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THE CASTELNUOVO REGULARITY OF THE REES ALGEBRA
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Dedicated to the memory of Professor Hideyuki Matsumura

Abstract. It is shown that there is a close relationship between the invariants
characterizing the homogeneous vanishing of the local cohomology and the
Koszul homology of the Rees algebra and the associated graded ring of an
ideal. From this it follows that these graded rings share the same Castelnuovo
regularity and the same relation type. The main result of this paper is however
a simple characterization of the Castenuovo regularity of these graded rings in
terms of any reduction of the ideal. This characterization brings new insights
into the theory of d-sequences.

1. Introduction

Let S =
⊕

n≥0 Sn be a finitely generated standard graded ring over a noetherian
commutative ring S0. For any graded S-module M we denote by Mn the homoge-
neous part of degree n of M , and we define

a(M) :=

{
max{n| Mn 6= 0} if M 6= 0,
−∞ if M = 0.

Let S+ be the ideal generated by the homogeneous elements of positive degree of
S. For i ≥ 0, set

ai(S) := a(Hi
S+

(S)),

where H i
S+

(.) denotes the ith local cohomology functor with respect to the ideal

S+.
The Castelnuovo regularity of S is defined as the number

regS := max{ai(S) + i| i ≥ 0}.
This is an important invariant of the graded ring S [3] [19]. For instance, if S
is represented as a factor ring S0[T ]/= of a polynomial ring corresponding to a
minimal generating set of S1, then regS provides upper bounds for the syzygies of
S as an S0[T ]-module. In particular,

reltypeS ≤ regS + 1,
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2814 NGÔ VIÊT TRUNG

where reltypeS denotes the maximum degree of the forms of a minimal basis for =
with reltypeS = −∞ if = = 0. It is well-known that this degree does not depend
on the choice of the representation of S, and we will call it the relation type of S.

Let A be a noetherian commutative ring and I an ideal ofA. We denote by RI(A)
the Rees algebra

⊕
n≥0 I

n and by GI(A) the associated graded ring
⊕

n≥0 I
n/In+1

of A with respect to I. The aim of this paper is to find a simple characterization
of regRI(A) and regGI(A).

First, we will shows that there is a close relationship between the invariants
ai(RI(A)) and ai(GI(A)) (Theorem 3.1) from which we can easily derive the formula

regRI(A) = regGI(A)

of Ooishi [20]. This formula was recently rediscovered by Johnson and Ulrich [15].
There is also a close relationship between the invariants characterizing the homo-
geneous vanishing of the Koszul homology of RI(A) and GI(A) (Proposition 3.4)
which generalizes the formula

reltypeRI(A) = reltypeGI(A)

in the case when I is not generated by a regular sequence. This formula was recently
discovered by Planas-Vilanova [21].

Next, we will give characterizations of regRI(A) and regGI(A) in terms of any
reduction of I (Proposition 4.2 and Theorem 4.8). These characterizations are
based on a careful analysis of properties of filter-regular sequences of degree 1 in
RI(A) and GI(A). The main result is the following.

Theorem 1.1. Let A be a local ring with infinite residue field and I an ideal of A.
For a given integer r ≥ 0 and any reduction J of I, the following conditions are
equivalent:

(i) regRI(A) = r.
(ii) regGI(A) = r.
(iii) There is a minimal basis x1, . . . , xs for J such that

[(x1, . . . , xi−1) : xi] ∩ Ir+1 = (x1, . . . , xi−1)I
r, i = 1, . . . , s,(?)

and r is the least integer ≥ rJ(I) with this property.

Recall that an ideal J ⊆ I is a reduction of I if In+1 = JIn for some integer
n ≥ 0. The least number n with this property is called the reduction number rJ (I)
of I with respect to J .

Theorem 1.1 sheds new light on the theory of d-sequences, which, since its in-
troduction by Huneke [11], [14], has established itself as an important tool for com-
mutative algebra. It is known [6] that a sequence x1, . . . , xs of elements of A is a
d-sequence if and only if x1, . . . , xs is a minimal basis for the ideal I = (x1, . . . , xs)
and

[(x1, . . . , xi−1) : xi] ∩ I = (x1, . . . , xi−1), i = 1, . . . , s.

Thus, Theorem 1.1 implies the following interesting relation between d-sequences
and the Castelnuovo regularity, which is implicitly contained in earlier works of
Herzog, Simis, and Vasconcelos [7] and Kühl [17].

Corollary 1.2. Let A be a local ring with infinite residue field and I an ideal of A.
Then regRI(A) = 0 (or, equivalently, regGI(A) = 0) if and only if I is generated
by a d-sequence.
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Perhaps, the most important property of an ideal generated by a d-sequence is
that its symmetric algebra is isomorphic to its Rees algebra (see Huneke [11] and
Valla [28]) or, in other words, it is of linear type. Recall that an ideal I is called
of type r if reltypeRI(A) = r. Since reltypeRI(A) ≤ regRI(A) + 1, Corollary 1.2
clearly sets apart the class of ideals generated by d-sequences from those of linear
type.

We will call a sequence x1, . . . , xs of elements of a ring A a sequence of regular
type r if

[(x1, . . . , xi) : xi+1] ∩ Ir+1 = (x1, . . . , xi)I
r, i = 0, . . . , s− 1,

where I = (x1, . . . , xs), and r is the least integer with this property. This notion
is justified by the following result:

Theorem 1.3. Let I be an arbitrary ideal of a ring A. Then:
(i) regRI(A) = regGI(A) = r if I is generated by a sequence of regular type r.
(ii) I is generated by a sequence of regular type r if A is a local ring with infinite

residue field and regRI(A) = r or regGI(A) = r.

Sequences of regular type enjoy some interesting properties which cover those of
d-sequences. In some cases, these properties also bring new insight into the theory
of d-sequences. For instance, Huneke [12] calls a standard graded ring S a special
graded ring if S+ is generated by a d-sequence. He proved that if I is generated
by a d-sequences, then RI(A) and GI(A) are special graded. Conversely, Kühl [17]
showed that if A is a local ring and GI(A) is special graded, then I is generated
by a d-sequence. We shall see that if A is a local ring and RI(A) is special graded,
then I is generated by a d-sequence, too, and that similar results also hold for ideals
generated by a sequence of any regular type.

This paper grew out of the author’s attempt to understand some recent results
of Marley and Huckaba. Marley [18] has given some constraints for the local coho-
mology of associated graded rings of Cohen-Macaulay local rings. We shall see that
these constraints are natural consequences of the relationship between ai(RI(A))
and ai(GI(A)). Huckaba [9] [10] has proved the bound reltypeRI(A) ≤ rJ (I) + 1
for several classes of ideals I, where rJ(I) is the reduction number of a minimal
reduction J of I. Our idea is to find a similar bound for regRI(A). By [24] there
is a characterization of the Castelnuovo regularity of an arbitrary standard graded
ring S by means of a minimal reduction of S+. Translating this characterization
for RI(A) and GI(A), we are led to the condition (?) with all the consequences
mentioned above. As an application, we will show that regRI(A) = rJ (I) for the
classes of ideals considered by Huckaba.

It can easily be shown that the condition (?) can be replaced by the condition

[(x1, . . . , xi−1)I
r : xi] ∩ Ir+1 = (x1, . . . , xi−1)I

r , i = 0, . . . , s.

In the case (x1, . . . , xs) = I, this condition has already been studied by Costa
[2] (r = 0) and Raghavan [22] (r arbitrary). They have shown that if the above
condition is satisfied, then reltypeRI(A) ≤ r+ 1. But this is only a consequence of
the bound regRI(A) ≤ r deduced from Theorem 1.1.

