animals whose genomes have been sequenced to date. Finally, oysters play an important, sentinel role in the estuarine and
coastal marine habitats, where most humans live, environmental degradation is substantial, and oysters suffer intense fishing pressures
and natural mortalities from disease and stress. Consumption of contaminated oysters can pose risks to human health from infectious
diseases. The genome of the Pacific oyster, at 1C � 0.89 pg or ∼824 Mb, ranks in the bottom 12% of genome sizes for the Phylum
Mollusca. The biologic and genomic resources available for the Pacific oyster are unparalleled by resources for any other bivalve
mollusc or marine invertebrate. Inbred lines have been developed for experimental crosses and genetics research. Use of DNA from
inbred lines is proposed as a strategy for reducing the high nucleotide polymorphism, which can interfere with shotgun sequencing
approaches. We have moderately dense linkage maps and various genomic and expressed DNA libraries. The value of these existing
resources for a broad range of evolutionary and environmental sciences will be greatly leveraged by having a draft genome sequence.

KEY WORDS: Pacific oyster, Crassostrea gigas genome sequence, Lophotrochozoa, nucleotide diversity, evolutionary and eco-
logical genomics

INTRODUCTION

Complete genome sequences enable a more thorough under-
standing of biology, particularly of complex traits. Complete ge-
nome sequences are available for about 200 species, mostly bac-
teria and archaea (>150), because of their medical and environ-
mental importance and small genome sizes. Only about half of the
more than 40 eukaryotes that have been sequenced so far are
metazoans—9 mammals (Bos taurus [cow], Canis familiaris
[dog], Felis catus [cat], Homo sapiens [human], Mus musculus
[mouse], Ovis aries [sheep], Pan troglodytes [chimpanzee], Rattus
norvegicus [rat], Sus scrofa [pig]), 4 other vertebrates (Danio re-
rio [zebrafish], Gallus gallus [chicken], Takifugu rubripes (fugu),
Tetraodon nigroviridis [pufferfish]), 4 insect genera (Anopheles
gambiae [mosquito], Apis mellifera [honey bee], Bombyx mori
[silk moth] and Drosophila spp. [fruit flies]), 2 sea squirts (Ciona
intestinalis and C. savigny) and 2 nematodes (Caenorhabditis el-
egans and C. briggsae).

The sea contains most of the higher-order biologic diversity on
the planet, composed mainly of invertebrates, most having com-
plex life cycles with planktonic larval phases (Thorson 1950).
Though a few marine species have been adopted as models for
biologic research and genome sequencing (i.e., the purple sea ur-
chin Strongylocentrotus, the ascidian Ciona and the puffer fish
Takifugu), these have been selected primarily for their advantages
in addressing fundamental questions in genome evolution and de-
velopment (“Evo-Devo”). Sequencing the genome of the Pacific

oyster—a model marine invertebrate, with a complex life cycle,
living in overexploited and heavily impacted coastal marine envi-
ronments—would not only provide a mollusc for comparative ge-
nomics but also a model species for a broad spectrum of genome-
level studies of shellfish biology.

The Joint Genome Institute (JGI) of the US Department or
Energy (http://www.jgi.doe.gov/), one of four federally funded
centers that participated in the international effort to sequence the
human genome, established a Community Sequencing Program
(CSP), in February 2004, to direct sequencing and informatics
capacity towards issues of scientific and societal importance. This
program is intended to fund proposals not targeting the human
genome, human disease, or traditional model organisms, which
could be funded by other genome programs. In response to this call
for proposals, an international community of scientists, self-
organized as the Oyster Genome Consortium (OGC), submitted a
CSP proposal to generate raw sequencing reads for Pacific oyster
DNA, to assemble these into a draft genome sequence and to house
the data at JGI, in the near term, allowing community access
according to the JGI data-sharing policy. Though it received fa-
vorable comments from the review panel and ranked fifth among
large-genome proposals, the proposal was not accepted (only one
large genome, that of the moss Physcomitrella, was approved for
sequencing). The OGC has again submitted the proposal in Feb-
ruary 2005. Whether this particular proposal is successful or not,
declining costs of high throughput DNA sequencing and excess
sequencing capacity at genome centers will eventually make pos-
sible the sequencing of a bivalve mollusc genome. Here, we, who
served as a steering committee for the OGC, summarize the status*Corresponding author. E-mail: dhedge@usc.edu
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of genome research for the Pacific oyster and make the case for
sequencing the genome of this oyster. Our intention is to advertise
this initiative to interested shellfish biologists and to galvanize
support among shellfish biologists and shellfish societies for a
community-based initiative to sequence this bivalve genome.

SCIENTIFIC COMMUNITY

The community of biologists that would benefit from a bivalve
mollusc genome sequence, is large and well organized. The Na-
tional Shellfisheries Association (NSA), founded in 1908 by in-
dustry and academic scientists interested in the eastern oyster, now
has more than 1,000 members from 20 nations. OGC participants
organize genetics and disease sessions at most annual NSA meet-
ings. A West Coast chapter of NSA meets annually with the Pa-
cific Coast Shellfish Growers Association, whose members are
involved in two USDA-funded breeding programs to increase
yield of C. gigas on the West Coast: (1) the Molluscan Broodstock
Program (http://hmsc.oregonstate.edu/projects/mbp), a commer-
cial-scale selection program based at Oregon State University’s
Hatfield Marine Science Center, where USDA ARS has located
two shellfish biologists and (2) USDA Western Regional Aqua-
culture Center (WRAC) project, “Crossbreeding for High Yield”
(http://www.hmsc.orst.edu/projects/wrac) based at a commercial
hatchery, Taylor Resources, Inc. Quilcene, WA. In addition,
NOAA National Sea Grant Oyster Disease Research Program has
funded projects on stress responses. In 1995, shellfish geneticists
established the first marine-theme USDA Western Region Coor-
dinating Committee, WCC-99, “Broodstock management, genetics
and breeding programs for molluscan shellfish.” Forty scientists
are on Oregon State University’s list server for WCC-99, and
20–30 of these meet annually, usually in conjunction with the NSA
annual meeting and with international participation. In 1997, 13
scientists, representing five countries, who were interested in oys-
ter genomics, joined with scientists interested in other aquaculture
species (shrimp, tilapia, salmon, catfish and more recently striped
bass) to form USDA Northeast Regional Project, NE-186. This
group also meets annually in conjunction with the International
Plant & Animal Genome Conference (PAG). Last year, NE-186
fused with NRSP-8, the umbrella USDA national program for all
animal genomics. Although oysters have received a good share of
USDA competitive funds over the years, USDA resources fall far
short of those needed for whole genome sequencing.

