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The case of dependency of responses and 
response times: A modeling approach based 
on standard latent trait models 
Jochen Ranger1 & Tuulia Ortner2 

Abstract 
When modeling responses and response times in tests with latent trait models, the assumption of 
conditional independence between responses and response times might be too strong in the case 
that both data are gained from reactions to the same item. In order to account for the possible 
dependency of responses and response times from the same item, a generalization of the model of 
van der Linden (2007) is proposed. The basic idea consists in the assumption of a latent continuous 
response that underlies the observed binary response. This latent response is assumed to be 
correlated with the corresponding response time. The main advantage of this approach consists in 
the fact that the marginal models for responses and response times follow well known, standard 
latent trait models. Model estimation can be accomplished by marginal maximum likelihood 
estimation. The adequacy of the estimation approach is demonstrated in a small scale simulation 
study. An empirical data application illustrates the practicability of the approach in practice. 
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1. An approach to account for the dependency of responses and 
response times in tests 

Due to the computerized application of tests, item response times are widely available 
today. Therefore, it is not surprising that studies on the meaning or utility of response 
times in tests have come into the focus of psychological research (Schnipke & Scrams, 
2002; van der Linden, 2009). One field of research addresses the question, whether it is 
possible to extend latent trait models to both, the responses and the response times of 
individual test takers. Such models are attractive as they provide the opportunity to 
include response times into the measurement of individual characteristics (Ferrando & 
Lorenzo-Sevas, 2007; van der Linden, 2008; Ranger & Ortner, 2011). However, care 
must be exercised when formulating latent trait models for responses and response times. 
Standard latent trait models might not be appropriate for all fields of application. This is 
the case when responses and response times gained from the same item are more closely 
related than responses and response times from different items. As will be shown later, 
ignoring this extra association in the data can lead to noticeable distortions of certain 
parameter estimates. Referring to these considerations, the following manuscript 
proposes an approach to account and test for the possible dependency between responses 
and response times in the same item. 

2. Approaches to modeling responses and response times in tests 

In general, latent trait models intend to model dependencies between observable 
quantities (Bartholomew & Knott, 1999). These models are based on the assumption of 
latent traits that are supposed to represent the entirety of all systematic influencing 
factors of the observable quantities. In the framework of item response models, this 
reasoning leads to the local independence assumption, which states that responses from 
different items are independent when conditioning on the underlying latent traits. 
When modeling the joint distribution of responses and response times in tests, it is 
tempting to assume local independence as well. This comprises four aspects of local 
independence: The local independence of the responses, the local independence of the 
response times, the local independence of the responses and response times from 
different items and the local independence of the response and response time in the same 
item. While conditional independence is reasonable for data from different items, it is 
rather controversial when it comes to the response and response time in the same item 
(Thissen, 1983). As both quantities can be seen as the result of the same response 
process, they might share common influences that have not been accounted for when 
using the latent traits as conditioning variables. 
The possible causes for a violation of the fourth facet of local independence are 
numerous. In achievement tests it is well known that individuals can increase their speed 
of responding at the cost of response accuracy, a phenomenon called speed accuracy 
trade-off. Generally speaking, a speed accuracy trade-off can be seen as a negative 
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relation between the level of ability and work pace, at which the individual is able to 
operate. As Linden (2009) has pointed out, the existence of a speed accuracy trade-off 
does not contradict a latent trait model with constant latent traits, as long as individuals 
choose a level for ability and work pace before beginning the test and maintain this level 
throughout working. However, it seems possible that individuals do not rely totally on a 
stable choice during the test, but unsystematically fluctuate slightly around their chosen 
level over different items. This is a potential source of local dependency between item 
responses and response times. Additional sources of local dependency are random 
fluctuations of attention (Pieters & van der Ven, 1982). With reference to personality 
scales, research has revealed the average response latencies increase if a single item 
possesses an emotional evocative character that is independent from the trait measured 
(Temple & Geisinger, 1990; Tyron & Mulloy, 1993). It seems probable that such specific 
arousal evoked by single items also affects the test taker's response process for this 
particular item. Therefore, when modeling responses and response times, the used model 
should allow for violations of the local independence assumption in data from the same 
item. 

2.1 A classification of responses and response time models 

In the next paragraphs, different approaches to the joint distribution of responses and 
response times will be discussed. The following starting point will be used. Let the joint 
distribution of the responses and the response times in a test depend on two latent traits, 
namely ability θ  and work pace ω , and some item parameters gγ . The item parameters 
of the item response model will be denoted as ( )g gβ γ  and the item parameters of the 
response time model as ( )g gα γ , however the dependency on gγ  will only be stated 
when necessary. When assuming conditional independence of observations from 
different items, the joint distribution of the responses 1= [ , , ]Gx x…x  and response times 

1= [, , ]Gt tt …  can be stated most generally for a test taker as 

 
=1

f ( , | , ; ) = f ( , | , ; ),
G

g g g
g

x tθ ω γ θ ω γ∏x t  (1) 

where G  denotes the number of the items, gx  is the response to item g, gt  is the 
corresponding response time and vector 1= [ , , ]Gγ γ γ  represents the parameters of the 
different items. 