Moreover, the condition (?) can be used to give a characterization of superfi-
cial sequences which does not depend on the asymptotic behavior of the elements
(Proposition 6.3) and to study the problem when ProjRI(A) is a Cohen-Macaulay
scheme (Theorem 6.5). Notably, we obtain the following result.
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2816 NGÔ VIÊT TRUNG

Corollary 1.4. Let A be a local ring which is a homomorphic image of a regu-
lar local ring with algebraically closed residue field. Then ProjRI(A) is a Cohen-
Macaulay scheme for all parameter ideals I of A if and only if every system of
parameters of A is a sequence of regular type.

The paper is divided into 6 sections. In Section 2 we recall some definitions
and prepare some results related to the Castelnuovo regularity of a graded ring.
In Section 3 we will establish the relationships between (co)homological invariants
of the associated graded ring and the Rees algebra. In Section 4 we characterize
homogeneous filter-regular sequences of degree 1 and thereby the Castelnuovo reg-
ularity of these graded rings. Based on these characterizations, in Section 5 we
introduce and study the notion of a sequence of regular type. In Section 6 we give
the applications mentioned above.

All rings in this paper are assumed to be noetherian commutative rings with
unity.

Acknowledgement. It is a pleasure to thank J. Herzog and L.T. Hoa for helpful
conversations during the preparation of this paper.

2. The Castelnuovo regularity of a graded ring

Let z1, . . . , zs be a sequence of homogeneous elements of a standard graded ring
S. We call z1, . . . , zs a filter-regular sequence (with respect to S+) if zi 6∈ P for any
associated prime ideal P of (z1, . . . , zi−1), P 6⊇ S+, i = 1, . . . , s. Define

a(z) := max{a((z1, . . . , zi−1) : zi/(z1, . . . , zi−1))| i = 1, . . . , s}.
By [24, Lemma 2.1], z is a filter-regular sequence if and only if a(z) <∞. We shall
often use this characterization of a filter-regular sequence without further mention.

Lemma 2.1 [24, Lemma 2.3]. Let z be a homogeneous filter-regular element of de-
gree 1 of S. For all i ≥ 0,

ai+1(S) + 1 ≤ ai(S/zS) ≤ max{ai(S), ai+1(S) + 1}.
It is assumed in [24] that S0 is a local ring. But it is clear that the results there

hold for an arbitrary ring S0. Notice that the values of ai(S) and a(z) defined here
are less than those of [24] by 1.

Proposition 2.2. Let z = z1, . . . , zs be a filter-regular sequence of homogeneous
elements of degree 1 of S. Then:

(i) max{ai(S) + i| i = 0, . . . , s− 1} = a(z) [24, Proposition 2.2].
(ii) max{ai(S) + i| i = 0, . . . , s} =

max{a((z1, . . . , zi) : S+/(z1, . . . , zi))| i = 0, . . . , s}.
Proof. We will prove only (ii). Applying Lemma 2.1 successively, we get

ai(S) + i ≤ a0(S/(z1, . . . , zi)) ≤ max{aj(S) + j| j = 0, . . . , i}.
From this it follows that for t ≤ s,

max{ai(S) + i| i = 0, . . . , t} = max{a0(S/(z1, . . . , zi))| i = 0, . . . , t}.
Set a = a0(S/(z1, . . . , zi)). If we identify the module H0

S+
(S/(z1, . . . , zi)) with the

ideal
⋃
n≥0(z1, . . . , zi) : Sn+/(z1, . . . , zi), we have

H0
S+

(S/(z1, . . . , zi))a ⊆ (z1, . . . , zi) : S+/(z1, . . . , zi) ⊆ H0
S+

(S/(z1, . . . , zi)).
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Therefore, a((z1, . . . , zi) : S+/(z1, . . . , zi)) = a, and the conclusion follows.

Corollary 2.3. Let s = gradeS+. Then
(i) ai(S) = −∞ for i < s,
(ii) as(S) ≥ −s,
(iii) a1(S) ≥ −1 if H1

S+
(S) 6= 0.

Proof. It is clear that ai(S) is the maximum of ai(SP ) over all graded prime ideals
P of S for any i ≥ 0. Therefore, we may restrict to the case when S0 is a local
ring. Without restriction we may assume that the residue field of S0 is infinite.
Using prime avoidance we can find a regular sequence z1, . . . , zs of s homogeneous
elements of degree 1 of S. Since (z1, . . . , zi) : S+ = (z1, . . . , zi) for i = 1, . . . , s,
Proposition 2.2 (ii) implies that max{aj(S) + j| j = 1, . . . , i − 1} = −∞. Hence
ai(S) = −∞ for i = 0, . . . , s− 1. As a consequence,

as(S) + s = max{ai(S) + i| i = 0, . . . , s}
= a((z1, . . . , zs) : S+/(z1, . . . , zs)) ≥ 0.

Therefore, as(S) ≥ −s. So we have proved (i) and (ii). To prove (iii) we set
S = S/H0

S+
(S). It is easily seen that gradeS+ ≥ 1 and H1

S+
(S+) ' H1

S+
(S) 6= 0.

Therefore, a1(S) = a1(S) ≥ −1 by (ii).

By [24, Corollary 3.3], regS can be characterized in terms of a minimal reduction
of S+ which is generated by a filter-regular sequence of homogeneous elements of
degree 1. Now we will extend this result as follows.

Theorem 2.4. Let z be a filter-regular sequence of homogeneous elements of S of
degree 1 which generates a reduction for S+. Then

regS = max{a(z), r(z)(S+)}.
Proof. Let z = z1, . . . , zs. By Proposition 2.2 we have

a(z) = max{a((z1, . . . , zi) : S+/(z1, . . . , zi))| i = 0, . . . , s− 1}.
Further, it is easy to see that

r(z)(S+) = max{n| (z)n 6= Sn} = a(S/(z))

= a((z1, . . . , zs) : S+/(z1, . . . , zs)).

Therefore,

max{a(z), r(z)(S+)} = max{a((z1, . . . , zi) : S+/(z1, . . . , zi))| i = 0, . . . , s}
= max{ai(S) + i| i = 0, . . . , s}.

It remains to show that H i
S+

(S) = 0 for i > s. If s = 0, we have Sn = 0 for all

large n, hence H i
S+

(S) = 0 for i > 0. If s ≥ 1, using induction we may assume that

Hi
S+

(S/z1S) = 0 for i > s− 1. By Lemma 2.1, this implies Hi
S+

(S) = 0 for i > s.

The proof is now complete.

Remark. If S0 is a local ring, there is a similar relationship between a minimal
reduction of S+ and the invariants a∗i (S) := a(Hi

M (S)), which characterize the
homogeneous vanishing of the local cohomology modules of S with respect to the
maximal graded ideal M ([1, Proposition 2.7]; [25, Theorem 2.2]).
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With regard to Theorem 2.4 one may ask when a reduction of S+ can be mini-
mally generated by a filter-regular sequence of homogeneous elements of degree 1.
For this we already have the following answer.

Lemma 2.5 [24, Proof of Lemma 3.1]. Let S be a standard graded ring over a local
ring S0 with infinite residue field. Then any reduction of S+ generated by forms of
degree 1 is minimally generated by a filter-regular sequence of homogeneous elements
of degree 1.

Remark. If S0 is a local ring with maximal ideal n, we define the analytic spread
of S+ by `(S+) := dimS/nS. It is known that any minimal reduction for S+ is
minimally generated by `(S+) elements and that max{i| Hi

S+
(S) 6= 0} = `(S+).

There is also a characterization of the Castelnuovo regularity and the relation
type of a graded ring by means of Koszul homology. This result was originally
formulated for a standard graded ring S over a local ring S0, but the proof works
for any ring S0.