Internationally, OGC members interact at meetings such as
PAG, the triennial meeting of the International Society for Genet-
ics in Aquaculture, the biennial meeting of the International Soci-
ety for Aquatic Genomics, the International Society for Develop-
mental and Comparative Immunology (ISDCI), and Marine Bio-
technology. OGC members have organized several United States-
France bi-national conferences sponsored by the NSF (1994) and
NOAA-IFREMER (2002 and 2004), attended by 30–50 scientists.
It was at the PAG 2003 meeting that OGC formed to prepare the
ultimately successful proposal to construct genomic DNA libraries
for the Pacific and eastern oysters and, at the summer 2003 ISDCI
meeting, that OGC members organized the printing of the first
oyster microarray. The OGC is nonexclusive and welcomes all
investigators, who have a theoretical or practical interest in oyster
genetics and genomics. At present, there are nearly 70 participants
in the OGC from 10 countries (Australia, Canada, China, France,
Greece, Ireland, Japan, Spain, United Kingdom and the United
States; list available from DH).

TECHNICAL INFORMATION ABOUT THE OYSTER GENOME

G + C Content and Genome Size

McLean & Whiteley (1973) reported G + C content for Cras-
sostrea gigas (32.2%, from thermal denaturation, 33.6%, from
buoyant density) and estimated haploid genome (1C) size from
reassociation kinetics as 1.26 pg. This appears to be an overesti-
mate based on more recent work by González-Tizón et al. (2000;
1C � 0.91 pg by Feulgen image analysis) and Guo (unpublished;
1C � 0.87 pg by flow cytometry). Consensus haploid genome size
of ∼0.89 pg is equivalent to 824 million nucleotide base pairs
(Mb). Genome sizes of 174 molluscs (81 bivalves, 5 cephalopods,
81 gastropods and 7 chitons) range from 0.43 pg for the owl limpet
Lottia gigantea to 5.88 pg for the Antarctic whelk Neobuccinum
eatoni, with a mean of 1.80 ± 0.07 pg (Gregory 2003; Fig. 1). Only
23 molluscs have genome sizes smaller than that of the Pacific
oyster, nine snails, eight limpets and of four bivalves, two clams
and two oysters (the eastern oyster Crassostrea virginica [0.69 pg;
Hinegardner 1974, Goldberg et al. 1975] and an unknown species).
Genome duplication has occurred in the bivalves, but oysters rep-
resent the diploid lineage (Wang & Guo 2004).

Polymorphism

Protein polymorphism of the Pacific oyster was long ago found
to be among the highest for animals: average heterozygosity is
>20%, three to four times the mammalian average (Buroker et al.
1979, Fujio 1982, Hedgecock & Sly 1990). High nucleotide poly-
morphism in bivalves is suggested by abundant nonamplifying
PCR-null alleles for microsatellite DNA markers (McGoldrick et

Figure 1. Distributions of genome sizes (haploid DNA content in pico-
grams; data from Gregory 2003) for (A) bivalves (81 spp.), (B) gas-
tropods (81 spp.), (C) chitons (7 spp.; diagonally striped bars) and
cephalopods (5 spp.; black bars). Arrow points to the bin containing
the genome size of the Pacific oyster.
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al. 2000, Launey & Hedgecock 2001, Reece et al. 2002, Reece et
al. 2004, Vadopalas & Bentzen 2000). In the Pacific oyster, null
alleles are segregating at over half of ∼100 loci tested in mapping
families, even though families and microsatellite clones come from
the same natural population (Li et al. 2003, Hedgecock et al.
2004a). Success in cross-specific PCR amplification decays rap-
idly with evolutionary distance, so that only 1 in 8 Pacific oyster
markers amplifies from the eastern oyster, which diverged >5 mil-
lion years ago (Mya). This decay in cross-specific amplification
exceeds that observed across genera or even families of vertebrates
(Schlötterer et al. 1991, Garza et al. 1995, Pépin et al. 1995,
FitzSimmons et al. 1995, Rico et al. 1996) or species of Drosophila
(Harr et al. 1998, Colson et al. 1999, Noor et al. 2001, Huttunen &
Schlötterer 2002) and suggests rapid rates of sequence evolution in
PCR primer binding sites. In their initial study of expressed DNA
sequences, Curole & Hedgecock (2005) report a frequency of one
SNP every 40 base pairs and one insertion or deletion (indel) every
33 base pairs. The causes of this high polymorphism—a main
point of scientific interest in sequencing the oyster genome—and
a strategy for reducing it to facilitate the assembly of shotgun DNA
sequences are addressed later.

Repeat Structure

Reassociation kinetics of denatured DNA shows that 30% of
the Pacific oyster genome is repetitive DNA (McLean & Whiteley
1973). Repeat structure has not been further characterized, except
for description of a centromeric repeat (Clabby et al. 1996, Wang
et al. 2001). Gaffney reported transposon-like repeat DNA se-
quences in eastern and Pacific oysters, many of which are associ-
ated with tetranucleotide repeat microsatellite loci (Gaffney 2002).
One of these, Pearl, is characterized in C. virginica (Gaffney et al.
2003) and detected in C. gigas.