Different approaches can be chosen in order to specify the joint distribution 
f ( , | , ; )g g gx t θ ω γ  of the response and the response time in a single item (Bloxom, 1985). 
In the simplest case, the assumption of conditional independence can be applied to single 
items. In this case one can factor f ( , | , ; )g g gx t θ ω γ  as 
f ( | , ; ( ))f ( | , ; ( ))g g g g g gx tθ ω β γ θ ω α γ , such that standard latent trait models can be used 
for the responses and the response times. Of course, further simplifications like 
f ( | ; ( ))f ( | ; ( ))g g g g g gx tθ β γ ω α γ  might be more reasonable if one assumes that the 
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responses and the response times depend on different latent traits. This approach has 
been advocated by Thissen (1983) and van der Linden (2007). 

Alternatively, one can factor f ( , | , ; )g g gx t θ ω γ  as 
f ( | , ; ( ))f ( | , , ; ( ))g g g g g g gx t xθ ω β γ θ ω α γ . Again simplifications like 
f ( | ; ( ))f ( | , ; ( ))g g g g g g gx t xθ β γ ω α γ  might be more reasonable. This approach has been 
investigated by van der Linden and Glas (2010) and revealed excellent power to detect 
even minor violations of conditional independence. 

And finally, one can factor f ( , | , ; )g g gx t θ ω γ  as f ( | , , ; ( ))f ( | , ; ( ))g g g g g g gx t tθ ω β γ θ ω α γ  
with the possible simplification of f ( | , ; ( ))f ( | ; ( ))g g g g g g gx t tθ β γ ω α γ . This approach has 
been proposed by van Breukelen (1991) and Verhelst, N. (1997). 

The question addressing the adequate strategy for response time modeling should be 
answered empirically in each case, depending on the characteristics of the data. 
Nevertheless, some of the proposed models might be more preferable as a first choice 
from a theoretical point of view. The available publications show that responses from 
tests can be modeled with standard item response models when ignoring response time. 
This implies that the marginal response distribution 

 f ( | , ; ( )) = f ( , | , ; )dg g g g g g gx x t tθ ω β γ θ ω γ∫  (2) 

should follow (a potentially bidimensional version of) a standard item response model. 
Likewise, response times in tests have been modeled with standard latent traits models 
for a long time (Scheiblechner, 1979; van der Linden, 2006). Therefore, the marginal 
response time distribution 

 f ( | , ; ( )) = f ( , | , ; )g g g g g g
xg

t x tθ ω α γ θ ω γ∑  (3) 

should also be a standard response time model. So, when setting up a new model, it 
would be desirable that the corresponding marginal distributions of responses and 
response times are known latent trait models, as this is what we would expect from 
empirical findings. 
In fact, a similar claim has already been made by Ip (2002) for item response models that 
account for the dependency between responses. Referring to the different approaches 
described above, only the model of Verhelst et al. (1997) fulfills this claim. The model of 
Verhelst et al. (1997) however assumes exponentially distributed response times. The 
exponential distribution implies a constant hazard rate and possesses the memoryless 
property and therefore might be a rather unrealistic model for data sets. As a possible 
solution, we propose an alternative model that is based on the log-normal distribution. 
The log-normal distribution is known to fit real data remarkably well (van der Linden, 
2009). In the following paragraphs we will introduce this model that can be regarded as a 
generalization of the approach of van der Linden (2007), with the slight modification that 
we use the two-parameter probit model whereas van der Linden (2007) used the three-
parameter probit model for the responses. 
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3. A model for the joint distribution of responses and response 
times 

The model for the joint distribution of responses and response times in a test is 
introduced in two steps. First, it is described how responses and response times are 
distributed in a single item when conditioning on the latent traits θ  and ω . At this level 
of the model, no assumption of conditional independence will be made. Second, the joint 
distribution of the responses and response times from different items will be derived. 

3.1 The distribution of responses and response times in a single item 

A standard model for binary responses in tests is the two-parameter probit model (Lord 
& Novick, 1968, p. 365). This model can be derived from the assumption that the binary 
response to an item rests on a continuous but unobservable response (Baker, 1992, p. 8). 
Let θ  be the ability level of an individual and let the unobserved latent response gz  to 
item g  depend on θ  only. More specifically, it has to be assumed that conditionally on 
ability θ  the latent response gz  is normally distributed with expected value 

 0 1 0 1E( | ; , ) =g g g g gz θ β β β β θ+  (4) 

and variance 2 = 1zg
σ . The quantities 0gβ  and 1gβ  are item parameters, 0gβ  reflecting 

the difficulty of an item and 1gβ  being the item discrimination. Whenever the latent 
response gz  exceeds the threshold zero, the observable item response is positive, 
otherwise it is negative. Or more formally, = 1gx  when 0gz ≥  and = 0gx  when 

< 0gz . In this case, the distribution of the observed response gx  can be derived as a 
binomial distribution with success probability 

 ( )0 1 0 1 0 10
P( = 1| ; , ) = f ( | ; , )d = ,g g g g g g g g gx z zθ β β θ β β β β θ

∞
Φ +∫  (5) 

where ( )xΦ  denotes the distribution function of the standard normal distribution. 

