
2 PERVASIVE computing Published by the IEEE CS n 1536-1268/09/$26.00 © 2009 IEEE

V I R T U A L M A C H I N E S

M
obile computing is at a

fork in the road. After two

decades of sustained effort

by many researchers, we’ve

�nally developed the core

concepts, techniques, and mechanisms to pro-

vide a solid foundation for this still fast-growing

area. The vision of “information at my �nger-

tips at any time and place” was just a dream in

the mid 1990s; today, ubiquitous email and Web

access is a reality that millions of users world-

wide experience through BlackBerries, iPhones,

Windows Mobile, and other mobile devices. On

one path of the fork, mobile Web-based services

and location-aware advertising opportunities

have begun to appear, and companies are mak-

ing large investments in antici-

pation of major pro�ts.

Yet, this path also leads mo-

bile computing away from its

true potential. Awaiting dis-

covery on the other path is an

entirely new world in which

mobile computing seamlessly

augments users’ cognitive

abilities via compute-intensive

capabilities such as speech

recognition, natural language

processing, computer vision

and graphics, machine learning, augmented re-

ality, planning, and decision-making. By thus

empowering mobile users, we could transform

many areas of human activity (see the sidebar

for an example).

This article discusses the technical obstacles

to this transformation and proposes a new ar-

chitecture for overcoming them. In this archi-

tecture, a mobile user exploits virtual machine

(VM) technology to rapidly instantiate custom-

ized service software on a nearby cloudlet and

then uses that service over a wireless LAN; the

mobile device typically functions as a thin cli-

ent with respect to the service. A cloudlet is a

trusted, resource-rich computer or cluster of

computers that’s well-connected to the Internet

and available for use by nearby mobile devices.

Our strategy of leveraging transiently cus-

tomized proximate infrastructure as a mobile

device moves with its user through the physical

world is called cloudlet-based, resource-rich,

mobile computing. Crisp interactive response,

which is essential for seamless augmentation

of human cognition, is easily achieved in this

architecture because of the cloudlet’s physical

proximity and one-hop network latency. Using

a cloudlet also simpli�es the challenge of meet-

ing the peak bandwidth demand of multiple us-

ers interactively generating and receiving media

such as high-de�nition video and high-resolu-

tion images. Rapid customization of infrastruc-

ture for diverse applications emerges as a critical

requirement, and our results from a proof-of-

concept prototype suggest that VM technology

can indeed help meet this requirement.

Resource-Poor Mobile Hardware
The phrase “resource-rich mobile comput-

ing” seems like an oxymoron at �rst glance.

Researchers have long recognized that mobile

hardware is necessarily resource-poor relative

A new vision of mobile computing liberates mobile devices

from severe resource constraints by enabling resource-intensive

applications to leverage cloud computing free of WAN delays,

jitter, congestion, and failures.

Mahadev Satyanarayanan

Carnegie Mellon University

Paramvir Bahl

Microsoft Research

Ramón Cáceres

AT&T Research

Nigel Davies

Lancaster University

The Case for
VM-Based Cloudlets
in Mobile Computing

OCTOBER–DECEMBER 2009 PERVASIVE computing 3

to static client and server hardware.1

At any given cost and level of technol-

ogy, considerations such as weight, size,

battery life, ergonomics, and heat dis-

sipation exact a severe penalty in com-

putational resources such as processor

speed, memory size, and disk capacity.

From the user’s viewpoint, a mobile de-

vice can never be too small or light or

have too long a battery life. Although

mobile hardware continues to evolve

and improve, it will always be resource-

poor relative to static hardware—sim-

ply put, for the hardware that people

carry or wear for extended periods of

time, improving size, weight, and bat-

tery life are higher priorities than en-

hancing compute power. This isn’t

just a temporary limitation of current

technology but is intrinsic to mobility.

Computation on mobile devices will

thus always involve a compromise.

Resource poverty is a major ob-

stacle for many applications with the

potential to seamlessly augment hu-

man cognition because such applica-

tions typically require processing and

energy that far outstrips mobile hard-

ware’s capabilities. In the lab and with

ample computing resources, the state

of the art for applications such as face

recognition, speech recognition, and

language translation is near-human

in performance and quality. As Fig-

ure 1a shows, for example, researchers

achieved Spanish-English translation

comparable to human quality in 2006

on a 100-node computing engine by us-

ing large online corpora and a context-

based machine translation algorithm.2

For the IBM BLEU metric used in the

�gure, scores above 0.7 enter the bilin-

gual human translator range and those

above 0.8 approach the experienced

professional human translator range.

Face recognition using computer vision

is another area in which rapid progress

has occurred over the past decade. Fig-

ure 1b, adapted from Andy Adler and

Michael Schucker’s 2007 comparison

of human and automatic face recogni-

tion performance,3 shows that comput-

ers and humans are comparable in this

task today. Although several technical

improvements for practical deployment

are still needed in such applications,

it doesn’t take a giant leap of faith to

recognize their future potential. The

real challenge lies in sustaining their

state-of-the-art performance and qual-

ity in the wild—under highly variable

conditions on lightweight, energy-

ef�cient, resource-impoverished mobile

hardware.