Available Resources

The community of oyster researchers has, collectively, devel-
oped diverse and substantial resources in areas ranging from the
organismal to the molecular. These resources which are briefly
summarized in this section, represent enormous potential for basic
research into the fundamental biology of oysters, as well as for
commercially relevant broodstock improvement.

Biological Resources

Aneuploid, triploid, tetraploid and gynogenetic Pacific oysters
are routinely produced (Guo et al. 1993, Guo & Allen 1994a,
Eudeline et al. 2000). Triploid oysters are farmed commercially
because of their retarded gonadal development and superior
growth. These stocks provide excellent biologic resources for
gene-centromere mapping (Guo & Gaffney 1993, Guo & Allen
1996, Hedgecock et al. 2003) or investigations of the role of gene-
dosage effects in heterosis (Birchler et al. 2003).

Investigators have developed ∼50 inbred lines for experimental
crosses from the naturalized population of C. gigas in Dabob Bay,
Washington (Hedgecock 1994), using self and brother-sister mat-
ing (Hedgecock et al. 1995). Factorial crosses among inbred lines
produce F1 hybrids for comparisons of growth and survival in
hatchery and field trials (progress reports at http://www.hmsc.orst.
edu/projects/wrac). The 51 × 35 reciprocal cross, on which mas-
sively parallel signature sequencing (MPSS) expression profiling
has been done (see later), is in commercial production. The third
inbred generation (G3) of the 51 and 35 inbred lines was propa-

gated in 2004 to produce the G4, which has an expected inbreeding
coefficient of 0.59.

Linkage Maps

Framework linkage maps of >100 microsatellite DNA markers
have been published for the Pacific oyster (Li et al. 2003, Hedge-
cock et al. 2003, Hubert & Hedgecock 2004). The consensus maps
have 10 linkage groups (Fig. 2), in accord with the haploid chro-
mosome number (see later), cover 70% to 80% of the Pacific
oyster genome and have marker densities such that the expected
distance of a new gene to the nearest marker on a map is 4–6 map
units (cM). This microsatellite DNA scaffold can be fleshed out
quickly with several hundred AFLP markers (Yu & Guo 2003, Li
& Guo 2004). For example, Hedgecock et al. (2004b) have con-
structed an AFLP map of 341 markers for the 35 × 51 F2, which
has an estimated coverage of up to 94%. USDA currently supports
QTL mapping (Hedgecock NRICGP #2003–35205–12830) and
development and mapping of 100 Type I SNP markers for the
Pacific oyster (Gaffney NRICGP #DELR-2003–03620).

Cytological Maps

Cupped oysters have 10 pairs of metacentric or submetacen-
tric chromosomes (Longwell et al. 1967, Ahmed & Sparks 1967,
Leitão et al. 1999). The frequency of chiasmata is estimated as
1.0–1.3 per chromosome arm (Guo, unpubl.), implying a genetic
map length of 500–650 cM. Chromosomal banding and FISH tech-
niques with P1 clones, rRNA genes and repetitive sequences have
recently been applied to chromosome identification and mapping
(Wang 2001). A repeat that accounts to 1% to 4% of the genome
has been isolated and mapped to centromeric regions of several
chromosomes in the Pacific oyster (Clabby et al. 1996, Wang et al.
2001). Major ribosomal RNA genes have been mapped to 10 q in
the Pacific oyster and 2 p in the eastern oyster (Xu et al. 2001,
Wang et al. 2004, Fig. 3). Integration of linkage and cytogenetic
maps is underway for Pacific and eastern oysters (Guo NJCST
#00–2042–007–20). Clones from newly constructed BAC libraries
(see below) are being mapped to cytogenetic maps by FISH and to
linkage maps by polymorphism in BAC clone end sequences.

Expressed Sequence Tags from cDNA & MPSS Libraries

As of January 2005, the NCBI Entrez taxonomy browser re-
trieved 12,341 entries for “Ostreidae.” Of these, 12,059 entries are
for the genus Crassostrea, composed mainly of 2,870 sequences
for C. gigas and 9,102 entries for C. virginica. The complete
mitochondrial genome is available for the Pacific oyster and has
been submitted for the eastern oyster. Of the 2,835 nonmitochon-
drial Pacific oyster sequences in GenBank, 370 are microsatellite-
containing clones. The combined number of expressed sequence
tags (ESTs) for the eastern and Pacific oysters, 9,018, though
useful, is woefully inadequate for characterizing the genome or
identifying genes of interest to the community.

Pilot EST collection programs for the Pacific and eastern oys-
ters used hemocyte and embryo cDNA libraries from C. virginica
(Jenny et al. 2002, http://www.marinegenomics.org/; Tanguy et al.
2004, Peatman et al. in press; Fig. 4) and a hemocyte cDNA library
from C. gigas (Gueguen et al. 2003, http://www.ifremer.fr/
GigasBase). Although EST collections are small, the rate of dis-
covery of genes of important function in the response of oysters to
stress and immune challenge is excellent. Groups in Montpellier,
France (Escoubas, Bachère), Auburn (Liu), Baltimore (Vasta),
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Rutgers (Guo) and Charleston (Warr, Chapman, Cunningham,
Gross) have pooled resources to print the first cDNA-based mi-
croarray. Over 5,000 unigenes from C. gigas and C. virginica and
384 unigenes from the oyster parasite Perkinsus marinus, are as-
sembled in Charleston for printing of the first microarray in spring
2005. Similarity of DNA sequences observed in initial compari-
sons of orthologous genes in C. gigas and C. virginica averages
∼86% (G. Warr, unpubl.) and suggests that the microarray should

be useful for measuring transcriptomic responses in various oyster
species.

In addition to the traditional oyster EST collections described
earlier, a remarkable library of 4.6 million Pacific oyster ESTs is
available from a genome-wide survey of gene expression in larval
inbred and hybrid Pacific oysters carried out by Lynx Therapeutics
(http://www.lynxgen.com/), using Megaclone and massively par-
allel signature sequencing or MPSS technologies (Brenner et al.