The second component of the model describes the distribution of the response times and 
is based on the log-normal distribution. Log-normal models have been used successfully 
for response times in tests (van der Linden, 2009). Such a response time model follows 
from the assumption that conditionally on work pace ω  the logarithm of the response 
time ' = log( )g gt t  is normally distributed with expected value 

 0 1 0 1E( | ; , ) =g g g g gt ω α α α α ω′ +  (6) 

and the variance 2
' 2= gtg

σ α  independent of the test taker's characteristics. Again, 0gα  

and 1gα  are item parameters, 0gα  reflecting the general response time level of an item 

and 1gα  accounting for the strength of the relationship between work pace and the 
response time. 
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Within this framework, the assumption of conditional independence within an item can 
easily be abandoned by allowing for a correlation between the latent response gz  and the 
log response time gt′ . In this case, the distribution of gz  and gt′  follows a bivariate 
normal distribution with expected values according to Equation (4) and Equation (6) and 
correlation gρ , which accounts for the dependency of responses and response times in a 
single item. As a consequence, the joint distribution of the observable response gx  and 
the log response time gt′  is 

 f ( , | , ; , , ) = I( , )f ( , ; ( , , , ), ( , ))d .g g g g g g g g g g g g g gx t z x z t zθ ω α β ρ μ θ ω α β α ρ
∞

−∞
′ ′ Σ∫  (7) 

In Equation (7), function I( , )g gz x  is an indicator function with I( ,1) = 1gz  when 
> 0gz , I( ,0) = 1gz  when < 0gz  and zero elsewhere. Function f ( , ; , )z t μ′ Σ  is a bivariate 

normal distribution with mean vector = ( , , , )g gµ µ θ ω α β  given by Equation (4) and 
Equation (6) and covariance matrix = ( , )g gα ρΣ Σ  with diagonal elements 11 = 1Σ , 

22 2= gαΣ  and off-diagonal elements 2g gρ α . Equation (7) can easily be generalized to 
polytomous items and the graded response model by slightly modifying the indicator 
function. 

The proposed model in Equation (7) is a variant of the model of van der Linden (2007). 
In the model of van der Linden (2007), the probability of a correct solution is given by a 
three parameter logistic model 1 0P( = 1) = (1 ) ( ( ))g g g g gx c c β θ β+ − Φ −  and the response 
times are distributed according to a log-normal distribution with 

0 0E( ' | ; ) =g g gt ω α α ω− . Contrary to the present model (see Equation (6)), the model of 
Linden (2007) contains a restriction of the different 1gα  parameters to the same value. 
The present model avoids this assumption as such constraints are unusual in factor 
analysis, but it always is possible to implement it in case it is justified by the data set. 
The major difference between the two models is the assumption of conditional 
independence between the response and the response time in the same item, which is 
made by van der Linden (2007) but not in the present model. 

There are several reasons to follow the approach proposed in this manuscript. The 
structure of Equation (7) accounts for the fact that responses and response times can 
often be modeled separately by unidimensional standard latent trait models. The 
applicability of unidimensional models to responses and response times clearly excludes 
the existence of additional, neglected common traits that have not been taken into 
consideration and that are responsible for remaining associations between responses and 
response times. However, even though one can exclude the presence of traits that 
influence all items, one still can assume specific factors that influence the response and 
response time in just one item, thereby causing a correlation between gz  and gt′ . The 
presence of such specific factors leaves the validity of the unidimensional response 
model and the unidimensional response time model unaffected. The assumption of 
specific factors resembles models for testlets, where the dependency of items based on 
the same content is similarly modeled by assuming a testlet specific factor (Wainer, 
Bradlow, & Wang, 2007; Li, Bolt, & Fu, 2006). Contrary to the present model however, 
the specific influences in the testlet model affect items measuring the same trait. 
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The psychological interpretation of the item specific factor depends on the kind of the 
test and the context of testing. As outlined in the introduction, it could represent random 
fluctuations in the speed accuracy level of an individual, account for the effects of 
isolated random guessing or be the consequence of the specific arousal evoked by a 
single item. 

3.2 The distribution of responses and response times in a test 

Responses and response times in a single item are based at least in part on the same 
cognitive process. As a consequence, the assumption of conditional independence seems 
not realistic. Reactions to different items however do not share the same response 
process. Therefore, the assumption of conditional independence is plausible for 
responses and response times from different items. Let f ( , | , ; , , )g g g g gx t θ ω α β ρ′  be the 
distribution of the response and the response time of a test taker in item g. According to 
the conditional independence assumption, the joint distribution of the latent traits and the 
responses and response times in the G  items of the test can be stated as 

 f ( , ', , ; , ) = f ( , | , ; , , )f ( , ; ).g g g g g
G

x tθω θωθ ω γ ρ θ ω α β ρ θ ω ρ′∏x t  (8) 

In Equation (8), the distribution f ( , ; )θωθ ω ρ  is the distribution of the latent traits in the 
population of the potential test takers. As in the original model of van der Linden (2007), 
this is a bivariate normal distribution with zero means, unit variances and coefficient of 
correlation θωρ . In this aspect the model resembles an oblique factor model. 