The Limits of Cloud Computing
An obvious solution to mobile devices’

resource poverty is to leverage cloud

computing. A mobile device could ex-

ecute a resource-intensive application

on a distant high-performance com-

pute server or compute cluster and sup-

port thin-client user interactions with

the application over the Internet. Un-

fortunately, long WAN latencies are a

fundamental obstacle.

Why Latency Hurts

WAN delays in the critical path of

user interaction can hurt usability by

degrading the crispness of system re-

sponse. Even trivial user–application

interactions incur delays in cloud com-

puting. Humans are acutely sensitive to

I magine a future in which there are extensive deployments

of dense cloudlet infrastructure based on open standards,

much like Wi-Fi access points today. What kind of new appli-

cations can we envision in such a world?

Ron has recently been diagnosed with Alzheimer’s disease.

Due to the sharp decline in his mental acuity, he is often un-

able to remember the names of friends and relatives; he also

frequently forgets to do simple daily tasks. He faces an uncer-

tain future that’s clouded by a lack of close family nearby and

limited �nancial resources for professional caregivers. Even

modest improvements in his cognitive ability would greatly

improve his quality of life, while also reducing the attention

demanded from caregivers. This would allow him to live inde-

pendently in dignity and comfort for many more years, before

he has to move to a nursing home.

Fortunately, a new experimental technology might provide

Ron with cognitive assistance. At the heart of this technology

is a lightweight wearable computer with a head-up display

in the form of eyeglasses. Built into the eyeglass frame are a

camera for scene capture and earphones for audio feedback.

These hardware components offer the essentials of an aug-

mented-reality system to aid cognition when combined with

software for scene interpretation, facial recognition, context

awareness, and voice synthesis. When Ron looks at a person

for a few seconds, that person’s name is whispered in his ear

along with additional cues to guide Ron’s greeting and inter-

actions; when he looks at his thirsty houseplant, “water me” is

whispered; when he looks at his long-suffering dog, “take me

out” is whispered.

In this example, low-latency, high-bandwidth wireless access

to cloudlet resources is an essential ingredient for the “magic

glasses” to be able to execute computer vision algorithms for

scene analysis and facial recognition at real-time speeds. This is

only one of many new applications that we can imagine.

Help for the Mentally Challenged

4 PERVASIVE computing www.computer.org/pervasive

VIRTUAL MACHINES

delay and jitter, and it’s very dif�cult

to control these parameters at WAN

scale: as latency increases, interactive

response suffers. Loosely coupled tasks

such as Web browsing might continue

to be usable, but deeply immersive tasks

such as augmented reality become jerky

or sluggish to the point of distraction.

This reduces the user’s depth of cogni-

tive engagement.

Andrés Lagar-Cavilla and his col-

leagues4 showed that latency can

negatively impact interactive response

in spite of adequate bandwidth. Fig-

ure 2a compares the measured output

frame rate of a visualization application

(Quake-Viz) under two different con-

�gurations: local machine with hard-

Based on same Spanish test set

0.4

0.5

0.6

0.7

0.8

B
le

u
 s

co
re

s

0.3

0.85

Human scoring range

Google
Chinese

(‘06 NIST)

0.3859

Google
Arabic

(‘05 NIST)

0.5137

Systran
Spanish

0.5551

SDL
Spanish

0.5610

CBMT
Spanish

0.7447

Google
Spanish

’08 top lang

0.7289

Year Computer Computer Indeterminate Worse/
 worse better (%) Better
 than than
 human (%) human (%)

1999 87.5 4.2 8.3 21.0

2001 87.5 8.3 4.2 10.5

2003 45.8 16.7 37.5 2.75

2005 37.5 33.3 29.2 1.13

2006 29.2 37.5 33.3 0.78

(b)(a)

0

100

90

80

70

60

50

40

30

20

10

0
10 20 30

Thin

40

Smoothness (frames per second)

50 60 90

C
D

F

8070

Thick

Thin 100ms

Thin 66ms

Thin 33ms

Thick

 Min Mean Max Lower bound

Berkeley–Canberra 174.0 174.7 176.0 79.9

Berkeley–New York 85.0 85.0 85.0 27.4

Berkeley–Trondheim 197.0 197.0 197.0 55.6

Pittsburgh–Ottawa 44.0 44.1 62.0 4.3

Pittsburgh–Hong Kong 217.0 223.1 393.0 85.9

Pittsburgh–Dublin 115.0 115.7 116.0 42.0

Pittsburgh–Seattle 83.0 83.9 84.0 22.9

(b)(a)

Figure 1. Near-human quality of cognitive augmentation applications today. Machines are much more capable of matching

humans in (a) language translation2 and (b) facial recognition3 than in the past.

Network latency hurts interactive performance even with good bandwidth: (a) a highly interactive visualization application’s

measured output frame rate under two different con�gurations: “Thick” (a local machine with hardware graphics acceleration)

and “Thin” (a remote compute server on a 100 Mb/s network, with round trip times ranging from 33ms to 100ms) (b) measured

Internet2 round trip times between representative sites con�rm that the 33-100ms range lies well within the range of observed

latencies in the real world.