Figure 3. Metaphase chromosomes of the Pacific and eastern oysters (2n = 20), showing fluorescent in situ hybridization (FISH) of the major
ribosomal RNA genes (A) to 10q in the Pacific oyster and (B) to 2p in the eastern oyster (Xu et al. 2001; Wang et al. 2004).

Figure 2. Consensus linkage maps of female (above) and male (below) Pacific oysters (after Hubert & Hedgecock 2004), constructed with
microsatellite DNA markers. The female map has 12 linkage groups, 86 markers, and a total length of 1020 cM; the male map has 11 linkage
groups, 88 markers, and a total length of 776 cM. Filled parts of linkage groups are supported by data from two or more families.
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2000a, Brenner et al. 2000b). These ESTs are discussed in the
section on growth heterosis.

Bacterial Artificial Chromosome Libraries

The Oyster Genome Consortium made a successful request, to
the National Human Genome Research Institute (NHGRI) bacte-
rial artificial chromosome (BAC) Library Construction Program in
2003 for developing genomic BAC libraries from C. gigas and C.
virginica. The libraries were constructed by Clemson University
Genomics Institute (Dr. Jeff Tomkins, Director) and are publicly
available at (https://www.genome.clemson.edu/orders). These are
deep coverage libraries (10× and 12× coverage for the two species,
respectively), with average insert sizes of 134 kb and 150 kb,
respectively. The libraries were constructed from sperm cells,
which, in the case of C. gigas, were taken from a 51 × 35 F1 hybrid
male. Thus, the C. gigas BAC library will be of particular value in
complementing a genomic sequence made from inbred line 51.

APPLICATIONS OF A PACIFIC OYSTER GENOME SEQUENCE

Applications of a genome sequence are numerous, but the most
immediate identified by the OGC fall under 3 headings: (1) com-
parative genomics, in which oysters permit a phylogenetic contrast
in studies of genome structure, function and diversity; (2) evolu-
tionary biology, in which oysters may shed light on the evolution
of sexuality or of reproductive isolating mechanisms in the sea and
(3) adaptation, in which oysters are a model for understanding the
genetic and physiologic bases of complex traits (e.g., growth and
survival) that are strongly correlated with Darwinian fitness and
population responses to environmental change and stresses, such
as disease.

Lophotrochozoa: A Major Branch of Life Unexplored

Bilateral symmetry is found in 3 major clades of animals: the
Deuterostomes (which includes vertebrates) and two clades of Pro-
tostomes, the Ecdysozoa (which includes arthropods and nema-
todes) and the Lophotrochozoa (which includes molluscs and an-
nelids). The Deuterostomes are well represented by genomically

enabled model species (e.g., Amphioxus, Oikopleura, Ciona spp.,
Takifugu, zebrafish, Xenopus, sea urchin, chicken, mouse and hu-
man), whereas the Ecdysozoans are represented by genome se-
quences for several species of Drosophila, the honeybee, the mos-
quito, the silkworm and two species of the nematode Caenorhab-
ditis. An integrated picture of the diversity of animal life, however,
requires detailed understanding of representative Lophotrochozoan
species. Sequencing is underway at JGI for a gastropod, the limpet
Lottia scutum and two annelids, the leech Helobdella robusta and
the polychaete worm Capitella capitata and at the NHGRI, for the
fresh-water snail Biomphalaria glabrata. The phylum Mollusca
has three other major classes besides the Gastropoda (snails):
Cephalopoda (octopus, squid), Polyplacophora (chitons) and Bi-
valvia (oysters, mussels, clams). The Pacific oyster has one of the
smallest bivalve genomes, at ∼824 Mb of haploid DNA (Fig. 1).
Lophotrochozoans are the focus of phylogenetic analyses of em-
bryonic development and the diversity of body plans (Kourakis &
Martindale 2001, Nederbragt et al. 2002, O’Brien & Degnan 2002,
Tessmer-Raible & Arendt 2003) and the evolution of molecular
mechanisms of immune recognition and response to stress, includ-
ing heavy metals (Escoubas et al. 1999, Tanguy & Moraga 2001,
Tanguy et al. 2001, Jenny et al. 2002, Gueguen et al. 2003, Huvet
et al. 2004, Tanguy et al. 2004, Boutet et al. 2004, Jenny et al.
2004). Progress in these and other areas of comparative research
would benefit enormously from the availability of the Pacific oys-
ter genomic sequence.

Genome Organization, Reproductive Isolation and Speciation

There are two competing theories on reproductive isolation and
speciation, one arguing for a central role of genic mutation and the
other emphasizing chromosomal changes. Chromosomal muta-
tions, particularly polyploidy, have played a significant role in the
evolution of plants (deWet 1980). Although polyploidy is rela-
tively rare in animals, there is increasing recognition of chromo-
somal changes as an important force in animal evolution (Furlong
& Holland 2002, Spring 2002). Chromosomal rearrangements may
play a major role in reproductive isolation and speciation, by cre-
ating barriers to recombination or reducing the fitness of hybrids
(White 1978, King 1993). Many marine bivalves are sympatric
broadcast spawners, for which mechanisms of reproductive isola-
tion are interesting but largely unknown. In Crassostrea oysters,
differences in the rRNA-bearing chromosome clearly divide
Asian-Pacific and Atlantic species, along a postzygotic hybridiza-
tion barrier (Wang et al. 2004). Whether chromosomal rearrange-
ment is responsible for the divergence can only be answered by
genome-wide comparisons. Linkage mapping in the Pacific oyster
reveals significant differences in recombination between genetic
markers and in gene orders, suggesting chromosomal inversion
polymorphism within this species (Hubert & Hedgecock 2004). A
complete sequence of the Pacific oyster genome will provide a
foundation for comparative genomics in marine bivalves, where
macrogenomic events such as duplication (Wang & Guo 2004) and
rearrangements (Wang et al. 2004) can be studied and their effects
on speciation better understood.