Proposition 2.6 [23, (2.2) and (4.1)]. Let Q be any reduction of S+. Let Hi(Q,S)
denote the ith homology module of the Koszul complex of S with respect to Q. Then

regS = max{a(Hi(Q,S))− i| i ≥ 0}.
Furthermore,

reltypeS = a(H1(S+, S)).

3. The relationships between the Rees algebra

and the associated graded ring

Let A be a ring and I an ideal of A. For brevity we shall denote RI(A) by R
and GI(A) by G. We shall often consider R as the subring A[It] of the polynomial
ring A[t] and G as the quotient ring R/IR.

Our approach will be based on the following exact sequences:

0 → R+ → R→ A→ 0,(1)

0 → R+(1) → R→ G→ 0,(2)

where A is considered as a graded ring concentrated in degree zero. This approach
has been used recently by Johnson and Ulrich in order to prove that reg(R) =
reg(G) [15, Proposition 4.1].

Theorem 3.1. Let I be an ideal of a ring A. Then
(i) ai(R) ≤ ai(G), i 6= 1.
(ii) ai(R) = ai(G) if ai(G) ≥ ai+1(G), i 6= 1.

(iii) The statements (i) and (ii) hold for i = 1 if H1
G+

(G) 6= 0 or if I ⊆ √0.

(iv) a1(R) = −1 if H1
G+

(G) = 0 and I 6⊆ √0.

Proof. For short, set Hi(.) = Hi
R+

(.). Since H0(A)n = 0 for n 6= 0 and Hi(A) = 0

for i ≥ 1, from the exact sequence (1) we can derive that Hi(R+)n ' Hi(R)n for
n = 0, i ≥ 2, and for n 6= 0, i ≥ 0. Since H i

G+
(G) = Hi(G), (2) induces the exact

sequence

H i(R+)n+1 → Hi(R)n → Hi(G)n → Hi+1(R+)n+1.
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Replacing Hi(R+)n+1 by Hi(R)n+1 and setting Hi(G)n = 0 whenever that is
possible, we get a surjective map H i(R)n+1 → Hi(R)n for n ≥ max{0, ai(G) + 1}
if i = 0, 1 and for n ≥ ai(G) + 1 if i ≥ 2. Since Hi(R)n = 0 for all large n, it can
be successively deduced that

H i(R)n = 0 for n ≥ max{0, ai(G) + 1} if i = 0, 1

and for n ≥ ai(G) + 1 if i ≥ 2.
(3)

As an immediate consequence, ai(R) ≤ ai(G) for i ≥ 2. For i = 0 we have to
distinguish two cases. If H0(G) = 0, a0(G) = −∞. Hence H0(R)n = 0 for all n ≥ 0
by (3). From this it follows that H0(R) = 0. Therefore, a0(R) = −∞ = a0(G). If
H0(G) 6= 0, a0(G) ≥ 0. Hence H0(R)n = 0 for n ≥ a0(G) + 1 by (3), which implies
a0(R) ≤ a0(G). So we obtain (i).

If H1(G) 6= 0, a1(G) ≥ −1 by Corollary 2.3 (iii). Hence H1(R)n = 0 for

n ≥ a1(G) by (3), which implies a1(R) ≤ a1(G). If I ⊆ √
0, then Hi(R) = 0 and

H i(G) = 0 for all i ≥ 1. Hence a1(R) = a1(G) = −∞. So we have proved the first
part of (iii).

Now we will prove (ii) and the second part of (iii). It is sufficient to show that
ai(R) ≥ ai(G). For this we may assume that ai(G) 6= −∞. For i = 0, we have
either a1(R) ≤ −1 or a1(R) ≤ a1(G) by (3). For i ≥ 1, we have ai+1(G) ≥ ai+1(R)
by (i). Hence the assumption ai+1(G) ≤ ai(G) implies ai+1(R) ≤ ai(G). Set
n = ai(G). Then Hi+1(R+)n+1 ' Hi+1(R)n+1 = 0. Putting this into the above
exact sequence, we get a surjective map Hi(R)n → Hi(G)n. Since Hi(G)n 6= 0,
H i(R)n 6= 0. Therefore, ai(R) ≥ ai(G).

To prove (iv) we assume thatH1(G) = 0. Then a1(G) = −∞. Hence a1(R) ≤ −1
by (3). If a1(R) < −1, H1(R)−1 = 0. Since H0(G)−1 = 0, from (2) we can deduce
that H1(R+)0 = 0. Now, using (1) we get the exact sequence

H0(R+)0 → H0(R)0 → H0(A) → 0

But H0(R+)0 = 0 because (R+)0 = 0. Further, H0(R)0 = H0
I (A) and H0(A) = A.

Therefore, H0
I (A) = A or, equivalently, In = 0 for some n ≥ 1. Thus, if I 6⊆ √

0,
we must have a1(R) = −1. The proof of Theorem 3.1 is now complete.

Corollary 3.2. Let ` := max{i| Hi
G+

(G) 6= 0}. Then

(i) a`(R) = a`(G),

(ii) ` = max{i| H i
R+

(R) 6= 0} if I ⊆ √0 or ` ≥ 1.

Proof. For i ≥ `, we have ai(G) ≥ ai+1(G) = −∞. Therefore, ai(R) = ai(G) if
i 6= 1 by Theorem 3.1 (ii). Hence (i) and (ii) are obvious if ` > 1. It remains to

show that a1(R) = a1(G) if ` = 1 or if ` = 0 and I ⊆ √
0. But this follows from

Theorem 3.1 (iii).

Example. There are cases where max{i| Hi
G+

(G) 6= 0} 6= max{i| H i
R+

(R) 6= 0}.
Let A = k[x] = k[X ]/(X − X2) and I = (x). Then In = I for all n ≥ 1. Hence

I 6⊆ √0 and Hi
G+

(G) = 0 for i > 0, whereas H1
R+

(R) 6= 0 by Theorem 3.1 (iv).

Remark. If A is a local ring, then ` = `(G+), the analytic spread of G+ (see the
remark following Lemma 2.5). Note that `(G+) = `(I), the analytic spread of I,
which is defined to be the dimension of the graded ring

⊕
n≥0 I

n/mIn, where m is
the maximal ideal of A.
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In particular, we can derive from Theorem 3.1 the following result which was
proved by Ooishi by a different method [20, Lemma 4.8]. This result was recently
rediscovered by Johnson and Ulrich [15, Proposition 4.1].

Corollary 3.3. Let A be a ring and I an ideal of A. Then

regRI(A) = regGI(A).

Proof. By Theorem 3.1 (i), ai(R) + i ≤ ai(G) + i for i 6= 1. By Theorem 3.1 (iii)
and (iv), either a1(R) + 1 ≤ a1(G) + 1 or a1(R) + 1 = 0 ≤ regG. Therefore,

regR = max{ai(R) + i| i ≥ 0} ≤ max{ai(G) + i| i ≥ 0} = regG.

To prove the converse inequality, choose i maximal such that ai(G) + i = regG.
Then H i

G+
(G) 6= 0 and ai(G) > ai+1(G). Now, using Theorem 3.1 (ii) and (iii), we

get ai(R) = ai(G). Hence regG = ai(R) + i ≤ regR.

Remark. If A is a local ring, we can apply the above method to study the rela-
tionship between the invariants a∗i (R) and a∗i (G) which characterize the homoge-
neous vanishing of the local cohomology of R and G with respect to their maxi-
mal graded ideals (see the remark following Theorem 2.4). It can be shown that
a∗i (R) ≤ max{0, a∗i (G)} for all i ≥ 0. In particular, if A is a Cohen-Macaulay ring,
then a∗i (R) ≤ a∗i (G), and for i < dimA we have a∗i (R) = a∗i (G) if a∗i (G) ≥ a∗i+1(G);
cf. [16].