OCTOBER–DECEMBER 2009 PERVASIVE computing 5

ware graphics acceleration (“thick”)

and remote compute server over a 100

Mb/s network with the output viewed

through the VNC protocol (“thin”). A

high frame rate provides the illusion of

smoothness to an interactive user. Fig-

ure 2a shows that even a modest latency

of 33 ms causes the frame rate to drop

considerably from that experienced

with a thick client. The VNC protocol

strives to keep up by dropping frames,

resulting in jerky interaction. Work-

conserving thin-client protocols, such

as X windows, preserve the frames

but offer sluggish interaction. In both

cases, the user experience is consider-

ably poorer than it is for local interac-

tion. Figure 2b reports measured Inter-

net2 latencies between representative

endpoints at planetary scale,4 with

the measured �gures far exceeding the

speed-of-light lower bound in the last

column.

Independently, Niraj Tolia and his

colleagues5 showed that the user-per-

ceived quality of thin-client perfor-

mance is highly variable and depends

on both the application’s degree of

interactivity and the network’s end-

to-end latency. As Figure 3 illustrates,

the usability of a highly interactive

task such as photo editing suffers un-

acceptably even at moderate network

latency (100 ms round-trip time) and

very good bandwidth (100 Mbps).

This contrasts with tasks that are in-

teractively undemanding, such as Web

browsing. Figure 3b shows the distri-

bution of response times for individual

interactions in a GIMP photo editing

task. The mapping of response times to

the subjective impressions of quality in

Figure 3a is based on long-established

human-computer interaction guidelines

that were developed through empirical

studies.

WAN Latency

Is Unlikely to Improve

Unfortunately, the current trajectory

of Internet evolution makes it very un-

likely that these fundamental consider-

ations will change in the foreseeable fu-

ture. The prime targets of networking

improvements today are bandwidth,

security, energy ef�ciency, and man-

ageability, and the techniques used to

address them hurt latency. Firewalls

and overlay networks, for example,

both achieve their goals by increasing

the software path length that packets

must traverse. In wireless networks, a

common energy-saving technique is to

turn on the mobile device’s transceiver

only for short periods of time to receive

and acknowledge packets that have

been buffered at a base station, which

increases average end-to-end packet la-

tency as well as jitter. Bandwidth, on

the other hand, might be hardly af-

fected by these techniques because it’s

an aggregate rather than instantaneous

measure. Although bandwidth will

continue to improve over time, latency

is unlikely to improve dramatically. In

fact, it could worsen.

Bandwidth-Induced

Delays Also Hurt

Although our discussion so far has

focused on Internet latency and jit-

ter, another source of user-perceived

delay arises from the transmission of

large data items that must be processed

within a tight user–machine interac-

tion loop. For example, executing com-

puter vision algorithms on high-reso-

lution images or high-de�nition video

is a processor-intensive task that’s a

natural candidate for of�oading to a

high-performance computing engine.

The user-perceived delay in this case

isn’t just the processing time but also

includes the time it takes for bulk data

transfer across the network. The band-

width available in the network deter-

mines this delay.

Wireless LAN bandwidth is typi-

cally two orders of magnitude higher

than the wireless Internet bandwidth

available to a mobile device—for ex-

ample, the nominal bandwidths of

the fastest currently available wireless

LAN (802.11n) and wireless Inter-

net HSPDA (High-Speed Downlink

Packet Access) technologies are 400

Mbps and 2 Mbps, respectively. From

a user interaction viewpoint, the dif-

ference in transmission delays at these

bandwidths can be very signi�cant: 80

milliseconds instead of 16 seconds for a

4-Mbyte JPEG image, which represents

a huge difference for deeply immersive

applications. Even if wireless Internet

bandwidth improves by one order of

RTT Crisp Noticable Annoying Unacceptable Unusable

1ms 3,278 40 0 0 0

20ms 3,214 82 4 18 0

66ms 2,710 572 12 3 21

100ms 2,296 973 20 6 23

Resp. time Subjective impression

<150ms Crisp

150ms–1s Noticeable to Annoying

1s–2s Annoying

2s–5s Unacceptable

> 5s Unusable

(b)(a)

Figure 3. Network latency’s effect on usability. At 100 Mbps for GIMP on VNC, (a) the mapping of response times and (b) the

response time distribution of individual GIMP interactions shows that user experience degrades signi�cantly as network latency

increases.

6 PERVASIVE computing www.computer.org/pervasive

VIRTUAL MACHINES

magnitude, wireless LAN bandwidths

are also poised to improve by a large

amount.

How Cloudlets Can Help
Can we obtain the bene�ts of cloud

computing without being WAN-

limited? Rather than relying on a dis-

tant “cloud,” we might be able to

address a mobile device’s resource pov-

erty via a nearby resource-rich cloudlet.

In this way, we could meet the need for

real-time interactive response by low-

latency, one-hop, high-bandwidth wire-

less access to the cloudlet. The mobile

device functions as a thin client, with

all signi�cant computation occurring

in the nearby cloudlet. This cloudlet’s

physical proximity is essential: the

end-to-end response time of applica-

tions executing within it must be fast (a

few milliseconds) and predictable. If no

cloudlet is available nearby, the mobile

device can gracefully degrade to a fall-

back mode that involves a distant cloud

or, in the worst case, solely its own re-

sources. Full functionality and perfor-

mance can return later, when the device

discovers a nearby cloudlet.