The Asian clade of cupped oysters offers a spectrum of evolu-
tionary differences and reproductive isolating mechanisms. Based
on differences in allozymes and DNA sequences, the Kumamoto
oyster Crassostrea sikamea is believed to be the closest relative of
the Pacific oyster (Buroker et al. 1979, Banks et al. 1994). The two
species, which are sympatric in the Ariake Sea, Kyushu Island,

Figure 4. A summary of 4,560 expressed sequence tags from Cras-
sostrea virginica classified into functional groups based on comparison
with the NCBI database (excluding ribosomal RNAs). Approximately
65% of the ESTs in the database (http://www.marinegenomics.org/)
lacked significant homology to any entries in the NCBI nonredundant
database based on BLASTX comparisons. The remaining 35% with
significant homology (e-value <10−2) were clustered into functional
groups based on broad molecular or biologic classification. Complete
annotation based on Gene Ontology is viewable on the website above.

SEQUENCING THE PACIFIC OYSTER GENOME 433



Japan, are reproductively isolated by ecologic and gametic isolat-
ing mechanisms (Banks et al. 1994). Nevertheless, sperm from
allopatric populations of the Pacific oyster can fertilize the eggs of
the Kumamoto oyster, producing viable progeny (Banks et al.
1994). With a genome sequence and subtractive cDNA hybridiza-
tion methods, it should be possible to identify the gene or genes
responsible for the gametic incompatibility and to trace the evo-
lution of gametic isolation.

The eastern oyster Crassostrea virginica is distributed from the
Maritime Provinces of Canada to the Yucatan peninsula. In the
1950s and 1960s, oyster biologists recognized significant geo-
graphic variation in reproductive and feeding physiology (Stauber
1950, Loosanoff & Nomejko 1951), which was later borne out by
experiments (Haskin & Ford 1979, Ford & Haskin 1987, Vrijen-
hoek et al. 1990, Ford et al. 1990, Barber et al. 1991, Dittman et
al. 1998). Disease resistance also varies among geographic popu-
lations (Bushek & Allen 1996). Physiologic races of eastern oyster
have formed despite a dispersing larval stage that may spend sev-
eral weeks drifting in the plankton. Analyses of protein (Buroker
1983) and DNA polymorphisms (Reeb & Avise 1990, Karl &
Avise 1992, Cunningham & Collins 1994, McDonald et al. 1996)
revealed strong genetic differentiation of populations from the
Gulf and Atlantic Coasts. More recently, studies of DNA sequence
polymorphisms in the mitochondrial large ribosomal subunit gene
revealed distinct subpopulations even along the Atlantic coast
(Wakefield & Gaffney 1996). Experimental dissection of the ge-
netic basis of geographic variation in complex physiologic pro-
cesses and local adaptation in the Eastern oyster would be greatly
facilitated by genome sequences for the Pacific oyster.

Sex Determination

As a group, molluscs exhibit highly diverse modes of sexual
reproduction, ranging from functional, simultaneous hermaphro-
ditism to sequential hermaphroditism, to strict dioecy and genic
determination (Coe 1943, Guo & Allen 1994b). Although dioecy
seems to be the norm in molluscs, about 40% of the 5,600 genera
are either simultaneous or sequential hermaphrodites (Heller
1993). Like all cupped oysters, the Pacific oyster is a protandric
dioecious hermaphrodite, generally maturing first as a male, then
as a female in most subsequent spawning seasons; nevertheless,
there is a small but persistent fraction that presents simultaneous
hermaphroditism (Coe 1943, Galtsoff 1964). Though modified by
age and environment, sex determination seems to be controlled by
a major gene (Guo et al. 1998) with the male being heterogametic;
sex chromosomes have not been identified. Only preliminary at-
tempts to isolate DNA markers for sex determination from a ge-
nomic BAC library of the oyster have been reported (Shimizu et al.
1998). A genomic sequence is likely to stimulate renewed and
sustained interest in this topic.

Biology of Highly Fecund Animals

High Mutational Load

The enormous fecundity (106–108 eggs per female per season)
and high larval mortality of most marine animals makes them
fundamentally different from the more familiar and better-studied
animal models (102–103 eggs per female, lifetime). A quarter cen-
tury ago, Williams (1975) argued in his “Elm-Oyster Model” that
sexual reproduction and genetic diversity are favored to a much
greater degree in oysters and trees than in low fecundity species,

such as human, fruit fly or mouse. Species with high fecundity
likely generate more mutations than low fecundity species, owing
to the large number of cell divisions required to produce millions
or billions of gametes (cf. to the argument for male-driven evolu-
tion in humans, Li et al. 2002). Most mutations are likely delete-
rious and recessive and constitute a substantial genetic load on
population fitness. As predicted by Williams, trees have larger
mutational loads than most animals (cf. mean effective number of
lethal mutations per zygote for conifers is 8.1 vs. 2.8 for mammals
or Drosophila; Lynch & Walsh 1998, Tables 10.4–10.6). Wil-
liams’ specific prediction of high genetic load in oysters was re-
cently confirmed by experiments revealing a minimum of 15–20
lethal mutations per oyster, about five times the genetic load of a
human or fruit fly (Launey & Hedgecock 2001, Bucklin 2002).

High genetic load resolves two long-debated issues in bivalve
genetics: (1) common distortions of Mendelian inheritance ratios
in laboratory-reared progeny of wild parents (Wada 1975, Beau-
mont et al. 1983, Foltz 1986, Hu et al. 1993, McGoldrick &
Hedgecock 1996, McGoldrick et al. 2000, Reece et al. 2004) and
(2) correlation of heterozygosity with fitness (i.e., growth) in natu-
ral populations (see Zouros & Pogson 1994). These phenomena are
uncommon or nonexistent in terrestrial animals (Houle 1989, Brit-
ten 1996). High mutational load further accounts for severe in-
breeding depression and its converse, hybrid vigor (heterosis), in
experimental crosses (Lannan 1980, Hedgecock et al. 1995,
Hedgecock et al. 1996; Evans et al. 2003). Thus, deleterious re-
cessive mutations in highly fecund marine animals are an impor-
tant source of endogenous variation in the relative fitness of indi-
viduals, with the most severe consequences being expressed at the
larval stage or at metamorphosis. The genome sequence, in the
context of experimental crosses, would provide means for studying
the genome-wide distribution of mutational load, dissecting the
gene regulatory networks underlying larval development and sur-
vival and accelerating the development of SNPs needed for popu-
lation genetic analyses of these phenomena.

