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V I R T U A L  M A C H I N E S

M
obile computing is at a 

fork in the road. After two 

decades of sustained effort 

by many researchers, we’ve 

�nally developed the core 

concepts, techniques, and mechanisms to pro-

vide a solid foundation for this still fast-growing 

area. The vision of “information at my �nger-

tips at any time and place” was just a dream in 

the mid 1990s; today, ubiquitous email and Web 

access is a reality that millions of users world-

wide experience through BlackBerries, iPhones, 

Windows Mobile, and other mobile devices. On 

one path of the fork, mobile Web-based services 

and location-aware advertising opportunities 

have begun to appear, and companies are mak-

ing large investments in antici-

pation of major pro�ts.

Yet, this path also leads mo-

bile computing away from its 

true potential. Awaiting dis-

covery on the other path is an 

entirely new world in which  

mobile computing seamlessly 

augments users’ cognitive 

abilities via compute-intensive 

capabilities such as speech 

recognition, natural language 

processing, computer vision 

and graphics, machine learning, augmented re-

ality, planning, and decision-making. By thus 

empowering mobile users, we could transform 

many areas of human activity (see the sidebar 

for an example). 

This article discusses  the technical obstacles 

to this transformation and proposes a new ar-

chitecture for overcoming them. In this archi-

tecture, a mobile user exploits virtual machine 

(VM) technology to rapidly instantiate custom-

ized service software on a nearby cloudlet and 

then uses that service over a wireless LAN; the 

mobile device typically functions as a thin cli-

ent with respect to the service. A cloudlet is a 

trusted, resource-rich computer or cluster of 

computers that’s well-connected to the Internet 

and available for use by nearby mobile devices.

Our strategy of leveraging transiently cus-

tomized proximate infrastructure as a mobile 

device moves with its user through the physical 

world is called cloudlet-based, resource-rich, 

mobile computing. Crisp interactive response, 

which is essential for seamless augmentation 

of human cognition, is easily achieved in this 

architecture because of the cloudlet’s physical 

proximity and one-hop network latency. Using 

a cloudlet also simpli�es the challenge of meet-

ing the peak bandwidth demand of multiple us-

ers interactively generating and receiving media 

such as high-de�nition video and high-resolu-

tion images. Rapid customization of infrastruc-

ture for diverse applications emerges as a critical 

requirement, and our results from a proof-of-

concept prototype suggest that VM technology 

can indeed help meet this requirement.

Resource-Poor Mobile Hardware
The phrase “resource-rich mobile comput-

ing” seems like an oxymoron at �rst glance. 

Researchers have long recognized that mobile 

hardware is necessarily resource-poor relative 
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to static client and server hardware.1 

At any given cost and level of technol-

ogy, considerations such as weight, size, 

battery life, ergonomics, and heat dis-

sipation exact a severe penalty in com-

putational resources such as processor 

speed, memory size, and disk capacity. 

From the user’s viewpoint, a mobile de-

vice can never be too small or light or 

have too long a battery life. Although 

mobile hardware continues to evolve 

and improve, it will always be resource-

poor relative to static hardware—sim-

ply put, for the hardware that people 

carry or wear for extended periods of 

time, improving size, weight, and bat-

tery life are higher priorities than en-

hancing compute power. This isn’t 

just a temporary limitation of current 

technology but is intrinsic to mobility. 

Computation on mobile devices will 

thus always involve a compromise.

Resource poverty is a major ob-

stacle for many applications with the 

potential to seamlessly augment hu-

man cognition because such applica-

tions typically require processing and 

energy that far outstrips mobile hard-

ware’s capabilities. In the lab and with 

ample computing resources, the state 

of the art for applications such as face 

recognition, speech recognition, and 

language translation is near-human 

in performance and quality. As Fig-

ure 1a shows, for example, researchers 

achieved Spanish-English translation 

comparable to human quality in 2006 

on a 100-node computing engine by us-

ing large online corpora and a context-

based machine translation algorithm.2 

For the IBM BLEU metric used in the 

�gure, scores above 0.7 enter the bilin-

gual human translator range and those 

above 0.8 approach the experienced 

professional human translator range. 