There is also a similar relationship between the Koszul homology of the Rees
algebras and the associated graded ring.

Proposition 3.4. Let A be a ring and I an ideal of A. Let J be any reduction of
I. Let Q denote the ideal generated by Jt of R and J∗ the ideal of G generated by
the initial forms of degree 1 of the elements of J . Assume that Hi(J

∗, G) 6= 0 for
some integer i ≥ 0. Then

(i) a(Hi(Q,R)) ≤ a(Hi(J
∗, G)),

(ii) a(Hi(Q,R)) = a(Hi(J
∗, G)) if

a(Hi(J
∗, G)) ≥ a(Hi−1(J

∗, G)) and Hi−1(J
∗, G) 6= 0.

Proof. For short we set Hj(.) = Hj(Q, .), j ≥ 0. Note that Hj(J
∗, G) = Hj(G)

and that Hj(A)n = 0 for n > j. From (1) we get an isomorphism Hj(R+)n '
Hj(R)n, n > j + 1. From (2) we get the exact sequence

Hi(R+)n+1 → Hi(R)n → Hi(G)n → Hi−1(R+)n+1.

Put m = a(Hi(G)). It is well-known that [Hi(G)]n = 0 for n < i. Since Hi(G) 6= 0,
m ≥ i. For n > m, we may replace Hi(R+)n+1 by Hi(R)n+1 and obtain a surjective
map Hi(R)n+1 → Hi(R)n, because Hi(G)n = 0. Since Hi(R)n = 0 for all large n,
we can successively deduce that Hi(R)n = 0 for n > m. Therefore a(Hi(R)) ≤ m. If
m ≥ a(Hi−1(G)), then m ≥ a(Hi−1(R)). Hence Hi−1(R+)m+1 ' Hi−1(R)m+1 = 0.
Therefore, the map Hi(R)m → Hi(G)m is surjective. Since Hi(G)m 6= 0, Hi(R)m 6=
0. So we can conclude that a(Hi(R)) = m.

As a consequence we obtain the following result of Planas-Vilanova [21, Proposi-
tion 5.4]. Note that if I is generated by a regular sequence, then reltypeRI(A) = 1
and reltypeGI(A) = −∞.
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Corollary 3.5. Let A be a local ring and I an ideal of A which is not generated
by a regular sequence. Then

reltypeRI(A) = reltypeGI(A).

Proof. By Proposition 2.6,

reltypeR = a(H1(R+, R)) and reltypeG = a(H1(G+, G)).

By the assumption, G+ is not generated by a regular sequence. ThereforeH1(G+, G)
6= 0. Since H0(G+, G) = G/G+, a(H0(G+, G)) = 0 ≤ a(H1(G+, G)). Thus, using
Proposition 3.4 (ii) we get a(H1(G+, G)) = a(H1(R+, R)).

We conclude this section with the following observation on the behavior of ho-
mogeneous filter-regular sequences of RI(A) and GI(A).

Lemma 3.6. Let x1, . . . , xs be a sequence of elements of I. For a given positive
integer di, let yi denote the image of xi in Idi/Idi+1. Assume that y1, . . . , ys is a
filter-regular sequence of GI(A). Then x1t

d1 , . . . , xst
ds is a filter-regular sequence

of RI(A).

Proof. By the definition of filter-regular sequences we may assume that A is a local
ring. Let zi = xit

di , i = 1, . . . , s. By induction we may assume that z1, . . . , zs−1

is a filter-regular sequence of R. If z1, . . . , zs is not a filter-regular sequence of
R, there exists an associated prime ideal P of (z1, . . . , zs−1), P 6⊇ R+, such that
zs ∈ P . Since Pn 6= Rn = In for all n ≥ 0, (I, P )n = Pn + In+1 6= In = Rn by

Nakayama’s Lemma. It follows that
√

(I, P ) 6⊇ R+. Hence we can find a prime
ideal Q ⊇ (I, P ), Q 6⊇ R+. Let x ∈ I such that xt 6∈ Q. Since (0 : x)xt = 0,
(0 : x)RQ = 0. Hence x is a non-zerodivisor in RQ. Note that G = R/IR and
that y1, . . . , ys are the images of z1, . . . , zs in G. Then, using the definition of
a filter-regular sequence, we can deduce that z1, . . . , zs form a regular sequence
in RQ/IRQ = RQ/xRQ. Thus, x, z1, . . . , zs and therefore z1, . . . , zs are regular
sequences of RQ. As a consequence, z1, . . . , zs is also a regular sequence in RP ,
which contradicts the choice of P .

Example. The converse of Lemma 3.6 is not true. Let

A = k[x, u] = k[X,U ]/(X2 − U3) and I = (x, u)A.

Then GI(A) ' k[X,U ]/(X2). Hence the image of x in I/I2 is not a filter-regular
element of GI(A), whereas xt is a non-zerodivisor of RI(A).

4. Filter-regular sequences of degree 1

of the Rees algebra and the associated graded ring

In this section we will describe filter-regular sequences of homogeneous elements
of degree 1 of R = RI(A) and G = GI(A). The aim is to give characterizations for
the Castelnuovo regularity regRI(A) and regGI(A) in terms of any given reduction
of I.

Lemma 4.1. Let x1, . . . , xs be elements of I. Then z = x1t, . . . , xst is a filter-
regular sequence of RI(A) if and only if for all large n,

[(x1, . . . , xi−1)I
n : xi] ∩ In = (x1, . . . , xi−1)I

n−1, i = 1, . . . , s.(†)
If that is the case, a(z) is the least number r such that (†) holds for all n ≥ r + 1.
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Proof. It is known that x1t, . . . , xst is a filter-regular sequence if and only if for all
large n,

[(x1t, . . . , xi−1t) : xit]n = (x1t, . . . , xi−1t)n, i = 1, . . . , s,

and a(z) is the least integer r such that this condition holds for n ≥ r+1. Translat-
ing this condition in terms of x1, . . . , xs, we immediately obtain the conclusion.

Proposition 4.2. Let J = (x1, . . . , xs) be a reduction of I such that x1t, . . . , xst
is a filter-regular sequence of RI(A). Then regRI(A) is the least number r ≥ rJ (I)
such that (†) holds for n ≥ r + 1.

Proof. Let z = x1t, . . . , xst and Q = (z). It is clear that Q is a reduction for R+

and rQ(R+) = rJ (I). By Theorem 2.4, regR = max{a(z), rJ (I)}. Therefore, the
conclusion follows from Lemma 4.1.

Remark. The case (x1, . . . , xs) = I of (†) was already considered by Costa [2] (for
r = 0) and Raghavan [22] (for arbitrary r) without knowing the relevance of this
condition to filter-regular sequences. They proved that if (†) holds for all n ≥ r+1,
then I is an ideal of type ≤ r + 1, i.e. reltypeRI(A) ≤ r + 1. But this is obvious
because reltypeRI(A) ≤ regRI(A) + 1 and regRI(A) ≤ r by Proposition 4.2.

In the following we will denote by x∗ the image of an element x ∈ I in I/I2.
Similarly as for Lemma 4.1, we can prove the following characterization of a homo-
geneous filter-regular sequence of degree 1 of GI(A).

Lemma 4.3. Let x1, . . . , xs be elements of I. Then x∗ = x∗1, . . . , x
∗
s is a filter-

regular sequence of GI(A) if and only if for all large n,{
[(x1, . . . , xi−1)I

n + In+2] : xi
} ∩ In

= (x1, . . . , xi−1)I
n−1 + In+1, i = 1, . . . , s.

(‡)

If that is the case, a(x∗) is the least number r such that (‡) holds for n ≥ r + 1.

One can derive from Lemma 4.3 a characterization for regGI(A) similar to that
of Proposition 4.2. But we will see that there is a simpler condition which does not
depend on the asymptotic behavior of I. We shall need the following observations.