Heterosis for Growth, Survival and Other Fitness Traits

The Pacific oyster provides an animal model for studying het-
erosis, a phenomenon more evident in plants and underlying the
improvement of most crops (Gowen 1952, Fig. 5). Crossbreeding
inbred lines of oysters to produce hybrids holds great promise for

Figure 5. Like major crops and unlike farm animals, the Pacific oyster
shows dramatic heterosis for yield, illustrated here by 1-y-old offspring
from a cross between inbred lines 6 & 7 (extended knife, 15 cm).
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increasing the yields of farmed Pacific oysters. Hybrids are cur-
rently in commercial production on the United States. West Coast
(J. P. Davis, Taylor Resources, pers. comm.). Apart from the ob-
vious economic importance, however, is the significance of het-
erosis for fundamental evolutionary genetics and physiology.

Because of the facility with which energy budgets can be con-
structed for animals and bivalves in particular, we have already
achieved considerable insight into the physiologic basis of growth
heterosis (Hedgecock et al. 1996, Bayne et al. 1999). These early
results attracted collaboration with Lynx Therapeutics, Inc., which,
as mentioned in the EST section, provided MPSS profiles of gene
expression in inbred and hybrid larval oysters produced by a fac-
torial cross of inbred lines 35 and 51. These profiles quantify
genomic expression with great depth, to the equivalent of a few
mRNA molecules per cell, for all expressed genes simultaneously
(Jongeneel et al. 2003). Of the 4.6 million MPSS sequences of
52,828 unique signatures (Hedgecock et al. 2002), only ∼9,100
signatures are present in all four families, a number that is in-
triguingly close to the estimate of ∼8,500 genes expressed in the
sea urchin embryo (Cameron et al. 2000) and the ∼8,500 genes
expressed in common by two human cell lines (Jongeneel et al.
2003).

From statistical contrasts among genotypes of MPSS expres-
sion data, we identify ∼350 candidate heterosis genes for further
genetic or functional analysis. Observed patterns of gene expres-
sion are more complex than predicted from the classic dominance
and over-dominance explanations of heterosis (Gowen 1952, Crow
1998), in that hybrids show dominance for low expression and
even under-expression. These expression patterns are consistent,
on the other hand, with the metabolic efficiency hypothesis for
growth heterosis (e.g., reduced rates of protein turnover in hybrid
compared with inbred oysters; Hedgecock et al. 1996). Were a
complete annotated genome sequence for C. gigas available, we
could immediately identify 95% of these candidate genes (Brenner
et al., 2000a; Jongeneel et al. 2003). A genomic sequence would
thus greatly accelerate research into the physiologic mechanisms
of heterosis, which are still not understood in crop plants, and speed
the pace of discovery of genes and gene-regulatory elements af-
fecting metabolic efficiency and growth, key components of fit-
ness in the wild.

We are presently making QTL maps for yield heterosis in the
Pacific oyster and preliminary results are promising (Hedgecock et
al. 2004b). We aim not only to map heterosis QTL, but also to
determine their mode of gene action, to test classic hypotheses
about the genetic causes of heterosis (Crow 1998). We also seek to
validate MPSS candidate genes, by mapping them to heterosis
QTL and are looking for cis- and trans-regulation of MPSS can-
didate gene expression, by following allele-specific expression us-
ing SNPs and quantitative PCR methods. However, understanding
the physiologic mechanism and the functional basis of heterosis is
a much more difficult task, requiring proof of function for every
gene implicated by the MPSS approach. Genomic sequence would
make this task easier by increasing the chances of identifying the
MPSS candidates and their functions through searches of GenBank
and other databases.

Assessing Genomic Variability

A genome sequence will provide means of sampling the oyster
genome for nucleotide and haplotype polymorphism. An important
scientific question is whether highly fecund animals, such as the

purple sea urchin and Pacific oyster, share higher genomic vari-
ability than is typical of low fecundity animals.

Ecological, Economic and Cultural Importance of the Oyster

Worldwide Production of Oysters

The Pacific oyster has been introduced from Asia to all conti-
nents but Antarctica (Mann 1979) and for the past several years
has had the highest annual production of any freshwater or marine
organism (4.2 million metric tons, worth $3.5 billion US; FAO
2005). In the context of the ongoing programs for improving yield
mentioned earlier, a genomic sequence will aid in gene discovery,
permitting the quantitative and population genetic approaches
presently used to reach their ultimate goal of understanding and
utilizing genomic variation.

Oysters As a Model for Marine Recruitment

The oyster is a model organism for marine environmental sci-
ence. It has the complex life history of most marine animals, the
larvae of which develop for weeks in the plankton, are micro-
scopic, weakly swimming and suffer high mortality, while being
dispersed by ocean currents. Distance and direction of larval dis-
persal, factors dictating recruitment failure or success, and con-
nectivity among adult populations are major concerns in marine
fisheries management, ecology and conservation. Although the
physical and biologic oceanography of recruitment are well stud-
ied, the endogenous genetic and physiologic components of larval
fitness will receive attention in a project recently funded by Ge-
nomically Enabled Environmental Science (Gen-En) portion of the
NSF Biocomplexity in the Environment program. This project
extends experimental studies of oysters, which suggest that com-
mon assumptions about larval biology and recruitment need revi-
sion. Many oyster larvae may die, for example, not because they
fail to encounter suitable environments or food during a critical
period, but because they have genotypes that are not capable of
developing and surviving in any environment (Launey & Hedge-
cock 2001). On the other hand, oyster larvae show genetically
variable resilience to starvation (Moran & Manahan 2004, Yu &
Manahan, unpublished), which is counter to classic ideas about a
“critical period” for larval success. The Pacific oyster is poised for
the application of genomic methods for identifying, quantifying
and modeling mechanisms controlling the phenotypic variation at
the heart of the marine recruitment problem. Critical experiments
are now possible for these highly fecund animals because of the
availability of inbred lines and F2 populations for quantitative
genomic analysis and expression profiling using MPSS. Another
advantage of oyster species is the ability to synthesize experimen-
tal data on endogenous sources of variation in larval fitness into a
biochemically explicit, individual-based model of larval popula-
tion dynamics (Bochenek et al. 2001, Powell et al. 2002). Having
a genome sequence for the Pacific oyster will help to infuse marine
environmental science with a genomically enabled, Darwinian,
perspective on individual differences, adaptation and evolution.