Face recognition using computer vision 

is another area in which rapid progress 

has occurred over the past decade. Fig-

ure 1b, adapted from Andy Adler and 

Michael Schucker’s 2007 comparison 

of human and automatic face recogni-

tion performance,3 shows that comput-

ers and humans are comparable in this 

task today. Although several technical 

improvements for practical deployment 

are still needed in such applications, 

it doesn’t take a giant leap of faith to 

recognize their future potential. The 

real challenge lies in sustaining their 

state-of-the-art performance and qual-

ity in the wild—under highly variable 

conditions on lightweight, energy- 

ef�cient, resource-impoverished mobile 

hardware.

The Limits of Cloud Computing
An obvious solution to mobile devices’ 

resource poverty is to leverage cloud 

computing. A mobile device could ex-

ecute a resource-intensive application 

on a distant high-performance com-

pute server or compute cluster and sup-

port thin-client user interactions with 

the application over the Internet. Un-

fortunately, long WAN latencies are a 

fundamental obstacle.

Why Latency Hurts

WAN delays in the critical path of 

user interaction can hurt usability by 

degrading the crispness of system re-

sponse. Even trivial user–application 

interactions incur delays in cloud com-

puting. Humans are acutely sensitive to 

I magine a future in which there are extensive deployments 

of dense cloudlet infrastructure based on open standards, 

much like Wi-Fi access points today. What kind of new appli-

cations can we envision in such a world?

Ron has recently been diagnosed with Alzheimer’s disease. 

Due to the sharp decline in his mental acuity, he is often un-

able to remember the names of friends and relatives; he also 

frequently forgets to do simple daily tasks. He faces an uncer-

tain future that’s clouded by a lack of close family nearby and 

limited �nancial resources for professional caregivers. Even 

modest improvements in his cognitive ability would greatly 

improve his quality of life, while also reducing the attention 

demanded from caregivers. This would allow him to live inde-

pendently in dignity and comfort for many more years, before 

he has to move to a nursing home.

Fortunately, a new experimental technology might provide 

Ron with cognitive assistance. At the heart of this technology 

is a lightweight wearable computer with a head-up display 

in the form of eyeglasses. Built into the eyeglass frame are a 

camera for scene capture and earphones for audio feedback. 

These hardware components offer the essentials of an aug-

mented-reality system to aid cognition when combined with 

software for scene interpretation, facial recognition, context 

awareness, and voice synthesis. When Ron looks at a person 

for a few seconds, that person’s name is whispered in his ear 

along with additional cues to guide Ron’s greeting and inter-

actions; when he looks at his thirsty houseplant, “water me” is 

whispered; when he looks at his long-suffering dog, “take me 

out” is whispered.

In this example, low-latency, high-bandwidth wireless access 

to cloudlet resources is an essential ingredient for the “magic 

glasses” to be able to execute computer vision algorithms for 

scene analysis and facial recognition at real-time speeds. This is 

only one of many new applications that we can imagine.

Help for the Mentally Challenged
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delay and jitter, and it’s very dif�cult 

to control these parameters at WAN 

scale: as latency increases, interactive 

response suffers. Loosely coupled tasks 

such as Web browsing might continue 

to be usable, but deeply immersive tasks 

such as augmented reality become jerky 

or sluggish to the point of distraction. 

This reduces the user’s depth of cogni-

tive engagement.

Andrés Lagar-Cavilla and his col-

leagues4 showed that latency can 

negatively impact interactive response 

in spite of adequate bandwidth. Fig-

ure 2a compares the measured output 

frame rate of a visualization application 

(Quake-Viz) under two different con-

�gurations: local machine with hard-
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Figure 1. Near-human quality of cognitive augmentation applications today. Machines are much more capable of matching 

humans in (a) language translation2 and (b) facial recognition3 than in the past.