Lemma 4.4. Let r = regGI(A). Then the following conditions hold for any ele-
ment x of I for which x∗ is a filter-regular element of GI(A):

(i) (x) ∩ In = xIn−1 for n ≥ r + 1.
(ii) regGI/(x)(A/(x)) ≤ r.

Proof. Let G = GI/(x)(A/(x)). For all n ≥ 0 we have

Gn = In + (x)/In+1 + (x) = In/In+1 + (x) ∩ In.
Since [G/(x∗)]n = In/In+1+xIn−1, there is an exact sequence of gradedG-modules

0 → K → G/(x∗) → GI/(x)(A/(x)) → 0

with Kn = In+1 + (x) ∩ In/In+1 + xIn−1. By the Artin-Rees lemma, there is an
integer c such that for all n ≥ c, (x) ∩ In ⊆ xIn−c; hence In : x ⊆ (0 : x) + In−c.
By Lemma 4.3, (Im : x) ∩ Im−2 = Im−1 for all large m. Applying this formula for
m = n− c+ 2, . . . , n we obtain, for all large n,

(In : x) ∩ In−c = (In : x) ∩ In−c+1 = . . . = (In : x) ∩ In−1 = In−1.
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It follows that In : x = (0 : x) + In−1. Hence (x) ∩ In = xIn−1. This implies
Kn = 0 for all large n.

As a consequence, K ' H0
G+

(G/(x∗)). By Lemma 2.1,

a0(G/(x
∗)) ≤ max{a0(G), a1(G) + 1} ≤ r.

Therefore, we must have Kn = 0 for n ≥ r+1. From this it follows that (x)∩ In ⊆
xIn−1 + In+1. Hence (x) ∩ In = xIn−1 + (x) ∩ In+1 = xIn−1 + (x) ∩ In+2 = . . . .
But we have seen above that (x)∩Im = xIm−1 for all large m. Therefore (x)∩In =
xIn−1 for n ≥ r + 1.

Since Hi
G+

(K) = 0 for i ≥ 1, from the above exact sequence we can deduce that

there is a surjective map H0
G+

(G/(x∗)) → H0
G+

(G), and Hi
G+

(G) ' Hi
G+

(G/(x∗)),
i ≥ 1. By Lemma 2.1, H i

G+
(G/(x∗))n = 0 for n ≥ ri+1, i ≥ 0. Hence Hi

G+
(G)n = 0

for n ≥ r − i+ 1, i ≥ 0, too. This shows that regG ≤ r.

Lemma 4.5. Let x1, . . . , xs be elements of I. Then x∗1, . . . , x
∗
s is a filter-regular

sequence of GI(A) if and only if the following conditions are satisfied:
(i) x∗1 is a filter-regular element of GI(A).
(ii) x∗2, . . . , x

∗
s is a filter-regular sequence of GI/(x1)(A/(x1)).

Proof. We may assume that (i) is satisfied and s ≥ 2. Then x∗1, . . . , x
∗
s is a filter-

regular sequence if and only if for all large n,

[(x∗1, . . . , x
∗
i−1) : x∗i ]n = (x∗1, . . . , x

∗
i−1)n, i = 2, . . . , s.

Put G = GI/(x1)(A/(x1)). By the proof of Lemma 4.4, G can be considered as a

quotient ring of G/(x∗1), and Gn = [G/(x∗1)]n for n ≥ regG + 1. Hence the above
condition is equivalent to the condition that for all large n,

[(x∗2, . . . , x
∗
i−1)G : x∗i ]n = [(x∗2, . . . , x

∗
i−1)G]n, i = 2, . . . , s,

which means that x∗2, . . . , x
∗
s form a filter-regular sequence of G.

We will use the above lemmas to show that there is a simple characterization for
x∗1, . . . , x∗s to be a filter-regular sequence of GI(A) if (x1, . . . , xs) is a reduction of
I. This characterization is inspired by the following remark.

Remark. Let S be a standard graded ring. Then GS+(S) ' S. By [24, Lemma
2.1], a sequence z1, . . . , zs of homogeneous elements of degree 1 of S is filter-regular
if and only if for large n, [(z1, . . . , zi−1) : zi]n = (z1, . . . , zi)n, i = 1, . . . , s. This
condition can be rewritten as follows: there exists an integer r such that

[(z1, . . . , zi−1) : zi] ∩ (S+)r+1 = (z1, . . . , zi−1)(S+)r, i = 1, . . . , s.

This remark leads us to consider the similar condition

[(x1, . . . , xi−1) : xi] ∩ Ir+1 = (x1, . . . , xi−1)I
r, i = 1, . . . , s.(?)

Proposition 4.6. Let x1, . . . , xs be a sequence of elements of I with x∗1, . . . , x
∗
s a

filter-regular sequence of GI(A). Then (?) holds for all integers r ≥ regGI(A).

Proof. By Lemma 3.6, x1t is a filter-regular element of R. Hence, by Lemma 4.1,
(0 : x1) ∩ Ir+1 = 0 for r ≥ a(x1t). By Proposition 2.2 (i) and Corollary 3.3,
a(x1t) ≤ regR = regG. Therefore, the case s = 1 is obvious. For s ≥ 2 we note
that regG ≥ regGI/(x1)(A/(x1)) by Lemma 4.4 (ii). By Lemma 4.5, x∗2, . . . , x

∗
s is
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a filter-regular sequence in GI/(x1)(A/(x1)). Using induction, we may assume that
for r ≥ regG,

[(x1, . . . , xi−1) : xi] ∩ [(x1) + Ir+1] = (x1) + (x2, . . . , xi−1)I
r, i = 2, . . . , s.

From this it follows that

[(x1, . . . , xi−1) : xi] ∩ Ir+1 = (x1) ∩ Ir+1 + (x2, . . . , xi−1)I
r, i = 2, . . . , s.

Since (x1) ∩ Ir+1 = x1I
r by Lemma 4.4 (i), we obtain (?).

Remark. Using Lemma 4.3 for s = 1 and then induction, we can show similarly as
above that if x∗1, . . . , x

∗
s is a filter-regular sequence, then for n ≥ regGI(A) + 1,

[(x1, . . . , xi−1, I
n+2) : xi] ∩ In = (x1, . . . , xi−1)I

n−1 + In+1, i = 1, . . . , s.

By Proposition 4.6, (?) is a necessary condition for x∗1, . . . , x∗s to be a filter-
regular sequence of GI(A). If (x1, . . . , xs) is a reduction of I, we can show that
(?) is also a sufficient condition and that it is closely related to regRI(A) and
regGI(A).

Proposition 4.7. Let J = (x1, . . . , xs) be a reduction of I such that the sequence
x1, . . . , xs satisfies the condition (?) for a fixed integer r ≥ rJ (I). Then

(i) For all n ≥ r + 1,

[(x1, . . . , xi−1) : xi] ∩ In = (x1, . . . , xi−1)I
n−1, i = 1, . . . , s.

(ii) x1t, . . . , xst is a filter-regular sequence of RI(A).
(iii) x∗1, . . . , x∗s is a filter-regular sequence of GI(A).
(iv) regRI(A) = regGI(A) ≤ r.

Proof . (i) By the assumption we may let n > r + 1. Then In = JIn−1. Hence

[(x1, . . . , xs−1) : xs] ∩ In = (x1, . . . , xs−1)I
n−1 + xs

{
[(x1, . . . , xs−1) : x2

s] ∩ In−1
}
.

By induction we may assume that [(x1, . . . , xs−1) : xs]∩In−1 = (x1, . . . , xs−1)I
n−2.

From this it follows that [(x1, . . . , xs−1) : x2
s] ∩ (In−1 : xs) ⊆ (x1, . . . , xs−1) : xs.