Restoring Oysters and Oyster Habitats

Nowhere is the ecologic, economic and cultural significance of
oysters better illustrated than in the Chesapeake Bay, where the
eastern oyster has declined to <1% of its original abundance, ow-
ing to a complex interaction of over-harvesting of oysters and shell
reefs, anthropogenic impacts on the Bay, physical factors (low
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rainfall causing increased salinity) and disease (parasitic infesta-
tion of oysters with Perkinsus marinus and Haplosporidium nel-
soni). The collapse of the oyster industry in Maryland and Virginia
has lead to contentious proposals to introduce a nonnative oyster as
a solution to the environmental and economic crises (NRC 2004).
In the meantime, loss of oysters means loss of their capacity to
filter and to help control algal populations in coastal estuarine
waters (Newell 1988, Wetz et al. 2002). Phenotypes of immediate
interest in any attempt at restoration of the eastern oyster are
disease and stress resistance, for which genomic information per-
mits broader comparisons, benefiting from the rich literature and
intense work on biomedical models.

The intense interest in oyster disease is evident in the focus of
pilot EST collection programs on finding genes of importance in
the response of oysters to stress and immune challenge (Jenny et
al. 2002, Gueguen et al. 2003, Tanguy et al. 2004, Peatman et al.
in press). The first cDNA-based microarray for oysters has genes
from both species of oyster, as well as genes from the oyster
parasite Perkinsus marinus. The availability of genomic sequence
from the closely related C. gigas would greatly enhance ongoing
research into the structure, diversity and function of genes encod-
ing chaperones, such as Hsp70 (Clegg et al. 1998, Hamdoun et al.
2003), metallothionein genes (Jenny et al. 2004), genes that encode
antimicrobial peptides and disease-resistance QTL (Tanguy et al.
2004). The comparison of Pacific and eastern oysters is especially
interesting, because C. gigas tolerates diseases that kill C. vir-
ginica (Mann et al. 1991, Meyers et al. 1991, Barber & Mann
1994, Calvo et al. 1999).

The difference in infectivity and pathogenicity of P. marinus
between the eastern and Asian oyster species is under scrutiny by
several laboratories, aided by the development of in vitro culture
methods for this parasite (Gauthier & Vasta 1993, Kleinschuster &
Swink 1993, La Peyre et al. 1993). Challenge experiments dem-
onstrate differences in P. marinus-host recognition or in the anti-
microbial activity of hemocytes from different oyster species
(Gauthier & Vasta 2002). Motility and respiratory burst activity of
hemocytes are likewise affected in a species-specific manner by P.
marinus (Garreis et al. 1996, Anderson 1999). Parasite expression
of lower molecular weight proteases is inhibited by oyster homo-
genates in a species-specific manner (MacIntyre et al. 2003, Earn-
hart et al. 2004). Antiproteases, which are part of the humoral
defense mechanisms of many animals, including molluscs (Arm-
strong & Quigley 1992, Bender et al. 1992, Thogersen et al. 1992,
Elsayed et al. 1999), protect against entry of protozoan parasites
(Fuller & McDougald 1990, Polanowski & Wilusz 1996). C. vir-
ginica has antiproteases with specific activity against P. marinus
(Faisal et al. 1998, Oliver et al. 1999), levels of which positively
correlate with differential survival across families (Oliver et al.
2000, Romestand et al. 2002), simultaneously demonstrating a
heritable basis for disease resistance. C. gigas possesses protease
inhibitors with significantly higher specific activities than those in
C. virginica (Faisal et al. 1999). Study of the interaction between
oyster serum and parasite proteases is providing insights into the
role of proteases in pathogenesis (Muñoz et al. 2003).

Despite these advances, little is known about pathogenic
mechanisms and host-parasite relationships at the molecular level.
Unfortunately, continuous cultures of molluscan cell lines have not
been established, despite attempts by several researchers, compli-
cating study of host immune function and determination of the
molecular basis for tolerance or resistance of different Crassostrea
species and strains. Genomic information on the genus Cras-

sostrea will facilitate identification and characterization of the
genes involved in the immunologic response of the oyster hosts in
the presence of these protozoan parasites. This information could
be used to help predict relative disease tolerance of different oyster
stocks and to facilitate optimization of selective breeding strate-
gies.

Although the Pacific oyster tolerates or resists the parasites that
kill eastern oysters, they do succumb to mass summer mortalities
wherever this oyster is cultivated, including western North
America (Cheney et al. 2000), France (Goulletquer et al. 1998) and
Japan (Tamate et al. 1965). The disease has no known causative
agent and is generally regarded as resulting from combined envi-
ronmental and physiologic stresses (i.e., maximal development of
germinal tissue in adults at peak temperatures and nutrient load-
ings; (Glude 1975, Koganezawa 1975, Perdue et al. 1981). On the
United States west coast, these mortalities have significant mon-
etary impacts on producers; during one month in 2004, for ex-
ample, two major growers in Willapa Bay and south Puget Sound,
Washington reported losses of 35% to 55% of market-ready oys-
ters on beds ranging in size from 5–10 ha, with a combined pro-
duction loss of $330,000 (R. Wilson, Baycenter Mariculture and P.
Taylor, Taylor Shellfish Farms, pers. comm.). In California, an-
nual losses of seed oysters have ranged from 13% to 90% per
mortality episode since 1993 (Friedman et al. 2005).