Network latency hurts interactive performance even with good bandwidth: (a) a highly interactive visualization application’s 

measured output frame rate under two different con�gurations: “Thick” (a local machine with hardware graphics acceleration) 

and “Thin” (a remote compute server on a 100 Mb/s network, with round trip times ranging from 33ms to 100ms) (b) measured 

Internet2 round trip times between representative sites con�rm that the 33-100ms range lies well within the range of observed 

latencies in the real world.
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ware graphics acceleration (“thick”) 

and remote compute server over a 100 

Mb/s network with the output viewed 

through the VNC protocol (“thin”). A 

high frame rate provides the illusion of 

smoothness to an interactive user. Fig-

ure 2a shows that even a modest latency 

of 33 ms causes the frame rate to drop 

considerably from that experienced 

with a thick client. The VNC protocol 

strives to keep up by dropping frames, 

resulting in jerky interaction. Work- 

conserving thin-client protocols, such 

as X windows, preserve the frames 

but offer sluggish interaction. In both 

cases, the user experience is consider-

ably poorer than it is for local interac-

tion. Figure 2b reports measured Inter-

net2 latencies between representative 

endpoints at planetary scale,4 with 

the measured �gures far exceeding the 

speed-of-light lower bound in the last 

column.

Independently, Niraj Tolia and his 

colleagues5 showed that the user-per-

ceived quality of thin-client perfor-

mance is highly variable and depends 

on both the application’s degree of 

interactivity and the network’s end-

to-end latency. As Figure 3 illustrates, 

the usability of a highly interactive 

task such as photo editing suffers un-

acceptably even at moderate network 

latency (100 ms round-trip time) and 

very good bandwidth (100 Mbps). 

This contrasts with tasks that are in-

teractively undemanding, such as Web 

browsing. Figure 3b shows the distri-

bution of response times for individual 

interactions in a GIMP  photo editing 

task. The mapping of response times to 

the subjective impressions of quality in 

Figure 3a is based on long-established 

human-computer interaction guidelines 

that were developed through empirical 

studies.

WAN Latency  

Is Unlikely to Improve

Unfortunately, the current trajectory 

of Internet evolution makes it very un-

likely that these fundamental consider-

ations will change in the foreseeable fu-

ture. The prime targets of networking 

improvements today are bandwidth, 

security, energy ef�ciency, and man-

ageability, and the techniques used to 

address them hurt latency. Firewalls 

and overlay networks, for example, 

both achieve their goals by increasing 

the software path length that packets 

must traverse. In wireless networks, a 

common energy-saving technique is to 

turn on the mobile device’s transceiver 

only for short periods of time to receive 

and acknowledge packets that have 

been buffered at a base station, which 

increases average end-to-end packet la-

tency as well as jitter. Bandwidth, on 

the other hand, might be hardly af-

fected by these techniques because it’s 

an aggregate rather than instantaneous 

measure. Although bandwidth will 

continue to improve over time, latency 

is unlikely to improve dramatically. In 

fact, it could worsen.

Bandwidth-Induced  

Delays Also Hurt

Although our discussion so far has 

focused on Internet latency and jit-

ter, another source of user-perceived 

delay arises from the transmission of 

large data items that must be processed 

within a tight user–machine interac-

tion loop. For example, executing com-

puter vision algorithms on high-reso-

lution images or high-de�nition video 

is a processor-intensive task that’s a 

natural candidate for of�oading to a 

high-performance computing engine. 

The user-perceived delay in this case 

isn’t just the processing time but also 

includes the time it takes for bulk data 

transfer across the network. The band-

width available in the network deter-

mines this delay.