Hence

[(x1, . . . , xs−1) : x2
s] ∩ In−1 ⊆ [(x1, . . . , xs−1) : xs] ∩ In−1

= (x1, . . . , xs−1)I
n−2.

This implies xs
{
[(x1, . . . , xs−1) : x2

s] ∩ In−1
} ⊆ (x1, . . . , xs)I

n−1. Therefore,

[(x1, . . . , xs−1) : xs] ∩ In = (x1, . . . , xs−1)I
n−1.

For i < s− 1, using induction on n and on i we have

[(x1, . . . , xi−1) : xi] ∩ In ⊂ {
[(x1, . . . , xi−1) : xi] ∩ In−1

} ∩ In
= (x1, . . . , xi−1)I

n−2 ∩ In ⊂ (x1, . . . , xi) ∩ In
⊂ [(x1, . . . , xi) : xi+1] ∩ In = (x1, . . . , xi)I

n−1.

It follows that

[(x1, . . . , xi−1) : xi] ∩ In = (x1, . . . , xi−1)I
n−1 + xi

{
[(x1, . . . , xi−1) : x2

i ] ∩ In−1
}
.

Similarly as for the case i = s, we can then show that

[(x1, . . . , xi−1) : xi] ∩ In = (x1, . . . , xi−1)I
n−1.

(ii) From (i) we see that condition (†) of Lemma 4.1 is satisfied. Therefore, the
conclusion follows from Lemma 4.1.
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(iii) If s = 1, In+2 = x1I
n+1 for n ≥ r. Hence In+2 : x1 = In+1 +(0 : x1). Using

(i) we get

(In+2 : x1) ∩ In = In+1 + (0 : x1) ∩ In = In+1.

By Lemma 4.3, this implies that x∗1 is a filter-regular element of G. If s ≥ 2,
using (i) we have (x1) ∩ In+2 = x1I

n+1 for n ≥ r − 1. From this it follows that
In+2 : x1 = (0 : x1)+In+1. As above, we can then deduce that x∗1 is a filter-regular
element of G. Further, from (?) it follows that

[(x1, x2, . . . , xi−1) : xi] ∩ (x1, I
n) = (x1) + (x2, . . . , xi−1)I

n−1, i = 2, . . . , s.

By induction we may assume that the images of x∗2, . . . , x
∗
s form a filter-regular

sequence in GI/(x1)(A/(x1)). Hence x∗1, . . . , x
∗
s is a filter-regular sequence of G by

Lemma 4.5.
(iv) From (i) we see that (†) is satisfied. Hence regR ≤ r by Proposition 4.2.

The equality regR = regG follows from Corollary 3.3.
The proof of Proposition 4.7 is now complete.

The above results give characterizations for regGI(A) and regRI(A) which,
unlike Proposition 4.2, do not depend on the asymptotic behavior of I.

Theorem 4.8. Let J = (x1, . . . , xs) be a reduction for I. Then x∗1, . . . , x
∗
s is

a filter-regular sequence of GI(A) if and only if the following condition holds for
some fixed integer r ≥ rJ (I):

[(x1, . . . , xi−1) : xi] ∩ Ir+1 = (x1, . . . , xi−1)I
r, i = 1, . . . , s.(?)

If that is the case, regRI(A) resp. regGI(A) is the least integer r with this property.

Proof. The assertions follow from Proposition 4.6 and Proposition 4.7 (iii) and
(iv).

Remark. The condition (?) can be replaced by the condition

[(x1, . . . , xi−1)I
r : xi] ∩ Ir+1 = (x1, . . . , xi−1)I

r , i = 1, . . . , s.(∗)
That (?) implies (∗) is obvious. Conversely, dividing (∗) by xni , we get

[(x1, . . . , xi−1)I
r : xn+1

i ] ∩ Ir+1 = [(x1, . . . , xi−1)I
r : xni ] ∩ Ir+1

for n = 1, . . . , r. From this it follows that

[(x1, . . . , xi−1)I
r : xr+1

i ] ∩ Ir+1 = [(x1, . . . , xi−1)I
r : xi] ∩ Ir+1.

Since (x1, . . . , xi−1)I
r : xi ⊆ (x1, . . . , xi−1) : xi ⊆ (x1, . . . , xi−1)I

r : xr+1
i , we see

that (∗) implies (?). The condition (?) has been considered in [2] and [22] in the
case I = (x1, . . . , xs).

Theorem 4.9. Let A be a local ring with infinite residue field and I an ideal of
A. Let J be any reduction for I generated by forms of degree 1. For a fixed integer
r ≥ 0, the following conditions are equivalent:

(i) regRI(A) = r.
(ii) regGI(A) = r.
(iii) There exists a minimal basis x1, . . . , xs for J such that (?) holds and r is

the least number ≥ rJ (I) with this property.

Proof. (i) ⇔ (ii) is a consequence of Corollary 3.3. (ii)⇔ (iii) follows from Theorem
4.8, because by Lemma 2.5 we can find a minimal basis x1, . . . , xs for J such that
x∗1, . . . , x

∗
s is a filter-regular sequence of G.
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5. Sequences of regular type

For convenience we call a sequence x1, . . . , xs of elements of A a d-sequence if

[(x1, . . . , xi−1) : xi] ∩ I = (x1, . . . , xi−1), i = 1, . . . , s,

where I = (x1, . . . , xs), without requiring that x1, . . . , xs is a minimal basis for I.
This notion can be naturally generalized as follows.

Let r be any non-negative integer. A sequence x1, . . . , xs of elements of a commu-
tative noetherian ring A is called a sequence of regular type r if for I = (x1, . . . , xs),

[(x1, . . . , xi) : xi+1] ∩ Ir+1 = (x1, . . . , xi)I
r, i = 0, . . . , s− 1,

and r is the smallest integer with this property (cf. [6], [13], and [22] for other
generalizations of d-sequences). The name stems from the following result.

Theorem 5.1. Let I be an arbitrary ideal of a ring A. Then:
(i) regRI(A) = regGI(A) = r if I is generated by a sequence of regular type r.
(ii) I is generated by a sequence of regular type r if A is a local ring with infinite

residue field and regRI(A) = r or regGI(A) = r.

Proof. The assertions follow from Theorem 4.8 and Theorem 4.9, respectively.

Remark. By Proposition 4.7 (i), if x1, . . . , xs is a sequence of regular type r, then
for all n ≥ r + 1,

[(x1, . . . , xi−1) : xi] ∩ In = (x1, . . . , xi−1)I
n−1, i = 1, . . . , s.

By Theorem 4.8, x1, . . . , xs is a sequence of regular type r if and only if x∗1, . . . , x
∗
s

is a filter-regular sequence of GI(A) and regGI(A) = r. Hence sequences of regular
types enjoy many interesting properties which can be derived from those of filter-
regular sequences of GI(A) (see Section 4).

The most interesting property of an ideal I generated by a d-sequence is that it
is of linear type, i.e. reltypeRI(A) = 1 [11], [28]. By Proposition 2.6, regRI(A) is
the maximum of certain invariants of RI(A) which include reltypeRI(A)−1. Hence
the following consequence of Theorem 5.1 clearly distinguishes ideals generated by
d-sequences from ideals of linear types.

Corollary 5.2. Let I be an arbitrary ideal of a ring A. Then:
(i) regRI(A) = regGI(A) = 0 if I is generated by a d-sequence.
(ii) I is generated by a d-sequence if A is a local ring with infinite residue field

and regRI(A) = 0 or regGI(A) = 0.

The statements concerning regGI(A) = 0 are implicitly contained in [7, Lemma
12.7 and Theorem 12.10] and [17, (2.3) and (2.20)].

We shall see that Theorem 5.1 has a graded version.