As Figure 4a illustrates, cloudlets

are decentralized and widely dispersed

Internet infrastructure components

whose compute cycles and storage re-

sources can be leveraged by nearby

mobile computers. Essentially, a cloud-

let resembles a “data center in a box”:

it’s self-managing, requiring little more

than power, Internet connectivity, and

access control for setup. This simplicity

of management corresponds to an appli-

ance model of computing resources and

makes it trivial to deploy on a business

premises such as a coffee shop or a doc-

tor’s of�ce. Internally, a cloudlet resem-

bles a cluster of multicore computers,

with gigabit internal connectivity and a

high-bandwidth wireless LAN. For safe

deployment in unmonitored areas, the

cloudlet can contain a tamper-resistant

or tamper-evident enclosure with third-

party remote monitoring of hardware

integrity. Figure 4b summarizes some

of the key differences between cloudlets

and clouds. Most importantly, a cloud-

let only contains soft state such as cache

copies of data or code that’s available

elsewhere. Hence, a cloudlet’s loss or

destruction isn’t catastrophic.

Transient
Cloudlet Customization
We imagine a future in which cloudlet

infrastructure is deployed much like Wi-

Fi access points today. Indeed, it would

be relatively straightforward to inte-

grate cloudlet and Wi-Fi access point

hardware into a single, easily deploy-

able entity. A key challenge is to sim-

plify cloudlet management. Widespread

deployment of cloudlet infrastructure

won’t happen unless software manage-

ment of that infrastructure is trivial—

ideally, it should be totally self-man-

aging. Tightly restricting software on

cloudlets to simplify management is un-

attractive because it constrains applica-

tion innovation and evolution. Instead,

an ideal cloudlet would support the wid-

est possible range of mobile users, with

minimal constraints on their software.

Our solution is transient customiza-

tion of cloudlet infrastructure using

hardware VM technology. The empha-

sis on “transient” is important: pre-use

customization and post-use cleanup

ensures that cloudlet infrastructure is

restored to its pristine software state af-

ter each use, without manual interven-

tion. A VM cleanly encapsulates and

separates the transient guest software

environment from the cloudlet infra-

structure’s permanent host software

environment. The interface between the

host and guest environments is narrow,

stable, and ubiquitous, which ensures

the longevity of cloudlet investments

and greatly increases the chances of a

mobile user �nding compatible cloud-

lets anywhere in the world. The mallea-

Nokia N810 tablet
Handtalk

wearable glove

Olympus Mobile Eye Trek
wearable computer

Coffee
shop

cloudlet

Distant cloud
 on Internet

Android phone

Low-latency
high-bandwidth

wireless
network

S
T

A
RBUCK

S

C
OFFEE

 Cloudlet Cloud

State Only soft state Hard and soft state

Management Self-managed; Professionally
 little to no administered,
 professional 24X 7 operator
 attention

Environment “Datacenter in a Machine room with
 box” at business power conditioning
 premises and cooling

Ownership Decentralized Centralized
 ownership by ownership by Amazon,
 local business Yahoo!, etc.

Network LAN latency/ Internet latency/
 bandwidth bandwidth

Sharing Few users at 100s-1000s of
 a time users at a time

(a) (b)

Figure 4. What is a cloudlet? (a) The cloudlet concept involves proximate computing infrastructure that can be leveraged

by mobile devices; it has (b) some key differences with the basic cloud computing concept.

OCTOBER–DECEMBER 2009 PERVASIVE computing 7

ble software interfaces of resource-rich

mobile applications are encapsulated

within the guest environment and are

hence precisely recreated during pre-

use cloudlet customization. Conse-

quently, a VM-based approach is less

brittle than alternatives such as process

migration or software virtualization.6

It’s also less restrictive and more gen-

eral than language-based virtualization

approaches that require applications to

be written in a speci�c language such

as Java or C#.

Two different approaches can deliver

VM state to infrastructure. One is VM

migration, in which an already execut-

ing VM is suspended, its processor,

disk, and memory state are transferred,

and �nally VM execution is resumed

at the destination from the exact point

of suspension. We’ve con�rmed this ap-

proach’s basic feasibility via our work

with the Internet Suspend/Resume

(ISR) system7,8 and SoulPad,9 and by

other work such as the Collective10 and

Xen live migration.11

The other approach, which is this

article’s focus, is called dynamic VM

synthesis. A mobile device delivers a

small VM overlay to the cloudlet in-

frastructure that already possesses the

base VM from which this overlay was

derived. The infrastructure applies the

overlay to the base to derive the launch

VM, which starts executing in the pre-

cise state in which it was suspended;