Wireless LAN bandwidth is typi-

cally two orders of magnitude higher 

than the wireless Internet bandwidth 

available to a mobile device—for ex-

ample, the nominal bandwidths of 

the fastest currently available wireless 

LAN (802.11n) and wireless Inter-

net HSPDA (High-Speed Downlink 

Packet Access) technologies are 400 

Mbps and 2 Mbps, respectively. From 

a user interaction viewpoint, the dif-

ference in transmission delays at these 

bandwidths can be very signi�cant: 80 

milliseconds instead of 16 seconds for a 

4-Mbyte JPEG image, which represents 

a huge difference for deeply immersive 

applications. Even if wireless Internet 

bandwidth improves by one order of 

RTT Crisp Noticable Annoying Unacceptable Unusable

1ms  3,278 40 0 0 0

20ms  3,214 82 4 18 0

66ms 2,710 572 12 3 21 

100ms 2,296 973 20 6 23

Resp. time Subjective impression

<150ms Crisp

150ms–1s  Noticeable to Annoying

1s–2s  Annoying

2s–5s  Unacceptable

> 5s  Unusable

(b)(a)

Figure 3. Network latency’s effect on usability. At 100 Mbps for GIMP on VNC, (a) the mapping of response times and (b) the 

response time distribution of individual GIMP interactions shows that user experience degrades signi�cantly as network latency 

increases.
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magnitude, wireless LAN bandwidths 

are also poised to improve by a large 

amount.

How Cloudlets Can Help
Can we obtain the bene�ts of cloud 

computing without being WAN- 

limited? Rather than relying on a dis-

tant “cloud,” we might be able to  

address a mobile device’s resource pov-

erty via a nearby resource-rich cloudlet. 

In this way, we could meet the need for 

real-time interactive response by low-

latency, one-hop, high-bandwidth wire-

less access to the cloudlet. The mobile 

device functions as a thin client, with 

all signi�cant computation occurring 

in the nearby cloudlet. This cloudlet’s 

physical proximity is essential: the 

end-to-end response time of applica-

tions executing within it must be fast (a 

few milliseconds) and predictable. If no 

cloudlet is available nearby, the mobile 

device can gracefully degrade to a fall-

back mode that involves a distant cloud 

or, in the worst case, solely its own re-

sources. Full functionality and perfor-

mance can return later, when the device 

discovers a nearby cloudlet.

As Figure 4a illustrates, cloudlets 

are decentralized and widely dispersed 

Internet infrastructure components 

whose compute cycles and storage re-

sources can be leveraged by nearby 

mobile computers. Essentially, a cloud-

let resembles a “data center in a box”: 

it’s self-managing, requiring little more 

than power, Internet connectivity, and 

access control for setup. This simplicity 

of management corresponds to an appli-

ance model of computing resources and 

makes it trivial to deploy on a business 

premises such as a coffee shop or a doc-

tor’s of�ce. Internally, a cloudlet resem-

bles a cluster of multicore computers, 

with gigabit internal connectivity and a 

high-bandwidth wireless LAN. For safe 

deployment in unmonitored areas, the 

cloudlet can contain a tamper-resistant 

or tamper-evident enclosure with third-

party remote monitoring of hardware 

integrity. Figure 4b summarizes some 

of the key differences between cloudlets 

and clouds. Most importantly, a cloud-

let only contains soft state such as cache 

copies of data or code that’s available 

elsewhere. Hence, a cloudlet’s loss or 

destruction isn’t catastrophic.

Transient  
Cloudlet Customization
We imagine a future in which cloudlet 

infrastructure is deployed much like Wi-

Fi access points today. Indeed, it would 

be relatively straightforward to inte-

grate cloudlet and Wi-Fi access point 

hardware into a single, easily deploy-

able entity. A key challenge is to sim-

plify cloudlet management. Widespread 

deployment of cloudlet infrastructure 

won’t happen unless software manage-

ment of that infrastructure is trivial—

ideally, it should be totally self-man-

aging. Tightly restricting software on 

cloudlets to simplify management is un-

attractive because it constrains applica-

tion innovation and evolution. Instead, 

an ideal cloudlet would support the wid-

est possible range of mobile users, with 

minimal constraints on their software.