Lemma 5.3. Let S be a standard graded ring. Let z = z1, . . . , zs be a sequence
of homogeneous elements of degree 1 such that S+ = (z1, . . . , zs). Then z is a
sequence of regular type r if and only if z is a filter-regular sequence and regS = r.

Proof. Let r = regS. By Theorem 2.4, z is a filter-regular sequence if and only if
a(z) = r, i.e. [(z1, . . . , zi−1) : zi]n = (z1, . . . , zi−1)n, i = 1, . . . , s, for n ≥ r + 1
and r is the smallest integer with this property. Since z1, . . . , zs are homogeneous
elements of degree 1, this condition is equivalent to the condition

[(z1, . . . , zi−1) : zi] ∩ (S+)r+1 = (z1, . . . , zi−1)(S+)r, i = 1, . . . , s.
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Theorem 5.4. Let S =
⊕

n≥0 Sn be a standard graded ring. Then:

(i) regS = r if S+ is generated by a sequence of regular type r.
(ii) S+ is generated by a sequence of regular type r if S0 is a local ring with

infinite residue field and regS = r.

Proof . (i) Since S is standard graded, GS+(S) ' S. Hence the assertion is a
consequence of Theorem 5.1 (i).

(ii) By Lemma 2.5, there is a filter-regular sequence of homogeneous elements of
degree 1 which minimally generate S+. Hence the statement follows from Lemma
5.3.

Recall that a standard graded ring S is called special graded if the ideal S+ is
generated by a d-sequence [12]. From Theorem 5.4 we obtain the following char-
acterization of special graded rings in terms of the Castelnuovo regularity. This
characterization can be also deduced from results of Herzog, Simis, and Vasconce-
los [7, Lemma 12.7 and Lemma 12.8] or Kühl [17, (2.3)] by using the characteri-
zation of the Castelnuovo regularity in terms of the vanishing of Koszul homology
(Proposition 2.6).

Corollary 5.5. Let S =
⊕

n≥0 Sn be a standard graded ring. Then regS = 0 if
S is special graded. The converse is true if S0 is a local ring with infinite residue
field.

The following interplay between sequences of regular types of A, RI(A), and
GI(A) is inspired by Huneke’s results on special graded algebras [12].

Proposition 5.6. Let x1, . . . , xs be elements of a ring A and I = (x1, . . . , xs).
For a fixed integer r ≥ 0, the following conditions are equivalent:

(i) x1, . . . , xs is a sequence of regular type r.
(ii) x1t, . . . , xst is a sequence of regular type r in RI(A) and x∗1, . . . , x∗s is a

filter-regular sequence of GI(A).
(iii) x∗1, . . . , x

∗
s is a sequence of regular type r in GI(A).

Proof. (i) ⇒ (ii): By Theorem 4.6, x1t, . . . , xst and x∗1, . . . , x
∗
s are filter-regular

sequence of R and G, respectively, and regR = r. Thus, by Lemma 5.3, x1t, . . . , xst
is a sequence of regular type r in R.

(ii) ⇒ (iii): By Lemma 5.3, regR = r. Hence regG = r by Corollary 3.3.
Applying Lemma 5.3 once more, we see that x∗1, . . . , x

∗
s is a sequence of regular

type r.
(iii) ⇒ (i): By Lemma 5.3, x∗1, . . . , x∗s is a filter-regular sequence of G and

regG = r. By Theorem 4.8, this implies that x1, . . . , xs is a sequence of regular
type r.

Corollary 5.7. Let x1, . . . , xs be elements of a ring A and I = (x1, . . . , xs). Then
the following conditions are equivalent:

(i) x1, . . . , xs is a d-sequence.
(ii) x1t, . . . , xst is a d-sequence of RI(A) and x∗1, . . . , x

∗
s is a filter-regular se-

quence of GI(A).
(iii) x∗1, . . . , x∗s is a d-sequence of GI(A).

Remark. The implication (i) ⇒ (ii) and (iii) has been proved by Huneke [12, Corol-
lary 1.1 and Theorem 1.2]. The equivalence (i) ⇔ (iii) was shown by Kühl [17,
(2.20)] (see also [17, Theorem 2.10]). But the equivalence (i) ⇔ (ii) is new.
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6. Some applications

The first application concerns a recent result of Marley [18, Theorem 2.1] com-
paring certain invariants ai(GI(A)) for an m-primary ideal I of a Cohen-Macaulay
local ring (A,m). We shall see that his result is a natural consequence of the re-
lationship between ai(RI(A)) and ai(GI(A)). The following generalized version of
Marley’s result is due to Hoa [8, Theorem 5.2] (see also [5, Lemma 4.5] for a similar
result).

Proposition 6.1. Let A be a local ring and I an ideal of A. Set G = GI(A) and
s = gradeG+. Assume that s ≤ grade I − 1. Then as(G) < as+1(G).

Proof. Without restriction we may assume that the residue field of A is infinite.
Then there is a regular sequence x1, . . . , xs of elements in I\I2 such that x∗1, . . . , x∗s
is a regular sequence of G. Put A = A/(x1, . . . , xs) and I = I/(x1, . . . , xs).
Let G = GI(A) and R = RI(A). Then G = G/(x∗1, . . . , x

∗
s). By Corollary 2.4,

ai(G) = 0, i = 0, . . . , s − 1, and as(G) ≥ −s. Using Proposition 2.2 (ii), we can
deduce that

as(G) + s = a0(G) ≥ 0,

max{as(G) + s, as+1(G) + s+ 1} = max{a0(G), a1(G) + 1}.
If as(G) ≥ as+1(G), then a0(G) ≥ a1(G). By Theorem 3.1 (ii), a0(R) = a0(G) ≥ 0.
Since grade I = grade I − s > 0, we have H0

I
(A) = 0. From this it follows that

H0
R+

(R) = 0. So we obtain a0(R) = −∞, a contradiction.

Remark. Marley’s result consists of two parts. The first part has been modified as
above. The second part can be generalized as follows. Assume that s ≤ grade I−2.
Then either as+1(G) < as+2(G) or

as+1(G) = max{n| (x1, . . . , xs, I
n+s+1) : xs+1 6= (x1, . . . , xs, I

n+s)},
where x1, . . . , xs+1 is a superficial sequence of I. The proof is more complicated
but follows the same line as the above proof for Proposition 6.1; hence we omit it.

Recall that an element x ∈ I \ I2 is a superficial element (of order 1) for I if
there is an integer c such that (In : x) ∩ Ic = In−1 for all large n [29]. This
notion has played an important role in the theory of multiplicity. A sequence
x1, . . . , xs of elements of I is a superficial sequence of I if xi is a superficial element
of A/(x1, . . . , xi−1), i = 1, . . . , s. The obstacle to finding superficial sequences is
that one needs to check certain relations for all large n. We can circumvent this by
using the notion of a filter-regular element.

Lemma 6.2. Let x1, . . . , xs be elements of I. Then x1, . . . , xs is a superficial
sequence of I if and only if the following conditions are satisfied:

(i) xi 6∈ (x1, . . . , xi−1) + I2, i = 1, . . . , s.
(ii) x∗1, . . . , x

∗
s is a filter-regular sequence of GI(A).

Proof. We may assume that (i) is satisfied. If x1 is a superficial element of I, then
there is an integer c such that (In+2 : x1) ∩ Ic = In+1 for all large n. From this it
follows that (In+2 : x1) ∩ In = In+1. Hence x∗1 is a filter-regular element of GI(A)
by Lemma 4.3. Conversely, if there is an integer c such that (In+2 : x1)∩In = In+1

for all n ≥ c, we can deduce that for n ≥ c+ 2,

(In : x1) ∩ Ic = (In : x1) ∩ Ic+1 = . . . = (In : x1) ∩ In−2 = In−1.
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This proves the case s = 1. If s ≥ 2, we may further assume that x1 is a superficial
element of I or, equivalently, x∗1 is a filter-regular sequence of GI(A). By Lemma
4.5, x∗1, . . . , x

∗
s is a filter-regular sequence if and only if x∗2, . . . , x

∗
s is a filter-regular

sequence of GI/(x1)(A/(x1)). By induction, this condition holds if and only if
x2, . . . , xs is a superficial sequence of the ideal I/(x1).