see Figure 5. In a language translation

application, for example, the software

in the launch VM could be a server that

receives captured speech from a mobile

device, performs speech recognition

and language translation, and returns

the output for speech synthesis. If the

cloudlet is a cluster, the launch VM

could be rapidly cloned to exploit par-

allelism, as Lagar-Cavilla and his col-

leagues described.12

To appreciate its unique attributes,

it’s useful to contrast dynamic VM

synthesis with the alternative approach

of assembling a large �le from hash-ad-

dressed chunks. Researchers have used

variants of this alternative in systems

such as LBFS,13 Casper,14 Shark,15 the

Internet Suspend/Resume system,16 the

Collective,10 and KeyChain.17 All these

variants have a probabilistic character

to them: chunks that aren’t available

nearby (in the local cache, on porta-

ble storage, and so on, depending on

the speci�c variant) must be obtained

from the cloud. Thus, bandwidth to

the cloud and the hit ratio on chunks

are the dominant factors affecting as-

sembly speed. Dynamic VM synthesis

differs in two key ways. First, its per-

formance is determined solely by local

resources: bandwidth to cloudlet and

the cloudlet’s compute power. Local

hardware upgrades can thus translate

directly to faster VM synthesis. Second,

WAN failures don’t affect synthesis.

Even a cloudlet that’s totally isolated

from the Internet is usable because the

mobile device delivers the overlay. In

this case, provisioning the cloudlet with

base VMs could be done via physical

storage media.

Feasibility of
Dynamic VM Synthesis
To explore the feasibility of dynamic

VM synthesis, we have built a proof-

of-concept prototype called Kimberley.

The mobile device in this prototype is

a Nokia N810 Internet tablet running

Maemo 4.0 Linux; cloudlet infrastruc-

ture is represented by a standard desk-

top running Ubuntu Linux. We brie�y

describe the prototype and experimen-

tal results from it here; more details ap-

pear elsewhere.18

VM Overlay Creation

Kimberley uses VirtualBox, a hosted

virtual machine manager (VMM) for

Linux. A tool called kimberlize creates the

VM overlays, using baseVM, install-script,
and resume-script as inputs. baseVM is a VM

with a minimally con�gured guest op-

erating system (OS) installed; there are

no constraints on the choice of guest

OS, except that it must be compatible

with install-script and resume-script. The tool

�rst launches baseVM and then executes

install-script in the guest OS. The result is a

VM that’s con�gured for mobile device

use. Next, the tool executes resume-script
in the guest OS to launch the desired

application and bring it to a state that’s

ready for user interaction. This VM,

called launchVM, is now suspended; it can

be resumed rapidly at runtime without

the delays of guest reboot or application

Mobile device Cloudlet

Preload base VM

Discover & negotiate
use of cloudlet

(Base + overlay) → launch VMPrivate overlay

VM residue

Done

Execute launch VM

Create VM residue

Use
cloudlet

Finish use

Depart

Discard VM

User-driven
device-VM
interactions

Figure 5. Dynamic virtual machine

synthesis timeline. The mobile device

transmits the VM overlay to the cloudlet,

which applies it to the base VM to

generate the launch VM. We anticipate

that a relatively small number of base

VMs (perhaps a dozen or so releases

of Linux and Windows con�gurations)

will be popular worldwide in cloudlets

at any given time. Hence, the odds are

high that a mobile device will �nd a

compatible base for its overlays even far

from home.

8 PERVASIVE computing www.computer.org/pervasive

VIRTUAL MACHINES

launch. After creating launchVM, kimberlize
differences its memory and disk images

with those of baseVM to obtain the VM

overlay. The �nal step is to compress

and encrypt this overlay.

Binding to Cloudlet Infrastructure

Figure 6 shows Kimberley’s key run-

time components. The controller of

the transient binding between mobile

device and cloudlet is a user-level pro-

cess called Kimberley Control Manager

(KCM). An instance of KCM runs on

the device and on the cloudlet, and to-

gether they abstract service discovery

and network management from the

rest of Kimberley. KCM supports ser-

vice browsing and publishing using the

Avahi mechanism in Linux.

The �rst step in the binding sequence

is the establishment of a secure TCP

tunnel using Secure Sockets Layer

(SSL) between KCM instances on a

device and a cloudlet. The rest of the

binding sequence, which typically in-

volves user authentication and optional

billing interaction, then uses this tun-

nel for secure communication. Kimber-

ley supports the Simple Authentication

and Security Layer (SASL) framework,

which provides an extensible interface

for integrating diverse authentication

mechanisms. After successful authen-

tication, the cloudlet KCM executes

a dekimberlize command, which fetches

the VM overlay from the mobile de-

vice or a Web site, decrypts and de-

compresses it, and applies the overlay

to the base VM. The suspended VM

is then launched and ready to provide

services to the mobile device.

Speed of VM Synthesis

Table 1 shows that VM overlay size is

100 to 200 Mbytes for a sample col-

lection of Linux applications, which

is an order of magnitude smaller

than the full VM size of more than

8 Gbytes. The row labeled “Null”

shows that Kimberley’s intrinsic over-

head is modest.

For use in cloudlets, rapid VM syn-

thesis is important. Mobile users who

rely on cloudlet services will �nd ex-

tended delays for service initiation at

a new location to be unacceptable. In

addition, cloudlet handoffs should be

as rapid, invisible, and seamless as Wi-

Fi access point handoffs are today—a

good potential use of VM migration

after initial VM synthesis.

Figure 7 presents the measured VM

synthesis time in Kimberley for six

Linux applications when the cloudlet

receives the VM overlay at 100 Mbps.