Our solution is transient customiza-

tion of cloudlet infrastructure using 

hardware VM technology. The empha-

sis on “transient” is important: pre-use 

customization and post-use cleanup 

ensures that cloudlet infrastructure is 

restored to its pristine software state af-

ter each use, without manual interven-

tion. A VM cleanly encapsulates and 

separates the transient guest software 

environment from the cloudlet infra-

structure’s permanent host software 

environment. The interface between the 

host and guest environments is narrow, 

stable, and ubiquitous, which ensures 

the longevity of cloudlet investments 

and greatly increases the chances of a 

mobile user �nding compatible cloud-

lets anywhere in the world. The mallea-
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Figure 4. What is a cloudlet? (a) The cloudlet concept involves proximate computing infrastructure that can be leveraged  

by mobile devices; it has (b) some key differences with the basic cloud computing concept.
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ble software interfaces of resource-rich 

mobile applications are encapsulated 

within the guest environment and are 

hence precisely recreated during pre-

use cloudlet customization. Conse-

quently, a VM-based approach is less 

brittle than alternatives such as process 

migration or software virtualization.6 

It’s also less restrictive and more gen-

eral than language-based virtualization 

approaches that require applications to 

be written in a speci�c language such 

as Java or C#.

Two different approaches can deliver 

VM state to infrastructure. One is VM 

migration, in which an already execut-

ing VM is suspended, its processor, 

disk, and memory state are transferred, 

and �nally  VM execution is resumed 

at the destination from the exact point 

of suspension. We’ve con�rmed this ap-

proach’s basic feasibility via our work 

with the Internet Suspend/Resume 

(ISR) system7,8 and SoulPad,9 and by 

other work such as the Collective10 and 

Xen live migration.11

The other approach, which is this 

article’s focus, is called dynamic VM 

synthesis. A mobile device delivers a 

small VM overlay to the cloudlet in-

frastructure that already possesses the 

base VM from which  this overlay was 

derived. The infrastructure applies the 

overlay to the base to derive the launch 

VM, which starts executing in the pre-

cise state in which  it was suspended; 

see Figure 5. In a language translation 

application, for example, the software 

in the launch VM could be a server that 

receives captured speech from a mobile 

device, performs speech recognition 

and language translation, and returns 

the output for speech synthesis. If the 

cloudlet is a cluster, the launch VM 

could be rapidly cloned to exploit par-

allelism, as Lagar-Cavilla and his col-

leagues described.12

To appreciate its unique attributes, 

it’s useful to contrast dynamic VM 

synthesis with the alternative approach 

of assembling a large �le from hash-ad-

dressed chunks. Researchers have used 

variants of this alternative  in systems 

such as LBFS,13 Casper,14 Shark,15 the 

Internet Suspend/Resume system,16 the 

Collective,10 and KeyChain.17 All these 

variants have a probabilistic character 

to them: chunks that aren’t available 

nearby (in the local cache, on porta-

ble storage, and so on, depending on 

the speci�c variant) must be obtained 

from the cloud. Thus, bandwidth to 

the cloud and the hit ratio on chunks 

are the dominant factors affecting as-

sembly speed. Dynamic VM synthesis 

differs in two key ways. First, its per-

formance is determined solely by local 

resources: bandwidth to cloudlet and 

the cloudlet’s compute power. Local 

hardware upgrades can thus translate 

directly to faster VM synthesis. Second, 

WAN failures don’t affect synthesis. 

Even a cloudlet that’s totally isolated 

from the Internet is usable because the 

mobile device delivers the overlay. In 

this case, provisioning the cloudlet with 

base VMs could be done via physical 

storage media.

Feasibility of  
Dynamic VM Synthesis
To explore the feasibility of dynamic 

VM synthesis, we have built a proof-

of-concept prototype called Kimberley. 