4. Estimating item parameters 

Having observed the responses and response times of N  test takers, the unknown item 
parameters can be estimated according to the marginal maximum likelihood approach or 
the limited information approach. In limited information estimation one first estimates 
the tetrachoric correlation matrix between the responses, the correlation matrix between 
the response times and the biserial correlation matrix between responses and response 
times. Using these correlation matrices, the model parameters can be estimated with 
standard software for structural equation models by allowing for correlated residuals in 
responses and response times from the same item. However, as limited information 
estimates are not efficient, marginal maximum likelihood estimation is preferred in this 
manuscript. We therefore propose an algorithm that can generally be used for response 
and response time modeling and might be useful for other response time models as well. 
Marginal maximum likelihood estimates can be found by an application of the 
expectation maximization (EM) algorithm (Rubin, 1976; McLachlan & Krishnan, 1997). 
It is well known that the unknown latent traits can be considered as missing data. This 
idea is the basis for the application of the EM algorithm to the estimation of item 
parameters in the two parameter logistic model (Bock & Aitkin, 1981) or to the 
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estimation of the loadings in the linear factor model (Rubin & Thayer, 1982). However, 
to estimate the parameters of the proposed model, it is advantageous to introduce another 
type of missing data. The item characteristic curve of the two-parameter probit model can 
be justified by the assumption of a latent continuous response gz , which underlies the 
observed binary response gx , see the explanations above. In fact, the exact value of the 
latent response gz  cannot be observed as it only is known whether this variable exceeds 
the threshold zero or not. Therefore, this latent response can also be considered as 
missing data. Although not immediately apparent, the estimation of the item parameters 
can be simplified by pretending that the latent responses to the different items are known. 
In fact, this approach is similar to the technique of data augmentation, which has been 
applied in Markov Chain Monte Carlo estimation of item response models (Albert, 
1992). 

Let 1= [ , , ]i i iGz z…z  be the latent responses and 1' = [log( ), , log( )]i i iGt t…t  be the log 
response times of the i -th individual from altogether N  test takers. Simplifying the 
notation slightly as = ( , , , )ig i i g gμ μ θ ω α β  and = ( , )g g gα ρΣ Σ  and using the 
nomenclature = [ ,log( )]ig ig igz t ′y  and = [ , ]i i iλ θ ω ′ , the relevant kernel of the complete 
log-likelihood function can be written as 

1 1
1/2 1/2

=1 =1

1 1 1 1LL = log [( ) ( )] log [ ]
2 2| | | |

N G

ig ig g ig ig i i
i g g

θω
θω

μ μ λ λ− −
′

⎡ ⎤⎡ ⎤ ⎡ ⎤
′⎢ ⎥− − Σ − + − Σ⎢ ⎥ ⎢ ⎥Σ Σ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦⎣ ⎦

∑ ∑ y y , (9) 

where θωΣ  denotes the variance covariance matrix of the latent traits. The complete log-
likelihood function is a function of the unknown item parameters and of sufficient 
statistics of the missing data, that is, the latent traits and the latent responses. A more 
accessible version of the complete log-likelihood function as well as a list of the 
unknown sufficient statistics is given in the Appendix. In case of known latent 
observations, the maximization of the complete log-likelihood function would be 
straightforward. However, as the latent variables and likewise the sufficient statistics are 
not known, the complete log-likelihood function can not directly be used to estimate the 
item parameters. 

One possible solution to this problem consists in the iterated replacement of the unknown 
sufficient statistics by preliminary values. These values are determined as follows. First, 
provisional item parameters have to be chosen for the items. With these item parameters 
it is possible to calculate the conditional expectation of the unobserved sufficient 
statistics when conditioning on the observed data, that is, on the responses ix  and log 
response times 'it  of the test takers. For example, the conditional expectation of 

=1
N

igi
z∑  

can be calculated as 

 
=1 =1

E( | , ' ) = f ( | , , , ' )f ( , | , ' )d d d .
N N

ig i i ig ig i i i i ig
i i

z z z zθ ω θ ω θ ω
∞ ∞ ∞

−∞ −∞ −∞∑ ∑∫ ∫ ∫x t x t x t  (10) 

Although not explicitly stressed, the different distributions in Equation (10) depend on 
the provisional item parameters. The inner most integral over igz  is the expectation of a 
truncated normal distribution that can be stated in closed form. Therefore the triple 
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integral simplifies to a twofold integration problem. The integral over f ( , | , ' )i iθ ω x t  can 
be approximated with Gauss Hermite Quadrature (Stroud, 1971). A more thorough 
description of the algorithm is given in the Appendix. 

After all the unobserved quantities in the complete log-likelihood function have been 
replaced by their conditional expectation, the resulting equation is a function of the item 
parameters alone that can be maximized easily. Maximization for the item parameters is 
not computationally intensive because the time-demanding calculations have been made 
when calculating the conditional expectations. Having found the maximum, one can use 
the corresponding item parameter estimates as new provisional values for determining 
the updated conditional expectations of the unknown sufficient statistics. This sequence 
of calculating expected statistics and maximization is consecutively iterated until 
parameter estimates converge. 