For a superficial sequence which generates a reduction of I we have the following
characterization which does not depend on the asymptotic behavior of the elements.
Note that if A is a local ring with infinite residue field, any superficial element of I
can be extended to such a superficial sequence.

Proposition 6.3. Let x1, . . . , xs be elements of I which generate a reduction J
of I. Then x1, . . . , xs is a superficial sequence of I if and only if the following
conditions are satisfied:

(i) xi 6∈ (x1, . . . , xi−1) + I2, i = 1, . . . , s.
(ii) There is an integer r ≥ rJ (I) such that

[(x1, . . . , xi−1) : xi] ∩ Ir+1 = (x1, . . . , xi−1)I
r, i = 1, . . . , xs.

Proof. This is a consequence of Lemma 6.2 and Theorem 4.8.

The next application concerns results of Huckaba on the relation type of certain
ideals. Following [10], we call a sequence x1, . . . , xs of elements of a local ring A a
complete d-sequence with respect to I if x1, . . . , xs is a d-sequence and the initial
forms of x1, . . . , xs−1 form a regular sequence in G = GI(A). Notice that the
definition in [10] is restricted only to the case `(I) = ht I + 1.

Example. Every minimal induction of I is generated by a complete d-sequence
with respect to I in the following cases:

(1) grade I = ht I and `(I) = ht I ≤ gradeG+ + 1.
(2) A is a Cohen-Macaulay ring and I is generically a complete intersection with

`(I) = ht I + 1 = gradeG+ + 1 [10, Proposition 1.2].

Huckaba proved that in the above cases, reltypeRI(A) ≤ rJ (I) + 1 for any
minimal reduction J of I ([9, Theorem 2.3]; [10, Theorem 1.4]). We will improve his
results by proving the relation regRI(A) = rJ(I). This yields an affirmative answer
to his question of whether in case (2) the reduction number rJ(I) is independent
of the choice of J ; cf. [10, Theorem 1.7]. See also [23] and [24] for related results
on this topic.

Theorem 6.4. Let A be a local ring and I an ideal of A. Let J be a minimal
reduction of I which can be generated by a complete d-sequence with respect to I.
Then

regRI(A) = rJ (I).

Proof. Let x1, . . . , xs be a complete d-sequence with respect to I which generates J ,
and let r = rJ (I). By [27], the assumption that x∗1, . . . , x

∗
s−1 is a regular sequence

implies that x1, . . . , xs−1 is a regular sequence and

(x1, . . . , xi−1) ∩ Ir+1 = (x1, . . . , xi−1)I
r, i = 1, . . . , s.

From this it follows that for i = 1, . . . , s− 1,

[(x1, . . . , xi−1) : xi] ∩ Ir+1 = (x1, . . . , xi−1)I
r.
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Further, since [(x1, . . . , xs−1) : xs] ∩ J = (x1, . . . , xs−1) and Ir+1 = JIr, we also
have

[(x1, . . . , xs−1) : xs] ∩ Ir+1 = (x1, . . . , xs−1) ∩ Ir+1 = (x1, . . . , xs−1)I
r.

Therefore, using Theorem 4.8 we get regR = r.

The last application addresses the problem of describing ideals which yield
Cohen-Macaulay blowing-ups. Given any positively graded ring S, we will de-
note by ProjS the set of all graded prime ideals not containing S+. For an ideal I
of a ring A, ProjRI(A) is called the blowing-up of A along I.

Theorem 6.5. Let (A,m) be an equidimensional local ring which is a homomorphic
image of a regular local ring with algebraically closed residue field. Let I be an m-
primary ideal and dimA = s. Then ProjRI(A) is a Cohen-Macaulay scheme if
and only if every minimal reduction J = (x1, . . . , xs) of I satisfies the following
condition for some r ≥ rJ(I):

[(x1, . . . , xi−1) : xi] ∩ Ir+1 = (x1, . . . , xi−1)I
r, i = 1, . . . , s.

Proof. (⇒) By [26, Lemma 2.1 and Proposition 3.3] the assumption that ProjR is
a Cohen-Macaulay scheme implies that ProjG is a Cohen-Macaulay scheme, too.
Since x∗1, . . . , x

∗
s form a homogeneous system of parameters for G, it follows that

x∗i 6∈ P for any associated prime P of G/(x∗1, . . . , x
∗
i−1), P 6⊇ G+, i = 1, . . . , s.

That means x∗1, . . . , x
∗
s is a filter-regular sequence of G. Thus, x1, . . . , xs satisfies

the above condition by Theorem 4.8.
(⇐) Let P ∈ ProjR be maximal. Then P0 = m. Since R/mR is a finitely

generated algebra over the algebraically closed field A/m, there is a minimal basis
x1, . . . , xv of I such that P is generated by m and the set {x1t, . . . , xvt} \ {xts}.
Let RP be the homogeneous localization of R at P . Then RP is the localiza-
tion of the ring B := A[x1/xs, . . . , xv/xs] at the maximal ideal generated by
m and {x1/xs, . . . , xv/xs} \ {xs/xs}. Without restriction we may assume that
J = (x1, . . . , xs) is a minimal reduction of I. Then x1, . . . , xs satisfies the condi-
tion of Theorem 6.5. Hence x∗1, . . . , x∗s is a filter-regular sequence of G by Theorem
4.8. By Lemma 3.6, x1t, . . . , xst is a filter-regular sequence of R. It follows that
xit 6∈ Q for any associated prime ideal Q of R/(x1t, . . . , xi−1t), xst ∈ Q. Therefore,
x1/xs, . . . , xs−1/xs is a regular sequence of B which is the homogeneous localisation
of R with respect to the element xst. Now we will show that

(x1/xs, . . . , xs−1/xs)B : xs = (x1/xs, . . . , xs−1/xs)B.

This relation of elements of B can be translated as a relation of elements of A:

[(x1, . . . , xs−1)I
n−1 : xs] ∩ In = (x1, . . . , xs−1)I

n−1

for all large n. But as we have seen in the remark following Theorem 4.8, this
condition is equivalent to the condition

[(x1, . . . , xs−1) : xs] ∩ In = (x1, . . . , xs−1)I
n−1

which is satisfied for n ≥ r+ 1 by Proposition 4.7 (i). Thus x1/xs, . . . , xs−1/xs, xs
is a regular sequence of B. Since dimBP = htP = s, this implies that BP is a
Cohen-Macaulay ring.

Remark. The author guesses that there is a similar characterization for ProjRI(A)
to be a Cohen-Macaulay ring when I is an ideal of A with analytic spread `(I) =
dimA.
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From Theorem 6.5 we immediately obtain the following interesting consequence.

Corollary 6.6. Let (A,m) be a local ring as in Theorem 6.5. Then the following
conditions are equivalent:

(i) ProjRI(A) is a Cohen-Macaulay scheme for every parameter ideal I of A.
(ii) Every system of parameters of A is a sequence of regular type.

Remark. For an arbitrary local ring A, Goto [4] has proved that (i) is equivalent to
the condition that A/H0

m(A) is a Buchsbaum ring. From this one can easily deduce
(ii), because every system of parameters of a Buchsbaum local ring is a d-sequence.
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E-mail address: nvtrung@thevinh.ac.vn

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use