The mobile device in this prototype is 

a Nokia N810 Internet tablet running 

Maemo 4.0 Linux; cloudlet infrastruc-

ture is represented by a standard desk-

top running Ubuntu Linux. We brie�y 

describe the prototype and experimen-

tal results from it here; more details ap-

pear elsewhere.18

VM Overlay Creation

Kimberley uses VirtualBox, a hosted 

virtual machine manager (VMM)  for 

Linux. A tool called kimberlize creates the 

VM overlays, using baseVM, install-script, 
and resume-script as inputs. baseVM is a VM 

with a minimally con�gured guest op-

erating system (OS) installed; there are 

no constraints on the choice of guest 

OS, except that it must be compatible 

with install-script and resume-script. The tool 

�rst launches baseVM and then executes 

install-script in the guest OS. The result is a 

VM that’s con�gured for mobile device 

use. Next, the tool executes resume-script 
in the guest OS to launch the desired 

application and bring it to a state that’s 

ready for user interaction. This VM, 

called launchVM, is now suspended; it can 

be resumed rapidly at runtime without 

the delays of guest reboot or application 

Mobile device Cloudlet

Preload base VM

Discover & negotiate
use of cloudlet

(Base + overlay) → launch VMPrivate overlay

VM residue

Done

Execute launch VM

Create VM residue

Use
cloudlet

Finish use

Depart

Discard VM

User-driven
device-VM
interactions

Figure 5. Dynamic virtual machine 

synthesis timeline. The mobile device 

transmits the VM overlay to the cloudlet, 

which applies it to the base VM to 

generate the launch VM. We anticipate 

that a relatively small number of base 

VMs (perhaps a dozen or so releases 

of Linux and Windows con�gurations) 

will be popular worldwide in cloudlets 

at any given time. Hence, the odds are 

high that a mobile device will �nd a 

compatible base for its overlays even far 

from home.
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launch. After creating launchVM, kimberlize 
differences its memory and disk images 

with those of baseVM to obtain the VM 

overlay. The �nal step is to compress 

and encrypt this overlay.

Binding to Cloudlet Infrastructure

Figure 6 shows Kimberley’s key run-

time components. The controller of 

the transient binding between mobile 

device and cloudlet is a user-level pro-

cess called Kimberley Control Manager 

(KCM). An instance of KCM runs on 

the device and on the cloudlet, and to-

gether they abstract service discovery 

and network management from the 

rest of Kimberley. KCM supports ser-

vice browsing and publishing using the 

Avahi mechanism in Linux.

The �rst step in the binding sequence 

is the establishment of a secure TCP 

tunnel using Secure Sockets Layer 

(SSL) between KCM instances on a 

device and a cloudlet. The rest of the 

binding sequence, which typically in-

volves user authentication and optional 

billing interaction, then uses this tun-

nel for secure communication. Kimber-

ley supports the Simple Authentication 

and Security Layer (SASL) framework, 

which provides an extensible interface 

for integrating diverse authentication 

mechanisms. After successful authen-

tication, the cloudlet KCM executes 

a dekimberlize command, which fetches 

the VM overlay from the mobile de-

vice or a Web site, decrypts and de-

compresses it, and applies the overlay 

to the base VM. The suspended VM 

is then launched and ready to provide 

services to the mobile device.

Speed of VM Synthesis

Table 1 shows that VM overlay size is 

100 to 200 Mbytes for a sample col-

lection of Linux applications, which 

is an order of magnitude smaller 

than the full VM size of more than 

8 Gbytes. The row labeled “Null” 

shows that Kimberley’s intrinsic over-

head is modest.

For use in cloudlets, rapid VM syn-

thesis is important. Mobile users who 

rely on cloudlet services will �nd ex-

tended delays for service initiation at 

a new location to be unacceptable. In 

addition, cloudlet handoffs should be 

as rapid, invisible, and seamless as Wi-

Fi access point handoffs are today—a 

good potential use of VM migration 

after initial VM synthesis.

Figure 7 presents the measured VM 

synthesis time in Kimberley for six 

Linux applications when the  cloudlet 

receives the VM overlay at 100 Mbps. 