5. Simulation study 

In order to test the practicability of the proposed approach, we performed a simulation 
study. With this simulation two intentions were pursued. First, to demonstrate the 
applicability of the estimation method. And second, to investigate whether a maximum 
likelihood ratio test comparing the proposed model with a model assuming independence 
has proper Type I error rates and power. 

5.1 Estimation of item parameter 

Model estimation was demonstrated with a test of 20 items for samples of 500 and 1000 
subjects. This range was supposed to cover the sample sizes reported in empirical 
applications. Ability and work pace were sampled from a standard bivariate normal 
distribution. Thereby, a correlation of = 0.3θωρ  was assumed between ability and work 
pace. Such correlations between ability and work pace have been reported for achievement 
tests (van der Linden, 2009). Responses and response times were generated according to the 
proposed model. The employed item parameters are given in Table 1. The chosen item 
parameters resembled more or less values that had been found in previous studies. 

Four different levels of correlation between the responses and response times were 
considered, ranging from = 0.0gρ  for the first five items to = 0.3gρ  for the last five 
items. This increase was thought to be a realistic pattern as correlations between responses 
and response times might increase during the test due to effects of test speededness. 

Altogether 500  datasets were generated for every sample size. Preliminary item 
parameters for the response model were estimated by fitting a probit model to the 
responses alone. Additionally, preliminary item parameters for the response time model 
were estimated by factor analyzing the logarithmized response times. These estimates 
were used as starting values for the EM algorithm. The starting values for the 
correlations between the responses and the response times were set to zero. 
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Table 1: 
True item parameter of the simulated items 

Item 0β  1β  0α  1α  2α  gρ  

1 1.00 1.00 3.00 0.40 0.36 0.00 
2 1.00 1.00 3.00 0.40 0.36 0.00 
3 1.00 1.00 3.00 0.40 0.36 0.00 
4 1.00 1.00 3.00 0.40 0.36 0.00 
5 0.50 1.00 3.50 0.40 0.36 0.00 
6 0.50 1.00 3.50 0.40 0.36 0.10 
7 0.50 1.00 3.50 0.40 0.36 0.10 
8 0.50 1.00 3.50 0.40 0.36 0.10 
9 0.00 1.00 4.00 0.40 0.36 0.10 

10 0.00 1.00 4.00 0.40 0.36 0.10 
11 0.00 1.00 4.00 0.40 0.36 0.20 
12 0.00 1.00 4.00 0.40 0.36 0.20 
13 -0.50 1.00 4.50 0.40 0.36 0.20 
14 -0.50 1.00 4.50 0.40 0.36 0.20 
15 -0.50 1.00 4.50 0.40 0.36 0.20 
16 -0.50 1.00 4.50 0.40 0.36 0.30 
17 -1.00 1.00 5.00 0.40 0.36 0.30 
18 -1.00 1.00 5.00 0.40 0.36 0.30 
19 -1.00 1.00 5.00 0.40 0.36 0.30 
20 -1.00 1.00 5.00 0.40 0.36 0.30 

 
 
The EM algorithm was implemented in R (R Development Core Team, 2009). The 
integrals in the E-Step were approximated with Gauss Hermite Quadratur and 20 nodes 
per dimension. The expected log-likelihood function was maximized with the package 
optim. Note that although the true discrimination coefficients of the items were the same, 
their estimates were not restricted to the same value. The EM algorithm was ended when 
item parameter values did not change for more than 0.0008 . The code can be obtained 
from the authors on request. 
Altogether, the EM algorithm worked well as it converged in every sample. On the 
whole, the true item parameters could be recovered well without bias. The mean and the 
standard deviation of the estimates are given in Figure 1 for the item correlation 
parameter gρ . Results for the remaining parameters can be obtained from the authors. 

Additionally, the item parameters were estimated according to the limited information 
approach. As not all programs for structural equation modeling can handle mixtures of  
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Figure 1:  
Estimation results for correlation parameter gρ  

 
continuous and discrete responses, the response times were dichotomized and the item 
parameters were estimated according to Muthen (1978). However, instead of the 
weighted least squares approach proposed by Muthen (1978), the item parameters were 
estimated with unweighted least squares. Item parameter estimates were unbiased, but 
not as efficient as the corresponding maximum likelihood estimates. The standard 
deviations of the correlation coefficients for example were about twice as large as the 
corresponding standard deviations of the maximum likelihood estimates. Therefore, as it 
is well known, maximum likelihood estimation is the first choice when one is interested 
in precise estimates. 
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5.2 Testing for independence 

The proposed approach offers a framework for testing whether the responses and 
response times in the same item are independent or not. A first test of this hypothesis is 
the likelihood ratio test that compares the proposed model with a version where gρ  is set 
to zero. As second test may serve a z -test that evaluates whether the correlation 
parameters gρ  deviate from zero. This test employs Wald's second partial deviations for 
variance estimation. Both tests were evaluated with respect to power and Type I error 
rate in a simulation study. 