The times range from under a minute

to just over a minute and a half. These

�gures are likely to improve over time

because Kimberley is an unoptimized

initial prototype, with many perfor-

mance optimizations still possible.

Improving Performance

Synthesizing a VM in 60 to 90 seconds

is acceptable for an unoptimized proof-

of-concept prototype, but signi�cant

improvement is needed for real-world

deployment. Exploring these perfor-

mance improvements is part of our fu-

ture work. We conjecture that synthesis

times in the small tens of seconds are

a desirable and practically achievable

goal, requiring about a factor of �ve

improvement. As Figure 7 shows, the

Cloudlet
Mobile device

Avahi

Launcher

Launch

VM

Avahi
Wireless link

User interaction

KCM
KCM

Launcher

VNC

server VNC

Client

Figure 6. Runtime binding in Kimberley.

The KCMs on the cloudlet and mobile

device coordinate the binding process.

TABLE 1

Virtual machine overlay sizes for an 8-Gbyte virtual disk

Application
Compressed VM
overlay size (Mbytes)

Uncompressed VM
overlay size (Mbytes)

Install package size
(Mbytes)

AbiWord 119.5 364.2 10.0

GIMP 141.0 404.7 16.0

Gnumeric 165.3 519.8 16.0

Kpresenter 149.4 426.8 9.1

PathFind 196.6 437.0 36.8

SnapFind 63.7 222.0 8.8

Null 5.9 24.8 0.0

OCTOBER–DECEMBER 2009 PERVASIVE computing 9

two major contributors to VM synthe-

sis time are overlay transmission and

decompressing/applying the overlay on

the cloudlet.

We can improve overlay transmis-

sion time by using a higher-bandwidth

short-range wireless network. Relative

to the 100-Mbps network used in our

experiments, wireless LAN band-

widths are poised to improve through

several new wireless technologies on

the brink of commercial relevance—

examples include 802.11n (300 to 600

Mbps), ultra-wideband (UWB; 100 to

480 Mbps), and 60-GHz radio (1 to

5 Gbps). We anticipate signi�cant de-

velopment effort in translating these

nominal bandwidth improvements

into true end-to-end improvements, es-

pecially because one of the endpoints

is a mobile device that isn’t optimized

for high performance. However, this

challenge has been successfully met in

the past with each major improvement

in networking technology. We’re con-

�dent of eventual success, although

the path to getting there might be

challenging.

To reduce decompression and overlay

application times, we can exploit par-

allelism. Because these operations are

performed on the cloudlet instead of

the mobile device, there’s ample oppor-

tunity to take advantage of multicore

computing resources. For example,

partitioning the VM image into four

parts and generating four (smaller)

overlays would allow a four-core cloud-

let to synthesize the parts in parallel

to achieve close to a 4X speedup. The

overall decompression and overlay ap-

plication workload is embarrassingly

parallel, allowing higher degrees of

parallelism to be exploited quite easily.

In addition, it might be possible to pipe-

line this step with overlay transmission.

We could also use specialized hardware

to accelerate decompression and over-

lay application.

Another approach is to use caching,

speculative synthesis, and prefetching

techniques to eliminate VM synthesis

delay. Temporal locality of user mo-

bility patterns suggests that persistent

caching of launch VMs might be valu-

able in eliminating the need for VM

synthesis on a user’s return visits to a

cloudlet. Other users might also ben-

e�t if they use the same launch VM.

An idle cloudlet and a mobile device

could also cooperate in speculative

VM synthesis if there’s a strong hint

of a visit to that cloudlet in the near

future. We could obtain such hints

from high-level user information such

as location tracking, context informa-

tion, online calendar schedules, and

history-based sources. We can keep

the cost of erroneous speculation ac-

ceptable by executing the synthesis at

low priority.

Finally, we can apply synthesis re-

cursively to generate a family of over-

lays. Creating a launch VM would then

involve pipelined application of these

overlays, with intermediate results

cached for reuse. Earlier stages of the

pipeline tend to involve larger overlays

that are more widely used across appli-

cations and are hence more likely to be

found in a persistent cache. Conceptu-

ally, we seek a “wavelet”-like decom-

position of VM state into a sequence

of overlays that decrease in size but in-

crease in speci�city. A trade-off is that

each overlay introduces some delay in

pre-use infrastructure customization.

The cost of generating overlays isn’t a

factor because it occurs of�ine.

Deployment Challenges

Many practical considerations must be

addressed before the vision described in

this article becomes reality. One obvi-

ous question pertains to the business

model for cloudlet deployment: Is de-

ployment driven bottom-up by business

owners installing cloudlets for the ben-

e�t of their customers, much as they in-

stall comfortable furniture today? Or is

it driven top-down by service providers

who share pro�ts with the retail busi-

nesses on whose premises cloudlets are

deployed? In the latter case, which pric-

ing plans will attract users but still leave

room for pro�t? These are only two ex-

amples of many possible business mod-

els, and it’s dif�cult to predict at this

early stage which of them will prove to

be successful.

A different set of deployment ques-

tions pertain to cloudlet sizing: How

much processing, storage, and network-

ing capacity should a cloudlet possess?