The times range from under a minute 

to just over a minute and a half. These 

�gures are likely to improve over time 

because Kimberley is an unoptimized 

initial prototype, with many perfor-

mance optimizations still possible.

Improving Performance

Synthesizing a VM in 60 to 90 seconds 

is acceptable for an unoptimized proof-

of-concept prototype, but signi�cant 

improvement is needed for real-world 

deployment. Exploring these perfor-

mance improvements is part of our fu-

ture work. We conjecture that synthesis 

times in the small tens of seconds are 

a desirable and practically achievable 

goal, requiring about a factor of �ve 

improvement. As Figure 7 shows, the 

Cloudlet
Mobile device
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Launcher
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Figure 6. Runtime binding in Kimberley. 

The KCMs on the cloudlet and mobile 

device coordinate the binding process.

TABLE 1 

Virtual machine overlay sizes for an 8-Gbyte virtual disk

Application
Compressed VM  
overlay size (Mbytes)

Uncompressed VM  
overlay size (Mbytes)

Install package size 
(Mbytes)

AbiWord 119.5 364.2 10.0

GIMP 141.0 404.7 16.0

Gnumeric 165.3 519.8 16.0

Kpresenter 149.4 426.8 9.1

PathFind 196.6 437.0 36.8

SnapFind 63.7 222.0 8.8

Null 5.9 24.8 0.0



OCTOBER–DECEMBER 2009 PERVASIVE computing 9

two major contributors to VM synthe-

sis time are overlay transmission and 

decompressing/applying the overlay on 

the cloudlet.

We can improve overlay transmis-

sion time by using a higher-bandwidth 

short-range wireless network. Relative 

to the 100-Mbps network used in our 

experiments, wireless LAN band-

widths are poised to improve through 

several new wireless technologies on 

the brink of commercial relevance—

examples include 802.11n (300 to 600 

Mbps), ultra-wideband (UWB; 100 to 

480 Mbps), and 60-GHz radio (1 to 

5 Gbps). We anticipate signi�cant de-

velopment effort in translating these 

nominal bandwidth improvements 

into true end-to-end improvements, es-

pecially because one of the endpoints 

is a mobile device that isn’t optimized 

for high performance. However, this 

challenge has been successfully met in 

the past with each major improvement 

in networking technology. We’re con-

�dent of eventual success, although 

the path to getting there might be 

challenging.

To reduce decompression and overlay 

application times, we can exploit par-

allelism. Because these operations are 

performed on the cloudlet instead of 

the mobile device, there’s ample oppor-

tunity to take advantage of multicore 

computing resources. For example, 

partitioning the VM image into four 

parts and generating four (smaller) 

overlays would allow a four-core cloud-

let to synthesize the parts in parallel 

to achieve close to a 4X speedup. The 

overall decompression and overlay ap-

plication workload is embarrassingly 

parallel, allowing higher degrees of 

parallelism to be exploited quite easily. 

In addition, it might be possible to pipe-

line this step with overlay transmission. 

We could also use specialized hardware 

to accelerate decompression and over-

lay application.

Another approach is to use caching, 

speculative synthesis, and prefetching 

techniques to eliminate VM synthesis 

delay. Temporal locality of user mo-

bility patterns suggests that persistent 

caching of launch VMs might be valu-

able in eliminating the need for VM 

synthesis on a user’s return visits to a 

cloudlet. Other users might also ben-

e�t if they use the same launch VM. 

An idle cloudlet and a mobile device 

could also cooperate in speculative 

VM synthesis if there’s a strong hint 

of a visit to that cloudlet in the near 

future. We could obtain such hints 

from high-level user information such 

as location tracking, context informa-

tion, online calendar schedules, and 

history-based sources. We can keep 

the cost of erroneous speculation ac-

ceptable by executing the synthesis at 

low priority.