Altogether, three scenarios were investigated. In all scenarios, the responses and 
response times were generated for 20 items. In the first scenario, the Type I error rate of 
the tests was investigated. The data was generated according to the item parameters given 
in Table 1 with the exception that there was no correlation between the responses and 
response times in a single item. In the second and third scenario, the power of the tests 
was the quantity of interest. In the second scenario, the data was generated according to 
the proposed model using the parameter values in Table 1. Local independence is 
violated as the correlations gρ  are not zero any more. In the third scenario, a different 
violation of the conditional independence assumption was considered. This time, the data 
was generated according to the model of van der Linden and Glas (2010). In this model, 
the response times are distributed log-normally with expected value according to 
Equation (6) and the modification that the intercept term 0gα  is different for positive and 
negative responses. As a consequence, the response times are distributed differently for 
positive and negative responses. The motivation for this approach is the observation that 
wrong answers sometimes take longer than right answers (Thissen, 1983). Contrary to 
the original version of the model of van der Linden and Glas (2010), the two-parameter 
probit model was used for the responses instead of the three-parameter probit model. 

For every scenario, 500 simulation samples with a size of 500 and 1000 subjects were 
generated. Two different models were calibrated with marginal maximum likelihood 
estimation: The proposed model with the correlation parameters gρ  estimated freely and 
the restricted version with all correlations gρ  set to zero. The validity of this restriction 
was tested with the proposed likelihood ratio test. The model was also calibrated with 
limited information estimation. The results were used for a z -test of the hypothesis that 

= 0gρ  for all items. Empirical rejection rates are given in Table 2 for the three scenarios 
and the two tests. Note that the first two lines of Table 1 (Scenario 1) contain the 
empirical Type I error rate of the tests whereas the remaining lines contain the power. 

As can be seen, both the likelihood ratio test and the z -test adhere to the nominal Type I 
error rate well. The likelihood ratio test however seems to have a slightly reduced 
nominal Type I error rate in small samples. The power of both tests is excellent. With 
sample sizes that are usually used for item response models both tests can detect small 
deviations from the independence assumption with a high probability. This is especially 
remarkable for the z -test that is based on dichotomous responses such that some 
information of the response times is lost. Interestingly, both tests also can verify model 
violations when the true model is the model of van der Linden and Glas (2010).  
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Table 2: 
Empirical Type I error rates and empirical power 

Scenario   Sample Test: LR-Test Test: z -Test 
  α = 0.10 α = 0.05 α = 0.01 α = 0.10 α = 0.05 α = 0.01 

1 - Independence 500 0.074 0.032 0.008 0.104 0.066 0.010 
 1000 0.104 0.046 0.010 0.126 0.052 0.012 
2 - Correlation  500 1.000 1.000 1.000 1.000 1.000 0.996 
 1000 1.000 1.000 1.000 1.000 1.000 1.000 
3 - Intercept   500 0.974 0.960 0.888 0.782 0.666 0.428 
 1000 1.000 1.000 1.000 0.974 0.960 0.866 

 
 
However, in this case the likelihood ratio test is clearly superior to the z -test. Therefore, 
although the implementation of the z -test in standard software for structural equation 
models offers a quick check for model violations, the proposed maximum likelihood 
ratio test might be preferable. 

5.3 Consequences of model violations 

Testing the local independence assumption is only necessary when parameter estimates 
are highly distorted in the case of unaccounted dependency. Therefore, in a further 
simulation study the effects of a misspecified model were investigated. Thereby, 
response patterns were generated for 10000 subjects and six different tests. The first two 
tests consisted of 20 items with item parameters as given in Table 1. However, for the 
first test the correlation between the response and the response time in the same item was 
set to = 0.50gρ  for all items, whereas for the second test this correlation was set to 

= 0.25gρ . The third and fourth test were generated by using every second item of the 
first and second test, thus reducing test length from 20 items to 10 items. The last two 
tests were generated similarly by choosing only every fourth item of the first two tests. In 
all conditions the correlation between ability and work pace θωρ  was set to zero. 

Having generated the responses and response times, the proposed model was fit to the 
data with the correlation parameters gρ  restricted to zero, thus ignoring the extra 
association between the responses and response times in the same item. Despite fitting 
the wrong model, the item parameters of the item response and the response time model 
could be recovered without serious bias. The parameter estimates α  and β  of the 
independence model differed maximally by 0.03  from the corresponding estimates of 
the full model. However, the estimates of the correlation between ability and work pace 
were distorted, ranging from 0.018  up to 0.148 . The exact results are given in Table 3. 
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Table 3: 
Estimated θωρ  in a misspecified model depending on the length of the test and the 

correlation between the response and the response time 

Items 5  10  20  

gρ   0.250  0.500  0.250  0.500  0.250  0.500  

 θωρ  0.075  0.148  0.036  0.075  0.018  0.035  

 
Two effects can be noted. First, the misspecification of the model affects mostly the 
correlation of the latent traits. This is due to the structure of the model. As the responses 
and the response times depend on different latent traits, the only way to allow for an 
association between the responses and response times in the reduced model consists in 
the admission of a positive correlation between the latent traits. Therefore, it is 
expectable that the effect of the misspecification is mostly reflected in a distortion of 