AbiWord GIMP Gnumeric

Largest standard deviation is 5.3% of mean

Kpresenter PathFind SnapFind Null

Ti
m

e
 a

t
1
0
0
 M

b
p
s

(s
e
co

n
d
s)

140

120

100

80

60

40

20

0

Other

Resume VM

Apply VM overlay

Decompress VM overlay

Transfer private data

Compress private data

Transfer VM overlay

Figure 7. Virtual machine synthesis time

at 100 Mbps (seconds). The dominant

components are overlay decompression

and application, accounting for more

than half the time in most cases.

10 PERVASIVE computing www.computer.org/pervasive

VIRTUAL MACHINES

How do these resource requirements

depend on the speci�c applications sup-

ported? How do they vary over time in

the short and long term, taking into ac-

count natural clustering of users? How

do cloudlet resource demands vary

across individual users and groups of

users? How sparse can cloudlet infra-

structure be, yet provide a satisfactory

user experience? What management

policies should cloudlet providers use to

maximize user experience while mini-

mizing cost?

Trust and security issues are also

major factors in cloudlet deployment.

The thick VM boundary insulates a

cloudlet from software executed by

careless or malicious users. However,

a user’s con�dence in the safety of

cloudlet infrastructure rests on more

fragile assumptions. For example, a

malicious VMM could subtly distort

the execution of language transla-

tion within a VM and thus sabotage

an important business transaction

without the user being aware of the

damage. One approach to coping with

this problem is trust establishment,

in which the user performs some pre-

use action to check a cloudlet’s host

software.19,20 A different approach is

reputation-based trust, in which the

user veri�es the cloudlet service pro-

vider’s identity and then relies on le-

gal, business, or other external con-

siderations to infer trust. The first

approach is more defensive and robust

but also more cumbersome, whereas

the second approach is more fragile

but also more usable because it’s fast

and minimally intrusive. A useful ev-

eryday metaphor is drinking water

from a faucet: you can boil the water

before drinking (trust establishment)

or infer safety because you live in an

industrialized country (reputation-

based trust). Time will tell which of

these approaches proves more viable

in real-world deployments.

Another deployment challenge re-

lates to the assumption that a rela-

tively small set of base VMs will suf-

�ce for a large range of applications.

A mobile device with an overlay gen-

erated from a base VM that’s too old

might not be able to �nd a compatible

cloudlet. This problem could be ex-

acerbated by the common practice of

releasing security patches for old OS

releases. Although the patch’s effect

could be incorporated into the over-

lay, it would increase overlay size. A

different approach would be to trig-

ger generation of new overlays when

security patches are released, which

mobile devices would then have to

download. Deployment experience

can help us choose a good trade-off in

this design space.

A
lthough much remains

to be done, the concepts

and ideas introduced here

open the door to a new

world of mobile computing in which

seamless cognitive assistance for us-

ers occurs in diverse ways at any time

and place.

ACKNOWLEDGMENTS

We acknowledge Roy Want for his many contribu-

tions to the ideas expressed in this article, and for

helping to write and critique its early drafts. We

thank the reviewers for their constructive feed-

back and suggestions for improvement. This re-

search was supported by the US National Science

Foundation (NSF) under grant number CNS-

0833882. Any opinions, �ndings, conclusions, or

recommendations expressed here are those of the

authors and do not necessarily re�ect the views of

the NSF, Carnegie Mellon University, Microsoft,

AT&T, or Lancaster University. Internet Suspend/

Resume is a registered trademark of Carnegie

Mellon University.

the AUTHORS

Mahadev Satyanarayanan is the Carnegie Group Professor of Computer Sci-

ence at Carnegie Mellon University. His research interests include mobile com-

puting, pervasive computing, and distributed systems. Satyanarayanan has a

PhD in computer science from Carnegie Mellon University. He’s a fellow of the

ACM and the IEEE and the founding editor in chief of this magazine. Contact

him at satya@cs.cmu.edu.

Victor Bahl is a principal researcher and founding manager of the Networking

Research Group at Microsoft Research. His research interests span a variety of

topics in wireless systems design, mobile networking, and network manage-

ment. Bahl received Digital’s Doctoral Engineering Fellowship Award in 1995

and SIGMOBILE’s Distinguished Service Award in 2001. In 2004, Microsoft

nominated him for the innovator of the year award. Bahl is a fellow of the ACM

and the IEEE. Contact him via http://research.microsoft.com/~bahl/.

Ramón Cáceres is a Lead Member of Technical Staff at AT&T Labs in Florham

Park, NJ, USA. His research interests include mobile and pervasive computing,

virtualization, security, and privacy. He holds a Ph.D. from the University of

California at Berkeley and is a member of IEEE, ACM, and USENIX. He was born

and raised in Dominican Republic. Contact him at ramon@research.att.com.

Nigel Davies is head of the Computing Department at Lancaster University

and an adjunct associate professor of computer science at the University of Ari-

zona. His research interests include systems support for mobile and pervasive

computing. He focuses in particular on the challenges of creating deployable

mobile and ubiquitous computing systems that can be used and evaluated “in

the wild.” Contact him at nigel@comp.lancs.ac.uk.