Finally, we can apply synthesis re-

cursively to generate a family of over-

lays. Creating a launch VM would then 

involve pipelined application of these 

overlays, with intermediate results 

cached for reuse. Earlier stages of the 

pipeline tend to involve larger overlays 

that are more widely used across appli-

cations and are hence more likely to be 

found in a persistent cache. Conceptu-

ally, we seek a “wavelet”-like decom-

position of VM state into a sequence 

of overlays that decrease in size but in-

crease in speci�city. A trade-off is that 

each overlay introduces some delay in 

pre-use infrastructure customization. 

The cost of generating overlays isn’t a 

factor because it occurs of�ine.

Deployment Challenges

Many practical considerations must be 

addressed before the vision described in 

this article becomes reality. One obvi-

ous question pertains to the business 

model for cloudlet deployment: Is de-

ployment driven bottom-up by business 

owners installing cloudlets for the ben-

e�t of their customers, much as they in-

stall comfortable furniture today? Or is 

it driven top-down by service providers 

who share pro�ts with the retail busi-

nesses on whose premises cloudlets are 

deployed? In the latter case, which pric-

ing plans will attract users but still leave 

room for pro�t? These are only two ex-

amples of many possible business mod-

els, and it’s dif�cult to predict at this 

early stage which of them will prove to 

be successful.

A different set of deployment ques-

tions pertain to cloudlet sizing: How 

much processing, storage, and network-

ing capacity should a cloudlet possess? 
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Figure 7. Virtual machine synthesis time 

at 100 Mbps (seconds). The dominant 

components are overlay decompression 

and application, accounting for more 

than half the time in most cases. 
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How do these resource requirements 

depend on the speci�c applications sup-

ported? How do they vary over time in 

the short and long term, taking into ac-

count natural clustering of users? How 

do cloudlet resource demands vary 

across individual users and groups of 

users? How sparse can cloudlet infra-

structure be, yet provide a satisfactory 

user experience? What management 

policies should cloudlet providers use to 

maximize user experience while mini-

mizing cost?

Trust and security issues are also 

major factors in cloudlet deployment. 

The thick VM boundary insulates a 

cloudlet from software executed by 

careless or malicious users. However, 

a user’s con�dence in the safety of 

cloudlet infrastructure rests on more 

fragile assumptions. For example, a 

malicious VMM could subtly distort 

the execution of language transla-

tion within a VM and thus sabotage 

an important business transaction 

without the user being aware of the 

damage. One approach to coping with 

this problem is trust establishment, 

in which the user performs some pre-

use action to check a cloudlet’s host 

software.19,20 A different approach is 

reputation-based trust, in which the 

user veri�es the cloudlet service pro-

vider’s identity and then relies on le-

gal, business, or other external con-

siderations to infer trust. The first 

approach is more defensive and robust 

but also more cumbersome, whereas 

the second approach is more fragile 

but also more usable because it’s fast 

and minimally intrusive. A useful ev-

eryday metaphor is drinking water 

from a faucet: you can boil the water 

before drinking (trust establishment) 

or infer safety because you live in an 

industrialized country (reputation-

based trust). Time will tell which of 

these approaches proves more viable 

in real-world deployments.

Another deployment challenge re-

lates to the assumption that a rela-

tively small set of base VMs will suf-

�ce for a large range of applications. 

A mobile device with an overlay gen-

erated from a base VM that’s too old 

might not be able to �nd a compatible 

cloudlet. This problem could be ex-

acerbated by the common practice of 

releasing security patches for old OS 

releases. Although the patch’s effect 

could be incorporated into the over-

lay, it would increase overlay size. A 

different approach would be to trig-

ger generation of new overlays when 

security patches are released, which 

mobile devices would then have to 

download. Deployment experience 

can help us choose a good trade-off in 

this design space.

A
lthough much remains 

to be done, the concepts 

and ideas introduced here 

open the door to a new 

world of mobile computing in which 

seamless cognitive assistance for us-

ers occurs in diverse ways at any time 

and place.
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