θωρ . Note that a special feature of the proposed model is the fact that the responses and 
response times follow standard latent trait models when considered separately. Second, 
the effect diminishes with a growing number of items. This is due to the fact that the 
number of misspecified associations grows more slowly than the number of correctly 
specified associations. In a test of G  items, only 2G  associations, the associations 
between responses and response times in the same items, are misspecified, while the 
remaining 2 2 2G G G× −  associations are correctly specified. This is similar to the 
concept of essential independence, which is present when the average covariance tends to 
zero (Junker, 1991). However, as Junker (1991) pointed out, even though the effects on 
consistency might not be large, they can be considerable on the standard errors of 
estimates. 
From a practitioner's perspective, the correlation between ability and work pace is a key 
quantity. It can be shown that the accuracy of ability estimates can be improved by 
jointly considering responses and response times (van der Linden, Klein Entink, & Fox, 
2010). The actual gain however depends on the amount of correlation between ability 
and work pace in the population of the test takers. Therefore, without checking the 
independence assumption one risks the overestimation of the benefits of response time 
modeling. 

6. Empirical data application 

To investigate the applicability of the proposed approach to real data, the model was used 
for data from an application of the German pre-version of the Eysenck Personality 
Profiler. The German Eysenck Personality Profiler has been published with reduced 
amount of items by Eysenck, Wilson and Jackson (1998). The Eysenck Personality 
Profiler measures 21 traits of personality which are consistent with the three major 
dimensions of personality as defined by Eysenck. In line with the original form of the 
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questionnaire, three response options were offered including the 'don't know' option. 
Responses were dichotomized by scoring 'don't know' answers as rejections. Data was 
collected by Ortner (2008) and consisted of 171 men called up for military service. If 
they agreed (about 80%), they were tested after the standardized psychological testing 
conducted by the Psychological Service of the Austrian Armed Forces. Persons were 
only included if they were evaluated as being motivated by the conductor and if no 
language problems were known. To reduce faking, the conductor pointed out that all 
results are handled anonymously and are not evaluated to determine the military 
appropriateness of the persons. Nevertheless one individual had to be excluded due to 
unusual short response times. Here only results for the anxious scale will be presented. 
Although originally the scale consists of 15 items one item had to be excluded as it was 
rejected by almost all subjects. 
First, the response times were logarithmized. Normal Q-Q plots revealed that this 
transformation was capable of normalizing the data, see Figure 2 for an example. 
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Figure 2: 
Normal Q-Q plot: Fit of the log-normal distribution to response times of item 13 of the 

anxious scale 
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Then, the responses and log response times were analyzed separately. The motivation 
behind this step was the generation of starting values for the EM algorithm and the 
assessment of model fit for the marginal models. Responses were analyzed with R and the 
ltm package (Rizopoulos, 2006). As the probit model is not implemented in the ltm 
package, a one-parameter logit model was used instead. When appropriately transforming 
the parameters, logit models are virtually identical to probit models. Assessing model fit via 
a parametric bootstrap test based on Pearson's chi-squared statistic did not show any 
evidence for model violations ( = 0.44p ). Therefore, the one-parameter probit model was 
used for the subsequent analysis because parsimonious models are preferable, especially in 
samples of moderate size. Replacing the two-parameter probit model with the one-
parameter probit model is a change with little implications for the proposed estimation 
approach. Then, the log response times were analyzed by maximum likelihood factor 
analysis. A one dimensional model was sufficient to account for the dependence between 
the log response times ( = 0.41p ). Results of the factor analysis did not change when 
extreme observations were truncated, such that no truncation of the data seemed necessary. 
Finally, standardized residuals were calculated and plotted against the estimated factor 
scores (Bollen & Arminger, 1991). These plots did not show any systematic violation of the 
assumption of linearity and variance homogeneity. Summing up, it seemed reasonable to 
use the one-parameter probit model and the linear factor model for the marginal distribution 
of responses and log response times. 

In the next step, the item parameters of the joint distribution of responses and log 
response times were estimated using the proposed EM algorithm. The resulting 
parameter estimates are given in Table 4. Ability and work pace were correlated with 

= 0.246θωρ . When the original model of van der Linden (2007) was used, almost the 
same estimates resulted. The estimate of the correlation between the latent traits slightly 
increased to = 0.262θωρ . The remaining estimates (the coefficients of correlation gρ  
excluded) were identical up to the second decimal place. This indicates that no extra 
association of the responses and response times in the same item has to be considered. 