OCTOBER–DECEMBER 2009 PERVASIVE computing 11

REFERENCES

 1. M. Satyanarayanan, “Fundamental Chal-
lenges in Mobile Computing,” Proc. ACM
Symp. Principles of Distributed Comput-
ing, ACM Press, 1996, pp. 1–7.

 2. J. Carbonell et al., “Context-Based
Machine Translation,” Proc. 7th Conf.
Assoc. for Machine Translation in the
Americas, Assoc. Machine Translation
in the Americas, 2006; http://www.
neu rosecu r i t y. com /a r t i c l e s / l ang /
AMTA-2006-Carbonell.pdf.

 3. A. Adler and M.E. Schuckers, “Compar-
ing Human and Automatic Face Recogni-
tion Performance,” IEEE Trans. Systems,
Man, and Cybernetics—Part B: Cyber-
netics, vol. 37, no. 5, pp. 1248–1255.

 4. H.A. Lagar-Cavilla et al., “Interactive
Resource-Intensive Applications Made
Easy,” Proc. Middleware 2007: ACM/
IFIP/Usenix 8th Int’l Middlewae Conf.,
Springer, 2007, pp. 143–163.

 5. N. Tolia, D. Andersen, and M. Satyana-
rayanan, “Quantifying Interactive Expe-
rience on Thin Clients,” Computer, vol.
39, no. 3, 2006, pp. 46–52.

 6. S. Osman et al., “The Design and Imple-
mentation of Zap: A System for Migrat-
ing Computing Environments,” Proc.
5th Symp. Operating Systems Design
and Implementation, Usenix Assoc.,
2002; http://www.ncl.cs.columbia.edu/
publications/osdi2002_zap.pdf.

 7. M. Kozuch and M. Satyanarayanan,
“Internet Suspend/Resume,” Proc. 4th

IEEE Workshop Mobile Computing Sys-
tems and Applications, IEEE CS Press,
2002, pp. 40–46.

 8. M. Satyanarayanan et al., “Pervasive Per-
sonal Computing in an Internet Suspend/
Resume System,” IEEE Internet Comput-
ing, vol. 11, no. 2, 2007, pp. 16–25.

 9. R. Caceres et al., “Reincarnating PCs
with Portable Soul-Pads,” Proc. 3rd Int’l
Conf. Mobile Systems, Applications, and
Services, Usenix Assoc., 2005; http://
www.usenix.org/events/mobisys05/tech/
caceres/caceres.pdf.

 10. C. Sapuntzakis et al., “Optimizing the
Migration of Virtual Computers,” Proc.
5th Symp. Operating Systems Design
and Implementation, Usenix Assoc.,
2002; http://suif.stanford.edu/collective/
osdi02-optimize-migrate-computer.pdf.

 11. C. Clark et al., “Live Migration of Virtual
Machines,” Proc. 2nd Usenix Symp. Net-
worked Systems Design and Implementa-
tion, Usenix Assoc., 2005, pp. 273–286.

 12. H.A. Lagar-Cavilla et al., “SnowFlock:
Rapid Virtual Machine Cloning for Cloud
Computing,” Proc. EuroSys 2009, ACM
Press, 2009.

 13. A. Muthitacharoen, B. Chen, and D. Maz-
ieres, “A Low-Bandwidth Network File
System,” Proc. 18th ACM Symp. Oper-
ating Systems Principles, ACM Press,
2001; http://pdos.csail.mit.edu/papers/
lbfs:sosp01/lbfs.pdf.

 14. N. Tolia et al., “Opportunistic Use of
Content-Addressable Storage for Distrib-

uted File Systems,” Proc. 2003 Usenix
Annual Technical Conf., Usenix Assoc.,
2003, pp. 127–140.

 15. S. Annapureddy, M.J. Freedman, and
D. Mazieres, “Shark: Scaling File Serv-
ers via Cooperative Caching,” Proc. 2nd
Symp. Networked Systems Design and
Implementation, ACM Press, 2005, pp.
129–142.

 16. M. Kozuch et al., “Seamless Mobile Com-
puting on Fixed Infrastructure,” Com-
puter, vol. 37, no. 7, 2004, pp. 65–72.

 17. M. Annamalai et al., “Implement-
ing Portable Desktops: A New Option
and Comparisons,” tech. report MSR-
TR-2006-151, Microsoft Research, Oct.
2006.

 18. A. Wolbach et al., “Transient Cus-
tomization of Mobile Computing
Infrastructure,” Proc. MobiVirt 2008
Workshop on Virtualization in Mobile
Computing, ACM Press, 2008.

 19. S. Garriss et al., “Trustworthy and Per-
sonalized Computing on Public Kiosks,”
Proc. Mobisys 2008, ACM Press, 2008,
pp. 199–210.

 20. A. Surie et al., “Rapid Trust Establish-
ment for Pervasive Personal Computing,”
IEEE Pervasive Computing, vol. 6, no. 4,
2007, pp. 24–30.

For more information on this or any other com-

puting topic, please visit our Digital Library at

www.computer.org/csdl.

Learn about computing history

and the people who shaped it.

COMPUTING

THEN

http://computingnow.

computer.org/ct