Multidisciplinary research projects have been launched in par-
allel on the United States west coast, with funding from the Na-
tional Sea Grant’s Oyster Disease Research Program (ODRP), and
in western France, a research program termed “MOREST” (for
mortalités estivales) funded by IFREMER. The MOREST team
has identified a number of key environmental risk factors for sum-
mer mortality and has successfully bred strains of resistant (R) and
sensitive (S) animals (Degrémont 2003). These strains will be
extremely useful for experimental dissection of the causes of this
“physiological” disease. Huvet et al. (2004), for example, were
already able to identify and sequence 137 candidate genes by
suppressive subtractive hybridization (SSH) of mRNA from sus-
ceptible and resistant strains. Of the 84 sequences that appeared to
be coding, only 42 matched known genes in GenBank, but func-
tional classification of the known genes suggests the importance of
genes involved in energy generation or immune function. Eight of
the classified genes show higher expression in R compared with S
strains and, further, differential responses when challenged by
Vibrio-injection. This work illustrates the promise that genomic
approaches have for understanding the genetic and physiologic
bases of susceptibility to summer mortality.

Marine Environment and Human Health

The coastal zone of the United States is home to a significant
and rising proportion of the population, and the pressures of resi-
dential, industrial and tourism-related development have resulted
in degradation of the coastal marine environment. Numerous
threats to human health arise from the marine environment, in-
cluding infectious diseases and harmful algal blooms (NRC 1999).
Infectious agents include viruses, such as hepatitis A and the cali-
civiruses, including the Norwalk virus, and bacteria, such as Vibrio
parahemolyticus, V. vulnificus, Escherichia coli, Salmonella spp.
and Shigella spp. Harmful algae, such as some species in the
genera Alexandrium, Dinophysis and Karenia produce highly toxic
environmental chemicals. Infectious agents and harmful algae are
concentrated by filter-feeding shellfish, and the consumption of

HEDGECOCK ET AL.436



shellfish, including oysters, is thus an important mode of trans-
mission of infectious disease and paralytic shellfish poisoning,
amnesic shellfish poisoning, neurotoxic shellfish poisoning and
diarrhetic shellfish poisoning (NRC 1999). Oysters (and other mol-
luscs implicated in both infectious disease and shellfish poisoning)
are not just passive vectors of the agents that they accumulate
while feeding. Their relationship to these organisms is dynamic
and intimately connected with the overall health of the marine
coastal environment.

The relationship between oysters, their physical environment,
human pathogens, oyster pathogens and the ecology of the coastal
environment is complex; dissection of this relationship is being
undertaken by many investigators, using not only traditional cel-
lular and biochemical studies but also functional genomic ap-
proaches. It should be mentioned that oysters are also highly ef-
ficient bio-accumulators of toxic heavy metals such as lead and
cadmium, which can lead to poisoning of humans who consume
oysters from contaminated sites. Although this threat to human
health has been substantially reduced by environmental standards
in most developed nations, the genetics and biochemistry of oyster
uptake and response to heavy metals exposure is an active area of
research (e.g., Tanguy & Moraga 2001, Tanguy et al. 2001, Boutet
el al. 2004). It should also be mentioned that oysters are prodigious
precipitators of carbonate and provide a metazoan model for study-
ing bio-mineralization (Mount et al., 2004) and its impacts on
carbon cycling.

Broader Impacts of Sequencing a Cultural Icon

An oyster is “something from which profit or advantage can be
extracted [the world is his oyster]” (Webster’s New World Dic-
tionary of the American Language). Much besides the scientific
information summarized here could be gained by sequencing an
oyster genome. Oysters hold a revered place in literature and gas-
tronomy (Clark 1964, Fisher 1988). The oyster provides a natural
vehicle for communicating to a broader lay audience the excite-
ment of genomics and how genome sequences can lead to in-
creased understanding, appreciation and wise use of biodiversity.

CONCLUSION AND RECOMMENDATIONS

The Oyster Genome Consortium, a nonexclusive entity open to
any scientist with a bona fide interest in the application of genom-
ics to understanding shellfish biology, proposes the Pacific oyster
as a candidate for whole genome sequencing. The competition for
access to sequencing facilities and resources is intense, so the
shellfish community must support its best candidate for whole
genome sequencing. The OGC believes that the best case can be
made for the Pacific oyster. The genome of the Pacific oyster is
among the smallest of bivalve genomes and is therefore a tractable
genome to sequence. Several critical resources are available to aid
in the genome sequencing effort, including inbred lines, whose
reduced level of nucleotide polymorphism will help a shotgun
sequencing effort, segregating F2 populations and moderately
dense genetic linkage maps for QTL mapping, a BAC library and
thousands of ESTs.

The OGC is well positioned to use a genome sequence for the
Pacific oyster in 3 main areas of research, comparative genomics,
evolutionary biology and understanding the genetic, physiologic
and immunologic bases of adaptation. Advances in these areas are
likely to have profound impacts on the worldwide culture of this
species, which has had the highest production of any aquatic or-
ganism since 1998. A complete genome sequence for the oyster
will add a bivalve to the small but growing list of sequenced
Lophotrochozoan genomes. A genome sequence would also pro-
vide means for dissecting the genetic basis of reproductive isola-
tion in these marine animals. Finally, the progress in understanding
the genetic basis of variation in growth and survival that will result
from having a genome sequence will also accelerate the pace of
discovery of genes important in the adaptation and evolution of
other bivalves and fecund marine species in general.

In addition to inviting individual participation in the OGC, we
call on the National Shellfisheries Association and other scientific
societies with interest in shellfish biology to become proactively
involved in supporting and participating in genome sequencing
efforts. Organized community support and effort are required to
bring shellfish biology into the genomic and postgenomic era of
biology.
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