In order to test for = 0gρ , a likelihood ratio test was used. In this test the effect of 

restricting every parameter gρ  to zero was evaluated. This test yielded a non-significant 

test statistic of 2 = 11.49χ  ( df = 14 , = 0.65p ). Therefore, the results indicate that the 
assumption of conditional independence can be extended to observations from the same 
item. 
Finally, the independence model, the model with correlated responses and response times 
and a version of the model of van der Linden and Glas (2010) based on the one-
parameter probit model were compared with respect to AIC. This comparison yielded 
values of 4628.50  for the independence model, of 4645.00  for the proposed model and 
of 4646.61  for the model of van der Linden and Glas (2010). Again findings suggest the 
independence model can describe the data best. The actual model and the model of van 
der Linden and Glas (2010) revealed similar model fit with a slight advantage for the 
actual model. 
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7. Discussion 

Due to the popularity of computer administered tests, interest in item response times and 
their possible applications is growing. Whereas not for all applications joint models for 
responses and response times are needed, some applications depend on them crucially. 
This is always the case when response times are incorporated into the estimation of the 
unknown trait level, see for example van der Linden et al. (2010). 
When jointly modeling responses and response times Achilles' heel is the question 
whether responses and response times in the same item can be considered as independent 
when conditioning on the latent traits. Although there is evidence for the independence 
(van der Linden & Glas, 2010) this assumption could be too strong for some tests. As it 
is well known that ignoring association in the data can distort confidence intervals (Ip, 
2002) and parameter estimates (Wang, Cheng, & Wilson, 2005), it is a wise choice to 
check this assumption and to account for the dependency when it exists. 
In the present article a new method was proposed that can account for the dependency 
between responses and response times in the same item. This can be done by only 
slightly generalizing the model of Linden (2007). The first advantage of this approach 
consists in the fact that the resulting marginal models are standard latent trait models. 
This is especially advantageous as the marginal response and response time distributions 
have been analyzed routinely with these models. A second advantage is the possibility to 
implement the actual approach in standard software for structural equation models. 
Although in this case, suboptimal limited information estimation has to be used, the 
results might be good enough for practical applications. Only when the exact amount of 
extra correlation between responses and response times has to be determined or one is 
interested in very high power, more complex estimation routines are recommended. 
An empirical data application demonstrated the usefulness of the proposed approach in 
practice. Although most applications of response time models can be found in the field of 
achievement tests, in this study the applicability of the model to a personality test was 
shown. Therefore, the presented findings might have more implications than the mere 
checkout of a new model. In fact, it was shown that the model of van der Linden (2007) 
can be used for data from personality tests, such that it is not limited to the field of 
achievement tests. And second, equally to results from van der Linden and Glas (2010) 
findings indicate that the assumption of conditional independence in tests might not be 
totally unjustified in some cases. These findings might increase the popularity of 
response time modeling in the future. 
 
 
 
 
 
 



The case of dependency of responses and response times 145 

8. Appendix 

8.1 Sufficient statistics of the complete log-likelihood function 

The relevant kernel of the complete log-likelihood function is given in Equation (9). 
Using Equation (4) and Equation (6), Equation (9) can be written as 
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Expanding Equation (11) and summing over the N  test takers reveals that the complete 
log-likelihood function is a function of the following unobserved sufficient statistics: 

 
=1

N

ig
i

z∑  2

=1

N

ig
i

z∑  

 
=1

N

i
i
θ∑  2

=1

N

i
i
θ∑  

 
=1

N

i
i
ω∑  2

=1

N

i
i
ω∑  

 
=1

N

ig ig
i

z t∑  
=1

N

i i
i
θ ω∑  

 
=1

N

i ig
i

zθ∑  
=1

N

i ig
i

tθ ′∑  

 
=1

N

i ig
i

zω∑  
=1

N

i ig
i

tω ′∑  

8.2 Calculation of conditional expectation of sufficient statistics 

The complete log-likelihood function depends on unknown sufficient statistics, which are 
replaced by their conditional expectation during the E-Step. First, provisional values *λ  
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have to be chosen for the unknown item parameters. Given these preliminary values for 
the item parameters, the conditional expectation of 

=1
N

igi
z∑  is 

 * * *
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The inner most integral over igz  can be given in closed form. Conditional on the latent 
traits, the latent response in item g  is independent of the responses and the response 
times from different items, such that *f ( | , , , ' ; )ig i iz θ ω γx t  can be simplified to 

*f ( | , , , ; )ig ig ig gz x tθ ω γ′ . Conditional on θ  and ω , the joint distribution of igz  and igt′  is a 
bivariate normal distribution, see Equation (7) for details. Therefore, the conditional 
distribution *f ( | , , ; )ig ig gz tθ ω γ′  is a normal distribution, with expected value 
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and conditional variance * 21 gρ− . Conditioning finally on the observed response igx  
yields a truncated normal distribution with corresponding expected value and variance. 
The expectation of a truncated normal distribution can be given in closed form. Let 

*E( | , , , ; )ig ig ig gz t xθ ω γ′  be the expectation of the truncated normal distribution implied by 
Equation (12). Using this expectation in case of igz , one can simplify Equation (11) to 
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The solution of the two-fold integral can not be given in closed form. However, it can be 
approximated by Gauss Hermite quadrature. Using cartesian quadrature rules, Equation 
(13) can be approximated by 
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where summation is over quadrature points 
1qθ  and 

2qω  with corresponding weights 

1qw  and 
2qw . The remaining sufficient statistics are calculated alike. 
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